The geneal setting，the program of $B_{A T Y R E} V_{\text {，}}$
Mania Tschinkel
Ea describe the general setting，I want ta consider varieties over a number field．For that，let me descube the rob I need from number theory：
1）Survival kit in number theory
References
The book I prefer has a drawback it was wotton in french：

P．SaMUEL：Theorie algébrigue does nombres
S．LANO：Algebraic Number theory
J．NEUKIRCH：Algebraic Number theory
Definitions \＆notations
－A number field is a finite field extension of A
－Let \mathbb{K} be a number field

$$
\begin{aligned}
G_{\mathbb{K}} & =\text { ring of integers of } \mathbb{K} \\
& =\text { integral closure of } \mathbb{Z} \text { in } \mathbb{K} \\
& =\{\alpha \in \mathbb{K} \mid \exists \text { unitary } P \in \mathbb{Z}[x], \quad P(\alpha)=0\}
\end{aligned}
$$

（unitary：the coefficient of the highest degree monomial is one：$\left.P=x^{d}+\sum_{1=0}^{a_{i}} a_{i} x^{i}, a_{i} \in \mathbb{Z}\right)$
－A fractional ideal of $I K$ is a sub $G_{1 K}{ }^{\prime}=$－module of $1 K$ which is finitely generated．
－Let $I\left(G_{N}\right)$ be the set of non zorro fractional ideals in \mathbb{K}

For or，$t \in \mathscr{I}\left(\sigma_{\mathbb{K}}\right)$（FRAKTVR alphabet） orts is the sub－GIK－module of IK generated by products $x y$ with $x \in O$ and $y \in b$
$\frac{\text { Proposition }}{\text { y }}$
Y（ $G_{I K}$ ）is a commutative group for the multiplication of fractional ideas．Is neutral element is $\sigma_{\mathbb{K}}$ anot the inverse of $a \in Y\left(G_{\mathbb{K}}\right)$ is

$$
x^{-1}=\left\{x \in \mathbb{K} \mid x a^{-1} \subset \bigodot_{\mathbb{K}}\right\}
$$

Notation（continued）
The map

$$
\begin{aligned}
& K^{x} \longrightarrow y\left(\sigma_{\mathbb{K}}\right) \\
& x \longmapsto x G_{1 k}=(x)
\end{aligned}
$$

is a moyhiom of groups．est image is denoted by $P\left(G_{1 K}\right)$ and is called the subgroup of princjal ideals．
The quotient $y\left(O_{K}\right) / P\left(O_{I K}\right)$ is called the group of ideal classes of $\left(K\right.$, it is denoted $\mathrm{C}\left(G_{1}\right)$ ．
Remark
Sec $\left(G_{K}\right)$ as a set is the set of prime ideals of G_{K} ．Sr has dimension 1
In other words，
Spec $\left(G_{\mathbb{K}}\right)-\{(0)\}$ is the set of masainal ideals of $G_{I K}$ ．I dene \bar{T} as $M_{G_{K}}$
Definition
A Dedekind domain is an integral domain wish is integrally dosed，noetherian and any non zero prime ideal is masainal．

Examples
－fields
－Gk is a Dedekind ring
－if R is a Dedekind ring and $S \subset R$ is a subset stable by multification so that $0 \notin S$
The locolyation $R\left[S^{-1}\right]$ is a dedekind rung
Remark
Let R br a Dedekind ring and $K=E r(R)$ The set $I(R)$ of fractional ideals of $I K$ witt rospertio R is also a group for the multiplication

Theorem 1
Set R be a Dedekind ring and TH $_{R}$ its set of non zen prime ideals．The moyhism
of groups

$$
\operatorname{Div}(\sec (R))=\oplus_{\mu \in \mathbb{M}_{R}} \mathbb{Z} \mu \longrightarrow \mathcal{J}(R)
$$

is an isomoyhism．

$\frac{\text { Corollary }}{\text { We jet a commutative diagram }}$
finiteppodud.

$$
\begin{aligned}
& \text { We get a commutative diagram }
\end{aligned}
$$

Theorem 2
$Q\left(G_{\mathbb{K}}\right)$ is a finite group Hes order is denoted by h ．
Remark
We get a map

$$
\begin{aligned}
& \mathbb{K}^{*} \longrightarrow \bigoplus_{p=m_{G} \cdot k} \mathbb{Z}_{N} \\
& x \longmapsto \sum_{p} v_{p}(x) \mu \\
& x=+\infty
\end{aligned}
$$

Put $v_{p}(0)=+\infty$
the map $v_{p}: \mathbb{K} \rightarrow \mathbb{Z} \cup\{+\infty)$ is a discrete valuation on \mathbb{K} and defines a place of $I K$ ，which is denoted po as well
Theorem 3
 is a byedion From $1 H_{G_{1 K}}$ to the set of ulhamctic places of IK，which Y also denote by $\mathrm{Pl}(\mathbb{K})_{f}$ ．
Clove notations
Let $\sum \frac{T}{K} / a$ be the set of field moyhis ms from IK $10-C$
Remark
－Since \mathbb{C} is algebraically closect
Galois theory velds us that $\# \sum_{\mathbb{K} / Q}=[\mathbb{K}: \mathbb{Q}]$ the degree of \mathbb{K} / \mathbb{Q}
－For $\begin{aligned} \sigma \in \sum_{\mathbb{K} / a}^{\mathbb{C}} & \bar{\sigma}: \quad \mid K\end{aligned} \quad \rightarrow \mathbb{C} \in \sum_{\mathbb{K} / \mathbb{Q}}^{\mathbb{C}}$
this defines an acton of $\psi / 2 \psi=$ gal $(\mathbb{L} / \mathbb{R})$ on $\sum^{\mathbb{G}}$
and $\mathcal{K K}_{1 / \mathbb{A}}$
σ is a ficced point if and sonly if $\sigma(\mathbb{K}) \subset \mathbb{R}$

$$
\text { If } \sigma \in \sum_{\mathbb{K} / Q_{2}}^{\mathbb{C}} \quad \text { 1.10 } \sigma: K M \rightarrow \mathbb{R} \geqslant 0
$$

is an absent value on \mathbb{K}
vote that $1.1 . \bar{\sigma}=1.10 \mathrm{o}$
Theorem 4
The map $\sigma \longmapsto 1.10 \sigma$ defines a bijection from the orbits of the action of \mathbb{Z} zion $\sum_{\mathbb{K} / \mathbb{Q}}^{\mathbb{T}}$ to the set of archimedean places of \mathbb{K} which Is denote by $\operatorname{Pl}(\mathbb{K})_{\infty}$
Definition
Let $\sigma \in \sum_{1 k / a}^{\mathbb{C}}$ and v be ike conenonding tace σ define an isomontism from \mathbb{K}_{v} to
$-\mathbb{R}$ if $\sigma=\bar{\sigma}$ ，we soy that v is real
$-\mathbb{C}$ if $\sigma \neq \bar{\sigma}$ ，v is complex
r_{1}（resp r_{2} ）denotes the number of real（resp．complex） places
Fact
For any place w of \mathbb{K} ，the induced topology on（1）is the topology defined by the resticiom of an absolute vocue defining w which is non bivial and define a pace w of \mathbb{K}
we denote it w iv
The orem 5
For any pho av of Q ，

$$
\mathbb{Q}_{v}, \mathbb{Q}_{\mathbb{a}} \underset{w \mid v}{ } \mathbb{K}_{w} \mathbb{K}_{w}
$$

as a \mathbb{K} algelera． \mathbb{Q} In farticalon $[\mathbb{K}: Q]=\sum_{w / v}\left[K_{w}:\left(Q_{v}\right]\right.$

$$
\left(r_{1}+2 r_{2}=[k: Q]\right)
$$

Proposition／Defintion
Let $t \in P l(I K)_{f}, p \in P$ the induced place on Q
－We have a commutative diagram

$$
\begin{aligned}
& \mathbb{K}^{*} \xrightarrow{v_{r}} \mathbb{Z} \\
& \uparrow \\
& \uparrow \times e_{p} \\
& \mathbb{Q}^{*} \xrightarrow{v_{p}} \mathbb{Z}
\end{aligned}
$$

e_{p} is called the ramification in dea
－G K_{K} / N is a finite field esctersion of $\mathbb{F}_{p}=\mathbb{Z} / P \mathbb{Z}$ we denote it by $\mathbb{F}_{p}, f_{p}=\left[\mathbb{F}_{p}: \mathbb{F}_{p}\right]$ is called the residual degree

Proposition

$$
\left[1 K_{\mu}: a_{p}\right]=e_{\mu} f_{\mu}
$$

and therefore

$$
[k: Q]=\sum_{\beta \mid p} e_{\beta} f_{\mu}
$$

Proposition
If $I K / Q$ is galoision then，for any $v \in P l(Q)$ Col (K / Q) ads transitively on $\{w \mid v\}$ and $\left[K_{w}: \mathbb{Q}_{v}\right)$（resp $f_{p} e_{p}$ ）depends only on v（resp．p ）．

NB
Everything since last fad generalizes，mutates mulaondis，to an extension of rumba fields \mathbb{L} / \mathbb{K} ．
dotation
For any w $G \mathrm{Pl}(\mathbb{K})$ ，Let vibe the induced place in $P e(Q)$
For any $x \in \mathbb{K}_{w}$

$$
|x|_{w}^{w}=\left|N_{\left|K_{w}\right| a_{v}}(x)\right|_{v}
$$

\sum_{1}^{2}
If w no not complex $1.1 w$ is an absolute value which defines w But if w is complex

$$
|z|_{w}=|z|^{2} \text { for } z \in \mathbb{C}
$$

does not satisfy $|x+y|_{w} \leqslant|x|_{w}+|y|_{w}$ ！ and is not an absolute value．
However intis notation is convenient for tho following reasons．
Remark
－Hew，as an additive group is a finite dimensional vedor pa on \mathbb{Q}_{v} thus it is locally compact and admits a Hoer measure（that is a measure on the Borclion σ－algebra which is stable under Translation，it is unique up to constant）．
foot μ be such a measure
we have

$$
\mu(a B)=|a|_{v} \mu(B)
$$

for any borelion $B \subset \mathbb{Q}_{w}$ ．
We have the formula

$$
\forall x \in \mathbb{K},\left|N_{\mathbb{K} / 0}(x)\right|_{v}=\pi_{w \mid v}|x|_{w}
$$

This formula implies
Proposition（product formula for number fields）

$$
\left.\forall x \in\left|k^{*}, \quad \prod_{w \in \operatorname{le}(\mathbb{K})}\right| x\right|_{w}=1
$$

（2）It is not invariant under fill d extensions

$$
\text { For } x \in \mathbb{Q}_{p} \quad|x|_{w}=|x|_{v}^{\left[\mathbb{K}_{w}: \mathbb{Q}_{v}\right]}
$$

Now Invent to give a more complete description of the multiplicative group of \mathbb{K} ．
Notation
Let $\log : \mathbb{K}^{*} \longrightarrow \prod_{\left.v \in P_{P(K)}\right)_{\infty}} \mathbb{R} \quad\left(\operatorname{dem} r_{1}+r_{2}\right)$

and $\pi: \pi \quad \mathbb{R} \longrightarrow \mathbb{R}$

$$
v \in \operatorname{PR}(I K)_{\infty}\left(x_{v}\right)_{v} \longmapsto \sum_{v \in \operatorname{PR}(K K)_{\infty}} x_{v}
$$

Remark

So the product formula gives

Theorem 6
$\operatorname{Kor}\left(\log _{1 G_{1}^{x}}\right)$ is the group $N_{\infty}(\mathbb{K})$ of roots of UNity in \mathbb{K} which is finite and

$$
y_{m}\left(\log _{16_{k}^{*}}\right) \text { is a lattice } \Lambda \text { in } H=\operatorname{Kar}(\pi)
$$

（that is，it is generated by a basis of the \mathbb{R} vector spec H ）
cavil $(A)=V_{d e}(H / \Lambda)$ is called the sugulation of K / a.
To summarize
The structure of $\left(K^{*}\right.$ is more on less given
by two exod sequences：finite

$$
1 \rightarrow G_{1 k}^{*} \rightarrow \mathbb{K}^{*} \xrightarrow{\text { by }} \operatorname{Div}\left(\operatorname{jec}\left(\sigma_{1 k}\right)\right) \rightarrow \operatorname{Pir}\left(S_{x}\left(\sigma_{k}\right)\right) \rightarrow 0
$$

$$
1 \rightarrow N_{\infty}(\mathbb{K}) \rightarrow \sigma_{1 k}^{*} \xrightarrow{\log _{n}} \wedge_{\cap \operatorname{lottice}}
$$

$$
H \text { dem. } r_{1}+r_{2}-1
$$

For the additive group，we have
Theorem 7 more easy
The infective moypirm of Q algebra

$$
\mathbb{K} \rightarrow \prod_{w \mid \infty} \mathbb{K}_{w} \approx \mathbb{K} \otimes_{a} \mathbb{R}
$$

maps $G_{1 K}$ onto a lattice of $\left.\mathbb{K}_{\otimes}\right)_{\mathbb{Q}} \mathbb{R}$
The covolume of this lattice is $\sqrt{1 \phi_{\mid 1 T}}$ where d_{K} is the discriminant of $\mathbb{I K}$ （defined as $\operatorname{det}\left(\pi^{1 k / \omega_{-}}\left(a_{i} a_{j}\right)\right)$ where $\left(a_{i}\right)_{1 \leq i \leq[T K: a]}$ © a basis of σ_{k} as a \mathbb{Z}－module）

18／5／2016 2）About models
Definition
Let R be an integral domain and $\mathbb{K}=F_{r}(R)$
Let V be a vowing／K
d model of V over R is a scheme V over S pec（R） and an is omoyhim

$$
\varphi: V_{1 k} \simeq V
$$

Remark
If V is a projedive variety，it is easy to produce such a mode
tosume V tole projedve $V \subset \mathbb{P}_{\mathbb{K}}^{N}$ ， defined by homager aus polynomire

$$
f_{1},-, b_{r} \in \mathbb{K}\left[T_{0},-T_{N}\right] \text {. }
$$

But each f_{i} may be voritan as

$$
f_{i}=\sum_{j}^{i} \alpha_{i, f} T_{0}^{j_{0}}-T_{N}^{j N} \text { and } \alpha_{i, I}=\frac{\alpha_{i,}}{b_{i f}}
$$

with $a_{i j}, b_{i, j} \in R, b_{i, 2}=1$ if $\alpha_{i, j}=0$ ．
By replacing $-f_{i}$ by $\left(j b_{i, j}\right) f_{i}$
we may assume

$$
f_{i}^{0} \in R\left[T_{0},-, T_{n}\right]
$$

Then

$$
v=\operatorname{Prog}\left(R\left[T_{0}, T_{n}\right] /\left(t_{1},-l_{\rho}\right)\right)
$$

is a moolel of V ．If V is reduced，by increasing
r ，we may assume $\left(f_{1}, \ldots, f_{r}\right)=\sqrt{ }\left(f_{1},-, f_{r}\right.$ and $V_{\text {rechuced．}}$
（2）But in general，even of V is smooth v is not moth．So the problem is to jet a mots projective model．

Notation
Let \mathbb{K} be a number field
Set S be a finite subset of $\operatorname{PP}\left(I_{K}\right)_{1}$
then

$$
G_{s}=\left\{y \in \mathbb{k}\left|\forall \beta \in P l(\mathbb{k})_{j}-s,|x|_{\beta} \leqslant 1\right\}\right.
$$

Pomank
i） $\mathcal{G}_{\phi}=\sigma_{\mathbb{K}}$ ．
ii）Since $\operatorname{Pic}\left(\sec \left(\sigma_{1 K}\right)\right)$ is finite
and generated by $[\beta]$ for $p=P l(K K)_{F}$
There exists $S \subset P P(1 K) f$ finite such that

$$
\mathbb{K}^{*} \xrightarrow{\operatorname{din}} \notin \mathbb{Z} \mu
$$

is suyidive．But G_{s} in ${ }^{p} \notin s$ Decikiend ring as well so $\operatorname{Pac}\left(\sec \left(\sigma_{s}\right)\right)=\{0\}$ and G_{s} is pinajal．
Proposition
Let V be a nice variety on the number field \mathbb{K} Then dore exists $\mathrm{S} \subset \mathrm{Pl}(\mathrm{IK})_{f}$ finite and a moors and project twi macle of V over G_{s} ．
Sld fashioned proof
As before may assume that V so defined
by r homage he onus polynomials

$$
\text { y } f_{1} \text { homayehe onus polynomial } f_{r} \in G_{1 K}\left[T_{0},-, T_{N}\right] \text { with }\left(f_{0} r=\beta_{n}\right)=\sqrt{\left(f_{0},-1 f_{\pi}\right)}
$$

and let Vie the conesponding model of Woven $G_{\mathbb{K}}$ We are going to pore that there exists a feint he of ulthametiic places so that
$V_{G S}$ is smooth
In orcler to prove that＇s am going to use two

Things fort the following charaterivition of smooilnes for ：
Reminder
For V as above，$n=\operatorname{dim}(V), V$ is smooth if and only if

$$
\begin{aligned}
& \forall\left(x_{0},-, x_{N}\right) \in \mathbb{C}^{[+1+\{ }\{0\}, \\
& \left(\forall i \in\{1,, \pi\} f_{i}\left(x_{0},, x_{N}\right)=0\right) \Rightarrow r k\left(\left(\frac{\partial f_{i}}{\partial x_{1}}\left(x_{0},-x_{N}\right)\right)_{1 \leq i \leq \pi}\right)=N_{n} \\
& \text { (dote that } N-n \leq r) \\
& \text { (dijon }
\end{aligned}
$$

This can be expressed in terms of determinant of minors：This is equivalent to
For any $\left(x_{0},, x_{N}\right) \in \mathbb{4}^{n+1}$

$$
\text { if for } i \in\{1,-, r\} \quad b_{i}\left(x_{0},-, x_{N}\right)=0
$$

and for any $i_{1,}, i_{N-n}, f_{1},, j_{N-n}$ such that

$$
1 \leqslant i_{1}<-<i_{N-m} \leqslant r, \quad 0 \leqslant j_{1}<-<j_{N-n} \leqslant N
$$

we have

$$
\operatorname{det}\left(\frac{\partial f_{i_{k}}}{\partial x_{i_{l}}}\left(x_{0},-, x_{N}\right)\right)=0
$$

Then $\left(x_{0},-x_{N}\right)^{\prime}=0$
The second tool Sam going to use is Yhilbut－Nullstellensatz

Let $g_{1},-, g_{m} f \in \in \mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$
such that

$$
\left\{x \in \mathbb{C}^{N+1}\left|\forall i \in\{1,-m\} g_{i}(x)=0\right\rangle<\left\{x \in \mathbb{T}^{n+1} \mid f(x)=0\right\}\right.
$$

then

$$
f_{\exists} \in \sqrt{\left(g_{1},-, g_{m}\right)}
$$

that is $\exists n$ such that

$$
f^{n} \in\left(g_{1},-, g_{m}\right)
$$

Remark
I／ $1 / K$ is a field extension and Ea \mathbb{K}－vedor space，$F \subset E$ a subspace

$$
\begin{aligned}
\varphi: E & \rightarrow E \otimes_{j}{ }^{1 /} \\
x & \longmapsto x \otimes 1
\end{aligned}
$$

the extension of escolar map，then

$$
\varphi^{-1}\left(\mathbb{U}^{\varphi} \varphi(F)\right)=F
$$

Thus for an ideal I of $\mathbb{K}\left[X_{0}, \geqslant X_{n}\right]$

$$
\sqrt{\mathbb{I}} \cap \mathbb{K}\left[x_{0},-, x_{n}\right]=\sqrt{I}
$$

End of the proof of the proposition
so we get that those escists an integer m and polynomials $A_{M, i} \quad 0 \leq u \leq N, 1 \leq i \leq n$ and $B_{u, i, j} \quad 0 \leq 1 \leq N \frac{1}{1}=\left(i_{1},-i_{N} \cdot n\right) \frac{f}{}=\left(j_{1},-, j_{N-n}\right)$

$$
1\left\{i_{1}<-<i_{N} \quad n \leq \pi \quad 0 \leq j_{1}<-<j_{N} \leq N\right.
$$

（＊）

$$
x_{a}^{\text {ouch } t h_{\text {at }}}=\sum_{i} A_{u, i} G_{i}+\sum_{i, j} B_{u, \dot{k}, j} \operatorname{det}\left(\frac{\partial f_{i k}}{\partial X_{j_{k}}}\right)_{1<k, l \leqslant N-n}^{1 m n}
$$

Now let D be the product of all denominators of all coefficient of the $A_{u, i}$ and $B_{\mu, i, j}$ and let

$$
S=\left\{\mu \mid v_{\mu}(D) \geqslant 1\right\}
$$

it is a finite subset of $\operatorname{Pl}(\mathbb{K}) \mathrm{f}$ and

$$
A_{u, 1}, B_{u, i} ; \in G_{S}\left[x_{0},-r, x_{N}\right]
$$

and since G_{s} inject in \mathbb{K}
$(*)$ is bine in $G_{S}\left[x_{0}, \ldots, x_{N}\right]$
But this implies that the moyhism of vedor bundles

$$
T \mathbb{P}_{\mid v_{G_{s}}^{N}}^{N} \xrightarrow{d f} \bigoplus_{i=1}^{r} G_{\mathbb{P}^{n}}\left(d_{i}\right) \mid v_{\sigma_{s}} \text { where } d_{i}=\operatorname{deg}\left(l_{i}\right)
$$

is of constant rook $N-n$
Then we still hove tocheck that by
increasing S rue get that $V_{G_{s}}$ is flat $\operatorname{sjec}\left(G_{s}\right)$ ．
using lop III．9．7 in HARTSHORNE：book
since v is reduced，it suffices to prove that by increasing S we may assume Viveducible This will follow from the nest lemma
Pemonk
In slightly more modern terms，the end of the proof could be rewritten as follows：
The equations

$$
\operatorname{det}\left(\frac{\partial f_{i k}}{\partial x_{j_{l}}}\right)_{1 \leq k, l \leq N-x}=0
$$

definer a dose subset A of V which do not meet the generic fibre V
The stundinal mop $\pi i V \rightarrow$ Spec $\left(G_{\mathbb{K}}\right)$ is proje dive and therefore proper．Thus $S=\pi(s)$ is a closed subset which does not contain the generic point（ 0 ）of Sec（ G_{k} ）．Thus it is a finite subset of $\mathrm{Pl}(\mathbb{K})_{\mathrm{f}}$ and $V_{G_{s}}$ is smooth．I But infra，hes is ytsiltert Nullostellensats in in diguuse；
But the argument using the Nullotellensatz generalize easily in a kon－projective setting

Comma
Let $H K$ be a number field，Ste a finite subset of $\mathrm{Pl}_{l}(K)_{F}$ and V a notitorion scheme on $\operatorname{Spc}\left(\mathrm{O}_{5}\right)$ if $v_{\mathbb{I K}}=\phi$ then the image of the structural moypism $v \rightarrow \operatorname{spc}\left(O_{s}\right)$ is finite．

Proof
Since $V_{\text {is noetherion it can be covered }}$ by a finite number of affine scheme and It is enough to prove the result when

$$
\begin{aligned}
& v=\operatorname{spec}\left(\sigma_{S}\left[T_{1},-T_{N}\right] /\left(\sigma_{1},>\rho_{1}\right)\right) \\
& B_{\text {ut }} \operatorname{RRen} \\
& v_{\text {MK }}=\operatorname{Spec}\left(\mathbb{K}\left[T_{1},-T_{N}\right] /\left(\sigma_{n},-, \rho_{N}\right)\right)=\phi
\end{aligned}
$$

means That（ton may sec that as a form of Heillar Sulbstellensotys）

$$
\begin{aligned}
& 1 \in\left(b_{1},-b_{n}\right) \\
& T \operatorname{Lus} \exists A_{1},=A_{1} \in \mathbb{K}\left[T_{1},>T_{N}\right], 1=\sum_{i=1}^{N} A_{i} b_{i}
\end{aligned}
$$ Taking s^{\prime} as the set of $r=D$ the potinct of the denominators of the A_{i}

$V_{G_{5^{\prime}}}=\phi$ that the image of $V_{\text {is }}$ in Spec $\left(G_{S}\right)$ is contained in $5^{\prime}-5 . \square$
$\frac{\text { Proposition } 1}{\text { Let } 1 K}$
Let $1 K, S$ be as above and let V, W be notherion echemes over Suer $\left(\mathrm{O}_{5}\right)$
Let $\varphi_{1}, \varphi_{2}: v \rightarrow W$ be moyhiom of $s=$ hames over σ_{s} ，such that $\varphi_{11 K}=\varphi_{21 K}: v_{1 K} \rightarrow w_{K}$
then There exists a ferrite $S^{\prime} \subset \operatorname{Pl}(H)$ ，such that

$$
\varphi_{1} O_{s^{\prime}}=\varphi_{2} O_{s^{\prime}}
$$

Proof
Otyly the Coma to the open subschome of V defined by $\varphi_{1}(x) \neq \varphi_{2}(x)$ 口
Proposition 2
set $1 K$ be a number field and let S be a finite subset of $P P(I K)$ t let v, w be noetherion schemes over spec σ_{S} and let $\varphi: V_{K} \rightarrow w_{1 K}$ be a moghism of th vorictios then inhere escists a finite subset $S^{\prime} \supset s$ in $\mathrm{Pl}(\mid K)_{+}$ and monhiom $\tilde{\psi}: v_{G_{5}} \rightarrow w_{G_{5}}$ ， so that $\tilde{\varphi}_{\mathbb{K}}: V_{\mathbb{K}} \rightarrow \tilde{L}_{\mathbb{K}}$ coin aides with φ ．
Proof der $\left(V_{i}\right)_{i \in I}\left(\right.$ nom $\left.\left(W_{q}\right)_{i \in J}\right)$ be a finite covering of v（resp w ）such that $\forall i \in I, \exists j \in J, \varphi\left(v_{i \mid k}\right) \subset w_{j \mu}$
But if $U_{i}=\operatorname{src}\left(O_{s}\left[T_{1}, \frac{\gamma}{T_{m}}\right] /\left(f_{1}, \nu f_{r}\right)\right)$ and $w_{i}=\sec \left(G_{s}\left[T_{1},-T_{n}\right] /\left(y_{1}, \tau_{s}\right)\right)$ $\varphi_{1} v_{i, 1 K}$ coverepondo ta

$$
h_{1}, \frac{1}{}, h_{n} \in \mathbb{K}\left[T_{1},-, T_{m}\right]
$$

sudrhat $\forall i \in\left\{1,-1, \infty \quad g_{i}\left(h_{1},-, h_{n}\right) \in\left(h_{0,-}, h_{n}\right)\right.$ ie $\exists A_{i, 0}$ such that

$$
\theta_{i}\left(R_{1},-, R_{n}\right)=\sum_{j} A_{i j} f_{j}
$$

Taking S_{i} given by the podud of all densminaters of $h_{1},-, h_{n}, A_{i j}$ ，we ger
exdanding φ ．Wow put $S^{\prime \prime}=\bigcup_{i \in I} S_{i}$
and we only thoposition 1 to

$$
\dot{\varphi}_{i}, \hat{q}_{i}^{\prime} \cdot v_{i} G_{S^{\prime \prime}} \cap v_{G_{G^{\prime \prime}}^{\prime \prime}} \rightarrow w_{j},
$$

we get new finite rets $S_{i, s^{\prime}}^{s^{\prime \prime}}$ and we gut $S^{\prime \prime} S^{\prime}=U S_{\left(i, 1^{\prime \prime}\right.}$ so that $\tilde{\varphi}_{i}$ and $\tilde{\psi}_{i}$ ，coinage on $V_{i} \cap v_{i^{\prime}}$

$$
\begin{aligned}
& I_{i} n v_{i^{\prime}}{ }_{S^{\prime}} \\
& G_{S^{\prime}} \\
& w_{S^{\prime}} \text { as wanted. } 10
\end{aligned}
$$

Corollary
Let V be a projedive varidy over the number filed $1 K$ Set $5, S^{\prime}$ be finite subset of $\mathrm{Pl}(\mathbb{K})_{t}$
Let v be a projective model of V over O_{s},
and v^{\prime} ，
and $\left.v^{\prime} \quad v u^{\prime}\right) \cdot G_{s^{\prime}}$
Let Y（resp Y^{\prime} ）be tithe isomoyhiom

$$
v_{k K} \approx v\left(\text { resp } v^{\prime} \approx v\right)^{\prime}
$$

then there easts $S^{\prime \prime} \subset P^{1 / L} C(K)$ finite and containing SUS＇and an somoyhiom，

$$
\rho: v_{G_{S^{\prime \prime}}} \simeq v_{G_{S^{\prime \prime}}} \text { whit estiands } \varphi^{\prime-1} \circ \varphi \text {. }
$$

Proof
Apply position 2 ross $\varphi^{\prime-1}$ o φ and $\varphi^{-1} \cdot \varphi^{\prime}$
Ko get ρ ont ρ^{\prime} and proposition 1 la ρ o ρ^{\prime} and Id v^{\prime} （resp．$\rho^{\prime} \circ \rho$ and Id v）．D
So up to making bigger the model is＂unique＂．
b）Models of vector bundles
We can easily extend the notion of model to subcategories of the category of 1 schemes
Definition
Let R be an integral domain， $\mathbb{K} \div \operatorname{Fr}(R)$
Let V be a variety oven \mathbb{K} ，
Ne a martel of V over R
Let E be a vector bundle over V ．
If model of E oven V is a vector bundle $\&$ over R with an isomorphism of vedor bundles from E就 To E ．
Of course，the question is：does it esaists？
Proposition
Let V be a varidy oven a number field $1 K$ Let E be vector bundle over V There cast a finite set $S \subset P l(\mathbb{K}) f$ and a model V of V over G_{S} and a model E of E over v ．
Proof $\operatorname{det}\left(U_{i}^{\alpha_{i}} V\right)_{i \in I}$ be a finite covering of V by open immersions $U_{i}=\sec \left(R_{i}\right)$ which hivinlizes E and $\left(\bar{\varphi}_{i}: E_{v_{i}} \longrightarrow U_{i} \times \mathbb{A}_{\mathbb{K}}^{r}\right)_{i \in I}$ a local bivialyation of E ．
Consider $U_{i, j}=\alpha_{i}^{-1}\left(\alpha_{i}\left(U_{i}\right) n \alpha_{j}\left(U_{j}\right)\right.$ open in U_{i}

$$
\varphi_{j, i}=\varphi_{j} \circ \varphi_{i}^{-1}: \quad U_{i ;} \times \mathbb{H}_{\mathbb{K}}^{n} \longrightarrow U_{i, i} \times \not A_{K}^{\prime}
$$

which is defined by

$$
\begin{aligned}
& \Psi_{j, i} U_{i, j} \cong V_{j i} \text { and } \rho_{j, i}: U_{i, j} \longrightarrow G L_{n, k} \\
& \text { we fix } i \text { ismporariey. }
\end{aligned}
$$

Write $R_{i}=\mathbb{K}\left[T_{1},-, T_{N}\right] /\left(f_{1},-, f_{\Omega}\right)$ ．
and take ${ }^{5}$ so that $f_{1},-f_{1} \in G_{S}\left[T_{1} ノ=T_{N}\right]$ We get models of the u_{i} ：
$U_{i}-U_{i j}$ is dosed in U_{i} ，it is defined by
the vanishing of some elements of $\left[K\left[T_{11}, T_{N}\right]\right.$
by increasing 5 we may assume they are in $\mathrm{G}_{s}\left[T_{1},=T_{n}\right]$ as well
we gat u_{i}＜$U_{\text {；on or that }} u_{i \text { infix }}=U_{i}$
Then we ably propositions 2 and $101 x=$ is

as moyhisms of vedor bundles which
satisfy $\widetilde{\varphi}^{\text {the }}$ glueing condition

$$
\widetilde{\varphi}_{k, j} \circ{ }_{j, i}=\ddot{\varphi}_{k, i} \text { on } u_{i, j} \cap U_{i, k}
$$

ε（roop，v）is obtained by glueing the

$$
u_{i} \times \pi_{G_{s}}\left(\text { resp. } u_{i}\right)
$$

NB
Similarly one con get models of algebraic group over IK，．．．
Example
If v is a moth projedive model of a nice voricly V over G_{s} then TV is a madel of TV．
Remark
ctgain if we accept to add some primes to S， the models are unique．

3）Adelic nouns and metrics
a）w－adic norms
Definition
set IK ve a number field
and bot w be a place of $1 K$ ．
Lei E be a finite dimensional \mathbb{K}_{w} vedor space． A norm on E is a map

$$
\|\cdot\|_{w}: E \longrightarrow \mathbb{R}_{\geqslant 0}
$$

such that
（i）$\|x\|_{w}=0 \Leftrightarrow x=0$
（ii）$\forall x \in E, \quad \forall \lambda \in K_{w} \quad\|\lambda x\|_{w}=|\lambda|_{w}\|x\|_{w}$
（iii）if w is ultrametric

$$
\forall x, y \in E,\|x+y\|_{w} \leqslant \sup \left(\|x\|_{w},\|y\|_{w}\right)
$$

（iii＇）if w es real

$$
\forall x, y \in E \quad\|x+y\|_{w} \leqslant\|x\|_{w}+\|y\|_{w}
$$

（ $\ddot{u}^{\prime \prime}$ ）if w is complex

$$
\begin{aligned}
& w \text { is complex } \\
& \forall x, y \in E \quad\|x+y\|_{w}^{1 / 2} \leq\|x\|_{w}^{1 / k}+\|y\|_{w}^{1 / 2} \text {. }
\end{aligned}
$$

NB
In portrailar $\|$ ．$\|$ w is continuous for the w topology on E．rohich implies the following proposition：
Proposition
Let $\|\cdot\|_{w}$ and $\|\cdot\|_{w}$ be norms on E ．
They are equivalent：$\exists C_{1}, C_{2} \in \mathbb{R}>0$ with $C_{1}<C_{2}$ sud that

$$
\forall x \in E, c_{1}\|x\|_{w} \leqslant\|x\|_{w}^{\prime} \leqslant c_{2}\|x\|_{w} \text {. }
$$

Proof
we can define a continuous map

$$
\begin{aligned}
& \mathbb{P}(E)=\{\text { subspaces of dim. } 1 \text { in } E\} \rightarrow \mathbb{R}>0 \\
& \text { since } \mathbb{P}(E) \text { is cormack, this mop }
\end{aligned}
$$

reaches its minimum and is masamum．I
Definition（continued）
The norm $\|$ ．$\|_{w}$ will be said to be dasical
of：
（iv）if w is ultramehic

$$
\operatorname{Im}(\|\cdot\| w) \subset \operatorname{Im}\left(1 \cdot \|_{w}\right)
$$

（ w＇）if w in real，$\left\|\|_{w}\right.$ is euclidean．There escorts a positive definite guachatic form 9 on E such that

$$
\begin{aligned}
& \text { such that } \\
& \forall x \in E, \quad\|x\|_{w}=\sqrt{9(x)}
\end{aligned}
$$

（ $w^{\prime \prime}$ ）if w is complex，there easts a positive definite hermitian form h on E such thar

$$
\forall x \in E,\|x\|_{w}=h(x)
$$

Remark
Set w be an ultrametric place
and $\|\cdot\|_{w}$ be a dasical norm on a \mathbb{K}_{w} vedor pace E ．
Then

$$
\Lambda=\left\{x \in E \mid\left\|x_{w}\right\| \leqslant 1\right\}
$$

is a sub－σ_{w} module of E
where $G_{w}=\left\{x \in\left|k_{w}\right||x|_{w} \leq 1\right\}$
let e_{1}, \ldots, e_{n} be a basis of E over \mathbb{K}
we define $\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{w}^{\prime}=\operatorname{sur}_{1 \leq i \leq n}\left|x_{i}\right|_{w}$
Let $x \in E-\{0\rangle$ be ouch that
$\frac{\|x\|_{w}}{\|x\|_{w}}$ is minimal
and let $\lambda \in \mathbb{K}_{w}$ be such dRat $\frac{\|x\|_{w}}{\|x\|_{w}}=\mid \lambda \|_{w}$

$$
\begin{aligned}
& \forall y \in \Lambda \quad \| \lambda \text { y }\left\|_{w}^{\prime}=\frac{\|x\|_{w}}{\|x\|_{w}^{\prime}}\right\| y\left\|_{w}^{\prime} \leq\right\| y \|_{w} \leq 1 \\
& \text { so } \lambda \Lambda \subset \bigoplus_{i=1}^{n} \sigma_{w} e_{i}
\end{aligned}
$$

Since G_{w} is a local ring，it is prinajol and λA（and thus N ）is a free σ_{w} module of rank $\leq n$ ．
but for $i \in\{1,-n\rangle$ if $\left.|\lambda|\right|_{V V}=\left\|e_{i}\right\|_{w_{k}} \lambda_{i}^{-1} e_{1} \in \Lambda$
so A is a froe G_{w} module of rank n （we say that A_{i} Gi lattia in 7 ）
（This is in fact the for any w－adic noun）
But Since $\|\cdot\|_{w} j$ a classical norm，

$$
\|x\|_{w}=\min _{w}\left\{|\lambda|_{w}, \lambda \in \mathbb{K}_{w}^{*}, \lambda^{-1} x \in \Lambda\right\}
$$

So we get a byidive map
G_{w} lattices en $E \longleftrightarrow$ classical nouns on E
23／5／2016 Terminology
at v－adically normed space［of finite dimension］ is a K_{w} vedor space equipped with a w－adic norm．All op aces ely consider will be of finite dimension

Examples
a） $\mid K_{w}$ with $\|x\|_{w}=|x|_{w}$
b）E, F with classical norms $\|\cdot\|_{w},\|\cdot\|_{w}^{\prime}$

$$
\|(x, y)\|_{w}^{\prime \prime}{ }_{w}{ }^{(1)}=\left\{\begin{array}{l}
\sup \left(\|x\|_{w r}\|y\|_{w}\right) \text { if } w \text { whthametric, } \\
\sqrt{\|x\|\left\|_{w}^{2}+\right\| g \|_{w}^{2}} \text { if } w \text { red } \\
\|x\|\left\|_{w}+\right\| y \|_{w} \text { if } w \text { complex. }
\end{array}\right.
$$

E（4）F equiped with phis norm is called the dived sum of the w－adic mourned space E and F
If both nous are classic so is the nom on the direct sum．More preasely
If $\|.\|_{w}$ is defined by a σ_{w}－module E and $\|\cdot\|_{w}^{\prime}$ by on then the norm on $E \oplus F$ is defined ley $\varepsilon \oplus F$
c）Same notations as b）
Assume the norms are classic
There is a conique noun $\|\cdot\|_{w}^{\prime \prime}$ on $E \otimes F$ such that

$$
\|x \otimes y\|_{w}^{\prime \prime}=\|x\|_{w} \otimes\|y\|_{w}^{\prime}
$$

it comosponds to

$$
\begin{cases}q \otimes q^{\prime} & \text { if } w \text { is real } \\ h \otimes h, & \text { if } w \text { is complesc } \\ \varepsilon \otimes G & \text { if } w \text { is ulhamehic }\end{cases}
$$

d）If $F \subset E$ is a sub vector space the restriction of a w－adic norm is a w－adic norm，and the restriction of a classic nom is cosmic
（Given by E คF for vo ultrametic）
e）quotient
FCE subspace
$\|\cdot\|_{w}$ nom on E
Let $\pi \cdot t \Rightarrow E / F$ be the canonical projection
Let $z \in E / E$ and $y \in E$ such that $\pi(y)=z$

$$
\left\{x \in E \mid \pi(x)=z \&\|x\|_{w} \leqslant\|y\|_{w}\right\}
$$

is compact
Therefore $\left\{\|x\|_{w}, x \in \pi^{-1}(\{z\})\right\}$
has a minimal element
We define

$$
\|\cdot\| \|_{W}^{\prime} \cdot E / F \rightarrow \mathbb{R} \geqslant 0
$$

Idaim this defines a w－adic norm on E / F ．
（i）$\|z\|_{w}^{\prime}=0$

$$
\begin{aligned}
& \Leftrightarrow \exists x \in \pi^{-1}\left(\{z y),\|x\|_{w}=0\right. \\
& \Leftrightarrow 0 \in \pi^{1}((\{z)) \\
& \Leftrightarrow z=0
\end{aligned}
$$

（ii）for $\lambda \in \mathbb{K}_{w}^{*}$

$$
\begin{aligned}
& \pi-1(\{\lambda z\})=\lambda \pi^{-1}(\{z\}) \\
& s e\|\lambda z\|_{w}^{\prime}=\left\|\left.\lambda\right|_{w}\right\|_{z} \|_{w}^{\prime}
\end{aligned}
$$

（iii）Lat $y, z^{\prime} \in E / F \quad y, y^{\prime} \in E$ such That

$$
\begin{aligned}
& \pi(y)=z, \quad\|y\|_{w}=\|z\|_{w}^{\prime} \\
& \pi\left(y^{\prime}\right)=z^{\prime} \quad\left\|y^{\prime}\right\|_{w}=\left\|z^{\prime}\right\|_{w}^{\prime} \\
& \left\|z+z^{\prime}\right\|_{w}^{\prime} \leqslant\left\|y+y^{\prime}\right\|_{w^{5}} \leqslant\left\{\begin{array}{l}
\sup ^{\prime}\left(\|y\|_{w,}\left\|y^{\prime}\right\|_{w}\right) \text { ultrametrec } \\
\|g\|_{w}+\left\|y^{\prime}\right\|_{w} \text { real } \\
\left(\|y\|_{w}^{1 / 2}+\left\|y^{\prime}\right\| w_{w}\right)^{2} \text { complex }
\end{array}\right.
\end{aligned}
$$ Do that

If w is altrametric and $\|$ ．$\|_{w}$ refined by don G_{w} module $E, \quad\|\cdot\|_{w}^{\prime}$ is defined by

$$
E / E \cap F
$$

If w is real（rasp．complexes）n induces an isomomoyhiom of eudidean（rest hermitian）spaces from $F \perp 10 E / F$
（where F^{1} is the orthogonal of F ）
Tominiology
t sequence of w－antic normed speer

$$
0 \rightarrow N \rightarrow E \rightarrow Q \rightarrow 0
$$

is said loo be excad if it is isomorphic （in the obvious sense）$\sqrt{2}$ a sequence of the form

$$
0 \rightarrow F \rightarrow E \rightarrow E / F \rightarrow 0
$$

Escamples（continued）
b）E space U．II w dassic w－adic norm on E we are going lo define a wadi norms on the escterion product．
－If w is ultamdinc，$\|\cdot\|_{w}^{\prime}$ on $\Lambda^{k} E_{\text {irdefined }}$ by $A^{k} \varepsilon$（ if $\left(e_{1}, \geqslant, l_{n}\right)$ is a basis of the σ_{w} moclule $\varepsilon,\left(e_{i, 1}-n e_{i k}\right)$ is a basis of $A^{k} E$ ．
－If w is real（ross．complex），let $\langle, .>$ be the bilinear（res，Desyuilinean） form on E defining the norm． then there is a unique form on $\Lambda^{k} E$ such
that

$$
\left\langle x_{1} n-\wedge x_{k}, y_{1} 1-n y_{k}\right\rangle=\operatorname{det}\left(\left(\left\langle x_{i}, y_{i}\right\rangle\right)_{1 \leq i \leq k}\right)
$$

If $\left(e_{1},, e_{n}\right)$ is an orthonormal basis of $1 \leq \mathbb{E}$ then

$$
\left(e_{i_{1}} n e_{i_{1}} n \cdot 1 e_{i_{k}}\right)_{1 \leq l_{1}<-<r_{k} \leq n} \text { is orkonormal basis for } n^{k} E
$$

（2）$A^{k} E=E^{\otimes k} / I_{k}$

$$
\begin{array}{ll}
E=E & I_{k} \\
I_{k}=\langle x \otimes x, & x \in E\rangle \cap E
\end{array}
$$

But the norm on $1^{k} E$ is not the quotient of itch norm on E ．
For example，$\left\|\frac{1}{2}\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right)\right\|^{r}=\frac{\text { in }}{\sqrt{2}}<1$ and 1 his maps to $e_{1} \wedge e_{2}$ in $\Lambda^{2} E$ ．
h）dual space
There coasts a unique w－adic noun on E^{V} such that

$$
\begin{aligned}
\forall y^{\prime} \in E^{v}, y \in E \quad\left\|y^{\prime}\right\|_{w}\|y\|_{w} & =\left.\left\langle y^{\prime}, y\right\rangle\right|_{v} \\
& =\left|y^{\prime}(y)\right|_{v}
\end{aligned}
$$

Remark
We may define the grortendieck ring of classic w－adically normed spaces of finite dimension generated by isomoyhism cases of w－adically nouned spaces with relations

$$
\begin{aligned}
& -[E]=[N]+[Q] \\
& \text { if } 0 \rightarrow N \rightarrow E \rightarrow Q \rightarrow 0 \text { is exact. } \\
& \rightarrow[E] \times[F]=[E Q F] \\
& \rightarrow \lambda_{i}([E])=\left[\AA^{i} E\right] \text {, involution }[E] \mapsto\left[E^{v}\right]
\end{aligned}
$$

b）Adelic nouns and metrics
We are now going $t o$ define nouns on vedor bundles

In this paragraph，IK donees a number field and V a nice varidy over IK．

Definition
Let E be a vector bundle on V ．
a w－adic norm on E is a continuous
map

$$
\|\cdot\|_{w}: E\left(\mathbb{K}_{w}\right) \rightarrow \mathbb{R}_{\geqslant 0}
$$

such that for any $x \in V\left(I K_{w}\right)$ the restidion of I ．$\|_{w}$ to the $I K_{w}$ vector space $E(x)$ is a w－adic norm．It is said to be dassic if $\|.\|_{w \mid E(x)}$ is dassic for any $x \in V\left(K_{w}\right)$
Fiendamental escample
Assume that w is ultrametric and that $V_{I K_{w}}$（resp $E_{I K_{w}}$ ）admits a model v（reap E ） on $G_{w}(r e s p . v)$ ，with v projective．
Let r be the rank of E ．
Since v is projedive，the national map

$$
v\left(G_{w}\right) \rightarrow V\left(K_{w}\right)
$$

is bijective．
Sit $x \in V\left(K_{w}\right)$ and let $\tilde{x} \in V\left(G_{w}\right)$ be the corresponding point．
$\varepsilon(x)$ is a G_{w}－module pojedive of rank r ．Since G_{w} u principal $e(x)$ is free．Thus $\frac{w}{}$ is an G_{w} lattice
in $\varepsilon_{K}(x) \leadsto E(x)$ and defines a norm $\|\cdot\|_{w} \mathbb{K} \cdot E(x) \rightarrow \mathbb{R} \geqslant 0$ we get a w－aclic noun

$$
\|\cdot\|_{w}: E\left(\mathbb{K}_{w}\right) \longrightarrow \mathbb{R} \geqslant 0
$$

which is said to be defined by the model E． it is Classic

Particular case
\mathbb{P}^{N} and $G_{\mathbb{p}^{N}}(1)$ are defijecel over \mathbb{Z} ，as well as $G(-1)$ Let p be a prime number and $x \in \mathbb{P}^{n}\left(\mathbb{Q}_{p}\right) \mathbb{P}^{n}$

$$
x=\left[x_{0}:-: x_{p}\right]
$$

$G_{\mathbb{P}_{\mathbb{Z}}}(-1)(x)$ corresponds to the \mathbb{Z}_{p} module

$$
\mathbb{Z}_{p} \quad \mathbb{Q}_{p}\left(x_{0},-x_{n}\right) \cap \mathbb{Z}_{p}^{n+1}
$$

it is generated by $\left(\max _{0 \leq i=n}\left|x_{i}\right| p\right)\left(x_{0},-, x_{n}\right)$
Remember that $\left|p^{-k}\right|_{p}=p^{k}$
In other words on $G_{p^{n}}^{p}(-1)$ we get the norm

$$
\left\|\left(y_{0},-y_{n}\right)\right\|_{p}=\max _{0 \leqslant i \leq n}\left|x_{i}\right|_{p}
$$

as exgeded and，by duality，on $G_{p^{n}}(1)$

$$
\left\|x_{i}(x)\right\|_{p}=\frac{\left|x_{i}\right|_{p}}{\max _{0 \leqslant i \leqslant n \mid}\left|x_{i}\right|_{p}}
$$

as Yesglained at the end of isnlast choyter．
Definition
Let E be a vector bundle on V
tn adelic norm on E is a family（ $\|\cdot\|_{W}$ ）$\left.w \in P l a K\right)$ where $I . \|_{w}$ is a w－aclic rom m on E ， such that there is a finite set $S \subset P(C I K)$ ， and a model E of E over G_{S} such that
$\|\cdot\|_{w}$ is defined by E for $w \in P l(I K)_{f}-S$ An adelic metric on V is an adelic norm on TV

Convention
From now on，unless othervere esgliaitely stated， all norms will be assumed 18 be dassical！

Remark
（i）If（II．$\left.\|_{w}\right)_{w \in P(C I K)}$ is an adelic norm on E then for any model E of E over G_{s} ，for some finite $S \subset P l(K) f$ ，there escists $S \subset P l(I K) f$ finite and containing S such that
for any $w \in \operatorname{Pl}(\mathbb{K})_{f}-S^{\prime}$ ．$\|\cdot\| w$ is defined by E ．As a consequence if（ $I \cdot\left\|\|_{w}\right.$ ）verNe）and （ $\left.\|\cdot\|_{w}^{\prime}\right)_{w \in P R(K)}$ are adolic norms on $E,\|\cdot\|_{w}=\|\cdot\|_{w}^{\prime}$ for almost all w w D $(I K)$ ．
（ii）of $x \in V(\mathbb{k})$ ，

$$
A=\left\{y \in E(x) \mid \forall w \in P l(\mathbb{K})_{f,}\|y\|_{w} \leq 1\right\}
$$

defines an $\mathcal{O}_{1 K}$－submorlule of $E(x)$ ，which is a $\mathbb{I K}$－vector spoke，which is locally
free of rook r
Chose 5 finite，such that G_{s} is prinajal and let $\left(l_{1},-\rho_{r}\right)$ be a basis of the free σ_{S}－module $\AA \otimes_{O_{1},} \sigma_{S} \underset{\rightarrow}{\sim} \sigma_{S} A \subset E(x)$ ． Let $y \in E(x)-\{0\}\}^{k} y=\sum_{i=1}^{\pi} y_{i} e_{i}$ and for any $w \in \operatorname{ll}(\mathbb{k})_{p}-5$ ，we have $\|y\|=\operatorname{mox}\left|g_{i}\right|_{w}$ we get that $\|y\|_{w}=1$ for almost $w l l i \leqslant i \leqslant r P(\mathbb{K})$ by almost all，y mean for any w outside a finite set of places．
（iii）dote that over \mathbb{Q} ，a real norm $\|\cdot\|_{\infty}$ on TV ie a continuous riemannian metric on $V(\mathbb{R)}$ ．So adelic metric should be thought of as a generalisation of riemannion metros

Terminology
I shall say＂adelic bundle＂for a vedor bundle equipped with a［classical］adelic metric．
c）Escomples
a）If $V=$ Sec（IK）（ V is a joint），then an adelic bundle on V is the same as a \mathbb{K}－vector space E of $\operatorname{dim} n$ with：
－An Gik－submadule $\varepsilon \subset E$ which is projedture，of rank n
－for any real w，a eudiclean noun on $E \otimes_{1 K} \mathbb{K}_{w}$
－for any complese w ，a positive definite hermitian form on $E \underset{\mathbb{K}}{\underset{\sim}{*}} \mathbb{K} w$
dote that the image of 8 in $E \otimes_{Q} \mathbb{R} \leadsto \oplus E \otimes_{\mathbb{N}_{1}} \mathbb{K}_{w}$ is a lattice，in she usual sense，of the \mathbb{R}－v econ space $E \in \mathbb{R}$ which is of dimension $[\mathbb{K}: \mathbb{R}] n$ ． and therefore it has a covolume
B）Let us consider the brivial line bundle $V \times \mathbb{T} 1 \mathbb{K}$ ．Gm it，we define the natural achlic metric by：

For any $w \in P R(\mathbb{K})$ and any $x \in V\left(I K_{w}\right)$
the fire is canonically isomorphic $K_{o} \mid K_{w}$

$$
\|y\|_{w}=|y|_{w}
$$

r）Using the constudions y desc oribed for vedor bundles and w－aclic metrics， We con define dived sum $E \oplus F$ ，tensor product $E \otimes F$ ，exterior power $n^{i} E$ ，dual E^{V} of adrelic bundles．
Notations
we denote by $\widehat{K}_{0}(V)$ the Grothendieck ring of adela bundles on V ，equipped whit the λ－operations，$\lambda^{i}([E])=\left[\Lambda^{i} E\right]$ ． and by $\hat{P i c}(V)$ the group of addic line bundles on V for the tensor product of a delia line bundles．

Remark
The neutral element in $\mathrm{P}_{i c}(V)$ is the trivial line bundle with its natural adolic metric and the opposite of L is L^{v} ．

References
C．SoUl É \＆al．Ledūres on Arakelov geometry Summer School in GRENOBLE in june 2017

5）Let $\varphi: x \rightarrow y$ be a moyhism of nice varieties and let E be an adelic bundle on Y ．
then，for any $w \in P Q(I K)$ and any $x \in X\left(K_{w}\right)$ the fibre $\varphi^{*}(E)(x)$ is canonically isomorphic to $E(\varphi(x))$ and the norm $\|\cdot\|_{w}$ on $E(\varphi(x))$ defines a norm on $\varphi *(E)(x)$
were get an a dalic norm on $\varphi \times(E)$ and $\varphi *(E)$ with this norm is soled the pull－back of E

We get in that way moyhisms
$\widehat{K}_{0}(y) \rightarrow \hat{K}_{\partial}(x)$ and $P_{i c}(x) \rightarrow \hat{P}_{i c}(y)$
so that \vec{X}_{3} and $\overrightarrow{P i c}_{i c}$ are contravariant functors．
d）first properties
Proposition 1
Let V be a nice varidy／IK
Let E be a vedor bundle on V
Then there osaists an adelic metric on E ．
Proof
The hooke $S \subset P l(I K)$ ，finite and a model E of E over σ_{S} ．By what y esglained about modes，es can do that．
Thus defines w－adic norms $\|\cdot\|_{w}$ on E for $w \in P l(\mathbb{K})-S$ ．
such that the map

$$
\begin{aligned}
\begin{array}{l}
\left\{y \in W \mid \forall i \in\left\{1,-, r \geqslant f_{i}(y)=0\right\}\right. \\
\text { Ifermoghism } .
\end{array} & \longrightarrow W^{\prime} \\
\left(y_{1},-, y_{N}\right) & \longmapsto\left(y_{i_{1}},>y_{i_{N-r}}\right)
\end{aligned}
$$

is a differmoyhism.

To deal with the finite set of bad places I am going to use a few results from differential geometry， （in fact It is more than I need）

Theorem（Impliat fundion the rom）
Let \mathbb{K} be a field which is complete for an absolute value 1.1 and $U \subset \mathbb{k}^{N}$ le an open subset Let $f_{1},-f_{s}: \cup \rightarrow \mathbb{K}$
be differentiable functions such thar
$r k\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{1 \leq i \leq s}$ is constant on U wist value

$$
1 \leq j \leq N
$$

Then for any $x \in U$ such that $f_{r}(x)=0$ for $i \in\{1,-\Delta\}$ there exits $1 \leqslant i_{1}<\cdots<i_{N-r} \leq N$ ，an open neighbourhood W of x in U an an gen bet $W^{\prime} \subset \mathbb{K}^{N-r}$
This a generalization to complete valued fields of a classical result over \mathbb{R} ．

This implies that the IK joint of any smooth varieties （in the algebraic sense）form a differential variety

Corollary
Let be a nice variety over a number field IK Let $w \in P l(\mathbb{K})$ then there is a finite open covering $\left(U_{i}\right)_{i \in I}$ of $\left.V C \mathbb{K}{ }_{w}\right)$ such that each U_{i} is $h^{\prime \prime}$ omeomoghic to open subset of \mathbb{K}_{w}^{n} ．Moreover
－If w is archimedean，the transition maps are $\varepsilon^{n t}$
－If w is ulthametric we may choose the covering oo that $U_{i} \cap U_{j} \neq \phi$ if $i \neq j$ ． and that $U_{i} \simeq G_{w}^{n}$ ．
Remark
In particular，it means that if there is a solution oven \mathbb{K}_{w} ，the ne are many of them．The adelic space is either ensty or very big．Also Falling＇ 1 theorem implies that curves of genus $\geqslant 2$ do not satisfy weak aprosamation．
Theorem（Partition of unity）
Let K be a comyad topological space，in fat normal space is enough，dat（ U i）fife a finite ope covering of K ，then there escists a foomly of fundions $\left(f_{i}\right)_{i \in I}$ from K To $[0,1]$ such that
（i）$\forall i \in I, \forall x \in K \quad f_{i}(x)>0 \Rightarrow x \in U_{i}$ ，
（ii）$\forall x \in K \quad \sum_{i \in I} f_{i}(x)=1$ ．
dow -3 can go back to my poof：
End of the proof of the proposition
Rake an open covering of V ，for Zarioki topology which tRivializes E ．
This means that for each $i \in I$ ，
I may choose r sections

$$
s_{i, 1},-\Delta_{i, p} \in \Gamma\left(U_{i}, E\right)
$$

such（tat for any joint x of U_{i} over a fud H

$$
\left(\Delta_{i, 1}(x),-, D_{i, R}(x)\right) \text { is a bases of } E(x)
$$

For $w,{ }^{\prime \prime} \operatorname{Pl}(\mathbb{K}), x^{x} \in U_{i}\left(K_{w}\right) \quad y \in E(x)$
wite $\quad y=\sum_{j=1}^{r i} \lambda_{j} \Delta_{i, j}(x) \quad\left(\lambda_{1},-\lambda_{\Omega}\right) \in \mathbb{K}_{w}^{r}$

$$
\text { and jut }\|y\|_{w}^{i}=\left\{\begin{array}{l}
\max _{1 \leq i s i}\left|y_{j}\right|_{w} \text { if } w \text { ulthametic } \\
\sqrt{\sum_{j=1} y_{j}^{2}} \text { if } w \text { is real } \\
\sum_{i=1}^{i=1} y_{j} y_{j} \text { if } w \text { is complese }
\end{array}\right.
$$

If w is archimedean let $\left(f_{i}\right)_{i \in E}$ be a partition of 1 for the covering $\left(U_{i}\left(\mathbb{K}_{w}\right)\right)\left(\rho_{i \in I}\right)_{i \in E}$
we define

$$
\|y\|_{w}=\left\{\begin{array}{l}
\sum_{\left\{i \in I \mid x \in U_{i}\right\}_{i}}^{\rho_{i}(x)\left[y \|_{w}^{i}\right)^{2}} \text { if wis real } \\
\sum \rho_{i}(x)\|y\|_{w}^{i} \text { if } w \text { is complex } \\
\left\{i \in I\left|x \in U_{i}\right\rangle\right.
\end{array}\right.
$$

If w is uthametric，using the corollary，we choose a refinement $\left(W_{k}\right)_{k \in K}$ of $\left(U_{i}\left(\left(K_{w}\right)\right)_{i \in I}\right.$ which is a covering by disjoint open sets and for any $k \in K$ ，choose $i \in I$ such that $W_{k} \subset V_{i}\left(k_{w}\right)$ and white，for $x \in W_{R}, y \in E(x)$ ，

$$
\|y\|_{w}=\|y\|_{w}^{i} .
$$

25／5／2016 Proposition
Let V be a moe voridy on the number field $I K$ ， and let E, F be a delis bundles on V
Let $\varphi: E \rightarrow F$ be a mophism of vedor bundles
Then there is a family $\left(C_{w}\right)$ w Peck $\in \mathbb{R}>0$ with $C_{w}=1$ for almost all $w \in \mathbb{N} \in \mathbb{R}(\mathbb{K})$ such
that

$$
\forall w G P l(\mathbb{K}), \forall x \in V\left(\mathbb{K}_{w}\right), \forall y \in E(x),\|\varphi(x)\|_{w} \leqslant c_{w}\|x\|_{w}
$$

Proof
We may consider the projective bundle associated lo E ：

$$
P P(E)=\operatorname{Prog}\left(\operatorname{Sym}_{\text {sumpenic }}\left(E^{V}\right)\right)
$$

$$
V \pi \quad \text { Syminetuic } G_{V} \text { graded alyelera }
$$

For any \mathbb{K}－algebra A and any point $x \in V(A)$ $\mathbb{P}(E)(x)=\pi^{1}(x)$ may be identified with the set of direct facers of $E(x)$（seen as a pojedive A－module）of rank 1 ．
－Then，for w $\in P(\mathbb{K})$ ，we have a map

$$
\begin{aligned}
& \mathbb{P}(E)\left(\mathbb{K}_{w}\right) \longrightarrow \mathbb{R} \longrightarrow \frac{\|\varphi(y)\|_{w}}{\|y\|_{w}} \text { for } y \in E(x)-\left\{_{0}\right\} \\
& \mathbb{K}_{w} y \\
& \quad \\
& E(x)
\end{aligned}
$$

But P $P(E)\left(K_{w}\right)$ is compar so this fundion admits a masamal value C_{w}
－It remains to peeve that $c_{w} \leqslant 1$ for almostallw．

There is a finite set of places $S \subset P \mathrm{Pl}(\mathbb{K})_{q}$ so that $V($ resp $E, F)$ has a model $V(r e a p ~ E, F)$ on G_{S} and Tore is a moyhiarn

$$
\tilde{\varphi} \cdot \varepsilon \longrightarrow \sigma
$$

so 估at $\tilde{q}_{\mathbb{K}}=\varphi$
Moreover we may assume that the norms are defined by E and F outside S

Let $w \in \operatorname{Pl}(\mathbb{K})_{+}-5$ ．
For any $x \in V\left(K_{w}\right)$ corresponding io $\tilde{x} \in V\left(G_{w}\right)$ we have a commutative diagram

$$
\begin{gathered}
E(\tilde{x}) \xrightarrow{\mathscr{\varphi}} F(\tilde{x}) \\
\downarrow \\
E(x) \xrightarrow{\downarrow} F(x)
\end{gathered}
$$

So for $y \in E(x),\|y\|_{w} \leq 1 \Rightarrow\|\varphi(y)\|_{w} \leq 1$ which implies that

$$
\forall y \text { e } E(x) \quad\|\varphi(y)\|_{w} \leqslant\|y\|_{w}
$$

In other words $C_{w} \leqslant 1$ ．
If $C_{w} \leq 1,1$ may take $C_{w}=1$ instead．
Corollary
tet E be a vedor bundle on V and let $\left.\left(\|\cdot\|_{w}\right)\right)_{w \in D e(K)}$ and $\left(\|.\| \|_{w}\right)_{w \in P e r K)}$ be adelis metrics on E then there escist constants $\left(C_{w}\right) w \in P R(\mathbb{K})$ and $\left(C_{w}^{\prime}\right)_{w \in P P C}(\mathbb{K})$ such that
（i）$c_{w}=c_{w}^{\prime}=1$ for almost all w
（ii）$\forall w \in \operatorname{Pl}(\mathbb{K}), \forall y \in E\left(\mathbb{K}_{w}\right), C_{w}\|y\|_{w} \leqslant\|y\|_{w}^{\prime} \leqslant C_{w}^{\prime}\|y\|_{w}$
Proof
Apply prop．To Id ${ }_{E}$ türice．

4）Height，height zeta function
a）Sleight jawing
Again \mathbb{K} denotes a number field
and V a nice variety／ \mathbb{K}
Definition
dot E be an adelic bundle on V
Let $x \in V(\mathbb{K})$ ．Let $y \in E(x)-\{0\}$

Therefore this product depends whey e on x ．
We define the exponential height of x relative $\sqrt{O} E$ as the product

$$
H_{E}(x)=\prod_{w \in P e(i k)}\|y\|_{w}^{-1}
$$

The corresponding logorrikimic height is $h_{E}=\log$ o H_{E} We get a map

$$
\widehat{P_{i r}(V)} \times V(I K) \longrightarrow \mathbb{R}_{>0}
$$

$$
(E, x) \longmapsto H_{E}(x)
$$

which is called the haght paining
For any given x the map which sends
Eonto $h_{E}(x)$ is a moyhism of group，so we may see this pairing as a map

$$
\text { see this paining as a map } \operatorname{mor}_{g r}\left(\operatorname{Pic}^{\prime}(V), \mathbb{R}_{>0}\right)
$$

Remarks
（i）Let us say that E and E^{\prime} are equivalent if there esasts an is omoyhism of vedor bundles $\varphi: E \rightrightarrows E^{\prime}$ and $\left(\lambda_{w}\right) \quad w \in \operatorname{Pe}(\mathbb{K}) \in \mathbb{R}^{(\operatorname{Pe}(\mid K))}$

$$
\begin{aligned}
& \left\{w \in \operatorname{Pl}(\mathbb{K}) \mid\|y\|_{w} \neq 1\right\} \text { is finite } \\
& \text { and } \forall \lambda \in \mathbb{K}^{*} / \prod_{v \in Q(\mathbb{K})}\|\lambda\|_{w}=\left(\prod_{w \in Q}|\lambda|_{w}\right) \prod_{w \in \operatorname{Re}(\mathbb{K})}\|y\|_{w} \\
& =\prod_{w \in \operatorname{Pl}(\mathbb{K})}\|y\|
\end{aligned}
$$

with $\lambda_{v}=1$ for almost all w such that
（c）$\pi_{w \in R(K)} d_{w}=1$

Equivalent line bundles define the same height of we define

YR $(V)=\hat{P i c}(V) / \approx$ titis equivolona
We get a map

$$
\begin{aligned}
& \operatorname{map} \\
& V(\mathbb{K}) \rightarrow \operatorname{Mor}\left(H H(U), \mathbb{R}_{>}\right)
\end{aligned}
$$

（ii）There is a natural action of $\mathbb{R}_{>0}$ on $\mathrm{Hl}(V)$ $\operatorname{Let} \lambda \in \mathbb{R}^{*}$ ．choose any $w_{0} \in \mathbb{P l}(\mathbb{K})_{\infty}$ and maps the doss of E equipped with $\left(\|\cdot\|_{w}\right)$ to E with $\left(\|\cdot\|_{w}^{\prime}\right)$ wall（ IR） with

$$
\|\cdot\|_{w}^{\prime}=\left\{\begin{array}{l}
\|\cdot\|_{w} \text { if } w \neq w_{0} \\
\lambda\|\cdot\|_{w_{0}} \text { for } w=w_{0}
\end{array}\right.
$$

We get

Reminder
The fundor which mays an adelic bundle to
the conesponding vedor bundle define moyhisms
$\theta: \hat{K}_{0}(V) \rightarrow K_{0}(V)$ and θ ．Pic $(V) \rightarrow \operatorname{Pic}(V)$
Proposition
Set E, E^{\prime} be adelic line bundles on V such that $O(E)=O(E)$ then there escists $C_{1}, C_{2} \in \mathbb{R}>0$ such that

$$
\begin{aligned}
& C_{2} \in \mathbb{R}>0 \text { such that } \\
& \forall x \in V(\mathbb{K}) \quad r_{1}<\frac{H_{E}(x)}{H_{E^{\prime}}(x)}<c_{2}
\end{aligned}
$$

So，If we change the adelic norm， the change to the blight is hounded and the line bundle determines the height up to a bounded function！
Proof
A ply last corollary．I
Corollary
chore generally，if those easts $n \geqslant 1$ such that $\theta\left(E^{\otimes n}\right)=0\left(E^{\prime \otimes} n\right)$ ten $H_{E^{\prime}} / H_{E}$ is bounded．

I am going to admit the following
Theorem
$\operatorname{Pic}(V)$ is a finitely generated group．
y dea
There is an exact sequence

$$
0 \rightarrow \operatorname{Pic}^{\circ}(V)(\mathbb{K}) \rightarrow \operatorname{Pic}(V) \rightarrow N S(V) \rightarrow 0
$$ abelian variety finitely generated finitely generated

Definition
A system of height is a section $L \mapsto \tilde{L}$ of

$$
\text { Q: } P_{i c}^{C}(V) \rightarrow P_{i c}(V) \rightarrow P_{i c}(V) / P_{i c}(V) \text { Eon }
$$

yt defines a map

$$
\begin{aligned}
& V(\mathbb{K}) \longrightarrow \operatorname{Mor}_{\operatorname{gn}_{n}}\left(\operatorname{Pic}(V), \mathbb{R}^{*}\right) \simeq \operatorname{Mor}_{g n}(\operatorname{Pic}(V) \mathbb{R}) \\
& \varphi \longmapsto \log \circ \varphi\urcorner 2
\end{aligned}
$$

In other words，

$$
H(x)(L \otimes \Delta)=H_{\sim}(x)^{\Delta}=\operatorname{excp}\left(0 h_{\sim}(x)\right)
$$

Ta give you an example which uses the flesability of the notion of heights we are using，Let me give one example
b）Particular heights
We shall consider the following fortiaular case： We assume that there easts a moyhism

$$
\varphi: V \rightarrow V
$$

d） 2 and a line bundle L on V with an isomorphism

$$
L^{\otimes d} \stackrel{\psi}{\widetilde{\sim}} \varphi^{*}(L)
$$

Example

$$
\begin{aligned}
& \text { take } c \in \mathbb{Q}(i) \\
& \varphi: \mathbb{P}_{(Q a)}^{1} \rightarrow \mathbb{P}_{\mathbb{Q}(i)}^{1}(\\
& {[x: y] } \longrightarrow\left[x^{2}+y^{2} c: y^{2}\right] \\
& \varphi^{*}(G(1))=G(2) .
\end{aligned}
$$

Let $\left(\|\cdot\|_{w}\right)_{w \in R l}(I K)$ be an adelic metúc on L then there are constants $\left(C_{w}^{1}\right)_{w \in P l}(I K)$ and $\left(C_{w}^{2}\right)_{w \in R C(K)}$ almost all equal Ka 1 ouch
that for any $w \in P_{e}(I K)$

Taking logarithms we have whore $c=\max \left(\left|\log \left(c_{w}^{w}\right)\right|,\left|\log \left(c_{v}^{2}\right)\right|\right)$ ． let us consider the sequence $\left(\frac{1}{d^{k}} \log \left(\left\|\psi^{k}\left(y^{\otimes^{k}}\right)\right\|_{w}^{k}\right)\right.$

$$
\begin{aligned}
& \text { we have for } p^{5 q} \left\lvert\, \| \psi^{p}\left(y^{\left.\otimes d^{p}\right) \left.\left\|_{w}-\frac{1}{d^{q}} \log \right\| \psi^{q}\left(y^{\otimes d^{1}}\right) \|_{w} \right\rvert\,}\right.\right. \\
& \qquad \leqslant \frac{1}{d^{p}} \log \left(\sum_{k=1}^{q-p} \frac{1}{d^{p}}\right)<\leqslant \frac{c}{d^{p}(d-1)}
\end{aligned}
$$

Which poves that the seguence converges uriformly and we may define

$$
\begin{aligned}
& \|y\|_{w}^{\prime}=\lim _{k \rightarrow+\infty}\left\|\psi^{k}\left(y^{\otimes^{d}}\right)\right\|_{w}^{1 / d^{k}} \\
& L\left(\varphi^{k}(x)\right)
\end{aligned}
$$

we get an acbelic norm（ $11 \cdot \|_{w}^{\prime}$ ）wrepe（v）on L （2）not necebarily dasical w FPe（V）
such that
$\forall w \in \operatorname{ll}(\mid K) \forall y \in E\left(\mathbb{K}_{w}\right) \quad\left\|\psi\left(y^{\otimes d}\right)\right\|_{w}^{\prime}=\left(\|y\|_{w}^{\prime}\right)^{d}$
This imphies that the orrenonding Reight solisfien

$$
H^{\prime}(\varphi(x))=H^{\prime}(x)^{d} \text {. }
$$

Partioular cose
Take an abrelian voriety A / \mathbb{K} Coay a projedive algebraic grous over \mathbb{K} ）and L an ample symmetric line erundle on A
（that is $[-1]^{*} L \cong L$ where $[n]: A \rightarrow A$ ）

$$
p \longmapsto n p
$$

Then one con show that $[2]^{*} L 3 L^{\otimes 4}$ we get a logouithmic haight

$$
h: A(\mathbb{K}) \xrightarrow{\rightarrow}
$$

sothat $\forall x \in A(\mathbb{K}), h(2 x)=4 h(x)$ ．

Theorem（ ${ }^{\text {Eft RON }}$－LANG）
h defines a positive definite quadratic form on $A(\mathbb{K}) \otimes_{\mathbb{z}} \mathbb{R}$ ．

This define the Neron－Tate pairing on $A(\mathbb{K})$
Corollary
h defines a euclidean sturdiue on $A(\mathbb{K}) \otimes_{\mathbb{Z}} \mathbb{R}$ and $A(\mathbb{K}) / A(\mathbb{K})_{\text {Kos }}$ embeds as a lattice in $A(\mathbb{K})_{2} \mathbb{R}$ Then

$$
\# A(\mathbb{K})_{H^{\prime} \leqslant B} \sim_{B \rightarrow+\infty} \frac{\#\left(A(\mathbb{K})_{\text {ron s }}\right)}{\operatorname{coved}(A(K) / A \cap(K)} \operatorname{rog}_{\text {roo }}(B)^{\frac{\pi}{2}}
$$

where $r=r k(A C K))$
Pomoak
IF is one of the vary few cases where we have a behoviom with $\log (B)$ at the power half an integer
$\frac{\text { Proof of de corollary }}{\text { Use MASSER \＆} V}$
Us masser \& vale.
c）The height zeta function
Definition
If you remember to get equidistribution on the variety one has to consider open subsets More generally，Let V be a nice variety with a system of heights

For $W \subset V(\mathbb{K})$ and $\Delta \in \operatorname{Pic}(V) \otimes_{\mathbb{Z}} \Phi$ we define

$$
\zeta_{W}^{\text {fere }}(\Delta)=\sum_{P \in W} \frac{1}{I H(P)(\Delta)} \text { if this }
$$

series converges．If $X \subset V$ is a sulscheme， （closed or open）we wite Γ_{x} for $3^{S}(\mathbb{K}$ ）
Remark
We are going 10 relate the propertios of this function to the asymptotic behaviour of

$$
\# W_{H_{L} \leqslant B}=\#\{P \in W \mid \mathbb{H}(P)(L) \leqslant B\}
$$

Notation C any set，any map
For $H: W \rightarrow \mathbb{R}$ ，
Assume $\forall B \in \mathbb{R}_{>0} \quad W_{H \leqslant B}=\{P \in W, H(P) \leqslant B)$ is finite

$$
\text { Define } a_{W}(H)=\lim _{B \rightarrow+\infty} \log \left(\# W_{H \leqslant B}\right) / \log (B) \leqslant+\infty
$$

Remark

$$
\text { If } \# W_{H \leqslant B} \underset{B \rightarrow+\infty}{\sim} B^{a} \log (B)^{b-1}
$$

then $a_{H}(W)=a$ So it is the power of B in the asymptotic behaviour
Proposition With the preceding notations Assume $a_{H}(W)<+\infty$ ．che series

$$
\sum_{P \in W} \frac{1}{H(P)^{\rho}}
$$

（i）converges absolutely if $\operatorname{Re}(\Delta)>a_{H}(w)$
（ii）diverges if $\Delta \in \mathbb{R}, \Delta<a_{H}(W)$

Proof
Remember the $2^{\text {nd }}$ ledive：
Sam using STIELTJES integrals let $g(t)=\# W_{H \leq t}$ and $f(t)=\frac{1}{t^{\Delta}}$
Then，by definition $\sum_{P \in W_{H \leq B} H(P)^{\Delta}}^{1}=\int_{0}^{B} f(t) d g(t)$

$$
=[f(t) g(t)]_{0}^{\beta}-\int_{0}^{\beta^{0}} f^{\prime}(t) g(t) d t
$$

this is in fact a form of the summation

$$
=\frac{g(B)}{B^{\Delta}}+\Delta \int_{0}^{B} \frac{g(t)}{t^{\Delta+1}} d t \quad(t)
$$

（i）Let $\eta>0 \quad g(B) \ll_{2} B^{a_{H}(w)+\eta / 2}$
$\Delta \theta$ if $\operatorname{Re}(s)>a_{H}(w)^{2}+\eta \quad(*)$ converges
（ii）if $\Delta \in \mathbb{R}, \quad \Delta<a_{w}(H) \quad n=\left(a_{w}(H)-\Delta\right) / 2$ $\forall A \in \mathbb{R}, 0 \quad \exists B \in \mathbb{R}, B>A$ and $g(B) \gg B^{\Delta+\eta}$
Thus．
$\lim _{B \rightarrow+\infty} \frac{g(B)}{B^{s}}=+\infty$ and the server diverges dotation

For $\Delta \in \operatorname{Pic}(V) \otimes_{\mathbb{Z}} \mathbb{R}$ ，we define

$$
\begin{aligned}
a_{\Delta}(W) & =\lim _{B \rightarrow+\infty} \log \left(\# W_{H}(\cdot)(\Delta)\right. \\
\text { and } & =\{\log (B) \\
\Sigma_{W} & =\left\{\Delta \in(v) \otimes_{\mathbb{Z}} \mathbb{R} \mid a_{\Delta}(W)<1\right\}
\end{aligned}
$$

Remark

$$
\begin{aligned}
\sum_{W} & \left.\subset\left\{\Delta \in P_{i c}(V) \otimes_{z} \mathbb{R} \mid\right\}_{W}(\Delta) \text { converges }\right\} \\
& \subset\left\{\Delta \in P_{i c}(V) \otimes_{\mathbb{Z}} \mathbb{R} \mid a_{p}(W) \leq 1\right\}
\end{aligned}
$$

d）Properties
Definition
A line bundle L is said to be effedive if it has a nonzero sedion：$\Gamma(V, L) \neq\{0\}$ The effective cone $C_{\text {If }}(V) \subset P_{i c}(V) \otimes_{\mathbb{Z}} \mathbb{R}$ is

$$
\begin{aligned}
\mathrm{Ceff}_{\text {ep }}(V)= & \bar{U} \mathbb{R}^{T} \geqslant[L] \otimes 1 \\
& \text { effective }^{T}
\end{aligned}
$$

Y_{1} is the smablesit dosed cone in $\operatorname{Pic}(V) \otimes_{\mathbb{Z}} \mid \mathbb{R}$ which contains the classes of effective divisors．
Proposition［BATYREV－Manin］
(i) The map $s \longmapsto a_{s}(W)$ and therefore Σ_{W} doss not depend on the choice of the height system
（ii）For any line bundle L such That $[L] \in \frac{0}{C \text { off }(V)}$ there easts an open set $U \subset V$ such that $a_{u}(L)<+\infty$ and $\mathbb{R}[L] \otimes 1$ meets \sum_{U}
（iii）For any line bundle L ，

$$
a_{W}\left(L^{\otimes N}\right)=\frac{1}{N} a_{W}(L)
$$

I_{n} particular for any $\lambda \geqslant 1 \quad \lambda \sum v \subset \sum_{u}$
（w）\sum_{u} is convex．

Remarks
d）If $W \subset W^{\prime}$ then $\sum_{W^{\prime}} \subset \sum W$
b）a_{W} con be computed from \sum_{W}
For $\Delta \in \operatorname{lic}(v) \otimes_{2} \mathbb{R}$
（i）$\quad a_{W}(\Delta)<+\infty \Leftrightarrow \mathbb{R}_{S_{0}} \Delta \cap \Sigma_{W} \neq \varnothing$
（ii）in that case，$a_{W}(\Delta)=\min \left\{\lambda>0, \lambda \Delta \in \sum_{W}\right\}$ ．
Proof
Cake adelic line bundles L and M such that $L^{\otimes P} \simeq M \otimes q$
Then there exists constants $C_{2}>C_{1}>0$ such that

$$
0<c_{1}<\frac{H_{M}(p)^{q}}{H_{L}(p)^{p}}<c_{2}
$$

for $P \in W$
But we get
\＃W

$$
\begin{aligned}
H_{M} \leqslant B & =\#\left\{p \in W \mid H_{M}(P) \leqslant B\right\} \\
& \left.=\# W_{H} \in W \mid C_{1} H_{L}(p)^{p} / a \leqslant B\right\} \\
& H_{L} \leqslant\left(\frac{B}{C_{1}}\right)^{q / p}
\end{aligned}
$$

So we have

$$
\begin{aligned}
& a_{W}(M)=\operatorname{lom}\left(\log \left(\# W_{H_{M}} \leq B\right) / \log (B)\right) \\
& \leqslant \lim \left(\log \left(\# W_{H_{L} \leq p}\right) / \log (P)\right) \\
& \underbrace{x \lim _{B \rightarrow+\infty} \log \left(B / H_{c}\right)^{a / p} / \log (B)}_{=a / p}
\end{aligned}
$$

so $\frac{1}{q} a_{w}(M) \leqslant \frac{1}{p} a_{w}(L)$
By symmetry we have $=$ and we get（l）and（iii）

27／5／2016 To prove the second assertion，bt me start with a Lemma

Let L be an adelic line bundle which is effective as a linz bundle
Then there exists an open set $U \subset V$ such that $\forall x \in U(\mathbb{K}), H_{L}(x)>c$ ．

Proof
Cake $s \in \Gamma(V, L)-\{0\}$ possible sin
Liseffective
and jut $U=\{x \in V \mid S(x) \neq 0\}$
1 in terms of points
For $w \in P l(I K)$ the continuous map

$$
\begin{aligned}
V\left(K_{w}\right) & \longrightarrow \mathbb{R}_{0} \\
x & \longmapsto\|D(x)\|_{w}
\end{aligned}
$$

reaches its maximal value C_{w}
Hoveovar s extends $t_{0} \tilde{S}: v \rightarrow \mathcal{L}$
for some models v L over some O_{s}
So for $w \in P(I ́ K)$－s we may take $C_{w}=1$
For $x \in U(\mathbb{K})$

$$
\begin{aligned}
& x \in \in(\mathbb{U}) \\
& H_{L}(x)=\mathbb{R e C}(\mathbb{K})
\end{aligned}\|\Delta(x)\|_{w}^{-1} \geqslant \pi C_{w}^{-1}
$$

Proof of assertion（ii）
Since V is projective，V has ample line bundles Let M be an ample＇line bundle on V Since $[L] \in$ Coff $^{\prime}(V)$ there esaists $N>0$ such that

$$
[L] \otimes 1+[M] \otimes \frac{1}{N} \in \operatorname{cof}_{p}(V)
$$

So $\exists p, g>0$ suchikat $P\left(v, L^{d p} \otimes N^{(\otimes-g)} \neq\{0\}\right.$

This implies stat there exist an open set V and a constant C so that

$$
\begin{aligned}
& \forall x \in U(\mathbb{K}), H_{L}(x)^{p} / H_{M}(x)^{q}>c \\
& \text { ut, then. }
\end{aligned}
$$

But，then，

$$
\# V(Q)_{H_{L} \leqslant B} \leqslant \# U(Q)_{H_{M} \leqslant \frac{\Lambda}{C} B^{p / q}}
$$

But M induces an embedding

$$
\underset{\text { with }}{ } \quad M=\psi^{*}(G(a))
$$

For $\mathbb{P}_{\mathbb{K}}^{N}, Y$ will give you the proof of Theorem（SCHANVEL）［To be proven］
which we have alreacly seen for \mathbb{A} ．So we get

$$
a_{L}(U) \leqslant \frac{p}{q}(N+1) .
$$

It remain ta prove the last statement of the theorem Proof of（iv）

Take $\Delta_{1}, \Delta_{2} \in \Sigma_{U}$
and let $\Delta_{2}=\alpha s_{1}+\beta \Delta_{2}$ with $\alpha+\beta=1$ ．
Tapove that $\Delta \in \sum_{u}$ ，we may assume $\alpha \beta \neq 0$
We may take $\eta>0$ such that

$$
a_{w}\left(D_{i}\right)<1-\eta
$$

Then $a_{w}\left((1-\eta) s_{i}\right)>1$
Put $\Delta_{i}^{\prime}=(1-\eta) \Delta_{i}$ and $\Delta^{\prime}=(n-\eta) \Delta$
the series $\sum_{p \in W} \frac{1}{\operatorname{H(x})^{s_{i}^{\prime}} \text { converge }}$
Put $p=\frac{1}{\alpha}, q=\frac{1}{q}$

Bey Heseder＇s inequality

$$
\begin{aligned}
\sum_{P \in W} \frac{1}{H(x)^{\Delta}} & =\sum_{p \in W} \frac{1}{H(x)^{\frac{N_{1}}{p}}} \times \frac{1}{H(x)^{\frac{D_{2}}{q}}} \\
& \leq\left(\sum_{P \in W} \frac{1}{H(x)^{\Delta_{1}^{\prime}}}\right)^{1 / P} \times\left(\sum_{p \in W} \frac{1}{1 H(x)^{\Delta^{\prime} / 2}}\right)^{1 / q}
\end{aligned}
$$

CHoler＇s inequality

$$
\left.\sum_{k=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{k=1}^{n}\left|x_{i}\right|^{p}\right)^{p / p}\left(\sum_{k=1}^{n}\left|x_{i}\right|^{1}\right)^{1 / 9}\right)
$$

Therefore the sem converges，and therefore

$$
a((1-\eta) \Delta) \leqslant 1
$$

So $a(\Delta)<1$ and $\Delta \in \sum_{U}$ as wanted
e）Examples
der us go again over the examples Eg gave at the beginning of these ledurres．
2）Produd－of projedwe spaces
Lot me first describe the geometry of titis escample Let $n_{1},-n_{r}>0$ and $V=\prod_{i=1}^{\mathbb{P}_{Q}} \mathbb{N}_{i}$
Geometrical fads
（i）The moypums of groups

$$
\mathbb{Z}^{R} \xrightarrow{r} \xrightarrow{\longrightarrow} \operatorname{Pec}_{1 \leq i \leq \Omega}(V) \sum_{i=1}^{\Omega} a_{i} \cdot[\underbrace{\Omega_{i}^{*}\left(G_{\mathbb{P}_{i}^{n_{i}}}(1)\right)}]
$$

is an isomorphism of groups．We put e_{i}
（ii）

$$
C_{\text {eff }}(V)=\sum_{i=1}^{\Omega} \mathbb{R}_{\geqslant 0} e_{i} \otimes 1 \quad \subset \operatorname{Pic}(V) \otimes_{u} \mathbb{R} .
$$

（iii）$\left[\omega_{j}^{-\pi}\right]=\sum_{i=1}^{\pi}\left(n_{j}+1\right) e_{i}$
Hints
（i）HARTSHORWE book Eco III．12．6
（ii）Esonaise
（iii）$T(X \times Y) \approx T X \times T Y$
and we have seen the result for $\mathbb{P}_{\mathbb{Q}}^{n}$ ．
Reminder

$$
\begin{aligned}
& \text { If } L=\bigotimes_{i=1}^{\infty} \operatorname{pr}_{i}^{*}\left(G\left(a_{i}\right)\right) \\
& \text { then } \left.H_{L}\left(x_{1},-, x_{\Omega}\right)=\prod_{i=1}^{\pi}\left(H_{G_{p_{n}^{n}}} G\right)\left(x_{i}\right)\right)^{a_{i}} \\
& \text { and } \\
& \# V(Q))_{H_{L} \leqslant B}^{\sim} C B^{d_{L}} \log (b)^{b_{L}-1}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{L}=\operatorname{mase}\left(\frac{n_{i}+1}{a_{i}}\right) \\
& b_{L}=\#\left\{i \leq\{1, \pi) \left\lvert\, \frac{n_{i}+1}{a_{i}}=a_{L}\right.\right\} \quad \text { and } c>0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{V} & =\left\{\left(a_{i}\right)_{1 \leq i \leq \pi} \in \mathbb{R}_{00}^{r} \left\lvert\, \forall i \in\{1,>\pi\} \frac{n_{i}+1}{a_{i}}<1\right.\right\} \\
& =\left[\omega_{V}^{-1}\right]+\overline{c_{\| f}(V) .}
\end{aligned}
$$

The second escample I esglained is
B）The plane blown up in a point
$V \stackrel{L}{\subset} \mathbb{P}_{Q}^{2} \times \mathbb{P}_{\mathbb{Q}}^{1}$ defined by $y u=x v$

$$
\begin{aligned}
& {[x: y: 2][a ; v]} \\
& \pi: R_{1}: V \rightarrow \mathbb{P}_{a}^{2} \\
& E=\pi^{-1}\left(P_{\partial}\right) \underset{\stackrel{a}{\underset{r_{2}}{\sim}}}{\infty} \mathbb{P}_{Q}^{1} \quad P_{0}=[0: 0: 1]
\end{aligned}
$$

Geometrical fads
（i）The moyhism of groups

$$
c^{*}: P_{i c}\left(\mathbb{P}_{Q}^{2} \times P_{Q}^{1}\right) \rightarrow P_{i c}(V)
$$

is an isomonpism of grays
Let $e_{i}=l^{*}\left(p_{i}^{*}(G(1))\right)$
（ii）$C_{e f f}(v)=\mathbb{R}_{\geqslant 0} e_{2}+\mathbb{R}_{\geqslant 0}\left(e_{1}-e_{2}\right)$
（iii）$\quad a-1=2 e_{1}+e_{2}$
Proof
（i）\＆（iii）HARTSHORNE＇s book escercix II 8.5
（ii）$\frac{X}{U}=\frac{Y}{V}$ defines a sedion of $e_{1}-e_{z}$
（since the intersection of the gen sets

$$
U \neq 0, V \neq 0 \text { is empty) }
$$

$$
\begin{aligned}
& \text { so } e_{1}-e_{2}^{\prime} \in \operatorname{Ceff}(V) \\
& \text { Gen the other hand. }
\end{aligned}
$$

On the other hand，
$\mathbb{R}>0 e,+\mathbb{R}>0 e_{2} \subset$ ample cone $C_{a m}(V)$ which is che seen cone generated by ample line bundles Or a surface there is an intersection product

$$
\therefore \operatorname{Pic}(v) \times \operatorname{Pic}(v) \rightarrow \mathbb{Z}
$$

（See HaRTSHORNE＇b I．1）
on the basis $\left(e_{1}, e_{2}\right)$ it is given by the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { and } C_{\text {eff }}(V)=C_{a m}(V)^{v} \\
&=\left\{y \in P_{i d}(V) \otimes \mathbb{R} \mid \forall x \in C_{\text {am }}(v), y \cdot x \geqslant 0\right\} \\
& \text { So a } e_{1}+\beta e_{2} \in C_{\text {Af }}(v)
\end{aligned}
$$

implies $\alpha \geqslant 0$ and $\alpha+\beta \geqslant 0$
Thus $C_{\mathbb{R}}(v) \subset \mathbb{R}_{\geqslant 0} e_{2}+\mathbb{R}_{\geqslant 0} e_{1}-e_{2}$ ．

tet me now remind you of the result we hat seen：
Reminder

$$
\begin{aligned}
& \operatorname{Fon}[L]=a e_{1}+b e_{2} \\
& \# E(k)_{\| 1}<B=\left\{\begin{array}{l}
C\left(A^{\prime}\right) B^{\frac{2}{b}} \text { for } b>0 \\
+\infty \text { if } b \leqslant 0
\end{array}\right. \\
& \text { \# } U(0)_{H \leqslant B}=C B^{a_{L}} \log (B)^{b_{L}-1} \\
& a_{L}=\max \left(\frac{3}{a+b}, \frac{2}{a}\right) \quad b_{L}=\left\{\begin{array}{l}
1 \text { if } \frac{3}{a+b} \neq \frac{2}{a} \\
2 \text { oftewire. }
\end{array}\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
\Sigma_{V} & =\left\{a e_{1}+b e_{2} \mid b \geqslant 2, a \geqslant 2\right\} \\
\Sigma_{V} & =\left\{a e_{1}+b e_{2} \mid a+b \geqslant 3 \text { and } a \geqslant 2\right\} \\
& =w_{V}^{-1}+c_{\text {eff }}(V) .
\end{aligned}
$$

ز）Stlypersuffacs of large dimension
Sot V be a smooth hypernurface in $\mathbb{P}_{\mathbb{Q}}^{N}$ defined by an equation $F\left(x_{0},-, x_{N}\right)=0$ with $F e \mathbb{Z}\left[X_{0},=X_{N}\right]$ hamogereens of degree $d \geqslant 2$ ． Assume
（i）$V\left(\mathbb{A}_{a}\right) \neq \varnothing$
（ii）$N+1>2^{d}(d-1)$
Geomdural Fads
（i）Pic $(v)=\mathbb{Z}[\overbrace{G_{\mathbb{N}^{N}}(1)}^{G_{v}(1)}]$ ；
（ii） $\operatorname{cof~}(v)=\mathbb{R} \geq 0 G_{V}(1)$
（ii） $\operatorname{cof}^{(v)}=\mathbb{R} \geqslant 0 \sigma_{V}(1)$ ；
（iii）$w_{v} 1=G_{v}(N+1-d)$ ．
Theorem［BIRCM（tm］
Proof

$$
\begin{aligned}
& {\left[B_{1 R C H}\left(\operatorname{man}^{2}\right]\right.} \\
& V(\Omega)_{H_{G(1)} \leq B} N C B^{N+1-d}
\end{aligned}
$$

Let $D=\prod_{i=0}^{N}\left[a_{i}, b_{i}\right]$

$$
\text { Put } M(B) \stackrel{i=0}{=} \#\left\{\left\{^{2} P \in B \infty \cap \mathbb{Z}^{N+1}-\{0\} \mid F\left(x_{0},-x_{N}\right)=0\right\}\right.
$$

Birch has proven that

$$
\begin{aligned}
& \text { Birch has proven That } \\
& \text { \# } \left.V(B)=C B^{N+1-d}(Q)=\frac{1}{2} \sum_{d \leqslant B} M\left(\frac{B}{d}\right)^{N+1-d-\delta}\right)
\end{aligned}
$$

If we take $\left\|x_{i}(x)\right\|_{\infty}=\frac{\left|x_{i}\right|}{\max _{0 \sum j \leq N}\left|x_{j i}\right|}$
and $\delta=[-1,1]^{N+1}$
The end of the proof is as for P_{Q}^{N} ．D

$$
\text { So for } L=G_{V}(a), a_{L}(v)=\frac{N+1-d}{a} \text { and } \sum_{V}=w_{V}^{-1}+C_{\text {Pf }}(V) \text {. }
$$

5）Bredidions［MANIN－Batyrev－Tscitinkel］
In the middle a boiling cauldron．Thunder
Enter 3 witches
［．．．］Double，double，toil and trouble
Fere burn and cauldron bubble．
For serve，conjectures are something you are totally sure is hue but you do not know how to prove it． Not evarbbaly agrees with this definition．Forme， the worth of a compocture can be measured by the ＂amount of mathemates it generates．From this joint of brew the conjedines of Mania and his collaborators are very goose conjedures，even． though there are counter escamples to some of them． a）Bunt level the power of B As usual V is a nice variety／number field K ．
Conjecture［Mann］
Let $U \subset V$ an open subset If there is an ample line bundle L such that $a_{L}(U)>0$ then there is a moyhism

$$
\varphi: \mathbb{P}_{K}^{1} \rightarrow V
$$

So that $\operatorname{Im}(\varphi)^{k} \cap \cup \neq \varnothing$
I do not know any counter example to that congedirre
Definition $0 \quad g$ stands for＂geometric＂

$$
\text { For all } \Delta \in C_{\text {eff }}(v), a_{g}(s)=\inf \left\{\lambda \in \mathbb{R} \mid \lambda \Delta \in \omega_{v}^{-1}+c_{\text {of }}(v)\right\}
$$

Conjecture A［BATYREV \＆MANIN］
For any $\varepsilon>0$ and any $\Delta \in \frac{0}{C_{\text {If }}(V)}$
there exists a non－enplys open set U C V such that

$$
a_{\Delta}(u) \leqslant a_{g}(\Delta)+\varepsilon
$$

Remark 1
If ω_{v} is of general type，thar is $\omega_{V} \in C_{\text {eff }}(V)$ then $a_{g}(\Delta)<0$ for any s it implies thar a $s(v)<0$ for a small enough U which means that $U(\mathbb{K})=\phi$ so it implies
LanG＇s conjedïre
In a varnety of general type，the rational paints are not Zariski dense

Remark 2
Yam not aware of a counter－example for conjedure A

Definition
A mice variety is Fan if ω_{v}^{-1} is ample．
Conjedure B［BatyREV－MANIN］
Let $\sqrt{b c}$ a nice Fan variety．
then there escists a non imply suleset V and an esctension \mathbb{K}_{0} of \mathbb{K} such thar for any number field $\mathbb{L} / \mathbb{K}_{0}$ ，any mon empty open set $W \subset U_{0} U L$ any $\Delta \in \bar{C}_{\text {off }}(V) a_{\Delta}(W)=a_{g}(s)$ ． I_{n} other words $\sum_{W}=c_{v}+c_{\text {eff }}\left(v_{I L}\right)$

Remarks
（i）No counter example is known
（ii）The condition V Fino is，in fact，probably too strong，but $w_{V}^{-1} \in$ Coff $^{(v)}$ not strong enough A good condition may be：

A multiple of $\omega_{y} 1$ may be written as the sum of an ample divisor and an effective divisor with normal crossings． Let us call this＂exdra－big＂
Cater Mam going to restrat myself to that setting，that is ω_{j}^{-1} big so before I do that
Let me stress shat for conjecture A there may set me stress that for conjecture A there may be an infinite fienation of V by open subsets．
b）An example：K3 surfaces
Definition
AK3 surface is a nice surface S such that
（i）$\omega_{s}=0$
（ii）$H^{1}\left(S, G_{S}\right)$ is trivial
Remarks
（i）Surfaces with $\omega_{s}=0$ are
－K3 surfaces and
－abclian surfa
（ii）On a surface strict subvaridtes are joint or curves．For a curve C which has sly many joints there are 2 possibilities，for L ample
（i）If $g(c)=1 \quad \exists$ ：$: E \rightarrow c$ ，binational With E an ellific curve $a_{L}(c)=0$
（ii）If $g(r)=0 \quad \exists \varphi: \mathbb{P}^{1} \rightarrow c$ ，binationd and $(C, L)=\operatorname{deg} \varphi^{\neq}(L)$ so

$$
a_{L}(C)=\frac{2}{(C, L)}>0
$$

Conjedure A in this case predids Let S be a $K 3$ ．surface．For any $\varepsilon>0$ and any $s \in C_{\text {eff }}(s)$ there escists a finite set T of rational curves on V such that

$$
a_{\Delta}\left(s-\bigcup_{C \in T} c\right)<\varepsilon .
$$

Let me now give you one example of a K3 surface with an infinite number of rational curve and therefore on infinite filtration by open sets
116／2016 Example（Yam not going to prove the details）

$$
\begin{aligned}
& \text { In } \mathbb{P}_{\mathbb{Q}}^{1} \times \mathbb{P}_{\mathbb{Q}}^{1} \times \mathbb{P}_{\mathbb{Q}}^{1} \supset 5 \\
& 5 \text { defined } \log P=\sum_{i_{1}+i_{2}=z}^{[u: v]} a_{i \neq k} k^{z} x^{i_{1}} y^{i_{2}} z^{j_{1}} T^{i_{2}} u^{k_{1}} V^{k_{2}}=0 \\
& j_{1}+j_{2}=2 \\
& k_{1}+k_{2}=2
\end{aligned}
$$

In other works If we wite 3

$$
G\left(a_{1}, a_{2}, a_{3}\right)=\bigotimes_{i=1}^{3} R_{i}^{*}\left(G_{\mathbb{p}^{1}}\left(a_{i}\right)\right)
$$

The above polynomial P defines ai section s of $G(2,2,2)$ and S is given by $\Delta=0$ For a generic P, S is smooth and

$$
\omega_{5}^{-1}=G(2-2,2-2,2-2)_{15}=\sigma_{s}
$$

and 5 is a $K 3$－surface．
For $i \in\{1,2,3\}$ the projection map

$$
\operatorname{pr}_{\hat{\hat{a}}}: s \rightarrow \mathbb{P}_{Q}^{1} \times \mathbb{P}_{Q}^{1}
$$

obtained ley taking the components other than is dominant，of degree 2
Pidure over \mathbb{R}

$$
\angle \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

So for any point x of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ over an extension 11 of h pr $\bar{\pi}^{-1}(x)=5 x$ spec（LL） is the septum of $\operatorname{an}^{\hat{2}} \mathbb{H}$－al gebrao $p^{1} \times 1 \mathbb{P}^{1}$ of $\operatorname{dim} 2$ ． that is $\mathbb{L}[x] /(\mathbb{P}(x)) \approx L[y] /\left(y^{2}-a\right)$ and it has an involution $\sigma: \bar{y} \rightarrow-\bar{y}$ If we apply this to the generic point we get $\alpha_{i}: S \cdots \rightarrow S$ binational
and $\sigma_{i}^{2}=I d_{s}, \quad \sigma_{i} 0 p \lambda_{\hat{i}}=\eta_{i}$
But it is seined everywhere and therefore

$$
\sigma_{i} \in A_{u}(S)
$$

Fads［H．BILLARD］
（i）If we put $e_{i}=p r_{2}^{*}\left(G_{p_{1}}(1)\right),\left(e_{1}, p_{2}, l_{3}\right)$ is a basis of $P_{i c}(5)^{*}$ ．
（ii）σ_{i}^{*} acts on Pic（s）as follows

$$
\begin{aligned}
& \sigma_{i}^{*}\left(e_{j}\right)=e_{j} \text { if } j \neq i \\
& \sigma_{i}+\left(e_{i}\right)=-e_{i}+2 e_{j}+2 e_{k} \text { if }\{i, j, k\}=\{1,2,3\}
\end{aligned}
$$

（vii）$\sigma_{1}, \sigma_{2}, \sigma_{3}$ induce an isomoyhism

It is a very big non commutative group It remains to produce rational curves on S

The files of $\mathbb{R}_{1}: S \rightarrow \mathbb{P}_{1}$ are
effective divisors in $\mathbb{P}^{1} \times \mathbb{P}_{1}$ associated to $G(2,2)$
al If it smooth L hen it is cure of genus 1
B）If it singular and irreduable，
it is a rational curve（parametrized by divisors of $G(1,1)$ passing through a singular point）／a finite extension of $1 K$
（1）If it is reducible it is the union of 2 rational curves／a finite ascension of \mathbb{K}
Note
б）Does not occur in the generic case
So after a finite field extension
We get $c \in s$ rational curve Ant（S）．C is Zariski dense in 5
Note
（i）The conje cure is still open for these examples （i）Wide open（and hard！）

Is $S(\mathbb{K})-U C$（Ia）finite？
C rational cure
only guess would be that it is infinite．But it is a rather wild guess．The point is that S is a fiebration en curves of genus 1，which may produce many joints as well．
c）The second level：the yow of log（B）
Definition
Assume that Were exists effed dive chivisons $E_{1,-} E_{\Omega}$ such that

$$
C_{\text {off }}(V)=\sum_{i=1}^{r} \mathbb{R}_{\geq 0} E_{i}
$$

then for any $L \in \frac{i=1}{C_{q \|}(V)}$ ，
$b_{g}(L)=$ codim（minimal face of $C_{\text {of }}(V)$ containing $\left.a_{g}(L) L-\omega_{V}^{-1}\right)$
A conjecture stays a conjedure only as long as there is no counter－excample．so y am going $\sqrt{0}$ describe the asgected value as Definition
ctssume $1 R_{a}$ t $\omega \omega_{V}^{-1}$ is escha－big and $V(\mathbb{K}) \neq \varnothing$ We say that V satisfies the BATYREV．MaNN principle if there escists a non－empty set U in V such that for any $\Delta \in C_{\text {If }}(V)$
There exists a constant $C>0$ so that

$$
\# \cup(\mathbb{K})_{H_{A}} \leqslant B \underset{B \rightarrow+\infty}{\sim} C B^{a^{(s)}} \log (B)^{b_{j}(B)-1}
$$

Remarks
In all the excamples I know for which an
 with $a_{\Delta}(U)=a g(S)$ and $b_{p}(u) \geqslant b_{g}(\Delta)$ In porticulon in all counter－examples known， there are to a many joints not 100 few．
d）Sro level：preliminary remarks about the constant d）Back b－the escamyles
We have seen for the product of proje dive spaces or the plane blown up in a point that sometimes there is a filtration where each fire makes a non negligible contribution to the total number of points，sometimes there sm k
bowing y
$V=\mathbb{P}_{\mathbb{Q}}^{2}$ blown up in 1 joint

Lat me be more precise about this fibration it is the same for all line bundles in the orange area it corresponds $t o \rho_{2}$

$$
\text { For } L=a e_{1}+b e_{2} \text { with } \frac{3}{a+b}<\frac{2}{a}
$$ that is $a<2 b$ we have

$$
\begin{aligned}
& \sum_{Q \in \mathbb{P}^{1}(Q)} \overbrace{S}^{C\left(R_{2}^{-1}(Q)\right) B^{\frac{2}{a}}} \\
& \geqslant \sum_{Q \in \mathbb{P}^{\prime}(Q)} \overbrace{R_{2}^{-1}(Q)_{H_{L} \leq B}}
\end{aligned}
$$

and $e_{2}=p_{2}^{*}\left(G_{p^{2}}(1)\right)$ ．

Go the other side

$$
\Gamma\left(v, e_{1}-e_{2}\right)=\mathbb{Q} \Delta_{0}
$$

where D_{0} is the section defined by $\frac{X}{V}=\frac{Y}{V}$ So the only map defined by $e_{1}-p_{2}$ is

$$
U-E \rightarrow \mathbb{P}^{0}(\Omega)=\left\{\rho^{t}\right\} .
$$

that is a constant map．
prochat of projective spaces

$$
\begin{aligned}
& V=\prod_{i=1}^{1} P_{Q}^{n_{i}} L=\sum_{1: 1}^{\Omega} a_{i} e_{i}, e_{i}=n_{i}^{\neq}\left(G_{Q_{i}^{n}} \cdot(1)\right) \\
& I=\left\{i \left\lvert\, \frac{n_{i}+1}{a_{i}}=\operatorname{mase}_{1 \leq j \leq n} \frac{n_{j}+1}{0_{j}}\right.\right\} \\
& I^{c}=\{1,-\Omega\}-I
\end{aligned}
$$

The face of $\partial C_{\text {eff }}(V)$ containing $a_{g}(L) L-\omega_{V} V^{-1}$ is given by $a_{g}(L) L-w_{i}^{1}=\sum_{i \in \pm c}\left(a_{g}(L) a_{i}-\left(n_{i}+1\right)\right) e_{i} \in \sum_{i \in I c^{c} \mathbb{R}_{0}} e_{i}$ But if your take M generic in this face，the i fibration defined by $\Gamma(V, M)$ fadorizes through

$$
P_{\Omega} I^{c:} \prod_{i>1}^{n} \mathbb{P}_{R}^{n_{i}} \rightarrow \prod_{i \in I^{c}} \mathbb{P}^{n_{i}}=V_{I^{c}}
$$

But Using the same proof as the one I gave for the proud of 2 spaces it is possible to prove that

$$
\begin{aligned}
& \text { \#V(Q) } H_{H_{L} \leqslant B} \sim \sum_{P \in V_{I} c} \frac{C\left(V_{I}\right)}{(Q) H_{M}(P)} B^{\operatorname{ag}(L)} \underbrace{\log \left(B B^{a_{g}(S)}\right)} \# I^{c}-1
\end{aligned}
$$

$$
\begin{aligned}
& P_{n_{I}}: P_{I} \Omega_{I}^{-1}(P) \subsetneq V_{I}
\end{aligned}
$$

where $p_{I^{C}}^{*}\left(M-\omega_{V_{I^{c}}}^{-1}\right)=\operatorname{ag}(L) L-\omega_{V}^{-1}$
Main remark

$$
{\frac{\operatorname{ag}}{g}(L) L_{\mid r_{I}^{-1}}(P)}^{a_{1}}=a_{P_{I}-1}^{-1}(P)
$$

B）Reduction idea［BATYREV\＆TSCTINKEL］
We assume V nice，ω_{V}^{-1} esdra－big and Coff (V) generated by a finite number of effedture divisors
Def
Lot F be the face of $\partial C_{\text {eff }}(V)$ which contains $a_{g}(L) L-a_{V}^{-1}$ ．
For $M \in F_{n}$ Dir (v) effective
We consider the conesponding rational map

$$
\varphi_{M}: V \ldots \longrightarrow \mathbb{P}\left(\Gamma(V, M)^{V}\right)
$$

（given by $M \in \Gamma(N, M)^{V}$ b dongs $F_{a} \varphi_{M}(x)$
if $\psi(s)=0 \Leftrightarrow \Delta(x)=0$ in $E(x)$ ）
yt is defined on

$$
U_{M}=V-\bigcap_{\Delta \in \Gamma(V, M)} \Delta
$$

$$
\begin{aligned}
& \Delta \in \Gamma(V, M) \\
& s o \text { h hat }
\end{aligned}
$$

W_{e} pick M so that U_{M} and $\operatorname{dim}\left(\operatorname{Im}\left(\varphi_{M}\right)\right)$ is masainal．This defines a fiberation 1
Definition $V \supset U_{F} \xrightarrow{\varphi} y_{F} \quad Y_{F}$ is this image
F is said to be rigid if Y_{F} is a single point（and φ_{F} is constant．）

In general，for $p \in Y_{F}(Q)$ et $V_{p}=\overline{\varphi_{F}^{-1}(P)}$
Fairy land
i）For a generic P e Y_{F}（Q），V_{p} has mild singularities，
ii）$a_{g}(L) L_{V_{p}}-w_{V_{p}}^{-1}$ belongs to a rigid face F_{p} of $C_{4 r}\left(v_{p}\right)^{p}$
ii）$\left.\#\left(V_{p} \cap \cup\right)(a)_{H_{L} \leq B} \sim C C V_{p}\right) B^{a_{g}(L)} \log (B)$ $\operatorname{dmin}\left(F_{\mathrm{p}}\right)-1$
w）The main term for V is obtained by suming the main terms for V_{p} ．
（2） $\operatorname{dim}\left(F_{p}\right)$ dejends on p ！
and as I ash going to esglain this lead BATYREV \＆TSCH INTEL 18 the first counter escamples of B ATYREV\＆MANIN pinajle． So，eventually，we will have to leave Fairy land．But，in mathemata you can learn a lat by thinking of the question＂What is the best＂l can hope？＂la let us stay a little longer in stat land．What can we soy in
Y）the rigid case
Let us look once more at the fane blown up in one joint．
Particular case
Take $L=a e_{1}$ then $H_{L}=\left(H_{6(1)} \circ \mathcal{r}_{1}\right)^{a}$ so in fact we are counting points on \mathbb{P}^{2} （and not in V ）
and $p_{1} \cdot V \rightarrow \mathbb{P}_{Q}$ is the blowing down of E which is the unique effective divisor coneyonding $t \bar{o} e_{1}-e_{2}$ which is rigid．

In general，if F is rigid
$F=\sum_{i=1}^{k} \mathbb{R}_{2}\left[E_{i}\right]$ where E_{i} is an effective divisor $\sum_{i=1}^{0 n} v$
Then
for $M=\sum a_{i}\left[E_{i}\right], \quad a_{i} \in \mathbb{N}$
Take $\Delta \in \Gamma(U, M)-\{0\}$ St is unique up to multiplication by a constant．
s vanishes with multiplicity a_{i} along E_{i}
Faring land relative interior
（i）For some L such that $a g(L) L-w_{v}^{-1} \in \stackrel{\circ}{F}$
then the rational map

$$
\left.V_{i} \rightarrow \mathbb{P} C \Gamma\left(V, L^{\otimes N}\right)^{V}\right) \quad N \gg 0
$$

conesjonds to the blowing down of $E_{1, フ}, E_{R}$ ．
Lot Y be the imacye of V
$\psi V . \rightarrow Y$ is binational

$$
U \simeq \underset{\sim}{U}
$$

（ii）We reduce to count on W

$$
\begin{aligned}
& \text { he reduce to count on } W \\
& \#\left\{x \in W(\mathbb{K}) \mid \quad H_{\omega_{y}^{-1}}(x) \leqslant f(x) B^{a_{g}(L)}\right\} \\
& \text { on } W H(x)
\end{aligned}
$$

where on $W H_{w \cdot,}(x)$

$$
\begin{aligned}
f(x) & =\frac{H_{w_{y}^{\prime}}(x)}{H_{L}\left(\psi^{-1}(x)\right)^{a_{g}}(L)} \\
& =\prod_{i=1}^{n} w \in \operatorname{Pl}(\mathbb{K})^{i}
\end{aligned}
$$

where s_{i} is a non zoo section of $L_{i} \leftrightarrow E_{i}$ and $a_{g}(L) L-\psi^{*}\left(\omega_{y}^{-1}\right)=\sum_{i=1}^{N} \lambda_{i}\left[L_{i}\right]$

NB
（i）By the produd formula，since Δ_{i} is unique up to muluificalion by a constant，
f does not depend on the choice of Δ_{i}
（ii）If you take different norms on ω_{v}^{-1} counting for the se cone noun amounts 10 estimate

$$
\#\left\{x \in U(\mathbb{K}) \mid H_{\omega_{v}^{-1}}(x) \leq f(x)_{B}\right\} \quad(*)
$$

where $f(x)=\prod_{v \in \operatorname{PlC}(\mathbb{K})} f_{v}(x)$ is continuous on $V\left(\mathbb{A}_{\mathbb{K}}\right)$ and therefore bounded．Io we may see the rigid coss as a more general change of height we are conaikering

$$
f(x)=\prod_{v \in \operatorname{le}(\|<1) f_{v}(x)}
$$

where fo may have joles＂（or zeros）
but we control how＂big＂it can be in a sense which y am soon going to make clear
（2）Y may be singular est is not a too serious poler but it compliates a little bit the technical details．To simplify matters Sam going to restrict myself to the D mooth case．So we have reached the finial step： What con be the constant when we estimate（ $*$ ）

61612016 S）Constant and distribution
So，of we consider the question of interpreting the constant for different height we are lead to the following question：
Question
Fix a norm on ω_{v}^{-1} ，let H be the corresponding height，
Assume that V satisfies BAT XREVAMnNIN pimajle
for V open $\operatorname{in} V$ and \mathbb{K}
Let $f: V\left(\mathbb{A}_{\mathbb{K}}\right) \rightarrow \mathbb{R} \geqslant 0$
Dos

$$
\begin{aligned}
& \text { Does } \\
& \text { and what in } C(f)
\end{aligned}
$$

Pemartbs
（i）If $f=11$ ，for W brevelian subset of $V\left(I_{1}, K\right)$ we are looking at

$$
\frac{\#(W \cap \cup(K))_{H \leqslant B}}{\# U(K))_{H \leqslant B}}=\oint_{U(K)}(W)
$$

Again，it is the question of the $H \leq B$ distribution of points in the adelic space
（ii）Convosely，Assume als－a that we know then the measure converge

$$
S_{U(K)} \xrightarrow[H \leqslant B]{w} \underset{B \rightarrow+\infty}{ } \omega \text {. }
$$

and take I finite，

$$
\begin{aligned}
& f=\sum_{i \in I} \lambda_{i} \|_{W_{i}} \text { with } W_{i} \text { a portion of } V\left(\mathbb{A}_{1 K}\right) \\
& \left(V\left(\mathbb{H}_{1 K}\right)=\frac{\|}{i \in I} W_{i}\right) \text { with } H_{i} \in I, \omega\left(\partial W_{i}\right)=0
\end{aligned}
$$

Then Since b assume BATXR EVA MANIN principle

$$
\begin{aligned}
& \quad \#\{x \in V(\mathbb{K}) \mid H(x) \leq f(x) B\} \\
& =\sum_{i \in I} \#\left\{x \in U(\mathbb{K}) \mid H(x) \leqslant \lambda_{i} \|_{w_{i}} B\right\} \\
& \sim \\
& \sim \rightarrow+\infty \\
& \sum_{i \in I} C_{w_{v}^{-1}}(v) \omega\left(W_{i}\right)\left(\lambda_{i} B\right) \\
& \quad C_{w_{v}}(v)\left(\int_{V\left(\mathbb{T}_{\mathbb{K}}\right)} f w\right) B
\end{aligned}
$$

$$
(f)=\int_{V\left(\mathbb{B}_{k}\right)} f \omega
$$

In particular the constant for $\frac{1}{6}+1$ is expressed as an integral $\int_{V(\mathbb{A} \mid K)} f C_{w_{v i}}(v) w^{v}$
（iii）In that setting，we may consider the sot σ of fundions such 1 at

$$
\#\{x \in U(\mathbb{K}) \mid H(x) \leq f(x) B\}
$$

and，again we have a sandwich principle If $g: V\left(\mathbb{A}_{K}\right) \rightarrow \mathbb{R}$ ，is such that there esaist sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(h_{n}\right)_{n \in N}$ of elements of σ with

$$
\forall x \in V\left(\mathbb{H}_{K}\right) \quad f_{n}(x) \leq g(x) \leq h_{n}(x)
$$

and

$$
\int_{V\left(L A_{1 K}\right)}\left(h_{n}-f_{n}\right) w \underset{n \rightarrow+\infty}{\longrightarrow} 0 \text { whit is only a } \mathbb{L}^{\prime}
$$

Then $g \in F$
\mathbb{V}

$$
\left\|h_{n}-f_{n}\right\|_{\mathbb{L}^{1} n \rightarrow+\infty} 0
$$

My last remark is due Io SWINNERTON－DYER
（iv）［SWINNERTON－DYER］
Assume that V does not sultsfy weak apposamation that is the dosure of notional points is not the aclelic space

$$
V(\mathbb{K}) \nsubseteq\left(\mathbb{A}_{\mathbb{K}}\right)
$$

$C(f)$ depends only on $f / \overline{V(I K)}$
So if $C_{H}(V)$ is engrossed as a volume it is the volume of $V(\mathbb{K})$ not of $V\left(\mathbb{F}_{1 K}\right)$ ．
The condusion is that
To describe the constant for all possible heights we need to desculs $\overline{V(\mathbb{K})} \subset V\left(\mathbb{A}_{\mathbb{K}}\right)$ So now the plan for the next eectura is Plan

1）Describe the expected $\overline{V(I K)}$ ；
2）Define the esgected constant；
3）What are the result；
4）Describe Counter－examples；
5］Urgrade the conje cure tia cover all roses．
6）Braver－Manin obstudion，Universal and versal torsos
He hypothesis（H）
V is a vorymice voriely／K number field
$\bar{K}=a_{-1}$ gerraic closure of $\mathbb{K}, \quad V=V_{\mathbb{K}}$
（i）ω_{V}^{-1} is extra－brg．
（ii）$H^{i}\left(V, O_{V}\right)=\{0\}$ if $i \in\{1,2\}$
（iii）Pis（ V ）is a free，finitely generated \mathbb{Z}－module（yt has notonsion）
（iv）$C_{\text {of }}(V)$ is generated by a finite number of effective divisors
a）（Universal tensors
d）Motivation
For the Projective space or an hypersurface of large enough dimension，the fuse step is to lift rational solutions to integral ones using the esomoyhium

$$
\begin{aligned}
& \mathbb{P}^{n} \approx \mathbb{T}^{n+1}-\{0\} / \mathbb{G}_{m} \\
& V \longleftarrow W / \mathbb{G}_{m} .
\end{aligned}
$$

Of course，for any projective variety we can jive a very ample ane bundle and embed the variety into a projective space and by taking the inverse image in the offline space we can write any variety as a quotient by G_{m} ．But
－osirsty if the rank of \mid｜he Picard group $s\rangle$ is 1 which ample line bundle should we choose？
－Secondly we
Wish for W
\rightarrow the height we use con be expressed in single terms in W ；
\rightarrow The number of equations defining W in the affine yare is as small as possible． dot us look at one escample：

Example
For $\mathbb{P}_{\mathbb{Q}}^{n_{1}} \times \mathbb{P}_{\mathbb{Q}}^{n_{2}}$ the smallest embedding is

$$
\mathbb{P}_{\mathbb{Q}}^{\mathbb{Q}_{1}} \times \mathbb{P}_{\mathbb{Q}}^{n_{2}} \longrightarrow \mathbb{P}^{n_{1} n_{2}+n_{1}+n_{2}}
$$

which gives $n_{1} n_{2}$ equations！
But $\mathbb{P}_{Q}^{n_{1}} \times \mathbb{P}_{Q_{2}}^{n_{2}} \approx \mathbb{T}_{\mathbb{Q}}^{n_{1}+1}-\{0\} \times \mathbb{T}_{\mathbb{Q}}^{n_{2}+1}-\{0\} / \mathbb{G}_{m} \times \mathbb{G}_{m}$
Δo the idea is to consider the quotient by bigger group．
B）Kojoloyical background
Reminder
In topology，for a topological pointed space X, x a universal covering of X at x is a covering $\pi: \tilde{x} \rightarrow X$ with a joint $\tilde{x} \in \tilde{x}, \pi(\tilde{x})=x$ such that for any covering $\varphi: Y \rightarrow X$ and $y \in Y$ such shat $\varphi(y)=x$ ，those is a unique moyhism

$$
\psi: \tilde{x} \rightarrow y
$$

such that

$$
\begin{aligned}
& \tilde{x} \xrightarrow{v} y \\
& \pi \vee \varphi \text { commutes and } \psi(\tilde{x})=y
\end{aligned}
$$

If it escists it is unique up to a unique isomoyhism．
（i）The unity require working in the category of pointed sets．

Remark
Let Aut (\tilde{X}) be the group of antomoyhisms of X above．The definition implies that The $\operatorname{map} \varphi \mapsto \varphi(\tilde{x})$ is a byection from

Ant (\tilde{x}) to the file $X_{x}=\pi^{-1}(x)$ In otter words A_{1} In $_{x}(\tilde{x})$ ads simply transitively on that fibre．
And x equipped with π, \tilde{x} and $A_{n} t_{x}(\tilde{x}) \in \widetilde{x}$ is also universal for pointed Galois coverings．
8）Corsors
Definition
Let X be a varidy over a field IL and G be an al y elonare group over L A G－torso over X is a variety E over II equipped with
－a moyhism $\pi: E \rightarrow X$
－an action m：$G \times E \longrightarrow E$
so that
（i）π is faithfully flat（Technical condition）
（i）$G \times E \longrightarrow E$ commutes

$$
\pi \circ p r_{1} \searrow_{X} \vee p \Omega_{1}
$$

（iii）The map $G \times E \longrightarrow E_{x_{x}} E$ is an isomoyhiarn．

NB in terms of joints
If A is commutative 11 algebra and $x \in X(a)$ we get a byection

$$
\begin{aligned}
G(A) \times E(x) \\
\pi-1(x)
\end{aligned} \quad \rightarrow E(x) \times E(x)
$$

So，if $E(x) \neq \varnothing, G(A)$ acts simply and thansiuvaly on $E(x)$ ．

In particular if we have a covering of X ，for some Grothenched topology $\tau,\left(\varphi_{i}: v_{i} \rightarrow x\right)_{i \in I}$ by afforest schemes $A O$ that

$$
\pi_{v_{i}}: E x_{x} u_{i} \rightarrow u_{i}
$$

has a section，then $E x_{x} U_{i} \simeq G \times V_{i}$
we soy that the covering x split E
Since E is faithfully flat we know that at least E spits on a faithfully flat covoung （Well that－sprecisely $E_{x} \in \rightarrow G \times E$ ）．
Remark
The glueing data gives a 1 －cocyde in Cech cohomology $H_{q}^{1}(X, G)$ and thus in $H^{1}(x, G)$ （coon when G is not commutative）and $H_{\tau}^{1}(x, b)$ classifies G tossers which split in $E_{\text {coverings up }}$ up to is omoyhiam．
Example
rake $G=G_{m}=\operatorname{Spec}\left[\mathbb{Z}\left[T, T^{-1}\right]\right]$
Then for any line bundle we may consider
$L^{x}=L$－zero sedition
Then she scalar multiplication induces

$$
\begin{aligned}
& \sigma_{m} \times L^{x} \longrightarrow L^{x} \\
& (\lambda, e) \longmapsto \lambda e
\end{aligned}
$$

and L^{x} is a G_{m}－terser over V
In fact any E_{m} Tors or split in Zowiki topolayy and one can prove

Proposition
The functor $L \mapsto L^{x}$ defines an equivalence of category from the category of line bundles over V to the category of E_{m}－torsos oven V ．In particular，

$$
\operatorname{Ric}(v) \approx H_{z o n}^{1}\left(v, \sigma_{m}\right) \cong H_{d}^{1}\left(v, \sigma_{m}\right)
$$

An inverse functor can be defined by $E \rightarrow E \times \mathbb{R}_{1} / G_{m}$

$$
\lambda(e, \mu)=\left(\lambda e, \lambda^{-1} \mu\right)^{m}
$$

Remarks
It is an extension of filbert＇s theorem 90，which says that

$$
H^{1}\left(k, G_{m}\right)=H_{k t}^{1}\left(\operatorname{Sper}(k), G_{m}\right)=\{0\} .
$$

In fact shibbert \bar{s} theorem 90 reduces to Let IIIK be a Gobies aydic extension Let σ generate $\mathrm{gol}(\mathbb{L} / \mathbb{K})$ and let $x \in \mathbb{U}^{*}$ If $N_{\mathbb{L} / \mathbb{K}}(x)=1$ then $\exists y \in \mathbb{L}^{x}, x=\sigma(y) / y$
Reference
J．－p．Jere Corps locals．Hermann． As y said we want to consider a more general clos of groups．It tums out that there is a doss of group which are easy to deal with because shay are classified by simple objects
8）Groups of multiplicative lyse
Definition
Let IL be a field，II an algebraic closure of 1 an algebraic group G is said to be
a）of multiplicative type if $\bar{G}=G_{I}$ is isomorphic to a subgroup of $\sigma_{m}^{n}, \overline{1}$ for some $n \geqslant 0$ ；
b）an algebraic torus if \bar{G} is isomorphic to $\sigma_{m, \text { II }}^{n}$ for some $n \geqslant 0$
（2）In the literature＂tori＂may be used with two different meanings
－In complex algebraic geometry
\mathbb{C}^{n} / n where n is a lattice in \mathbb{C}^{n}
is a tori（for $n=1$ it looks like（a）
there The line of algebraic group is called abclian voricti．
－Algebraic Lori as defined above
Cominology
If V is a variety on an algebraic group on a whatever III，a form of V over IL is a voridy an algebraic grow r or a whatever $V^{\prime} / 1 L$ such that $V \simeq \bar{V}$ as whatever
Example of groups of multiplicative type
（i）If $n \geqslant 1, n \neq 0$ in L（ that the characteristic of \mathbb{L} does not divide \mathbb{I} ）

$$
\begin{aligned}
& N_{n, \psi}=\sec \left(\mathbb{L}[T] /\left(T^{n}-1\right)\right) \\
& \mathbb{G}_{m, \psi}=\operatorname{skc}\left(\mathbb{L}\left[T, T^{-1}\right]\right) .
\end{aligned}
$$

$\mathbb{N}_{x}, \mathbb{L}$ is of multijificative luge but not an algebraic
（ii）$\Phi_{\mathbb{R}}^{1}=\operatorname{Syec}\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$
with $m: \$_{\mathbb{R}}^{1} \times \mathbb{S}_{\mathbb{R}}^{1} \rightarrow \Im_{\mathbb{R}}^{1}$ defined by
$x \mapsto x \otimes x+y \otimes y$ Think of complex
$y \mapsto x \otimes y+y \otimes x \quad$ multiplication
$y \mapsto x \otimes y+y \otimes x$ multiplication．

Let me prove that it is an algebraic torus，that is

$$
\begin{aligned}
\mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right) & \simeq\left[T, T^{-1}\right]^{2} \\
x+i y & \rightleftarrows T \\
x-i y & \rightleftarrows T-1
\end{aligned}
$$

Note

$$
{ }^{e}\left(\mathscr{J}_{\mathbb{R}}^{1}\right)^{2}(\mathbb{R}) \quad \infty
$$

（2）Ever \mathbb{R} the set of joints is compact，but the variety is not prose and it in not an abchan group．

Definition
For an algebraic group 6 ，the group of of charaders of G is the group
$X^{*}(G)=H o m$

$$
X^{*}(G)=\operatorname{Hom}_{\text {alg }-g r / L}\left(G, G_{m, 1}\right)
$$

Theorem
Let \mathbb{L}^{s} be a separable dosure of \mathbb{L}
a）For any group of multiphicative bye G there escists an embedding

$$
G^{s}=G_{\mathbb{H}_{s}^{s}} \longleftrightarrow G_{m, \mathbb{H}^{s}}^{n} \text { for some } n \geqslant 0
$$

b）The contravariant fundor

$$
G \rightarrow X^{*}\left(G^{5}\right)=\operatorname{Hom}_{\text {alg }-g / 11^{s}}\left(G^{5}, G_{m, u^{5}}\right)
$$

defines an equivalence of category between the opposite of the category of multiplicate li pe and the category of finitely generated \mathbb{Z}－modules equiped with on action of the solos group

$$
g_{H}=\operatorname{gol}\left(\mathbb{L}^{5} / \mathbb{L}\right)
$$

An inverse fundor may be defined as

$$
\left.\Lambda \stackrel{\sec }{ } \wedge \mathbb{U}^{s}[a] g_{\mathbb{L}}\right)
$$

where the action of g_{H} is given by

$$
\sigma\left(\sum_{\lambda \in \Lambda} a_{\lambda} \lambda\right)=\sum_{\lambda \in a} \sigma\left(a_{\lambda}\right) \sigma(\lambda) \text {. }
$$

Referona
A．BOREL，linear algelonaic group，$\S 8$ Graduate tests in Math，Sprunger－Verlay．
E］Universal towor［Colliat Thedone \＆SANSUC］ ats in topology this makes sense in the category of jointer l schemes
Reminder
－A pointed schome／A is a scheme X with a chosen point＂$x \in X(A)$（also norad．）
a moyhism of pointed scheme is a moyhism $\varphi: x \rightarrow y$ such thor $\varphi(\cdot x)=\cdot y$
－Appointed G－torsor over a jointed scheme X is a torsor Twith a seledad joint＂T in the fore of $\cdot x$

Definition
Let X be a rice pointed variety over IL， A universal terser on X is a pointed G－Korsor \tilde{X} over X ，with T a group of multiplicative type Do that for any pointed Gtorsor E over x with G a group of multiplicative by se There esaists a unique moyhism $\varphi: T \rightarrow G$ and a unique moyhiom of pointed varictive $\psi: \widetilde{x} \rightarrow E$ above x such that
(X, T) is inigue e^{m} y to a unigue isomoyhisin
Remark
It is the base point which makes it posible to have uniaty．

Theovern
If X is a nia varicty $/ L L$ ，chan $(\mathbb{H})=0$ ，such that
$A_{c}(\bar{X})$ is finitely generated
then，for any cholde of a base joint in X（U） a universal tobor esasts．Moreover $X^{*}(T)$ is canonically is－omophir to $P_{i c}(X)$
816／2016 To prove the esastence of unviersal lonsons Is am going to prove a staEment which classifies the pointed toreoss under a multijh ative groy

IV fueld of charaderstico，IL algebrair closure
X mue varicty／$\&$ such that
$P_{i c}(X)$ is finitely gonerated，$x=x_{X} \leftarrow X(\mathbb{L})$
W_{e} consider líwa categorios
$\varepsilon_{x, x}^{m}$ ：the category of pointed tos ors under multiplicalue group over x ： objeds：A varietig E equiped with an alyebraic group G of multijlicative lype and the structure of pointed 6－tonor over X ．
moyhisms：moyhisms of varieties $\varphi: E \rightarrow E^{\prime}$ over X such that there escists $\varphi_{*}: G \rightarrow \sigma^{\prime}$ so that

$$
\varphi(g e)=\varphi_{p}(g) \cdot \varphi(e)
$$

NB $G \rightarrow E(x)$ is bjededive

$$
g \longmapsto g \cdot{ }^{\bullet} E \quad G \xrightarrow{\varphi_{*}} G^{\prime}
$$

$$
\underset{E(x)}{\downarrow} \xrightarrow{\downarrow} E^{\prime}(x)
$$

determines φ_{*} ．
$M_{p_{k}}$ category
Glejeds：finitely generatal \mathbb{Z}－modules 1 with an action of $y_{L L}=e_{o l}\left(L^{5} / I L\right)$ and a moyhiom of $\mathbb{Z}\left[g_{1 L}\right]$－module $\varphi: \Lambda \rightarrow P_{i d}(\nabla)$ ．
Let us tenure a fuendor $q_{x, x}^{m} \rightarrow M_{p i c}$
Cake E in $q_{x, x}^{-m}$ with group σ ，jut $\Lambda=X^{*}(\sigma)$ for $\lambda \in \Lambda, \lambda$ is a moyhism from $\bar{\sigma} \Gamma_{0} \sigma_{m}, \mathbb{Z}$
Lemma
a）With notation as above，let Y be a quasi－
－projective variety and $m: 6 x y \rightarrow Y$ an action of 6 on Y of variaty then the contraded product

$$
\text { Ex } x^{6} y=E x Y / G \quad g(e, y)=\left(g e, g^{-1} y\right)
$$

is well defined $\varphi \mathscr{D}^{G} \square^{6}$
b）for any moyhusm $\varphi: Y \rightarrow Y^{\prime}$ compatible with the adion we get $\psi_{E}: E x^{6} y \rightarrow E x^{6} y^{\prime}$ ．
c）It is compatible with products：for $\stackrel{\sigma}{V}^{Y}$ ，$y^{\prime}{ }^{\prime}$ define

$$
G G x x y^{\prime} \quad E x^{6}\left(y_{x} y^{\prime}\right) \approx\left(E x^{6} y\right) x x_{x}\left(E x^{6} y^{\prime}\right)
$$

d）Moreover of $\left(U_{i}: U_{i} \rightarrow X\right)$ is a splitting covering for E ，then $U_{i} x_{x}\left(E x^{6} y\right) \cong U_{i} x y$ for $i E I$ ． So a
$(g, y) \mapsto 8 y$
$G x^{6} y \simeq y$
d）$V_{i} x_{x} E \approx U_{i} x G$ and $G x^{6} y \simeq y$
a）The $E X^{G}$ Y is obtained by glueing the variates described in the moreover statement－（but we need on étale guaing for which we use that Y is quasi projedwe）．T
So from $\lambda: \bar{G} \rightarrow \sigma_{m} \overline{\mathbb{L}}$ let $F=\bar{E} x^{G} \mathbb{G}_{m}$ it is a σ_{m} Torsos／ \bar{x} and we denote by $\rho_{5}(x)$
its dos in $P_{i c}(X)$ ．We get the monism its doss in $P_{i c}(x)$ ．We get the moyhism

$$
\rho_{E} x^{*}(\sigma) \longrightarrow \operatorname{Ric}(\bar{X})
$$

This consturdion is functorial
Theorem
The fundor $E \longmapsto \rho_{E}$ defines an equivalen a of category from $\left(q_{x, x}\right)^{0} \sqrt{\sigma}_{0}$ of In partialar，a rorsor corresponding to $I_{P_{i c}(\bar{x})}$ is universal．
Sketch of the proof
－Einat let us show－ltat

$$
\begin{gathered}
\text { If } \varphi, \varphi^{\prime}: E \rightarrow E^{\prime} \text { salsify } \\
\rho_{\varphi}=\rho_{\varphi^{\prime}}: x^{*}\left(\sigma^{\prime}\right) \rightarrow x^{*}(\sigma) \quad \text { then } \varphi=\varphi^{\prime} \\
\rho_{E^{\prime}} \searrow_{\rho_{i c}(\bar{x})} \rho_{E}
\end{gathered}
$$

By the equivalence of categories for group

$$
\varphi_{*}^{\prime}=\varphi_{*}^{\prime}: \sigma \longrightarrow \sigma^{\prime}
$$

Then there exacts a moyphism $\psi: x \rightarrow \sigma^{\prime}$ so that $\forall y \in E, \varphi^{\prime}(y)=n^{\prime} \psi\left(\pi_{E}(y)\right) \varphi^{\prime}(y)$

$$
\text { But on II } G \longleftrightarrow \sigma_{m, \text { II }}^{n}
$$

So i $\circ \psi: X \rightarrow \mathbb{G}_{m}^{n}, \frac{\pi}{\mathbb{L}}$ which has to be constant since \bar{x} is projedive but $\varphi\left(\dot{j}^{E}\right)=\varphi^{\prime}\left(\dot{D}_{E}\right)={ }^{\circ}{ }^{\prime}$ ，（hove we use ${ }^{\circ} E$ ） so $\psi(x)=1^{E}$ ，for all x and $\varphi=\psi^{\prime}$ ．
－for $[l] \in \operatorname{Pic}(\bar{X}) \quad L^{x}$ is a G_{m} roroor／X consoronding to

$$
\begin{aligned}
& \mathbb{Z} \rightarrow P_{l c}(\bar{x}] \\
& n \mapsto n[L]
\end{aligned}
$$

If $n[L]=0$ in $\operatorname{lic}_{\mathrm{c}}(\bar{x})$ then $L^{\otimes n} \cong G_{\bar{x}}$ and
$\mu_{n}(L)=\left\{y \in L \mid y^{\otimes n}=1\right\}$ defines a
N_{n} torso corresponding な

$$
\begin{aligned}
\mathbb{Z} / n \mathbb{Z} & \longmapsto p_{i c} d(\bar{x}) \\
\lambda & \longmapsto[L], m
\end{aligned}
$$

－Let E be an objet of $M_{x, x}^{m}$ ，Gthe corregonding group；for a commutative diagram

$$
\begin{aligned}
& \mathbb{1}_{\mathbb{Z}}^{\mathbb{Z}} \xrightarrow{\frac{y}{\longrightarrow} x^{*}(\bar{\sigma})} \underset{P_{i C}(\bar{x})}{\downarrow} \rho_{E}
\end{aligned}
$$

By definition of ${ }_{E}{ }_{E}{ }_{L}$ φ defines a moxpism
If $n \varphi(1)=0$ in $X^{*}(\bar{\sigma})$ then $n[L]=0$
this induces a moyhism $E \rightarrow \mu_{n}(L)$
More generally，if $X^{*}(\bar{\sigma})<\bigoplus_{i=1}^{M} \mathbb{Z} c_{i} \oplus \oplus \oplus i=1$ if choose E_{i}, F_{i} so that

$$
\left[E_{i}\right]=\rho_{E}\left(\varphi\left(e_{i}\right)\right) \text { and }\left[F_{1}\right]=\rho_{E}\left(\varphi\left(\rho_{i}\right)\right)
$$

we get an moypism

$$
\varphi^{*} E \rightarrow\left(\sum_{i=1}^{x_{x}} E_{i}^{*}\right) \times_{x}\left(x_{i=1}^{m} \mu_{a_{i}}\left(F_{i}\right)\right)
$$

which is unique！and therefore this behaves will with composition
If φ is an isomorphism so is φ^{*} which proves that any objet is nomoyhic \sqrt{O} one of that form／ \mathbb{L} ．
If φ is invariant under Gal（IL／M） then φ^{*} is defined／M
－Let us consturct a universal torso Since we assumed that $p_{i}(\nabla)$ is finitely generated，we may wite

$$
\begin{aligned}
& \text { generated, we may wite } \\
& \operatorname{Pic}(\bar{x})=\left(\prod_{i=1}^{\in} \mathbb{Q}\left[L_{i}\right]\right) \oplus\left(\prod_{i=1}^{n} \mathbb{Z} / a_{i} \mathbb{Z}\left[T_{i}\right]\right)
\end{aligned}
$$

it is a tower under $T_{N S} / \bar{X}, x^{*}\left(T_{N S}\right)=P_{i c}(\bar{x})$ The action of Gal（IIN）on Pic (\bar{X}) factors through a finite quotient Gal $(M / L)=H$ so $\tilde{X}_{\bar{H}}$ comes from \mathbb{X}_{M} defined over M．Moreover using the last joint，we get an action H G EM oo that for any σ in H the following diagram commutes

$$
\begin{gathered}
\tilde{X} \xrightarrow{\sigma^{*}} \widetilde{X} \\
\downarrow \underset{\operatorname{Id} \times \sigma^{-2} \downarrow}{V \times \operatorname{Sec}(M) \rightarrow V \times \operatorname{Spc}(M)} \begin{array}{c}
\operatorname{Sec}(I) \\
\operatorname{Sec}(L)
\end{array}
\end{gathered}
$$

Since \tilde{x} is quasi project twee／L $\tilde{x}=\tilde{x} /+1$ is defined as a variety $/ L$ and by the above diagram we get $\tilde{x} \rightarrow x$ ；Similarly we $m: T_{N S} \times \widetilde{x} \rightarrow \tilde{x}$ and X is a $T_{N S}$ tower and，by construdion， ＇I is invariant under the dion of G so it is defined over II．We ger a pointed $T_{N S}$ torpor \widetilde{x} ．
－An inverse lo $E \longmapsto \rho_{E}$ is given by $\rho \longmapsto \rho_{*}(X)$ ．The difficulty is to pore that there is an isomoyhiom from E to $\rho_{E_{*}}(X)$ but this follows from the above construction of moyhisms
Remarks
（i）The main point of the proof is solving the descon problem
－If M／IL is a Galois es tension and X is defined over H ，then You have an action of $H=$ bol $\left(M / L\right.$ ）on X_{M} over See \mathbb{R} ：（M）Ph $\times \sigma^{-1}$

$$
\begin{aligned}
& \underset{\substack{\text { Seec(M) }}}{\times \times \operatorname{Sjec}(M)} \xrightarrow{\text { Pax }} \times \underset{\text { Spec }(\mathbb{K})}{\operatorname{Srec}(M)}
\end{aligned}
$$

So given E defined over M to find a form of E oven $1 L$ ， the first thing is 10 construd an acton of H on E so that

$$
\begin{aligned}
& E \xrightarrow{E} E \\
& \downarrow \\
& \sec (\psi) \xrightarrow{\sigma-1} \downarrow \\
& \operatorname{Ser}(\psi)
\end{aligned}
$$

commutes then a form is given by E／H． It is the base joins which ensure that
we really have an action $\tau(\sigma(e))=(\tau \sigma)(e)$ ．
（ii）Over $\pi, \tilde{\pi} \rightarrow x$ is surjedive
so for any $x^{\prime} \in X$ we may hove $\tilde{x} \in \tilde{X}\left(x^{\prime}\right)$ and get a universal torpor above x, x^{\prime} By unicity of the universal torsos we get that
All universal torsos，whatever the base joint，as $T_{N S}$－torsos are a form of X ．
Definition
A vassal torpor is a Tis－torsor over 11 which is a form of \widetilde{x} ．
（we forgat about the base－joint）
Remark
Vernal is a terminology of GROTHENDIECK it is universal without unicity．
Theorem（COLLIOT－THELENE \＆SANSUC） V／number field which sotrafies HI ，
then there is a finite number of isomorphism cases of versal torsos having a rational joint over \mathbb{K} ．

NB
Let $\left(\widetilde{V_{i}}\right)_{i \in F}$ be those torsos $\pi_{i}: \tilde{v}_{r} \rightarrow$ thaprogections By the above proof
and

$$
V(\| K)=\frac{11}{i \in I} \pi_{i}\left(\widetilde{V}_{i}(\mathbb{K})\right.
$$

$$
V(\mathbb{K}) \subset \bigcup_{i \in I} \pi_{i}\left(\widetilde{V}_{i}\left(\mathbb{A}_{\mathbb{K}}\right)\right) \subset V\left(\mathbb{A}_{\mathbb{K}}\right)
$$

Gruestion
When do we have

Remark

$$
\sqrt{\text { we have }} \overline{V(\mathbb{K})}=\frac{\bigcup_{i \in I} \pi_{i}\left(\tilde{V}_{i}\left(\mathbb{F}_{\mathbb{K}}\right)\right)}{V\left(\mathbb{H}_{\mathbb{K}}\right)^{T U}} \text { ? }
$$

This more on loss is the same as soyeng that smooth compadifications of the \tilde{V}_{1} satisfy weak aprosamation．
Examples
－If $V \subset \mathbb{P}^{N}$ smooth hypersurface of dimension $\geqslant 3$ ，the universal torpor us given lay the one

$$
W=\pi^{-1}(V) \subset \mathbb{H}^{N+1}-\{0\}
$$

σ If $V \rightarrow V$ and $\widetilde{V}^{\prime} \rightarrow V^{\prime}$ are universal lowers（with V, V^{\prime} satisfying $f(1)$ then $V \times \widetilde{V}^{\prime} \rightarrow V \times V^{\prime}$ is the iniveral torsor（over $\left(\cdot x, x^{\prime}\right)$ ）．

3）Connexion to the（ox ring
In some sense the lose rang is the rang of all sections of all possible line bundles on the variety．
Definition
a pointed line bundle over a pointed voridyx is a line bundle L with a chose paint

$$
L \in L(x)-\{0\}
$$

and a moyhiorm of point line bundles is a mayphion of line bundles which map the base point to the base point
Remarks
Given pointed line bundles L，L＇I a nice X which are isorng／u i as line bundles Let ψ ！$L \cong L$＇be an isomorphism Then $\exists \lambda \in \mathbb{K}^{*}$ such that $\psi\left({ }^{\prime} L\right)=\lambda$＇$L$＇ and $\lambda^{-1} \psi$ is the unique isomoyhism of pointed lime bundle from L To L＇ So $\mathrm{Pic}_{\mathrm{i}}(X)$ is also the group of isomoyhirm dosses of pointed line bundles on X（ worth ＇$L \otimes L$＇$=$＇$L \otimes$＇L＇）and for any element in $P_{i c}(x)$ there is a unique jointed line bundle representing up to uni que isomoyhurm Moreover $[L]+[L]$ is represented by $L \otimes L$＇ This enables us to define

Definition
One coss ring for the the pointed nice variety X is $C_{x}=\oplus \quad \Gamma(X, L)$ with ito product $[L]=\operatorname{Pid}(x)$ t pointed！

$$
\Delta \in \Gamma(V, L), \Delta^{\prime} \in \nabla\left(V, L^{\prime}\right)
$$

for $L^{\prime \prime}$ such that $\left[L^{\prime \prime}\right]=[L]+\left[L^{\prime}\right]$
take the unique inomoyhiom $\psi: L \otimes L^{\prime} \cong L^{\prime \prime}$

$$
\Delta \Delta^{\prime}=\psi_{0}\left(\Delta \otimes \Delta^{\prime}\right) .
$$

Connession with the universal torsos
Assume（H1）
（i）For any．L pounced line bundle and $\Delta \in \Gamma(V, L)$ Δ defines a moyhusm $L \stackrel{\Delta v}{ } \mathbb{B}_{\mathbb{L}}^{1}$ and there consists a unique moyhurm

$$
\text { in } \mathcal{q}_{v, v}^{m} \psi_{v}: \sim \rightarrow_{\Delta_{c}^{v}}^{v_{c}}\left(\psi_{L}^{v}\right)^{x} \in \Gamma\left(\tilde{V}, G_{\tilde{v}}\right)
$$

we get a moypism of algebras

$$
\tau: C_{V} \rightarrow \Gamma\left(\widetilde{v}, \sigma_{V}\right)
$$

（ii）for any $L,[L]$ defines a charade $X_{L}: T_{N S} \rightarrow \mathbb{G}_{m}$ and $J_{N S}$ ants on $\Gamma(V, L)$ vial X_{L} t is compatible with the actions of $T_{N S}$ on both sides

Theorem［HASSETT，TSCHiNKEL］
Assume（ H ）and that C_{V} is finitely generated then thus gives an gen eguivariont eshbedding of \bar{X} in sec $\left(\tau_{x}\right)$ the image of which ＊the open set on which TNS act freely．
Example

$$
\begin{aligned}
& \text { inge } \prod_{i=1} \mathbb{P}_{a}^{n_{i}} \operatorname{Cosc}(V)=\mathbb{K}\left[x_{i, j}, 1 \leq i \leq \pi\right. \\
& 0 \leq j \leq n_{i}
\end{aligned}
$$

$$
\text { and } \widetilde{V}=\prod_{i=1}^{\pi} \mathbb{F}^{n_{i}+1}-\{0\} \text {. }
$$

＊
b）Brawer－Manin obsturdion
This obstrudion is of cohomological nature：
Definition
The cohomoloyial BRAVER group of a variety
V is

$$
\operatorname{Br}(V)=H_{\text {et }}^{2}\left(V, G_{m}\right)_{\text {Tors }}
$$

this is a contravariant－fundor in V
Reference
MILNE ćtale cohomology
GROTMENDIECK Disc esgoses sur la cohomologie des schémas．
For a field， $\operatorname{Br}(\mathbb{L})=\operatorname{Br}(\operatorname{spc}(\mathbb{L}))$ classifies skew algebras of finite dimansion over 1 which are skew fields with center \mathbb{L} ．

Gre of the digest theorem in alyebraic number theory during the $20^{\text {ti }}$ century is the following one
Theorem（Global doss field theory） Let $\mathbb{I K}$ be a number field
For any place w $\in P l(\mathbb{K})$ there oasts acononical infective moghism inv $w: \operatorname{Br}\left(\mathbb{K}_{w}\right) \hookrightarrow \Delta / \mathbb{Z}$ quaternion

$$
\text { so that the seguonce } B \Omega(\mathbb{K}) \rightarrow \bigoplus_{w \in \operatorname{Pl}(\mathbb{K})} B \Omega\left(\mathbb{H} \mathbb{W}^{2}\right) \rightarrow a / 2 \rightarrow 0
$$

is escadt．
Definition
We get a paring

$$
\begin{aligned}
& V\left(\mathbb{A}_{\mathbb{K}}\right) \times B \Omega(V) \longrightarrow \mathbb{Q} / \mathbb{Z} \\
& \left((x \quad W)_{w \in R l(K)}, A\right) \longmapsto \sum_{w \in P l(\mathbb{K})} \operatorname{in}_{w}\left(x_{w}^{*}(A)\right)
\end{aligned}
$$

and for any $x \in V\left(\mathbb{H}_{1 K}\right)$ a moyhism

$$
\eta_{x} \in \operatorname{Hem}_{\text {gr }}(\operatorname{Br}(v), \mathbb{Q} / \mathbb{Z})
$$

NB
If x comes from $V(\mathbb{K})$ ，then by the previous exact sequence，$\eta_{x}=0$
Definition
η_{x} is called the BRAVER－MANIN obstruction to weak aprosamation

$$
\left.V\left(\mathbb{R}_{k}\right)\right)^{\text {weak }}=\left\{x \in V\left(\mathbb{F}_{k}\right) \mid \eta_{x}=0\right\}
$$

Theorem

$$
\sqrt{V(\mathbb{K})} \subset V\left(\mathbb{T}_{\mathbb{K}}\right)^{B_{2}} \subset V\left(\mathbb{A}_{\mathbb{K}}\right)^{T U} \subset V\left(\mathbb{A}_{\mathbb{K}}\right)
$$

and if $\operatorname{Br}(\bar{V})=\{0\}$ then

$$
V\left(\mathbb{A}_{\mathbb{K}}\right)^{\overline{B_{r}}}=V\left(\mathbb{H}_{1 K}\right)^{T V} .
$$

chore are examples with $\&$ at each level．
Example from the beginning

$$
\begin{aligned}
& V: y^{2}+z^{2}=\left(3 V^{2}-V^{2}\right)\left(V^{2}-2 u^{2}\right) T^{2} \subset W / G_{m}^{2} \\
& W=\mathbb{A}^{3}-\{0) \times \mathbb{T}^{2}-\{0\} \\
& (\lambda, \mu)(y, 2, t, u, v)=\left(\lambda \mu^{4} y, \lambda \mu^{4} z, \lambda t, \mu u, \mu v\right)
\end{aligned}
$$

V is a conic filtration over \mathbb{P}^{1} on $\mathbb{K}(V)$ function field of V we consider the quatemion alger

A is generated by I_{x}, J_{x} with reactions

$$
I_{x} J_{x}=-J_{x} I_{x}\left\{\begin{array}{l}
I_{x}^{2}=-1 \\
J_{x}^{2}=3 u^{2}-v^{2}
\end{array}\right.
$$

This defines an element in $\operatorname{Br}(I K(v))-\{d y$ which comes from $B_{r}(V) \hookrightarrow B r(\mathbb{K}(v))$ ． and $V\left(\nabla_{K}\right)^{R r}=\varnothing \subset$ ingedwe！＊

7）Nctrios and measures
a）Definition of local measures
Definition
For any place w of K
Remember that the completion is locally compar and thus \mathbb{K}_{w} admits a Alar measure which is unique up to mulúflication by a real number
y nounalije the measure by

$$
\left\{\begin{array}{l}
\int_{0_{w}}^{n} d x_{w}=1 \text { if } w \text { is whtrametric } \\
\int_{[0,1]} d x_{w}=1 \text { if } w \text { is real } \\
d x_{w}=2 d x d y \text { if } w \text { i complex }
\end{array}\right.
$$

Theorem

$$
\prod_{w \in P l(K)} d x_{w} \text { defines a measure on } \mathbb{F}_{\mathbb{K}} \text {, }
$$

\mathbb{K} is discrete en $\mathbb{A}_{\mathbb{K}} \quad \mid \mathbb{A}_{\mathbb{K}} / \mathbb{K}$ is compact and

$$
\operatorname{Vol}\left(\mathbb{F}_{\mathbb{K}} \mid \mathbb{K}\right)=\sqrt{\left|\sigma_{\mathbb{K}}\right|}
$$

for the induced measure
when ${ }^{W} K$ is the discriminami of \mathbb{K} / Q

$$
\left(\sqrt{\left|d_{\mathbb{K}}\right|} \stackrel{K}{=} \operatorname{Vol}\left(\mathbb{K} \otimes_{Q} \mathbb{R} / G_{\mathbb{K}}\right)\right)
$$

eropsition（Change of variables）
Let W, w^{\prime} be open subsets in \mathbb{K}_{w}^{n} and let

$$
f=\left(f_{1},-, f_{n}\right): W \rightarrow W^{\prime}
$$

be a chffeom oyhism．Then for any invite grable function $g: W^{\prime} \xrightarrow{\mathbb{R}}$

$$
\int_{w} g d y_{1_{1}}-d g_{n_{w}}=\int_{w} g \text { of }\left.\left|\operatorname{det}\left(\frac{\partial f_{i}}{\partial X_{i}}\right)_{11 i \leqslant n}\right|\right|_{1 \leqslant j \leqslant n} d x_{i}-d x_{w}
$$

The proof，as on the real case rectuces to the formula

$$
\begin{aligned}
& \quad d x_{v}(a B)=|a|_{v} d v_{v}(B) \\
& \text { for a borehon } B \subset \mathbb{K}_{v} .
\end{aligned}
$$

13／6／2016 Reminder
Let V be a mice variety $/ K_{W}, n=\lim (V)$ then for any point $x \in V(\mathbb{K} w)$
there escist an open neighbor owrhood
W of $x \operatorname{en} V\left(K_{w}\right)$ and rational functions
T_{1}, \ldots, T_{n} on V ，defined ar x
so that $f\left(T_{1},-T_{n}\right)$ defines an homeomoyhnom
from $W T_{o}$ an open subset of K_{w}^{n} and for $y \in W$ the differential

$$
d_{y} \varphi: T_{y} W \rightarrow \mathbb{K}_{w}^{n}
$$

is an is－omoghusm of K_{w} vector spaces
NB
If we take $V \subset \mathbb{P}_{1 K_{W}}^{N}$
we may use $T_{i}=x_{j_{i}}^{w}{ }_{k k}$
for some $\left\{k, j_{1}, \cdots, j_{n}\right\} \subset^{x}\{0,-, N\}$
Tarminolayy
$\left(T_{1},-, T_{n}\right)$ is called a system of coordinates or x and

$$
\left(\frac{\partial}{\partial T_{1}}(y)-, \frac{\partial}{\partial T_{n}}(y)\right)
$$

is the basis of $T_{y} V$ obtained by raking the inverse image of the usual bass of $\mathbb{K}_{w}{ }^{n}$ by $d_{y} \varphi$
Proposition／Definition
Lei V be a mice varidy like
equiped with an adelic norm on ω_{v}^{-1}
then there excisto a unique borelian measure a_{w} on $V\left(K_{w}\right)$ such for any $x \in V(\mathbb{K} w)$ ，any system of coordinates $\varphi=\left(T_{1},-, T_{n}\right)$ defined on an open neightroorhoocl W of x and any continuous

$$
\int_{w} f w_{w}=\int_{\varphi(w)} f \circ \varphi^{-2}\left\|\frac{\partial}{\partial T_{1}} n-n \frac{\partial}{\partial T_{n}}\left(\varphi^{-1}\left(t_{1},-, t_{n}\right)\right)\right\|_{w} d t_{1}-d t_{L_{w}}
$$

This proposition follows from the formula for the change of variables．

Remark
In differential geometry it is well known that a mon vanishing section of w_{v} define a volume form on the varidy
The norm $\|\cdot\|_{\infty}$ defines such a sedion up to sign and the proposition is a generalization of that fad．

But we wont a measure on the abulic yare so w wont to consider the padua of titis measures
Problem

$$
\text { Infad, } \prod_{w \in P l(\mathbb{K})} a_{w}\left(V\left(\mathbb{K}_{w}\right)\right)
$$

does not compare！
wo understand that，we need to know more about this measure
b）Gthor deserigtions of the measure
Excomple／Escorace
For $V=\mathbb{T}_{\mathbb{Q}}^{n}$ and $\|\cdot\|_{\infty}$ the norm on ω_{V}^{-1} defined by a norm $\|$ ．$\|_{\infty}$ on \mathbb{R}^{n+1} then f euclidean volume

$$
\begin{aligned}
\omega_{v}(B) & =\operatorname{Vol}\left(\mathbb{B}(0,1) \cap \pi^{-1}(W)\right) \\
& =\operatorname{Vol}\left(\left\{y \in \mathbb{R}^{n+1} \mid\|y\|_{\infty} \leq 1 \& \pi(y) \in W\right\}\right.
\end{aligned}
$$

Proposition
there escists a finite set of places $5>\mathrm{Pl}(\mathbb{K})_{\infty}$ and a projedive model v of V over G_{s} sothat for any w $\ddagger 5 \quad w_{w}$ is the unique measure on V（HK w ）which Q ats fives

$$
\operatorname{win}_{v}\left(r_{m_{w}^{k}}(x)\right)=\frac{\# x}{\#\left(\mathbb{F}_{w}\right)^{k n}}
$$

where $r_{m_{w}^{k}}: V\left(K_{w}\right) \rightarrow V\left(G_{w} / m_{w}^{n}\right)$
is the reduction map and X is any subset of V（Ow／m $\left.m_{w}^{k}\right)$
Corollary
For almost all places w $\mathrm{wl}(\mathbb{K}$ ）

$$
w_{w}\left(V\left(K_{w}\right)\right)=\frac{\# V\left(F_{w}\right)}{\# F_{w}^{n}}
$$

so the pollen reduces to undestord this number of points of V on the finite field F_{w}
fetch of the proof of the proposition
we choose an embedding

$$
V \hookrightarrow \mathbb{P}_{M K,}^{N} \quad f_{1},=f_{\Omega} \text { generating } I(V)
$$

there is a finite set of places $S C^{n} P(\mathbb{K})_{v}$
so that $f_{1},, f_{\Omega}$ defines in $P_{G_{s}}^{n}$
A model $V /$ See G_{5} which is smooth and for $v \notin S,\|\cdot\|_{v}$ is defined by ω_{v}^{-1} The statement is local，it suffices to prove that if $\bar{x} \in v\left(G_{w} / m_{w}^{k}\right) k \geqslant 1$

$$
w_{w}\left(r_{m_{w}^{k}}^{-1}(\{\bar{x}\})\right)=\frac{1}{\# F_{w}^{n k}}
$$

fix $x \in V\left(\mathbb{K}_{w}\right)$ ，so that $r_{M_{w}^{k}}(x)=\bar{x}$

$$
\begin{aligned}
& x=\left[g_{0}:-: y_{N}\right] \\
& \text { with }\left(y_{0},-, y_{N}\right) \in G_{w}^{N+1} \max _{0 \leq i \leq N}\left|y_{i}\right|_{w}=1 \text {. } . ~ . ~
\end{aligned}
$$

By a linear change of coordinates using a matrix in $6 L_{N}\left(\sigma_{w}\right)$
the first column of which is $\left(y_{0},-, y_{N}\right)$
we may assume that $x=[1: 0:-: 0]$
To say that v is smooth means that

$$
\min _{i, j}\left(w\left(\operatorname{det}\left(\frac{\partial f_{i k}}{\partial y_{j_{1}}}(1,0,-, 0)\right)_{1 \leqslant i_{1}<-<i_{c} \leqslant \pi}\right)=0\right.
$$

where $c=\operatorname{codim}(V) \stackrel{j_{L}}{=} N-n . \quad 0 \leqslant j_{1}<-<j \leqslant N$
Since the ane supported by $(1,0,-0)$ s contained in the zero locus，

$$
\frac{\partial b_{i}}{\partial y_{0}}(1,0,-0)=0 \text { for } a l_{i} \text {. }
$$

So up to permutation of the variables and f_{j} ，we may assume that

$$
\operatorname{det}\left(\frac{\partial f_{i}}{\partial y_{j}}(1,0,-0)\right) \in \sigma_{w}^{x} \begin{gathered}
1 \leqslant i \leq c \\
1 \leq j \leq c .
\end{gathered}
$$

Since $f_{i} \in G_{w}\left[x_{0},-, x_{n}\right]$
for any $\left(y_{0},-y_{n}\right) \in(1,0,-0)+\pi n_{w}^{n+1}$

$$
\operatorname{det}\left(\frac{\partial y_{1}}{\partial y_{1}}\left(y_{0}, 1, y_{n}\right)\right) \equiv \operatorname{dev}\left(\frac{\partial b_{i}}{\partial y_{i}}(1,0,0)\right) \in G_{w}^{\alpha}
$$

Sa we get a differomoyhism

$$
\begin{aligned}
& \\
& W=\left\{x^{\prime} \in V\left(\mid K_{w}\right)\right. {\left[y_{0}:-y_{N}\right]\left[\left(m_{w}\right]\right\} }
\end{aligned} \xrightarrow{\psi}+H_{w}^{n}
$$

moreova for $k \geqslant 1, x^{\prime} \in V(\mathbb{K} w)$

$$
\text { oreova for k } \left.\geqslant 1, x^{\prime} \in V(\mathbb{R} w) \text { \& } \psi\left(x^{\prime}\right) \equiv \psi(x)\left[m_{w}^{k}\right]\right)
$$

So $r_{m_{w}^{2}}^{-1}(\bar{x}) \subset W$ and $\left.\psi / r_{M_{w}^{k}}^{-1}(\bar{x})\right)=\left(H H_{w}^{k}\right)^{n} r$
also if we take $T_{1}=\frac{x_{1}}{x_{0}},-T_{1}=\frac{x_{n}}{x_{0}}$ as local coorclnates on W，we have

$$
\left\|\frac{\partial}{\partial T_{1}} n-n \frac{\partial}{\partial T_{n}}\left(x^{\prime}\right)\right\|_{w}=1
$$

which implies then on W

$$
\int_{w} f \omega_{w}=\int_{m_{w}^{n}} f \circ \psi^{-1} d g_{1_{w}}-d y_{n, w}
$$

So

$$
\begin{aligned}
\omega_{w}\left(\pi_{\left.m_{w}^{-1}(\bar{x})\right)}\right. & =\int_{\left(\left(11_{w}\right)^{k}\right)^{n} d y_{1, w}-d y_{n, w}} \frac{1}{\#\left(\sigma_{w} / m_{w}^{k}\right)^{n}}=\# \mathbb{F}_{w}-k n \\
& =
\end{aligned}
$$

So the remaining problem is：
Problem
Hollow to estimate \＃V（ F_{w} ）as
no change？
For this y need one of the most important theorem in algeleraicgeomatry in the $20^{\text {th }}$ century
c）Well is conjedure
This were one of the most Cooked for conjedure in the 60＇s and a longe yon of GROTHENDIECK＇s work was motivated by them．In the end，they wore proven by $D E L 1$ GNE，a former student of GROTHENDIECK．Historically the idea comes from topology and

Theorem［LEFSCHETZ formula］
Let X be a triangulated compact space X and $f: x \rightarrow x$ a continuous map such that $x^{f}=\{x \in X \mid f(x) \rightarrow x\}$ is finite，then

$$
\sum_{x \in X^{f} \sum_{\text {index of of at } x} \sum_{k \geqslant 0}(-1)^{k} \operatorname{tr}\left(f_{*} \mid H_{k}(X, Q)\right)}^{\text {insula ar homology }}
$$

NB indio． 2
$i_{x}(f) \bigotimes_{x} \longrightarrow$
$x_{x}(x) i_{x}(f)=-2$
（if f is ilfferentioble and $\operatorname{det}\left(d_{x} f\right)>0$ then $i_{x}(f)=1$ ）

Analogy
If \mathbb{F} in a finite field of cardinal 9
$\operatorname{Gal}(\bar{F} / \mathbb{F})=\left\langle\overline{F r}_{q}\right\rangle \quad \bar{r}_{g}$

$$
\bar{F} \rightarrow \bar{F}
$$

$$
x \longmapsto x^{9}
$$

in particular，for a variety X / F

$$
X(\mathbb{F})=X(\bar{\pi})^{\bar{r}_{q}}
$$

Theorem（GROTHIENDIECK－LEFSCHETZ formula） If X is a nice variely $\| F \quad n=\operatorname{dim}(X)$

$$
\# X(F)=\sum_{i=0}^{2}(-1)^{2} \frac{T_{r}}{T}\left(F_{g} \mid H_{b}^{i}\left(\bar{x}, \hat{a}_{l}\right)\right)
$$

where l is prime $\neq \operatorname{chor}(F)$

$$
H_{e t}^{i}\left(\bar{x}, \mathbb{Q}_{l}\right)=\left(\lim H_{e_{l}}^{i}\left(\bar{x}, \mathbb{Z} / \rho^{\prime} Z\right)\right) \otimes \mathbb{Q}_{l}
$$

This only gives an estimate if we know how big these faces one which reduces to

1）know something about the dimension of these paces

2）know something about the eigenvalues of the action of the Erobenius on these spaces．

Theorem［DELIGNE］
For a nice variety X over \mathbb{F} ，the eigenvalues of $E r_{q}$ ading on $H_{e r}^{i}\left(\bar{X}, Q_{e}\right)$ are algebraic integers 3 such that

Remark

$$
|\xi|=q^{i / 2}
$$

In particular，
d）Estimates for $\omega_{w}\left(V\left(1 K_{w}\right)\right)$
Assume V satiofies（ \mathscr{P} ）；
V is a moth \＆projedive model of V / G_{s}
Fad
For almost all prime $N \in \operatorname{Pl}\left(\mathbb{K}_{t}\right)$ ，

$$
\left.\operatorname{dim}\left(H_{l+}^{i} C V_{l}, \mathbb{Q}_{l}\right)\right)=\operatorname{dem}\left(H_{a}^{i}\left(v_{\overline{F_{a}}}, Q_{l}\right)\right)
$$

Combining this with Neil＇s conjedute we get an estimate of the number of points on the residue field．But we need some esctia information on the groups of the highest degree we can twist the cohomolagy groups in the following way：

$$
\begin{aligned}
& N_{l_{k}^{k}(\bar{F})} \quad e^{n} \text { root of } 1 \text { in } \overline{\mathbb{F}} \\
& F_{r_{q}}
\end{aligned}
$$

$$
N_{l^{k}}(\bar{F})^{\otimes i}=\left\{\begin{array}{l}
i-t^{h} \text { crosser procluct of } t h e \\
\mathbb{Z}-\text { module } \mathbb{N}_{l^{k}}(\mathbb{F}) \text { if } i \geqslant 0 \\
\operatorname{Hom}\left(\mathbb{N}_{l^{k}}^{\infty}, \mathbb{Z} / l^{k} \mathbb{Z}\right) \text { if } i<0
\end{array}\right.
$$

I additive notations， Fr_{q} ads via $\lambda \mapsto q^{i} \lambda$ on $\mathbb{N}_{e}{ }^{2}(\bar{F})^{\otimes i}$

$$
H_{i r}^{i}\left(\overline{\left.V_{,}, \mathbb{Q}_{l}(g)\right)}=\left(\lim _{k} H^{i}\left(V_{l}, \mu_{l}^{k}(\bar{F})^{\otimes l}\right)\right) \mathbb{Q}_{\mathbb{Z}_{l}} \mathbb{Q}_{l}\right.
$$

（2）En $H_{a}^{l}\left(\bar{\nabla}, \mathbb{O}_{l}(j)\right)$ we use the 《＜geometioic＞
Frobenius coming from its adion on V / \mathbb{F}
So it is a contravariont action
as a group $H_{c}^{i}\left(\bar{V}, Q_{e}(\gamma)\right)$ is is omoyhic to $H_{\text {elf }}\left(\bar{V}, \Phi_{l}\right)$ ，but the action is given by 9^{-j} the adtion of $F_{\Omega_{q}}$ on $H_{E_{l}}^{i}\left(V, \mathbb{Q}_{l}\right)$ ．
Poincarés duality theorem
（i）$\left.H_{2 x}^{2 n} G \bar{X} Q_{e}(n)\right) 工 \mathbb{Q}_{e}$ and
（i）$\cup H_{a}^{i}\left(\bar{x}, a_{l}(j)\right) \otimes H_{e i}^{2 n-i}\left(\bar{x}, a_{l}(n-j)\right) \rightarrow H_{e}^{2 n}\left(\bar{x},\left(a_{l}(n)\right)\right.$
defines an isomoyfiom $H_{l d t}^{\prime}\left(\bar{x}, a_{l}(y)\right) \rightarrow H_{e t}^{2 n-i}\left(x, a_{l}(n-j)\right)^{2}$
Then we consider the following sequence

$$
1 \rightarrow N_{e^{n}} \rightarrow \sigma_{m} \xrightarrow{e^{n}} \sigma_{m} \rightarrow 1
$$

Using $H_{a}^{0}\left(\mathbb{X}, \Phi_{m}\right)=\vec{F}^{*}$

$$
H_{s t}^{1}\left(X, G_{m}\right)=\operatorname{Pic}(\bar{X}) \text { and } H_{a}^{2}\left(\bar{X}, G_{m}\right)=B_{1,0}(\bar{x})
$$

we get

$$
\underset{0 \rightarrow H_{e r}^{1}}{\operatorname{get}}\left(\bar{x}, N_{l^{n}}\right) \rightarrow P_{i c}(\bar{x})\left[l^{n}\right]
$$

and

$$
0 \rightarrow \operatorname{Pic}(\bar{x}) / e^{n} \rightarrow H_{e_{r}}^{2}\left(\bar{x}_{1}, \mu_{p^{n}}\right) \rightarrow \operatorname{Bn}(\bar{x})\left[e^{n}\right] \rightarrow 0
$$

But for almost all n ，

$$
\left\{\begin{array}{l}
\operatorname{Pr}\left(v_{\bar{F}_{p}}\right) \approx \operatorname{Pic}(V) \\
\operatorname{Br}\left(v_{\bar{D}}\right) \approx \operatorname{Br}(V) \text { which is finite unclar }(y H)
\end{array}\right.
$$

Thus by taking ${ }^{\text {IF }}$ P the progedinve limit，
for armor all p
and

Combining all this，we get
for amor all p

$$
\begin{aligned}
& \omega_{p}\left(V\left(\mathbb{K}_{\mu}\right)\right)=\frac{\# V\left(\mathbb{F}_{p}\right)}{\left(\# \mathbb{F}_{p}\right)^{n}} \\
& =1+\frac{1}{\# F_{p}} \operatorname{Tr}(F_{r_{N}} \cdot(\underbrace{\operatorname{Pic}(J)_{\Delta}(\alpha)}_{P_{1 c}(V)_{a}^{2}})+O\left(\frac{1}{\left(\# F_{N}\right)^{3 / 2}}\right)
\end{aligned}
$$

But if $\varphi \in$ End (E)

$$
\operatorname{Det}(1-T \varphi \mid E)=1-T T_{\Omega}(\varphi)+T^{2} Q(T)
$$

So

$$
\omega_{p}\left(V\left(F_{p}\right)\right)=\operatorname{Det}\left(1-\# F_{p}^{-1} F_{p} \mid P_{i c}(\sigma)\right)^{-1}\left(1+O\left(\# F_{p}^{-\frac{3}{2}}\right)\right.
$$

e）The constant
Definition

$$
\begin{aligned}
& \text { For } N \in P Q(\mathbb{K})_{f}-s \\
& L_{\mu}\left(\Delta, P_{i c}(V)\right)=\frac{1}{\operatorname{Det}\left(1-\# F_{N}^{-\Delta} E_{p} \mid P_{i c}(\nabla)_{Q}\right)} \\
& L_{s}\left(\Delta, P_{i c}(\nabla)\right)=\prod_{\mu \neq s} L_{p}\left(s, R_{i c}(V)\right)
\end{aligned}
$$

Theorem［consequence of a theorem of ART／N］ $L_{S}\left(D, P_{i c}(V)\right.$ converges for $\operatorname{Re}(D)>1$ and has a pole of order $t=r k(\operatorname{Pic}(V))$ at $\Delta=1$ ．

Remark
From the fad that

$$
\zeta_{\mathbb{N}}(0)^{-1}=\prod_{N \in P(I K)}\left(1-\# F_{N}^{-5}\right) \text { comrades }
$$

for $\operatorname{Re}(D)>1$（which might le seen as a particular cos of ARTIN＇s theorem as well），

$$
\prod_{r \notin 5}\left(1-G\left(\# \pi_{r_{s}}^{-3 / 2}\right)\right) \text { converges }
$$

Definition

$$
\begin{array}{ll}
1 & \text { if } w \in S \\
L_{w}(1, \operatorname{pec}(v))^{-1} & \text { if } w \neq S
\end{array}
$$

we define a measure ω on $\left.V(\mathbb{T})_{k K}\right)$ by

$$
\omega=\frac{1}{\sqrt{\mid d_{K}!}} \times \lim _{s \rightarrow 1}(s-1)^{t} L_{S}\left(s, D_{i}(v)\right) \prod_{w \in \operatorname{Pe}(K)} \lambda_{w} \omega_{w}
$$

and the induced probability measure on $V\left(\mathbb{F}_{\mathbb{K}}\right)^{B n}$ ：

$$
N(w)=\frac{w\left(w \cap V\left(\mathbb{T}_{K}^{B_{K}}\right)\right)}{w\left(V\left(\mathbb{R}_{K}^{\beta_{K}}\right)\right)}
$$

It twins out it almost gives the constant bur not quite，

$$
\begin{equation*}
\alpha(v)=\frac{1}{(t-1)!} \int_{c_{\text {ep }}(v)^{v}}^{e^{-\left\langle\omega_{v}-1, y\right\}} d g \in \mathbb{Q} \text { under }} \tag{H1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Where } \begin{array}{l}
\text { Cf }(v)^{v}=\left\{y \in\left(\operatorname{Pic}(v)_{\mathbb{R}}\right)^{v} \mid \forall x \in C \not / f(v),\langle x, y\rangle \geqslant 0\right\} \\
\qquad \beta(v)=\# \operatorname{Br}(v) \text { finite }
\end{array} .
\end{aligned}
$$

The empiucal constant for v is

$$
C(v)=C_{H}(v)=\alpha(v) \beta(v) \omega\left(V\left(\mathbb{T}_{\mathbb{K}}\right)^{B n}\right)
$$

Pomona
ω does not dene on the choice of s and therefore $C(v)$ degnds only on the choice of the adelic norm on ω_{v}^{-1} ．
We then consider
The empirical formula
（F）$\# \cup(\mathbb{K})_{H \leqslant B}$
The empirical distribution
（E）$\delta_{V C(K)_{H} \leqslant B} \xrightarrow[B \rightarrow+\infty]{w} \mathbb{N}$ ．
15／6／2016 f）Eonnedion letwoen（ E ）and（ F ）
Theorem
The following three statements are equivalent
（i）(F) is true for any choice of the addic norm on w_{v}^{-1} ；
（i）（ E ）and＇F ）are the for at least one choice of the norm on ω_{v}^{\prime} ；
（iii）（ E ）and（ P ）are bine for any choice of the addie norm on ω_{v}^{-1} ？

Sketch of the poof

We have to prove
$(i i) \Rightarrow(i) \Rightarrow(E)$ for any nom
Fix a nom $\left(11 \cdot \|_{w}\right)_{w \in P l}$ on $\omega_{V}-1$ assume $(E)+(F)^{w} w \in P l(K)$
Let $\left(\|\cdot\|_{w}^{\prime}\right)_{w \in P e}(\mathbb{K})$ be any adele nom we have

$$
f(x) H^{\prime}(x)=H(x)
$$

where $f: V\left(\mathbb{A}_{K}\right) \rightarrow \mathbb{R}>0$ is continuous． $\operatorname{det} \varepsilon>0$ rising the fact that the measure a is locally given by the Haar measure times a continuous density，we may conshñ
$\left(U_{i}\right)_{i \in I}$ finite partition of $V\left(I_{K}\right)$ with U_{i}^{i} liorehan for $i \in I, \omega\left(\partial U_{i}\right)=0$ and $\left(\hat{\lambda}_{i}\right)_{i \in I} \in \mathbb{R}_{>_{0}}^{ \pm}$so that

$$
\forall x \in U\left(\mathbb{B}_{\mathbb{K}}\right) \quad\left|f(x)-\sum_{i \in I} \lambda_{i} \mathbb{X}_{U_{i}}(x)\right|<\varepsilon
$$

By assuming ε small enough， we may assume $\lambda_{i}>\varepsilon$ for $i \in I$ ．
Using（ $\ddot{\mu}$ ）and the argument given one week ago

$$
\#\{x \in U(\mathbb{K}) \mid H(x) \leqslant g(x) \pm \varepsilon\}
$$

$$
\begin{aligned}
& \sim \underbrace{\int_{H} g \pm \varepsilon C_{H}(V)}_{V\left(\mathbb{H}_{\mathbb{K}}\right)^{B n}} \beta \log (B)^{k-1}
\end{aligned}
$$

Lat us now prove that

$$
(x) \rightarrow(E) \text { for } H
$$

Probability theory tells us that
For a Borchan W W $\omega(\partial W)=0 \quad C_{H^{\prime}}^{\prime \prime}(V)$ if and only of there esoists contenous fundions $f, g: V\left(\mathbb{A}_{\mathbb{K}}\right) \rightarrow \mathbb{R} \geqslant 0$ such that $f \leqslant 11_{w} \leq g$ and $\int_{V\left(\mathcal{A}_{K}\right)}^{g}-f \quad \omega<\varepsilon$

Using the heights $\frac{1}{f+\varepsilon} H$ and $\frac{1}{g+\varepsilon} H$ we get that

$$
\begin{aligned}
& \text { re get that } \\
& \#(W \cap(K))_{H \leq B} \sim \underset{B \rightarrow+\infty}{ } \omega\left(V\left(I I_{K}\right)^{B_{1}} \cap W\right) B \log (B)^{(-1}
\end{aligned}
$$

So $\delta_{U(I K)}(w) \longrightarrow \mu(w)$ ．
So the formula con not be true if we do not have equidistubution！
g）A few consequences of distribution
Lei me fined with a fou remark about equidismbution：
a）Let $F \mathcal{F}$ closed subvariety．

$$
\omega(F(\mathbb{H}, \mathbb{K}))=0
$$

So if (E) is valid

$$
\#(F \cap \cup(\mathbb{K}))_{H S B}=a\left(\# U(\mathbb{K})_{H \leq B}\right)
$$

$\forall U^{\prime} \subset U$ not amply
and the formula ${ }^{H \leqslant B}(A)$ is also $H \leq B$ wald for any non empty open set in U（＂mall enough＂）
β ）For almost all w, ω_{w} is characterized

$$
\text { by } \quad \omega_{v}\left(r_{m_{w}^{k}}^{-1}(x)\right)^{\prime}=\frac{\# x}{\# \mathbb{F}_{w}^{n k}}
$$

So if V satisfies E and $x \subset v\left(G_{v / m} / w_{w}^{n}\right), w \notin S$ then

$$
\xrightarrow[\# U(K)_{H \leq B}]{\#\left\{x \in U(\mathbb{K}) \mid H(x) \leq B, r_{\left.m_{w}^{2}(x) \in X\right\rangle}\right.} \underset{B \rightarrow+\infty}{\longrightarrow} \frac{\# X}{\# V\left(\left(\sigma w / m_{w}^{k}\right)\right.}
$$

h）Esp passion of the constant in terms of vestal towers
I assume $(f+1)+B_{2}(\nabla)=\{0\}$ ．
D）Geometric properties of venal tensors
The main idea is that venal torsos are geometrically and arithmetically move simple．
Proposition
Set E be a vocal torso above V Then
a）$\Gamma\left(\bar{E}, G_{m}\right)=\bar{K}^{*}$
b） $\operatorname{Pir}(E)=\{0\}$
c） $\operatorname{Br}(Y)=\{0\}$ for any smooth
compactificalion Y of \bar{E}（ \bar{E} open in Y smooth and In fact this statement is all about the \mathbb{G}_{m}－cohomoleyg in lou degree．This follows from a more general
Tho orem［SANSUC］
Set IL be a perfect field，G a smooth conneded linear alg braic gray on \mathbb{L} ，X a smooth variety $/ \perp$ and E a G－tower over $X, \pi: E \rightarrow X$ then there easts a mature scad sequence

$$
\begin{aligned}
& { }^{0} \rightarrow \mathbb{L}[X]^{*} \stackrel{\pi+}{\rightarrow} \mathbb{1}[E]^{*} \rightarrow X^{*}(G) \xrightarrow{\rightarrow+} \operatorname{Pic}(E) \rightarrow \operatorname{Pic}(G) \rightarrow \operatorname{Br}(E) \xrightarrow{\rightarrow} \operatorname{Br}(X)
\end{aligned}
$$

Proof of Theorem \Rightarrow Proposition
In our case，we hove
x projedine，so $\mathbb{K}[\overline{[x}]^{*}=\mathbb{K}^{*}$
$x^{*}\left(T_{N S}\right) \cong P_{i c}(\bar{x})$

$$
\operatorname{Pic}\left({\overline{T_{N S}}}\right)=\operatorname{Pic}\left(G_{m}^{m}, \pi_{k}\right)=\{0\}
$$

The Brawer group is a stably binational invariant for smooth projective varidice which means that X, Y are nice vorictice and $\exists \mathrm{m}, n$ so that $X \times \mathbb{P}^{m} \ldots!\rightarrow Y \times \mathbb{P}^{n}$ binational then $\operatorname{Br}(x) \simeq B_{r}\left(x \times \mathbb{P}^{m}\right) \approx B_{r}\left(y \times \mathbb{P}^{n}\right) \simeq B_{r}(y)$ ．

$$
\mathrm{P}_{1}^{*}
$$

But over IL E split for Zoviski topology and is stably binational $1 \bar{O} \bar{V}$ so $\operatorname{Br}(\bar{E})=\{0\}-\square$ Corollary of the proposition

Up 18 multification by a constant， there escists a unique section s of ω_{E}^{-1} such $\Delta(x) \neq 0$ for any dosed your x of E ．
Lemma
x nice $/ \|$ ，char $\mathbb{L}=0, P_{i c}(x) \hookrightarrow P_{i c}(\bar{x})^{g d(\mathbb{L} / 1)}$
Proof and it is an is omoyhism of $X(L L) \neq \varnothing$

We have two exeat sequences

$$
0 \rightarrow \mathbb{I}^{*} \rightarrow \mathbb{I}(\bar{v})^{*} \xrightarrow{\mathbb{U}}(\sigma)^{*} / \mathbb{I}^{*} \rightarrow 0
$$

and

$$
0 \rightarrow \mathbb{I}(\nabla)^{*} / \mathbb{I}^{\alpha} \rightarrow \operatorname{Piv}(\bar{V}) \rightarrow \operatorname{Pic}(\nabla) \rightarrow 0
$$

If we define the Golois cohomolayy as the right derived fundor of the left exact fundor from the Category of \mathbb{Z}－modules with an action of $\underbrace{\text { Go to category of } \mathbb{Z} \text {－module }}_{\text {Fol（II IH）}}$
then $\left.H^{H^{i}(U, M)}=H_{\text {et }}^{1} \operatorname{Sec}(1), M\right)$ group for this whomolagy
we have two escud sequences for x nice $L \mathbb{L}$ $1 \rightarrow \mathbb{I}^{*} \rightarrow \mathbb{I}(\bar{x})^{*} \longrightarrow \mathbb{U}\left(X^{*}\right)^{*} / \mathbb{I}^{*} \rightarrow 1$ and $1 \rightarrow I(\bar{X})^{*} / I^{*} \rightarrow \operatorname{Div}(\bar{X}) \rightarrow \operatorname{Pic}(\bar{x}) \rightarrow 0$ Taking the corresponding long exact sequence
in cohomology $\rightarrow^{*} \xrightarrow{*} \mathbb{L}(x)^{*} \rightarrow\left(\mathbb{H}(X)^{*} / \mathbb{I}^{*}\right)^{g} \rightarrow \frac{0}{H^{1}\left(\mathbb{U}, \pi^{-x}\right)}$

$$
\{0\rangle=P_{i c}\left(S_{p e}(1 L)\right)=F_{\text {ep }}^{n}\left(S_{\text {pec }} K(H), G_{m}\right)
$$

\｛0\} ~ I n ~ f a c t ~ b y ~ H I L B E R T ; ~ t h e o r e m ~ $90 \|$
and $E \neq \frac{5}{1}(x)^{\prime}-\operatorname{Din}^{\prime \prime}(x)$

$$
\rightarrow H^{1}\left(\mathbb{L}, \frac{\pi}{\mathbb{L}}(\bar{x})^{*} / \mathbb{L}^{*}\right) \rightarrow H^{1}\left(\mathbb{U}_{1}, \overrightarrow{\operatorname{Din}}(x)\right)
$$

From the definition of Picard $\left.\sum^{\langle 0}\right\rangle$ group，

$$
1 \rightarrow \mathbb{1}^{*} \rightarrow \mathbb{L}^{(x)^{x}} \rightarrow \operatorname{Din}(x) \rightarrow P_{i c}(x) \rightarrow 0 \text { is exsect }
$$

and $0 \rightarrow P_{i c}(x) \rightarrow P_{i c}(\bar{X}) g \rightarrow B r(H)$ is excad

$$
\text { Co if } x(\mathbb{L}) \neq \phi
$$

Proof of Corslary

$$
\operatorname{Sin} \operatorname{Sic}_{c}(\bar{E})=\{0\}, \omega_{\bar{E}}^{-1} \simeq G_{E}
$$

and such an isómoyhism gives a non vanishing section 1
Inf we have two sections we have two isomoyhisms

$$
\begin{aligned}
& w^{2 \gamma} G_{E} \\
& \omega_{E}^{2} G_{E} \psi
\end{aligned}
$$

But ψ conesjonds to sedion of ζ_{m} an therefore is the multiplication by a constant．II

$$
\begin{aligned}
& \psi(x)^{x} / \psi^{*} \\
& \text { if } x \in x(\mathbb{1}) \quad \operatorname{Br}(x) \hookrightarrow \operatorname{Br}(\mathbb{L}(x))
\end{aligned}
$$

Constriction
Led Δ e $\Gamma\left(E, \omega_{E}^{-1}\right)$ be a section as above For $w \in P l(I K)$ ，on ω_{E}^{-1} there is a unique norm $\|.\|_{w}$ such that $\|\Delta(x)\|_{w}=1$ for any $x \in V\left(I K_{w}\right)$ It defines a measure w_{w} on $E\left(K_{w}\right)$
（2）E is not projective
Proposition
For almost all $w \in P L(\mid K)$

$$
\omega_{w}\left(E\left(O_{w}\right)\right)=L_{p}(1, \operatorname{Pic}(\bar{V}))^{-1} \times \omega_{w}\left(V\left(\mathbb{K}_{w}\right)\right)
$$

slain ideas of the poof
The torsor split locally for w－adic Topology and this gives，for the paces where the metre is given by a smooth projective model v and where E has a model／V

$$
\omega_{v r}\left(E\left(G_{w}\right)\right)=\frac{\operatorname{Vol}\left(T_{N S}\left(G_{w}\right)\right) \times \omega_{w}\left(V\left(I K_{w}\right)\right)}{} \begin{aligned}
\text { for some Haar measure }
\end{aligned}
$$

And for almost all places

$$
\begin{aligned}
& \operatorname{Vol}\left(T_{N S}\left(O_{w}\right)\right)=L_{w}\left(1, P_{i c} \bar{V}\right)^{-1} \\
& \text { 1 [ONO, 1961] // } \\
& \frac{\# T_{N S}\left(F_{w}\right)}{\# \mathbb{F}_{w}{ }^{5}}
\end{aligned}
$$

Assume that
Pic（ $\bar{V})$ split over
a finite anramified extension of $1 K_{w}$
Remark The formula on the right is easy to check if $P_{l c}(V)$ has a basis globally invariant under the action of the Galois group．

$$
\frac{\text { Reminder }}{E\left(\mathbb{H}_{1 K}\right)}=\bigcup\left(\prod_{S_{0} \subset S \subset P l(K)}\left(\prod_{w \in S} E\left(K_{w}\right)\right) \times\left(\prod_{w \neq S} E\left(G_{w}\right)\right)\right.
$$

Corollary
finite

Remark
By the product formula，since the section S of ω_{E}^{-1} is unique upto multiplication by a constant，the measure as on E（I TIK） does not defend on the choice of Δ
Eonchusion
If $(f+1)$ and $B_{2}(\nabla)=0$ ，the adclic space $E\left(H_{1 k}\right)$ ，for E versal Jonson over V is equipped with a canonical measure
Remark
This measure is compatible with the action of $T_{N S}$ in the following sense

$$
\begin{aligned}
\text { If } H & =\left(t_{w}\right) \\
\|t\| & =\prod_{w \in P l(\mathbb{K})}|\underbrace{w_{V}^{-1}\left(K_{w}\right)}_{\in \mathbb{K}_{w}^{*}}|_{w}
\end{aligned}
$$

（Remember $\left[\omega_{V}^{-1]} \in P_{i c}(V)=x^{*}\left(T_{N S}\right)\right.$ ）

$$
\omega(t B)=\|t\| \omega(B)
$$

if $t \in T(\mathbb{K}) \quad\|r\|=1$ and $\omega(+B)=\omega(B)$

Descent method $[P$ SALBERGER＋．．．．］
Let $\left(E_{i}\right)_{i \in I}$ be regresentants of the isomoyhisms classes of vernal torsos having a rational point of \mathbb{K} ．For each $i \in I$ and each $B \in \mathbb{R} \geqslant 1$ there escists a domain $S_{i}(B) \subset E_{i}\left(\mathbb{H}_{A K}\right)$
（i）For any $x \in V(\mathbb{K})$ ，let i be the unique element of I such that $E_{i}(x) \neq \varnothing$ ，then

$$
\#\left(\pi_{i}^{-1}(x) \cap D_{i}(B)\right)=\left\{\begin{array}{l}
\sigma \text { if } H(x)>B \\
\#\left(T_{N s}(\mathbb{K})_{T_{\theta s}}\right) \text { if } H(x) \leqslant B
\end{array}\right.
$$

（ii）

$$
\sum_{i \in I} \omega_{i}\left(D_{i}(B)\right) \sim C_{H}(V) B \log (B)^{t-1}
$$

Conclusion
So the formula（F）reduces 10

$$
\#\left(E_{i}(\mathbb{K}) \cap D_{i}(B)\right) \sim W\left(D_{i}(B)\right) ?
$$

which gives a strong Theoretical evidence for the value of the constant
Nest week
I shall explain this method for $\mathbb{P}_{1 K}^{n}$ it is escadly the method used by SCHANVEL．

VI Examples
First I would like to stress that the formula （ F ）has been proven for many examples of many kind．So even if it is not always bore it is has a large domain of validity．
1）ct list of results（without poofs）

$$
\text { d) Flog varictics [LANGLANDS, FRANKE, MANIN, } P \text {.] }
$$

For PR I，SCHANUEL＇，Theorem imphis（ F ）
fora particular height．this theorem generalizes as follows

Definition
of linear algebraic gromp／IL is a subgroup

It is said to be affine of the scheme is off init I am going to need some notions about algelonaic group
Reference
A．BOREL，linear algebraic group，Grarluaté Tests in Math，Springer
So y am going to give the definition in parallel with escomples Definitions
G affine lInear algebraic grown $/ ~ \mathbb{L}=\mathbb{L}$ Derived group

$$
D^{\circ} G=\sigma^{0}
$$

$$
\begin{aligned}
& D^{n+1} G=\left[D^{n} G, D^{n} G\right] \\
& \text { they are dosed and } \\
& \text { thus algebraic subgrovy } \\
& D^{1} G L_{n+1,1}=S L_{n+1, k} \\
& =\operatorname{Sec}\left(\mathbb{L}\left[x_{i j}\right] /\left(\operatorname{Dar}\left(x_{i j}\right)-1\right)\right)
\end{aligned}
$$

G is solvable if

$$
\exists n / D^{n} G=\{e\}
$$

$B \subset G$ Bored subgroup is a masamal conneded solvath subgroup of G
At parabolic subgroup of G is a subgroup
P such that G / P
is a compar varidy
user triangular matrices

$$
\begin{aligned}
& B=\pi_{n}=\left(\begin{array}{ll}
n^{2} & 0 \\
*
\end{array}\right) \\
& P=\left(\begin{array}{c}
\left.\left\lvert\, \begin{array}{ll}
* \\
0 & * \\
0
\end{array}\right.\right)
\end{array}\right.
\end{aligned}
$$

$$
\sigma / p=G \Omega(m, n+1)
$$ point are subspaces of dimension m

Bore subgroups east since an increasing sequence of closed irreducible voricties is finite
Fads
a）All Bore subgroups of G are conjugate b）Un dosed subgroup P is parabolic if and only if it contains a Boreal subgroup．
When 4 is not algebraically closed，we use the same terminology（P parabolic）if the group obtained by extension of scalars IL satisfies the condition．（ey \bar{P} parabolic）

Definition
At generalyed flag variety is a variety V equipped with an action of a linear algebraic group G ，which is a form of G / P（equipped with the natural action of G ）

Remark

$$
V(H) \neq \phi \quad \leadsto V \approx G / P \text { over } \mathbb{L}
$$

（choose $x \in V(H)$ ，let P be the stabilizer of x

$$
\begin{aligned}
G / p & \sim v \\
\bar{g} & \longmapsto g x
\end{aligned}
$$

Since we are looking at varieties with rational points，in our setting $V=G / P$
Theorem［langlands，Manin，Franke，．．．］ Set $V=G / P$ be a generalized flag variety with a rational point／He number field then

$$
V \text { satisfies }(F) \text { and }(E) \text { with } U=V
$$

Examples
（i）This implic the result of SCHANVEL for $\mathbb{P} M$ ．
（ii）Grasomannians $\beta_{\Omega}(m, n+1)$
（ii）Complete flag variety $V=G l_{n} / B$

$$
G L_{n} / B=\left\{\left(F_{0},-F_{n}\right),\{0\}=F_{0} \Phi_{1} F_{1} \subseteq_{\perp} C_{n}=\mathbb{K}^{n}\right\}
$$

F_{i} subspace of \mathbb{K}^{n}
（iv）Any guachic

$$
O(q)=\left\{\left.M\right|^{+} M Q M=I_{n}\right\} \text { matrix of } q
$$

Method：We shall see that there are essentially two types of methods．Stere it goes is the doss of Adelic harmonic analysis：the height zeta fundions are particular Eisenstein series and satisfy some fundional equation．
B）Complete intersections of large dimension
Theorem $\left[\epsilon B_{1} R C H\right]$
Let $V \subset \mathbb{P}_{Q}^{N}$ be defined by $f_{1}=\cdots=f_{c}=0$ where $c=N-\eta$ is the codimension of V^{c}
with $d=\operatorname{deg}\left(f_{1}\right)=\cdots \operatorname{deg}\left(f_{c}\right)$
Assume
（i）V smooth
（ii）$V\left(\mathbb{P}_{\mathbb{G}}\right) \neq \varnothing$ and
（ $\mu i) N>2^{d-1}(d-1) m(m+1)$
then

$$
V \text { satisfies }(F) \text { and }(E) \text { for } U=V \text {. }
$$

Mathocl
vary easy！（ Descent method
hard C and circe method．D
20／612016
૪）Colic varieties
Definition
Let T be an algebraic Toms／IK of tonic variety over IK is an algebraic
variety V equipped with an adion of T so that there escists an open orbit on which T acts fairifully

Remark
In other words U is a prinafol homogeneous space under T or U is a T＇torpor over Spec（IK） sf $x \in U(\mid K) T \longrightarrow U$ is an isomorphism $t \longmapsto t x$
But U（IK）may be empty
Theorem［BATYREV－TSCHINKEL］
Let V be a nice tori variety／ \mathbb{K} with $U(K) \neq \varnothing$ other V satisfies (F) for $U=$ open orbit
for at least one choice of the norm on $\omega_{V}{ }^{-1}$
Method
Adolic harmonic analysis using the action of T
It should be possible to prove（E）with there methods，but it was never published．

Examples
（i）Ctgain the projedive space is a particular case $\sigma_{m}^{n} \subset \mathbb{P}_{\mathbb{K}}^{n}$ via

$$
\left(t_{1},-, t_{n}\right) \cdot\left[x_{0}:-: x_{n}\right]=\left[x_{0}: t_{1} x_{1}:-: t_{n} x_{n}\right]
$$

（ii）If V is a tonic variety and $F \subset V$ an irreducible subvariety such thar

$$
T \cdot F \in F
$$

（ie the dosure of an orbit）
Then $\mathrm{Bl} F V$ is still a tonic voriely． In partiociar，the blowing of \mathbb{P}_{a}^{2} in one point is a tonic variety．
（iii）The prochuct of two tonic varieties is a tori voristy
So this result covers all the elementary escamples I gave at the very beginning
5）Compactificalion of affine yare
Let $G_{a}=\operatorname{Sec}(\mathbb{K}[T])$ be she additive group
$\mathbb{T}_{a}^{n} G \mathbb{B}_{\mathbb{K}}^{n}$ it is the adrlitive acton
ley banslation
An equivariant compactification of $H_{\mathbb{K}}^{n}$ थ a variety V with an action of $\mathbb{E}_{a}{ }^{M}$ such that thane is an open orbit isomoyhir to $\mathbb{T}_{\mathbb{K}}$

Theorem［CHAMBERT－LOIR－TSCHINKEL］
Let V be a smooth equivariant compadification of the office space／number fid \mathbb{K} ．
Then V satisfies (F) for $U=$ open orbit for at least one choice of the norm on $\omega_{V}{ }^{-1}$
Method
Addelic harmonic anolysis using the action of T
Examples
ctgain the projedive space is a particular case

$$
\mathbb{C}_{a}^{n} \times \mathbb{P}_{\mathbb{K}}^{n} \longrightarrow \mathbb{P}_{\mathbb{K}}^{n}
$$

$\left(u_{1},-u_{n}\right),\left[x_{0}:-i x_{n}\right] \longmapsto\left[x_{0}: x_{1}+u_{1} x_{0}:-: x_{n}+u_{n} x_{0}\right]$ Note that the action is trivial on the hypeylane at ∞ trivial action on $H_{\infty}: X_{0}=0$ Shes If $y \subset H_{\infty}$
$\mathrm{Bl}_{y} \mathbb{P}_{\mathbb{K}}^{n}$ is again an equivariont compadification of the office syce （eg the blowing up of $\mathbb{P}_{\mathbb{}}^{2}$ in Noligned points）

ع）Smooth Del Pezzer Surfaces
A lot of work has been invested in the case of surfaces．The point is that（F）and（E）are esgeded to be valid for open subsets on surfaces．Fist of all，hove is a classification of surfaces witt an anticononical line bundle which is ample
Definition
at Del mezzo－surface is a surface 5 with ω_{s}^{-1} ample
References
－MANIN：Cubic Forms，North reollond
－BRONNING：Quantitative arithmetic of projective varieties

Classification
Giver 11 or \mathbb{T} ，a smooth Del Mezzo surface is isomorphic to one of the following surface （i） $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or
（ii） \mathbb{P}^{2} blown up in k joints in general position， $0 \leq k \leq 8$

Remarks
1）General position means the following
（i）they are distinct
（ii） 3 of these points are not on a same line
（iii）There escisto a unique conic going though 5 points in general position， 6 of these points are not on a conic
2）$G n \mathbb{Q} 4$ points in general position can be sent to

$$
[1: 0: 0],[0: 1: 0],[0: 0: 1],[1: 1: 1]
$$

So for $k \leqslant 4$ the womoyhism dos is determined by k ．For $k \geqslant 5$ this is not true anymore，the morluli gale is not hivial
3）Quadric surfaces $/ \bar{Q}$ are isomorphic $\bar{Q} Q \mathbb{P}_{\bar{O}}^{1} \times \mathbb{P}_{\mathbb{Q}}^{1}$ Cubic surfaces／ \bar{Q} are isomoyhic to the plane blown up in 6 points．
4）for $k \leq 3$ or $\mathbb{P}_{\mathbb{K}}^{1} \times \mathbb{P}_{\mathbb{K}}^{1}$ the surfaces are Tonic varieties A A \mathbb{N} The formula（ A ）follows from B ATYREV \＆TAch，NKEL．Although the result was in fact known before item in particular coses．

Theorem［R．DE LA BRETE CHE］
Let V be the split Del Rezza surface／Q and $U=V-10$ orcogtional limes，(F) is valid for (U)

Explanations
－split means it is isomoyhic to the blowing up of 4 rational joints IO （Ingeneral it is only so over a finite extensor of Q ）
－The exceptional lines are rational ares $C \subset S$ such that the intersection product （C．C）<0 More esflia＇tely，in this particular case，they core given by
－the inverse image of the 4 points blown up，
－The arid lifting of the 6 lines through 2 of there founts（ie $\bar{\pi} \cdot(\overline{(A B)}-\overline{\{A, B\}}))$ The intersection graph is the PETERSEN GRAPH

－edge between EdE＇

$$
\text { if } E \cap E^{\prime} \neq \varnothing
$$

Any family of 4 pouts not connected by edges corregond to a moyhiom to \mathbb{P}^{2} which is the blowing up of 4 points．
Method of proof
－Descent method actually the vorsal tensor over S has a very mice description let me esqlain it In my notes，I described the cox ring Here the cox ring has 10 generators correojonclung to the unique（up to multiplication）sedions of the line bundles corresponding to the exceptional curves

$$
P_{1}=[1: 0: 0], P_{2}=[0: 1: 0], P_{3}=[0: 0: 1], P_{4}=[1: 1: 1]
$$

$X_{i, j}$ corresponds to the strict lifting E_{i} ； of the line the ough $\left(P_{k} P_{l}\right) ;\{i, 1, k, l\} \supset\{1,=4\}$
$X_{5, i}$ conesponds to the inverse image $E_{5, i}$ of P_{i} ．
NB $\quad E_{i, j} \cap E_{k, e}=\varnothing \Leftrightarrow\{i,\} \cap\{k, 0\} \neq \phi$
The lifting of rational joints to the torso is cone as follows
Start with $[x: y: z] \in \mathbb{P}^{2}(0)-\bigcup_{i \neq j}\left(P_{i} P_{j}\right)$
(x, y, z) primitive in \mathbb{Z}^{3}

$$
\begin{array}{ll}
x_{1,5}=\operatorname{gcd}(y, 2) & x_{1,4}=x /\left(x_{2,5} x_{3,5}\right) \\
x_{2,5}=\operatorname{gcd}(x, 2) & x_{2,4}=y /\left(x_{1,5} x_{3}, 5\right) \\
x_{3,5}=\operatorname{gcd}(x, y) & x_{3,4}=2 \mid\left(x_{1,5} x_{2,5}\right) \\
x_{4,5}=\operatorname{gcd}(x-y, y-2) & x_{2,3}=(y-2) \mid\left(x, 5 x_{4,5}\right) \\
& x_{3,1}=(2-x) /\left(x, 5,5 x_{4,5}\right) \\
& x_{1,2}=(x-y) \mid\left(x 3,5 x_{4,5}\right)
\end{array}
$$

These integers satisfy
（1）$x_{i j} x_{k l}+x_{i k} x_{l j}+x_{i l} x_{j k}=0$
for $\#\{i j g k, e\}=4$ we wet ere $x_{i j}=-x_{j, i}$ for example for $1,2,3,4$, we get

$$
(x-y) z-(x-z) y+x(y-z)=0
$$

and for $2,3,45$

$$
(y-2)-y+2=0
$$

and
（2） $\operatorname{gcd}\left(x_{i j}, x_{k, l}\right)=1$ if $\{i j\} \cap\{k, 0) \neq \phi$ which is equivalent to $E_{i j} n E_{k l}=\phi$
（1）are the Plucker equations for the Grassmannian of panes in a space of dimension 5：$E=\mathbb{Q}^{5}$

$$
\{(u, v) \in E \times E, u, v \text { not coliniean }\} \rightarrow \mathbb{P}^{2}\left(\Lambda^{2} E\right)
$$

$(u, v) \longmapsto u n v$
gives en embedding $\operatorname{Gn}(3,5) \subset \mathbb{P}\left(\Lambda^{2} E\right)$ the image of which is given by the equation

$$
a \wedge b=0
$$

which in the basis $\left(e_{i} \wedge e_{j}\right){ }_{i<j}$ are given by (1) so let $W \subset n^{2} E-\{0\}$ be the cone above the Grassmonnion

$$
G_{m}^{5}=T=\left(\begin{array}{ll}
x & 0 \\
0 & 0 \\
0
\end{array}\right) G E
$$

and Let $U \subset W$ be the gen subset olefined by $\left(x_{i}, x_{i}, k\right) \neq 0$ for $\#\{i, j, k\rangle=3$ then U is stable under the action of T and

$$
U / G_{m}^{5} \simeq V
$$

Moreover

$$
U(\mathbb{Z})=\left\{\left(x_{i, j}\right)_{1 \leqslant i<j \leqslant 5} \in \mathbb{Z}^{10} \mid(1) \&(2)\right\}
$$

we get a map

$$
\pi: \cup(\mathbb{Z}) \rightarrow V(\mathbb{Q})
$$

so that $\forall P \in V(Q) \quad \# \pi^{-1}(P)=2^{5}$
So the problem reduces to count joints which sadiafy（1）$\alpha(2)$
－Generalization of the Mábive enables one to change（2）in a condition $d_{i 10} \mid x_{i j}$
－Clever analytic number theory（ $\hat{\text { and }}$ ard part）． Sa that settles the case $k=4$ ．Let us turn to $k=5$

Theorem［D．La B RETĖCHE，T．BROWNING］ There exists a Del lego surface 5 with $k=5$ which satisfies（F）for a choice of the height and the complement of the 16 exceptional curves．

Remark
16 exceptional curves：
－Invars image of the points blown up（5）
－shict lifting of lines through 2 joint（10）
－＂＂of the conic through the 5 points（1）
Method of the proof：
－fitration method：
V is given as the smooth complete intersection of two quadrics in \mathbb{P}^{4} ．They take

$$
\left\{\begin{array}{l}
x_{0} x_{1}-x_{2} x_{3}=0 \\
x_{0}^{2}+x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{4}^{2}=0
\end{array}\right.
$$

There are two moyhisms

$$
f_{i}: V \rightarrow \mathbb{P}_{a}^{1} \quad i \in\{1,2\}
$$

y_{n} deed $\operatorname{dar}\left(\left[\begin{array}{ll}x_{0} & x_{3} \\ x_{2} & x_{1}\end{array}\right)=0\right.$ on V
so $f_{1}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}\right]\right)=\operatorname{Vect}\left(\binom{x_{0}}{x_{2}},\binom{x_{3}}{x_{1}}\right)$

The fibers of t_{1} and f_{2} are
（we speak of comic bundles）

$$
C_{a, b}:\left(a^{2}-b^{2}\right) x^{2}+\left(a^{2}+b^{2}\right) y^{2}=2 z^{2}
$$

But now，as babylomions，we can faramctize the conics！There is an obvious solution $(1,1, a)$ and we use the lines through this joint：

But on \mathbb{T}^{1} we can estimate the number of points for any choice of the height ${ }^{-1}$

$$
\begin{aligned}
& \text { for any choice of the Right } \\
& \# C_{a, b}+1 \leq B=\frac{g\left(\left|a^{4}-b^{4}\right|\right)}{\max |a|,|b|^{2}} B+O_{a, b}\left(\sqrt{B}^{1+\varepsilon}\right)
\end{aligned}
$$

where g is an arithmetic multificative function Moreover there is a finite group dating on V which exchanges f_{1} and f_{2}
Enough r_{o} late the sum over $[a: b] \in \mathbb{P}^{1}(a)$ The problem is to prove that the sum of the ono terms is really negligible．
Still open
$k=6$（ie smooth cubic surfaces）
（they contain 27 lines）（cominaing numerical tess have bree made on computer $H(P) \leq 10^{6}$ ）

$$
k=7,8
$$

As usual in mattematio，when you are stuck on a problem，you try another one
$\eta)$ Singular Del Mezzo surfaces
Remark
Up to now y have only considered smooth varieties．But It was noticed by BATYREV \＆ TsaHINKEL that in fad yon con also consider the problem on singular propetive variety and that it reduces lo－the smooth case

Indeed Let V be a singular projedive variety and $H: V \rightarrow \mathbb{R}_{\geqslant 0}$ be a height defined by a line bundle L／V
Then HIRonaret＇s theorem tells us thar
V admits a desingularization，that is
a moyhiom from a smooth projective variety \tilde{V}

$$
\rho \cdot \widetilde{v} \rightarrow v
$$

which is binational（sm fact ike method consists in using a stratification of the
singular locus singular locus

$$
V \supset F_{1} \supset F_{2} \supset \ldots \supset F_{k}
$$

with $F_{i}-F_{i}+1$ smooth and blowing $\operatorname{lip} F_{k}$ and then F_{i} as many times as needed The problem is to show that the process stops． Then Let $U \subset V$ be the gen subset on which ρ is an isomorphism，Hog is a height relative to $\rho^{*}(L)$ and

$$
\# U(\mathbb{K})_{H \leqslant B}=\# \rho^{-1}(U)(\mathbb{K})_{H \circ \rho \leq B} .
$$

22／6／2016 Remarks
For normal surfaces，the singularities are points and there is a minimal desingularization

$$
\stackrel{n}{s} \rightarrow s .
$$

where the inverse image of the singular yours is a union of rational curves．For each pint we can make the intersection graph of these aves For singular del Puzo the only possibilities are
multiple copies when there is more than one singular paint．

$$
\begin{aligned}
& A_{n} \sum_{2}{ }^{3} \\
& \text { X } n \text { curves for } 1 \leq n \leq 8
\end{aligned}
$$

Moreover this resolution is orepant：

$$
\omega_{5}^{-1}=\pi \pm\left(\omega_{s}^{-1}\right)
$$

Thus the expected behaviour is $\quad \Omega k(\operatorname{Pic}(\tilde{v}))-1$

$$
\# \cup(\mid K)_{H \leq B} \sim C_{H}(\tilde{V}) B \log (B)^{\Omega}
$$

Degree 3
There are 20 possible lyse of singular del Mezzo surface of degree $3 / \mathbb{B}$

$$
\begin{aligned}
& A_{1}, 2 A_{1}, A_{2}, 3 A_{1}, A_{1}+A_{2}, A_{3}, 4 A_{1}, 2 A_{1}+A_{2} \\
& \left.A_{1}+A_{3}, 2 A_{2}, A_{4}, D_{4}, 2 A_{1}+A_{3}, A_{1}+2 A_{2}, A_{1}+A_{4}\right) \\
& A_{5}, D_{5}, 3 A_{2}, A_{1}+A_{5}, E_{6}
\end{aligned}
$$

Example

$$
x^{2} z+y z^{2}+T^{3}=0 \quad \text { is of type } E_{6} \text {. }
$$

Note
For curves，singular points lower the genus and the corresponding curve are arithmetically more simple．Similarly，in some sense，singular surfaces are move easy vodeal wish．So it in possible to prove the formula for singular cubic surface but，us to now，not for smooth ones

Results
［BatyREV \＆TSCHINKEL，．．．］
$3 A_{2} \quad X Y Z+T^{3}=0$ is toric（F）for U ojen
［TOYCE，D_{E} LA BRETECHE，BRONNING，DERUNTHAL］

$$
\begin{equation*}
E_{\sigma} \quad x^{2} z+y z^{2}+T^{3}=0 \tag{}
\end{equation*}
$$

［BROWNING，DERENTHAL］

$$
D_{5} \times z^{2}+x^{2} T+y^{2} z=0 \text { (F) }
$$

［HEATM－BROWN］Cayley abbic senface

$$
4 A_{1} x y z+y Z T+Z T x+T x y=0
$$

$$
\begin{aligned}
& A_{1} x Y Z+Y Z T+Z T X+T X Y=0 \\
& \left.B \log (B)^{T-1} \ll \# U(Q)\right)_{H \leqslant B} \ll B \log (B)^{t \cdot 1}
\end{aligned}
$$

rught onder of growth
Singular Del Pagzo surfaces of degree 4
complete intessedion of 2 quadrias in P4 15 possible lype of singularitios
［BATYREV，TSCHIWKEL，DELABRFTECHE，BROWNING， DERENTHAL，
（F）Las beem obtained for $4 A_{1}, 2 A_{1}+A_{2}, A_{1}+A_{3}$ ，

$$
A_{4}, D_{4}, 2 A_{1}+A_{3}, D_{5}, \cdots
$$

The tyje $2 A_{1}$ is of tarticular interest becouse it is the only one in which

$$
S\left(\mathbb{A}_{Q}\right)^{B n} \neq S\left(\mathbb{A}_{Q}\right)
$$

This are the Chârelet surfaces we have oheady met
（＊）$\quad W: x^{2}+y^{2}=P(U, v) T^{2} \quad$ in $\left.\mathbb{T}^{3}-\{0\} x \mathbb{A}^{2}-10\right\}$ where $P \in \mathbb{Z}[U, V]$ is homageneous of degree 4 with distund roots／IQ

$$
\mathbb{G}_{m}^{2} c, \omega(\lambda, \mu)((x, y, t),(u, v))=\left(\left(\lambda \mu^{2} x, \lambda \mu^{2} g, \lambda t\right),(\mu u, \mu v)\right)
$$

$\tilde{s}=W / \Phi_{m}^{2}$ is a minimal desingularijation of the correyondeng singular Del Pazjo surface．
Theorem［R ．DE LA BreTĖCHE，T．BROWNING，，，G．TENENBRUM， K．Destagnol］Various families of ehatelet surfaces of the form（ A ）satisfy（F） with $U=\widetilde{S}$－exceptional divisors

Method of Ne poof
－The rank of the Picard grown depends on the degrees of the polynomials in the decomposition of P in irreducible factors．Hthere y am going to esqlain one case：
tsume P is the product of 4 linear forms．

$$
P(u, V)=\prod_{i=1}^{u} L_{i}(u, V)
$$

－Geometry \＆Reduction
We have a moyhism $\pi: S \rightarrow \mathbb{T}_{\mathbb{D}}^{1}$
induced by the projection

$$
(x, y, t, u, v) \rightarrow(u, v) \text { which is }
$$

compatible with the actions u

$$
\mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{n}
$$

The fiber aver $[u: v]$ is the circle

$$
x^{2}+y^{2}=P(u, v) T^{2}
$$

which is a degenerate（ic non vireduable／ $\bar{\sigma}$ ）
fibre whenever $L_{i}(u, v)=0$
Write $L_{i}(u, V)=a_{i} U+b_{i} V$ ，
The degenerate five correspond to the 4 points

$$
P_{i}=\left[-b_{i}: a_{i}\right]
$$

Goer Q（i）these Châteld surfaces are ossified
by the cooss－ratio

$$
\alpha=\frac{\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right| /\left|\begin{array}{ll}
a_{3} & a_{2} \\
b_{3} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{4} & a_{1} \\
b_{2} & b_{1}
\end{array}\right| /\left|\begin{array}{ll}
a_{4} & a_{2} \\
b_{4} & b_{2}
\end{array}\right|}
$$

and we reduce to the case

$$
P_{1}=[0: 1], P_{2}=[1: 0], P_{3}=[1: 1] \text { and } P_{4}=[1: \alpha]
$$

and we are reduced $t \bar{O}$ an equation of the form

$$
X^{2}+Y^{2}=U V(U-V)(a U+b V) T^{2}
$$

We assume $\operatorname{pgcd}(a, b)=1$
－The escgtional divisors，the Picard group
－We have iwo sedtons of $\pi / Q(i)$
Corresponding to $[x: y: t]=[1: i: 0]$
and $[x: y: t]=[1:-i: 0]$
－The degenerate files are 2 conjugate lines
$\operatorname{Gal}(a u) / a)$

（10 ese lines as for the concoponding smooth Del Mezzo surface）
class of a filer 2
relations $\left[D_{i}^{+}\right]+\left[D_{i}^{-}\right]=\left[D_{i}^{+}\right]+\left[D_{1}^{-}\right]=[F]$ and，using $(X+i Y) /\left(T L_{i}(U, V) L_{i}(U, V)\right)$ ，

$$
\begin{aligned}
& {\left[E^{+}\right]+\left[D_{i}^{f}\right]+\left[D_{l}^{+}\right]=[E-]+\left[D_{k}^{-}\right]+\left[D_{l}^{-}\right]} \\
& \operatorname{Prc}(V)=P_{i c}(V)^{9}=\mathbb{Z}_{4}[F]\left(\Psi \mathbb{U}^{2}\left[\omega_{s}^{-1}\right], \quad b=f_{o l}(Q(i) / \alpha)\right. \\
& \omega_{s}^{-1}=2\left[E^{+}\right]+\sum_{i=1}^{4}\left[D_{i}^{+}\right]=\sum^{s}\left[E^{-}\right]+\sum_{i=1}\left[D_{i}^{-}\right]
\end{aligned}
$$

－ctgain this case is based upon
the descent method
So let es describe the venal torsos the interesting point is that

There might be several somoyhism doses of vorsal lessors having a rational point． Let me esglain the gurus：
Reminder

$$
u \in\{-1,1\}
$$

$n=u \|_{p \beta p} p^{v_{p}(n)} \in \mathbb{Z}$ can be written as the sum of $2 \square$ if and only if

$$
\left\{\begin{array}{l}
u=1, \\
p \equiv 3[4] \Rightarrow v_{p}(n) \text { even. }
\end{array}\right.
$$

A solution of the equation
（1）$x^{2}+y^{2}=\left(\prod_{i=1}^{i} L_{i}(u, v)\right) t^{2}$
implies that
implies that
（2）$\prod_{i=1}^{4} L_{i}(u, u)=\square+\square$
But sinai $\sin ^{i=1} \mathrm{gcd}(u, v)=1$
$\operatorname{gad}\left(L_{i}(u, v), L_{j}(u, v)\right)\left|\Delta_{i j}=\left|\begin{array}{ll}a_{i} & a_{i} \\ b_{i} & b_{j}\end{array}\right|\right.$
So if $p \equiv 3[4]$ and $p \nmid \prod_{i, j} \Delta_{i, j}$
（Here $\Delta_{i j}=1$ escort for $\Delta_{1,4}=a, \Delta_{2, b}=b \Delta_{3,4}=a-b$ ）
Then（2）$\Rightarrow \forall_{i} v_{p}\left(L_{i}(u, v)\right)^{1 /}$ even
Also if $p=3[4]$ and $p \mid t$ then $p \mid x$ and $p \mid y$ absurd！

$$
s \theta|t|=0+0
$$

Thus let $\Delta=\prod_{p} \prod_{\substack{ \\i \neq j}} \Delta_{i j}$

$$
P \equiv 3(4)
$$

For any solution of（1）there exists $\underline{m}=\left(m_{i}\right)_{1 \leq i \leq 4} \in \mathbb{Z}^{4}$ such that
（i）$m_{1}>0$
（ii）$m_{i} \mid \Delta$
（iii）$\prod_{i=1}^{4} m_{i}=\square=\delta_{m}^{2}$ square
（iv）${ }_{m}=1 L_{i}(u, v) \stackrel{m}{=} \square+\square$

$$
\operatorname{g}_{\underline{m}} \subset \operatorname{Sec}\left(\mathbb{Q}\left[X_{i}, Y_{i}, 0 \leq i \leq 4\right]\right)
$$

You may note that，again the number of variables is the number of exceptional divisors． Il＇s not a coincidence．
Equations of $E m$
（3）$\Delta_{i, 1} n_{k}\left(x_{k}^{2}+y_{k}^{2}\right)^{m}+\Delta_{k} n_{i}\left(x_{i}^{2}+y_{k}^{2}\right)+\Delta_{k, e} n_{k}\left(x_{k}^{2}+y_{k}^{2}\right)=0$ for $1 \leq i<j<k \leq 4$
and $\left(x_{i}, y_{i}, x_{j}, y_{0}\right) \neq 0$ if $1 \leq i<i \leq 4$ ．
$\pi: E_{m} \rightarrow \widetilde{S}$ \＆give ged condition．
\exists ！$(u, v), L_{i}(u, v)=m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)$ for $1 \leq i \leq 4$ and $\left.\begin{array}{l}x+i y=\delta_{m}\left(x_{0}+i y_{0}\right)^{2} \prod_{i=1}^{4}\left(x_{i}+i y_{1}\right) \\ t=x_{0}^{2}+y_{0}^{2} .\end{array}\right\}$ give x, g, t ．
So the problem is reduced to counting solutions of（3）
－Use Loebins inversion ta removeged condition
－Analytic number theory：
Define $\tau(n)=\frac{1}{4}\left\{\#(x, y) \in \mathbb{Z}^{2} \mid x^{2}+y^{2}=n\right\}$

$$
4=\# \mu(ब \lambda(A))
$$

Then τ is multiplicative and

$$
\tau\left(p^{k}\right)= \begin{cases}0 \text { if } p \leq 3(4), & k \text { orel } \\ 1 & k \text { oven } \\ k+1 \text { if } p \equiv 1(4)\end{cases}
$$

We get sums of the form

$$
\sum_{u, v} \prod_{i=1}^{4} T\left(\frac{L_{i}(u, v)}{e_{i}}\right) \text { that one has to }
$$

estimate using methods of analytic number theory，\square This concludes the list of explicit examples？ wanted to describe．There are two more positive results＇S want to mention，which gives still more examples．

2）Compatibilities
a）The product of variction
Proposition［France，MANin，Tschinkel］
W_{1}, W_{2} sets with maps $H_{i}: W_{i} \rightarrow \mathbb{R}>0$ so that

$$
\text { (i) }\left(W_{i}\right)_{H_{1} \leqslant B}=\left\{P \in W_{i} \mid H_{i}(P) \leqslant B\right\} \text { is finite }
$$ for any B

（ii）$\#\left(W_{i}\right)_{H_{i} \leqslant B}=C_{i} B \log (B)^{t_{i} \cdot 1}+G\left(B \log (B)^{t_{i}-2}\right)$
for $i \in\{1,2\}$
on $W=W_{1} \times W_{2}$ define $H(P, Q)=H_{1}(P) H_{2}(Q)$

$$
\begin{array}{r}
\# W_{H \leqslant B}=\frac{\left(t_{1}-1\right)!\left(t_{2}-1\right)!}{\left(t_{1}+t_{2}-1\right)!} C_{1} C_{2} B \log (B)^{t_{1}+t_{2}-1} \\
+G\left(B \log (B)^{t_{1}+t_{2}-2}\right)
\end{array}
$$

Idea of the proof
Same as the one Y gave for $\mathbb{P}^{1} \times \mathbb{P}^{1}(\mathbb{Q})$

$$
\begin{aligned}
& \# W_{H \leqslant B}=\sum_{P \in\left(W_{1}\right)_{H_{1} \leqslant B} \#\left(W_{2}\right)_{H_{2} \varepsilon \frac{B}{H_{1}(P)}}}^{=} \begin{array}{l}
p \in\left(W_{1}\right)_{H_{1} \leqslant B}\left[C_{2} \frac{B}{H_{1}(P)} \log \left(\frac{B}{H_{1}(P)}\right)^{t_{2}-1}+G\left(\frac{B}{H_{1}(P)} \log \left(\frac{B}{H_{1}(P)}\right)^{T_{1}-1}\right)\right.
\end{array}
\end{aligned}
$$

the error rem has a form similar to the main term so it is enough to compute the sum for the main term． We put $f(H)=C_{2} \frac{B}{t} \log \left(\frac{B}{t}\right)^{t_{2}-1} \quad g(t)=\#\left(W_{1}\right)_{H_{1} \leq t}$ We $\int_{1}^{2} \int_{1}^{\beta} f(t) d g(t)=[f g]_{1}^{B}+\int_{1}^{B} f^{\prime}(t) g(t) d t$ $G\left(B \log (B)^{r_{1}+t_{2}-2}\right)$

Since $g(t)=C_{1} t \log (t)^{t_{1}-1}+G\left(t \log (t)^{t_{1}-2}\right)$

$$
\begin{aligned}
& \text { we get up } t_{0} G B \log (B)^{\left.t_{1}+r_{2}-2\right)} r_{1}^{r_{2}-1}(\log (t) \\
& C_{1} C_{2} B \log (B)^{k_{1}+t_{2}-1} \int_{1}^{B}\left(\frac{\log (1-)}{\log (B)}\right)^{t_{1}-1}\left(1-\frac{\log (t)}{\log (B)}\right)^{2} d\left(\frac{\log }{\log (B)}\right) \\
& =C_{1} C_{2} B \log (B)^{t_{1}+t_{2}-1} \underbrace{\int_{0}^{1} u^{t_{1}-1}(1-u)^{t_{2}-1} d u}_{0} \\
& \frac{\left(t_{1}-1\right)!\left(t_{2}-1\right)!}{\left(t_{1}+t_{2}-1\right)!}
\end{aligned}
$$

F V_{1} and V_{2} satisfy \mathcal{H} ，then
a） $\operatorname{Pec}\left(V_{1}\right) \times P_{i c}\left(V_{2}\right) \rightarrow \operatorname{Pid}(V)$

$$
\left(\left[L_{1}\right],\left[L_{2}\right]\right) \rightarrow p \Omega_{1}^{*}\left(\left[L_{1}\right]\right)+p r_{2}^{+}\left(\left[L_{2}\right]\right)
$$

is an isomorphism
b）$T\left(V_{1} \times V_{2}\right) \rightarrow-T V_{1} \times T V_{2} \quad L_{1} \otimes L_{2}$

$$
\text { gives } \omega_{V_{1} \times V_{2}}^{-1} \leadsto \omega_{V_{1}}^{-1} \boxtimes \omega-\bar{v}_{2}
$$

and we can equip $\omega_{V_{1}} \times V_{2}$ with the tensor proclus of the pull backs of the nome
C）The convenonding height－is given by

$$
H(P, Q)=H_{1}(P) H_{2}(Q)
$$

and the measure on $\left.V(\mathbb{F}, \mathbb{K})=V_{1}\left(A_{\mathbb{K}}\right) \times V_{2}(\not)_{K}\right)$

$$
\omega=\omega_{1} \times \omega_{2}
$$

d）

$$
\begin{aligned}
& \alpha\left(v_{1} \times v_{2}\right)=\frac{\left(r_{1}-1\right)!\left(r_{2}-1\right)!}{\left(r_{1}+r_{2}-1\right)!} \alpha\left(v_{1}\right) \alpha\left(v_{2}\right) \\
& \beta\left(v_{1} \times v_{2}\right)=\beta\left(v_{1}\right) \beta\left(v_{2}\right)
\end{aligned}
$$

Condwion
（F）or（ E ）with an error term $\ll \frac{1}{\log (B)}$ is compatible with product of varieties

B）Compatibility with Neil＇s rechidion
Definition
Let A be a commutative ring
\qquad
B A algebra
X le a scheme／B
The Neil restriction of X to A（if it easts） is a scheme $R_{B / A} X$ over A which represents the functor which sends a commutative A－alyend C To $X\left(B \otimes_{A} C\right)=\operatorname{Hom}_{B}\left(B \otimes_{A} C, X\right)$ ．
More generally

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(Y, R_{B / A} x\right)=\operatorname{Hom}_{B}\left(Y_{B}, X\right) \text {. } \\
& \left(R_{B / A} \text { is a "rugh addend" "/o }-x_{\text {Spec } A S^{\prime}} S_{\text {Pe }}(B)\right)
\end{aligned}
$$

Theorem
If \mathbb{L} / \mathbb{K} is a finiteseyaratlefirld esctemsion and X is a quasiprojedive variety／ \mathbb{L} Then $R_{\text {H }} / \mathbb{K} X$ east

Idea of the proof
If $\sigma: u \rightarrow \mathbb{K}$ embedding／ \mathbb{K}
Define $X^{6}=X x_{\text {spec（L）}}$ Sp $(\sqrt[K]{K})$ for $\sigma \cdot \operatorname{Spec}(\mathbb{K}) \rightarrow \operatorname{spec}(\mathbb{K})$ Then if $\Sigma(\mathbb{H} / \mathbb{K})$ is the set of embeddings of H in \mathbb{K} $\# \Sigma(\psi \mid \mathbb{K})=[\psi: \mathbb{K}]_{s}=[L / K]$
πX^{σ} has an ackon of gore（H／IK） and ${ }^{\text {it }}$ descends 1% a varidy $R_{L / I K} V$ on Spec（IK）which so the one we wive looking for $1 \square$

Remark

$$
\operatorname{dim}\left(\mathbb{R}_{\mathbb{L} / \mathbb{K}} x\right)=[\mathbb{L}: \mathbb{K}] \operatorname{dim}(x)
$$

$\frac{\text { Example }}{x}$
（2）Gal $(\mathbb{K} / \mathbb{K})$ acts on the coefficients and the variables．
$\frac{\text { Example }}{R}$（esconixe）

Theorem［D．LOUGHRAN］
L / \mathbb{K} extension of number fields V II satrafy fl．
（F）（or（E））are tue for a non empty open set $U \subset V / L$
if and only if they are time for

$$
R_{\mathbb{L} / \mathbb{K}} U \subset R_{\mathbb{L} / \mathbb{K}} V
$$

So，in some sense，it is enough \sqrt{O} consider the problem over a．
To finish this chapter on positive results，I would like to fulfill a promise 15 made about projedive spaces

$$
\begin{aligned}
& x^{\prime}=\operatorname{Spec}\left(11\left[x_{0}, x_{N}\right] /\left(f_{1},>f_{\Omega}\right)\right) \\
& x^{\sigma}=S_{\text {pe }}\left(\mathbb{K}\left[x_{0},-x_{N}\right] /\left(\sigma\left(f_{1}\right),-\sigma\left(r_{n}\right)\right)\right) \\
& R_{1 / / \mathbb{K}} X=S_{j e c}\left(\sqrt[\pi]{ }\left[X_{i, \sigma}, 0 \leq i \leq N, \sigma \in \Sigma(H / \mathbb{K})\right] /\left(\sigma f_{j}\right)\right)^{g_{d}(\mathbb{K} / \mathbb{K})}
\end{aligned}
$$

3］SCHANVEL＇s proof for \mathbb{P}_{K}^{N}
In fact it illustrates some of the redriques for descent over number fields
Notation

$$
h=\# d\left(G_{K}\right)
$$

$r_{1}=\#$ real places
$r_{2}=\#$ complex forces $r=r_{1}+n_{2}-L$
$R=$ regulation of 1 K covolume of in $\left.\begin{array}{rl}\left(G_{\mathbb{K}}^{*}\right. & \rightarrow H=\operatorname{Ken}\left(\mathbb{R}^{r_{1}+R_{2}} \underset{\Sigma}{ } \mathbb{R}\right) \text { ）} \\ x & \longmapsto \log |x|\end{array}\right)$

$$
\begin{aligned}
& \sqrt{|d|}=\operatorname{covve}\left(G_{\mathbb{K}}\right) \text { in } \mathbb{K} \otimes_{\mathbb{Q}} \mathbb{R} \\
& w=\# \mathbb{N}_{\infty}(\mathbb{K}) \\
& S_{\mathbb{K}}(A)=\sum_{a \in Y_{(}\left(\sigma_{K K}\right)} \frac{1}{N(\theta)^{\Delta}} \quad N(a)=\# G_{K} / \sigma
\end{aligned}
$$

Theorem［SCMANVEL］

$$
\begin{aligned}
& \text { For } H=\prod_{\text {wePl(IK) } \max _{0 \leq i \leq n}}\left(\left|r_{i}\right|_{w}\right)^{n+1} \\
& \# \mathbb{P}_{n}(\mathbb{K})_{H \leq B}^{w \in P e(N)} \operatorname{man}_{B \rightarrow+\infty} \subset B \\
& H \leq B_{B \rightarrow+\infty} \\
& C=\frac{h}{n_{k}(n+1)}\left(\frac{2^{n_{1}}(2 \pi)^{r_{2}}}{\sqrt{d}}\right)^{n_{t 1}}(n+1)^{\pi_{1}+r_{2}-1} \frac{R}{\omega}
\end{aligned}
$$

Proposition

$$
C=C_{H}\left(\mathbb{P}_{\mathbb{K}}^{n}\right)
$$

Proof of the theorem
There are two difficulties when one hies to generalize the elementary proof which works／a

Problems
1）$\left(\mathbb{H}^{n+1}-\{0 y)\left(G_{K}\right)=\left\{\right.\right.$ primitive elements in $\left.G_{K}^{n+1}\right\}$
$\pi \underset{\mathbb{P}^{?}(\mathbb{K})}{\downarrow}$ is not suyjedive

$$
\mathbb{P}^{7}(\mathbb{K})
$$

2）for x in its insp
$\pi^{-1}(x)$ is an $G_{\mathbb{K}}^{*}$ orbit and is not finite（if $r>0$ ）．
And these problems also occur in general for the descent method
For 1）We con be more precise
Define $\varphi: \mathbb{P}^{n}(\mathbb{K}) \longrightarrow \mathrm{Cl}\left(G_{1 K}\right)$

$$
\left[x_{0}:-: x_{n}\right] \quad\left[\left(x_{0},-, x_{n}\right)\right]
$$

We are going 12 estimate class of the ideal
for $c \in e l\left(G_{k} k\right) \quad$ generated by $\left(x_{0},-x_{n}\right)$ ．

$$
\#\left\{x \in \mathbb{P}^{n}(\mathbb{K}) \mid H(x) \leq B \text { and } \varphi(x)=c\right\}
$$

and we are going ia show that asymptotically
ot does not defend on the class C ．
$F_{i c} c \in l\left(G_{4 k}\right)$ choose or such that $[r]=c$ If $\varphi\left(\left[x_{0}:-x_{n}\right]\right)=c$ then $\exists\left(y_{0},-y_{n}\right) \in \mathbb{K}^{n}$ such that $\left[x_{0}:-y_{n}\right]=\left[y_{0}:-: y_{n}\right]$ and $\left(y_{0},-, y_{n}\right)=r$
Moreover if $a=\prod_{p} \mu_{r}(a r)$
Then for any prime ideal p

$$
\begin{aligned}
& \text { for any } \max _{0 \leq i \leq n}\left(\left|y_{i}\right|_{p}\right)=N(p)^{-v_{p}(a)}
\end{aligned}
$$

So $H\left(\left[y_{0}:-: y_{n}\right]\right)=\frac{1}{N(a) w \mid \infty \quad \prod_{0 \leq i \leq n}} \max \left(\left|y_{j}\right|_{\infty}\right)$
Now let us deal with poblom 2）
Let $\log : \mathbb{K}^{n} \otimes \mathbb{Q} \mathbb{R} \longrightarrow \prod_{w \mid \infty}(\mathbb{R} \cup\{-\infty)\}$ becefined by
and for $\lambda \in G_{\mathbb{K}}^{\neq}$we have

$$
\log (\lambda y)=\log (\lambda)+\log (y)
$$

Choose a $\operatorname{bosis}\left(e_{1},-e^{e} r\right)$ for $A \subset H$
and fut $F=\left\{\sum_{i=1}^{n} r_{i} e_{i}, r_{i} \in[0,1 \Gamma\}\right.$
and let $p: \prod_{w / \omega} \mathbb{R} \longrightarrow H$ be the outkagonol pojedion

$$
\begin{aligned}
&\left(x_{w}\right)_{w \mid v} \longmapsto\left(x_{w}-\sum_{w / w} x_{w}\right)_{w / \infty} \\
& D=\log ^{-1}\left(\mu^{-1}(F)\right) \subset \prod_{w \mid w} K_{w}^{n}(1) i s \text { a fundamental }
\end{aligned}
$$

$$
\text { domain for } G_{l}^{*} \text { modulo wis } N_{\infty}(k) \text { : }
$$

（i）$\prod_{w \mid \infty}\left(K_{n}-\{0\}=\bigcup_{\lambda \in \sigma_{N}^{*}}^{\lambda_{1}} \lambda b\right.$
（ii）$\lambda D \cap D= \begin{cases}\phi & \text { if } \lambda \notin N_{\infty}(\mathbb{K}) \\ D & \text { if } \lambda \in \mathbb{N}_{\infty}(\mathbb{K})\end{cases}$
So we get ：

Define $N: \mathcal{I}\left(G_{\mu}\right) \rightarrow\{-1,0,1\}$ mulkificative

$$
\pi_{p} \mu^{m_{\mu}} \mapsto \pi_{p} \mu\left(\mu^{m_{\mu}}\right)
$$

$$
\begin{aligned}
& \text { \# }\left\{P \in \mathbb{P}^{n}(\mathbb{K}) \mid H(P) \leqslant B \& \varphi(P)=c\right\} \quad \chi \text { kind of } \\
& =\frac{1}{w} \#\left\{\left(y_{0},-, g_{n}\right)=\sigma^{n+1} \left\lvert\, \begin{array}{l}
\left(y_{0},-, y_{n}\right)=\sigma^{\text {minority }} \text { condign } \\
\left(y_{0},-g_{n}\right) \in D \\
2\left(\log _{0}\left(y_{0},-y_{n}\right)\right) \leq \log \left(\frac{B^{n+1}}{N(\sigma)}\right.
\end{array}\right.\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{K}^{n} \otimes \mathbb{R} \approx \underset{w \mid \infty}{\oplus}\left(\left(K_{w r}^{n}\right) \longrightarrow \prod_{w \mid v}^{n}(\mathbb{R} \cup\{-\infty\})\right. \\
& \left(y_{w}\right)_{w \mid *} \longmapsto\left(\log \left\|y_{w}\right\|_{\infty}\right)_{w / \infty}
\end{aligned}
$$

and $\mu\left(\mu^{k}\right)=\left\{\begin{array}{l}1 \text { if } k=0 \\ -1 \text { if } k=1 \\ 0 \text { otherwise }\end{array}\right.$
The cardinal we are interested in is given by

$$
\sum_{b<a} \mu(b / a) \#\left(t^{n+1} \cap \frac{B^{1 /(a+1)}}{N(a)} D_{1}\right)
$$

where $D_{1}=D \cap\{y \mid \sigma(\log (y)) \leqslant 0\}$
We apply Maser and Vaaler to yer
that tais is equivalent to

$$
\left(\sum_{B<a} \mu(b / a)\left(\frac{N(b)}{N(a)}\right)^{n+1}\right) B \operatorname{Vol}\left(D_{1}\right)
$$

－But－D_{1} in the union of $(m+1)^{r_{1}+n_{2}}$ domaine given by $\max _{i}\left(\left|g_{i}\right|_{v}\right)=\left|y_{i_{w}}\right|$ and using \hat{a} change of valuables，

$$
\begin{aligned}
& V_{0 l}\left(D_{1}\right)=\left(2^{r_{1}}(2 \pi)^{\Lambda_{2}}\right)^{n+1} \operatorname{Vol}(F)(m+1)^{n_{2}+n_{2}} \int_{0}^{1} t^{n} d u \\
& =\sum_{i / n+a} \mu(b / a)\left(\frac{N(b)}{N(m)}\right)^{n+1} \\
& =\prod_{p}\left(1-\frac{1}{N(p)^{n+1}}\right)=\zeta_{\mid k}(n+1)^{-1}
\end{aligned}
$$

Summing over the closes in the ideal dos goop，we are done． the maun Tool to prove ike proposition is the following theorem of numbat theory Theorem

$$
\lim _{s \rightarrow 1}(s-1) s_{k}(0)=h \frac{2^{\pi_{1}}(2 \pi)^{n_{2}}}{\sqrt{|d|}} \frac{R}{w}
$$

Proof of the proposicon

$$
\begin{aligned}
& \text { - } L_{p}\left(D, P_{i} \subset(\nabla)\right)=\left(1-\frac{1}{N(P)^{\Delta}}\right)^{-1} \\
& \text { and } L(0, \operatorname{Pic}(\nabla))=3_{1 K}(D) \\
& \left.\lim _{s \rightarrow 1}(s-1) L(\Delta, \operatorname{pic}(v))=\lim _{s \rightarrow 1}(s-1) \mathcal{S}_{\mathbb{K}}(s)\right) \\
& =h \frac{2^{\pi_{1}}(2 \pi)^{n_{2}}}{\sqrt{|d|}} \frac{R}{w} \\
& =\left(1-\frac{1}{N(p)}\right) \frac{\# \mathbb{P}^{n}\left(\mathbb{F}_{p}\right)}{\# \mathbb{T}_{p}^{n}} \\
& =\left(1-\frac{1}{N(p)^{n+1}}\right)
\end{aligned}
$$

So $\prod_{p} L_{p}\left(1, P_{i C}(\bar{v})\right)^{-1} \omega_{p}\left(p^{n}\left(K_{p}\right)\right)=\frac{1}{\zeta_{1 k}(n+1)}$

$$
\begin{aligned}
& w_{w}\left(V\left(K_{w}\right)\right)=\left\{\begin{array}{l}
(n+1) 2^{n} \text { if wreal } \\
(n+1)(2 \pi)^{n} \text { if wreal }
\end{array}\right. \\
& \omega\left(\mathbb{R}^{n}\left(\mathbb{A}_{\mathbb{K}}\right)\right)=\frac{h}{\mu_{\mathbb{K}}(n+1)}\left(\frac{2^{1_{1}(2 \pi)^{n_{2}}}}{\sqrt{d}}\right)^{n+1}(n+1) \frac{n(1) R}{w} \\
& C=\frac{1}{n+1} \omega\left(\mathbb{R}^{n}\left(\mathbb{H}_{\mathbb{K}}\right)\right) \\
& \alpha\left(\mathbb{B}_{\mathbb{K}}^{n}\right)=\frac{1}{n+1} \cdot \square
\end{aligned}
$$

17／6／2016北 京

The ungraded version of Baty rev \＆Mania program
Before I goo to the upgraded version lat me explain the
I Spirit of the BATYREV MANIN principle
1）A formula
For simplicity lat us assume
V is a smooth projedive，geometrically integral variety／a such that $\omega \bar{v}^{-1}$ is rory ample
Let $\varphi: V \rightarrow \mathbb{P}_{\mathbb{Q}}^{N}$ be a conesponding embedding with $\varphi^{*}\left(G_{\mathbb{P}_{\infty}^{N}}^{\mathbb{Q}}(\Omega)=\omega_{V}^{-1}\right.$
Gm \mathbb{P}_{a}^{N} define $H\left(\left[y_{0}:-: y_{n}\right]\right)=\left\|\left(y_{0},-, y_{N}\right)\right\|_{\infty}$ where $\left(y_{0},-y_{N}\right) \in \mathbb{Z}^{N+1} g^{\prime}{ }^{c d}\left(y_{0},-1 y_{N}\right)$

$$
\|\cdot\|_{\infty}: \mathbb{R}^{N}+1 \rightarrow \mathbb{R}^{N} \geqslant 0 \text { is a norm }
$$

Then one wants to study

$$
V(Q)_{M \leqslant B}=\{P=V(Q) \mid H(P) \leq B\}
$$

ctaive formula
Assume that $V(Q)$ is Zoriski dense

$$
\begin{aligned}
& \text { Assume that } V(Q) \text { es 2oriski dense }{ }^{(F v) ~} \# V(a)_{H \leq B} C_{H \rightarrow+\infty} \frac{H^{(V)}}{\text { eogliat }} B \log (B)^{t-1} \\
& \text { where } t=n k(\operatorname{Pic}(U))
\end{aligned}
$$

If it is twi for any choice of the height this implies an equidisticution prinaje
Chive equidushibution
$\exists N_{0} \quad \forall N \operatorname{gcd}\left(M, N_{0}\right)$
V has good recludtion at N and for $P_{0} \in V(L / M 2)$
（EN）

$$
\left.\frac{\# ん P \in V(Q) \mid \operatorname{Rod}}{M}(P)=P_{1}\right\rangle_{H \leq B}^{\# V(0))_{H \leq B}} \underset{B \rightarrow+\infty}{\longrightarrow} 0
$$

$$
\text { for } F \neq V \text { closed } \quad \frac{\# F(\mathbb{Z} / \Pi u)}{\# V(\mathbb{Z} / M U)} \xrightarrow[M \rightarrow+\infty]{\longrightarrow 0}
$$

so (EV) implies
2) Examples

$$
\# F(0)_{H \leq B}=0 \quad \# V(0)_{H \leq B} .
$$

Theorem ($\leftarrow B \notin \mathrm{RcH}$)
V smooth hypersurface of degree d in $P_{Q} N$ such l at $V(\mathbb{R}) \neq \phi$ and $V(\mathcal{Z} / M Z) \neq \varnothing$ for any $M>0$ then $\left(F_{V}\right)$ and $\left(E_{V}\right)$.
Theorem
$V=G / P$ G linear connected alg laic group P parabolic subgroup (F_{V}) and (E_{V})
In partaular, it is bine for any quadric.
II Counter examples

1) The plane blown up in a point

$$
\begin{gathered}
V \subset \mathbb{P}_{Q}^{2} \times \mathbb{P}_{Q}: \quad x v=y u \\
\pi \downarrow(x ; z)(u: v) \\
E=\pi^{-1}(0: 0: 1)
\end{gathered}
$$

$p_{a}^{2} \quad U=V-E \quad \pi_{1 v}: u \rightarrow \pi(u)$ iomoyhim blowing of P_{0}

$$
\begin{aligned}
& \omega_{V}=G_{p^{2}}(2) \otimes G_{\mathbb{P}^{1}}(1) \\
& H(P, Q)=H(P)^{2} H_{1}(\alpha) \\
& G M E H\left(P_{0}, Q\right)=H(Q)
\end{aligned}
$$

Get $\#(E(\alpha))_{H \leqslant B}=C\left(P^{1}\right)_{B}^{2}$
$S_{O}\left(F_{V}\right)$ and $\left(E_{V}\right)$ con not be bur!

But $\# U(a)_{H \leq B}^{\sim} C_{H}(V) B \log (B)$ and $U(Q) \quad H \leq B$ satisfies equidistribution!
It was Balyrev and Morin whe suggested to remove a closed subsll:
BATYREV \& MANIN prinajl (refined \exists Is that (FU) and thus (EU).
2) Accumulating thin subset

$$
\begin{aligned}
& \text { BATYREVIdTSITINKEL } \\
& V \subset \mathbb{P}_{a}^{3} \times \mathbb{P}_{Q}^{3} \quad \sum_{i=0}^{3} Y_{i} X_{i}^{3}=0 \\
& H(x, y)=H_{3}^{(x)} H_{3}(y)^{3} \text { since } \omega_{V}^{-1}=G(1,3) \text { iV } \\
& \pi=\mathbb{R}_{2}: V \xrightarrow{V_{y}: \sum_{a}^{3} y_{i} \cdot x_{a}^{3}=0} \text { for } y \in \mathbb{P}^{3}(a), V_{y}=\pi^{-1}(y)
\end{aligned}
$$

smooth cubic surface if $\prod_{i=0}^{3} g_{i} \neq 0$.
For the fiber

$$
\text { or the fiber } \sim C_{H}\left(V_{x}\right) B \log (B)^{t_{x}-1}
$$

where $F_{x}=N_{k}\left(\operatorname{Pic}\left(V_{x}\right)\right)$.
For cubic surface, the Picard group is generated by the lines contained in the surface Hilere we have diagonal cubic surfaces and it is possible to -prove that

$$
1 \leq t_{4} \leq 4 \text { and } t_{x}=4
$$

if and only if x_{i} / x_{j} is a abbe for all i, j. But we can apply Refs-chetz theorem and therefore the restridion gives an isomorphism from the Picard group of $\mathbb{P}_{\mathbb{Q}}^{3} \times \mathbb{P}_{\mathbb{Q}_{2}^{3}}$ Ko the Picard group of V thus re $\left(P_{i c}(V)\right)=2$ and the esged'ed formula for V is for $U \neq \phi$, small enough $\# U(\Phi){ }_{H \leq B} \underset{B \rightarrow+\infty}{\sim} C_{H}(V) B \log (B)$

But the problem is that the points in $\mathbb{P}^{3}(\mathbb{T})$ which salsify the condition that the quotients of the coordinates are 77 are Zariskidense so for any non-ernyly open U in V $\exists\left[x_{0} \cdots i x_{3}\right]$ with $l_{i=0}^{3} x_{i} \neq 0$ and x_{i} / x_{j}. cube such that $U \cap V_{x} \neq \phi$
So there is a contradiction between the conjecture for the fibers and the escedect formula for V

In fad, BATYREV, TSCHINKEL\& STYMIUS have proven that there are too many points on V

En the other h and, one can say that most of the points in $\mathbb{P}^{3}(Q)$ do not satisfy the cube condition. More precisely:

$$
\begin{aligned}
& \begin{array}{c}
\text { condition. } \\
\#\left\{\left[x_{0}:-x_{3}\right] \in \mathbb{P}^{3}(\mathbb{Q}) \mid \forall \forall_{i, j} x_{i} / x_{j} \text { is a cube }\right\}_{H} \leqslant \beta=O\left(B^{-\frac{2}{3}}\right) .
\end{array} \\
& \# \mathbb{P}^{3}(\mathbb{Q})_{H \leq B}
\end{aligned}
$$

So there is a natural question: What happens on the complement? First it is not enough to remove the fibers with $t_{x}=4$ one has to to remove all fibers with $t_{x}>1$
Put $T=\bigcup_{x / \pi x_{i}=0} V_{x} \cup \bigcup_{i=2}^{4} \bigcup_{x \mid t, x>1} V_{x}$
T is a thin subset in the following sense Definition

At thin subset T of V(Q) is a subset such that there escorts a moyhism $\varphi: X \rightarrow V$ which satisfies
(1) P is generically finite;
(ii) Y has na rational section;
(iii) $T \subset \varphi(X(ब))$.

So, in our case, I may state the question as Question

Do we have the expected behaviour on $V(Q)-T$?

Theorem $[C, L \in R U D U L I E R]$ proved that for $V=H_{i l} b^{2}\left(P^{1} \times P^{1}\right)$ there excists a thin subset T such that

$$
\begin{aligned}
& \text { (i) } \forall \phi \neq V \subset V \quad \#(U \cap T)_{H \leqslant B} \gg B \log (B)^{t} \\
& (i i) \#(V C Q)-T)_{H<B} \sim C_{H}(V) B \log (B)^{t-1}
\end{aligned}
$$

Challenge
Which point should we remove?
III Greener of a pint

1) Geometric analog

This notion comes from the analogy with rational curves. Take

Y: $\mathbb{P}^{1} \rightarrow V_{n}$ a moyhism
$\varphi^{*}(T V) \simeq \overbrace{i=1}^{n} G\left(a_{i}\right)$ with $a_{1} \geq \cdots \geqslant a_{n}$ vector bundle on \mathbb{P}^{1}
Deformations of Q cover V if $a_{n} \geqslant 0$
You con even proscribe extra condition like $Y\left(t_{i}\right)=p_{i}$ if a_{n} is big enough. $\operatorname{deg}_{\omega_{v-1}} \varphi=\sum_{i=1}^{n} a_{i} \leftrightarrow \log 0 H$
The couthmetic analog is provided by the notion
of slopes introduced ley J.-B. BOST.
2) Slopes of oithmetic modules

Definition
Let E vedor space $/$ a of $\operatorname{dim} n$ equipped with
(i) $\left\|\|_{\infty}\right.$ euclidean on $E_{R}=E \theta_{Q} \mathbb{R}$
(ii) $\wedge \subset E$ lattice
then deg $E=-\log \left(V_{0} l(N / E)\right)$
coneyonding to the euclidean strudine Any vedor subspace F can be equipped with
$\Lambda_{F}=\Lambda \cap F$ and $\|\cdot\|_{\infty} \|_{F}$
and we con consider it degree
the Newton polygon associated to E is
$P(E)=c o n v e x$ hull $(\{(\operatorname{dim}(F)$, $\widehat{\operatorname{deg}}(F)\})$ This domain is bounded from above. it looks as follows.

$m_{E}:[0, \operatorname{dim}(E)] \rightarrow \mathbb{R}$ the maximum $m_{E}(t)=\max \{y \in \mathbb{R} \mid(t, y) \in P(E)\}$
By construdion this fundion is piecewise affine. And the successive lopes of it graph are $\mu_{i}(E)=m_{E}(i)-m_{E}(l-1)$
for $i \in\{1, \ldots, \operatorname{dim}(E)\}$.
By definition we have, with $n=\operatorname{dim}(E)$

$$
\left\{\begin{array}{l}
\mu_{1}(E) \geqslant \mu_{2}(E) \cdots \geqslant \mu_{n}(E) ; \\
\sum_{i=1}^{n_{1}} \mu_{i}(E)=n
\end{array}\right.
$$

$\frac{3 \text { slopes of a rational point }}{\text { To co this we need some esd }}$
To do this we need some extra data
Let E le a vedor bundle $/ \mathrm{V} P l(Q)=\{\infty\} u\{p p$ pine $\}$
$\left(\|\cdot\|_{w}\right)$ w $P R(Q)$ adelic norm on E :
(i) for any wo $\subset P C(Q)$

$$
\|\cdot\|_{w}: E\left(\mathbb{Q}_{w}\right) \rightarrow \mathbb{R} \geqslant 0
$$

is continuous
(ii) $\forall w \in \mathbb{l e}(Q), \forall x \in V\left(\mathbb{Q}_{w}\right)$

1. $\|_{w \mid E(x)}$ is a w-adic norm, euclidean if $w=\infty$ Qu vector yo a
(iii) For almost all $w\|\cdot\|_{w}$ is definect by a martel z of E
Remark
1) This is Arokelov's geometry point of view to define heights: take a line bundle L with an adelic norm $\left(\|\cdot\|_{w}\right)_{w \in P L(Q)}$

$$
H(x)=\prod_{w \in \operatorname{le}(\mathbb{Q})}\|y\| \sim
$$

where $y \in L(x)-\{0 y$. By the product
formula, it is indejendant of the choice of y.
2) If wo r have a norm on E, we con define one on $\operatorname{det}(E)=n^{n k(E)} E$

Definition

- Atdelic metic on V is an adelic norm on TV
- It defines a norm on $\omega_{V}^{-1}=\operatorname{det}(T V)$ and therefore a height $H . \quad h=\log \circ H$.
- For $x \in V(\mathbb{Q})$ define on $T_{x} V$

$$
-\Lambda_{x}=\left\{y \in T_{x} V \mid \forall p, \quad\|y\|_{p} \leq 1\right\}
$$

$$
\text { lattice in } T_{x} V
$$

- $\|\cdot\|_{v}$ euchde on norm on $T_{x} V_{\mathbb{R}}=V_{\otimes} \mathbb{R}$
- $\mu_{i}(x)=M_{i}\left(T_{x} v\right)$ slopes of x

Remark
Gre has $\left\{\begin{array}{l}\mu_{1}(x) \geqslant \cdots \geqslant \mu_{n}(x) \text { and } \\ \left.\sum_{i=1}^{n} \mu_{i}(x)=\operatorname{deg} C T_{x} v\right)=h(x)\end{array}\right.$
So $h(x) / n$ is $i=1$ mean of the slopes
Def

$$
l(x)=\frac{M_{\min }\left(T_{x}(v)\right.}{h(x) / n} \text { if } \mu_{\min }(x) \geqslant 0<0 \text { otherwise }
$$

Remark

$$
h(x) \in[0,1]
$$

Hope
Get equidistibution for

$$
V(Q)_{H \leqslant A}^{\varepsilon-2}=\{p \in U(Q) \mid H(P) \leqslant B, \quad l(p) \geqslant \varepsilon\}
$$

OK for very single examples pocluct and seams to remove the bod winks in the previous escomptes.
Particular case

$$
\begin{aligned}
& \mathbb{P}^{1} \times \mathbb{p}^{1}<l(x, y)=\frac{\min (h(x), h(g))}{h(x)+h(y)} \mathbb{P}^{1} x \mathbb{P}^{1} \geqslant \underset{\sim}{h(x)}=\log (H(x))
\end{aligned}
$$

Sn $\mathbb{P}^{1} x \mathbb{P}^{1} \quad l(x)>\varepsilon$ removes $a>0$ proportion of points Take $\ell(x)>\varepsilon(B)$ with $\varepsilon(B) \rightarrow 0$ instead?

