

DIOPHANTINE STATISTICS

Emmanuel Peyre

Consider a simple polynomial equation like

$$
X_{1}^{4}+X_{2}^{4}+X_{3}^{4}=X_{4}^{4}
$$

Finding a solution with modern computers ought to be easy：it is enough to check for all triple of integers whether the sum of their fourth powers is itself a fourth power．However，one of the first solution found by N ．Elkies with $X_{1} X_{2} X_{3} \neq 0$ was

$$
95800^{4}+217519^{4}+414560^{4}=422481^{4}
$$

which can not be effectively found with a naive approach．The central question is to be able to locate the solutions either for real topology，or by looking at the reduction modulo N of the coordinates．In other words，one would want to understand the distribution of the solutions of diophantine equations．

As an example，one can cansider the real surface given by the equation

$$
X^{2}+Y^{2}=T(T-1)(T+1)
$$

and the rational solutions on this surface with bounded size；we get figure 1 ．When the bound

Figure 1．Châtelet surface
goes to infinity，is the distribution given by a measure with a continuous density on the surface？ If this is the case why do we see circles on the picture？

Outline

1．First examples．
2．Counting measures，convergence．
3．Accumulating phenomena．
4．Adeles，and adelic measures．
5．Back to examples．
6．Obstructions to density．
7．Equidistribution．
8．Slopes and accumulation．

Prerequisite

This lecture requires no previous knowledge of advanced mathematics and is open to third－ year and fourth－year students who are majoring in mathematics．The necessary notions in alge－ braic number theory and algebraic geometry will be introduced as needed during the lecture．

References

［1］J．－P．Serre，Lectures on the Mordell－Weil theorem，Vieweg \＆Sohn， 1997.
［2］T．Browning，Quantitative Arithmetic of Projective Varieties，Progress in Mathematics，Vol．277， 2010.

Emmanuel Peyre，Institut Fourier，UFR IM ${ }^{2}$ AG，UMR 5582，Université de Grenoble－Alpes，BP 74， 38402 Saint－ Martin d＇Hères CEDEX，France

Łеપł Oןnpou suo！
question is how the rational solutions are distributed relatively to these real or modulo N solutions．More precisely，by putting a bound on the size of

Time ：Every Monday \＆Wednesday（9：00－11：00），From 2016－04－11 to 2016－07－01
yWગIタ＇！eyzuenठ＇6Z uenठ ：ənuəム $\boldsymbol{\wedge}$

：Kq parosuods in

time：2016－03－17 造 views： 158
Diophantine statistics

北 京
Diophantine statistic
2016
11／4／2016 I Introduction，Some history
1）Ceders escample
The theme es want to speak about has a very long history．In modern tarns，I am interested in the solutions of polynomial equations with integral wefficients：

$$
\sum_{i_{1}>i_{n}}^{\text {wefferants: }} a_{i n} x_{1}^{i_{1}}-x_{n}^{i_{n}}=0
$$

with $a_{i, \gamma i_{n}} \in \mathbb{Z}$ ．
The oldest reference Snow to this kind of problem is a babylonian tablet
PLIMPTON 322 by the script used it was probably written 3800 years age．

If you are not fluent in babylonian，let me explain the consent of this tablet．First of all，
the structure should look familiar to you since it is organized like an EXCELL fill with a table of call，except that the line numbers are on the right．Each coll contains a number，except on the top whore you can find the titles of the columns I am going to concentrate on the $2^{\text {nd }}$ and $3^{\text {rd }}$ columns．Hove is a translation of these columns of the tablet
cable

short side	diagonal
119	1699
3367	4825^{*}
4601	6649
12709	18541
65	92

you can easily check that they satisfy the following relations

$$
\begin{aligned}
169^{2}-119^{2} & =120^{2} \\
4825^{2}-3367^{2} & =3456^{2} \\
6649^{2}-4607^{2} & =4800^{2} \\
18541^{2}-12709^{2} & =13500^{2} \\
97^{2}-65^{2} & =72^{2}
\end{aligned}
$$

In other words you get Pythagorean lisle that is solutions of the equation

$$
\text { (*) } \quad x^{2}+y^{2}=z^{2}
$$

Sly motivation in showing you this tablet gas bey ont stressing the ontiquily of Diophantine equations （By the way， 1 would be intersital to know what is the oldest chinese study of a Diophantine equation）
well before DiopHantus（ $2^{\text {nd }}-3^{\text {nd }}$ century $\left.A D\right)$ ．As you can see，some of these numbers are guile large．Lo A natural question is：hov wove babylonians able to produce these ratter large solutions．Shore are at least two posifle answers
1）There are a＂lot of solutions，Later，I will come bock to this statement and make it precise； The second answer whin is related to the foist one is that
2）there is a method to produce all solutions You probably know ir already but let me remind you how it is done
－If $(x, y, z) \neq 0$ in solution $d=\operatorname{gcd}(x, y, z)$ $(x / d, y / d, z / d)$ is also a solution
We may assume (x, y, z) primitive $($ ie $y \operatorname{cd}(x, y z)=1$ ） All babylonian solutions are primitive
－If we look modulo 4 （in $\mathbb{Z} / 4 \mathbb{Z})$ a square is 0 or 1 so looping at the solution in $\mathbb{Z} / L \mathbb{Z}$ since one of the numbers is odd we get that

2 is odd and either x on y s add （mot both of them）By exchanging x and y we may assume x old，y even．$y=2 y^{\prime}$ ， Write

$$
\left(\frac{2-x}{2}\right)\left(\frac{2+x}{2}\right)^{x, y}=y^{, 2}
$$

But if p prime divides x and z it divides z so $\operatorname{gcd}(x, z)=1 \Rightarrow \operatorname{gcd}\left(\frac{2-x}{a^{2}+i t i o n} \frac{2+x}{2}\right)=1$ using the unity of the decomposition of
integers in a proud of prime numbers，we get that $\frac{z-k}{2}$ and $\frac{2+x}{2}$ are squares
$\exists u, v \in \mathbb{Z}^{2}$ ， $\operatorname{gcd}\left(u, v^{2}\right)=1$ and $\frac{1+2}{2}=u^{2} \frac{2-x}{2}=v^{2}$ we get

$$
x=u^{2}-v^{2} \quad y=2 u v \quad z=u^{2}+v^{2}
$$

$3^{\text {rd }}$ table

$$
\begin{aligned}
& (12,5) \rightarrow(119,169) \\
& (27,64) \rightarrow(3367,4825) \\
& (32,75) \rightarrow(4601,6649) \\
& (54,125) \rightarrow(1270918541) \\
& (4,9) \rightarrow(65,97)
\end{aligned}
$$

So it is quite fair to suppose that babylonian knew this method of solving the poblem or a similar one．One can say that Diophantus was the first to witt a book about solving various kind of polynomial equations in several variable with integral equations including equations of higher degree．Gone of his poblem wo r Problem II． 8 rational solutions of

$$
x^{2}+y^{2}=a^{2}
$$

His solution can be interpreted geometrically and gives a moregeomehic interpretation of the previous parametrization．
－$\left\{(x, y, z) \in \mathbb{Z}^{3}\right.$ ，primitive $\left.k x^{2}+y^{2}=z^{2}\right\} \rightarrow \frac{\text { circle } e}{\left\{(x, y) \in Q^{2} x^{2}+y^{2}=1\right\}}$
$(x, g, z) \longrightarrow\left(\frac{x}{z}, \frac{y}{z}\right)$
an obvious point on toe aide
－$M_{\infty}=(-1,0)$ is an obvious point on take aide
 An affine line through M_{∞} has an equation of the form

$$
\text { - } D_{t}: y=t(x+1)
$$

$$
D_{t} \cap e:\left\{\begin{array} { l }
{ x ^ { 2 } + t ^ { 2 } (x + 1) ^ { 2 } = 1 } \\
{ y = t (x + 1) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
(x+1)\left((1+t) x+1-t^{2}\right): 0 \\
y=t(x+1) \\
l
\end{array}\right.\right.
$$

which gives two points $M_{\infty}=(-1,0)$ \＆$\Pi_{t}=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$
taking $t=\frac{u}{v}$ we get $\frac{u^{2}-v^{2}}{v^{2}}, \frac{2 u v}{}$ 位
taking $t=\frac{u}{v}$ we get $\frac{u^{2}-v^{2}}{u^{2}+v^{2}}, \frac{2 u v}{u^{2}+v^{2}}$
which is the previous poranatuzalion．The
paramahization give a precise estimate of the number of primitive solutions with bounded coordinates

$$
\begin{aligned}
& N(B)=\#\left\{(x, y, z) \in \mathbb{z}^{3} \mid(x, y, z) \text { primitive }^{x^{2}+y^{2}=z^{2}},|2| \leq B\right) \\
& =16 \mathbb{N}\left\{(u, v) \in \mathbb{N}^{2} \mid(u, v) \text { primitive, } u^{2}+v^{2} \leqslant B\right\}
\end{aligned}
$$

\uparrow may exchange x, y ，signs；the only difficulty is To deal with the primitive condition

$$
\begin{aligned}
& M(B)=\#\left\{(u, v) \in \mathbb{N}^{2}-\{0\} \mid u^{2}+v^{2} \leq B\right\} \\
& =\operatorname{Area}\left(\left\{(a, v) \in \mathbb{R}_{\geqslant 0}^{2}\left|u^{2}+v^{2} \leq B\right\rangle+G\left(b^{2}\right)=\frac{\pi}{4} B+G\left(B^{1 / 2}\right)\right.\right. \\
& \left.N^{\prime}(B)=M(B)-\sum_{p \text { mini }} \#\left\langle(u, x) \in N^{2}\right| p|u, p| v^{4}, u^{2}+v^{2} \leqslant B\right\rangle
\end{aligned}
$$

if u ，v are divisible P pin by the proud of 2 prime，is removed Alan twice！

$$
+\sum_{P_{1}, p_{2}} \#\left\{(u, v) \in \mathbb{N}^{2}\left|P_{1} P_{2}\right| u, p_{1} p_{1}\left|v, u^{2}+v^{2} \leq B\right\rangle\right.
$$

$=\sum_{d \geqslant 1} \mu(d) M\left(\frac{B}{d^{2}}\right)$ where μ is the Mobiuv function
（i）$\mu(a b)=\mu(a) \mu(b)$ if $\operatorname{gcd}(q, b)=1$
a）

$$
\mu\left(p^{k}\right)=\left\{\begin{array}{ccc}
1 & \text { if } & k=0 \\
-1 & \text { if } & k=1 \\
0 & \text { othenvide }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Moreover } M(B)=0 \text { if } B<1 \\
& \left|N^{\prime}(B)-\sum_{d \leqslant B^{1 / 2}} \mu(d) \frac{B}{d^{2}}\right| \leqslant C \sum_{d \leqslant B^{1 / 2}} \frac{B^{1 / 2}}{d} \& \sum_{d>B^{1 / 2}} \mu(d) \frac{B}{d^{2}}<c^{\prime} B^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { we get } N(B)=16 \times\left(\sum_{d \geqslant 1} \frac{\mu(d)}{d^{2}}\right) \frac{\pi}{4} B+G\left(B^{1 /} \log (B)\right) \\
& \text { But } \sum_{d \geqslant 1} \frac{\mu(d)}{d^{2}}=\prod_{p}\left(\sum_{k} \frac{k\left(p^{k}\right)}{p^{2 k}}\right)=\prod_{p}\left(1-\frac{1}{p^{2}}\right)=\left(\sum_{n \geqslant 1} \frac{1}{n^{2}}\right)^{-1} \\
& \\
& \text { So } N(B) \sim \frac{24}{\pi}=\frac{6}{\pi^{\pi^{2}}} .
\end{aligned}
$$

2）fri inter degree
You may think is sent too much time on the rose． of the aide，but it is a good sandbox example R do nt with． It was in the margin of a translation of the work of Diophantus，nest to this problem that Rionede FERMAT made his famous statement
Last theron of FERMAT（FIRTAT 1762，WILES 1995） fd $x \geqslant 3$ for any $x, y, z \in \mathbb{Z}$

$$
x^{n}+y^{n}=z^{n} \Rightarrow x y z=0
$$

In other words the only solutions are the obvious ones The situation is radically different in dare iwo and for Rifer degrees．Can ne explain that？I am not going to pore Format lar pheoven in 5 minutes； But Dore is a vary simple argument io explain the number of solutions for homogeneous polynomial

$$
F=\sum_{i_{1}+\cdots+i_{n}=\alpha}^{0} a_{i_{11}} \nu^{\prime} m x_{1}^{i 1}-x_{n}^{i_{n}}
$$

Put $C=\sum_{i_{1}-i_{n}}\left|a_{i_{1}-i_{n}}\right|$ ；
If $\left|x_{i}\right| \leq B$ for $i \in\{1,-n\} \quad F\left(x_{1}, 1, x_{n}\right) \leq C B^{\alpha}$ we get a map

$$
\begin{array}{ll}
\mathbb{Z}^{n} n[-B, B]^{n} & {\left[-C B^{d}, C B^{d}\right]} \\
\text { cardinal } n(2 B+1)^{n} & \text { cardinal } 2 C B^{1}
\end{array}
$$

so if one believes that a polynomial fundion behove randomly enough on integers，you may navicly hope that
Clave hope
－If $n>d \approx C B^{n-\alpha}$ solutions
－If $n=d$＂few＂solutions
－If $n<d$ a finite number of solutions（or none） It is of course 100 naive and almost everything can go wrong．Fist there might be
3）EDo few points
a）If there is a primitive solutions in \mathbb{Z}^{h}
there is a now zero one in \mathbb{R}^{n}
escomple
$\sum_{i=1}^{n} a_{i} X^{2}=0$ has no nonzere solution if $a_{i}>0$ for $i \in\{1,-1\}$
b）Even a ring A ，lat us day that $\left(x_{1}, y x_{n}\right) \in A^{n}$ is primitive of $\exists\left(u_{1},-u_{n}\right) \in A^{n}$ st

$$
\sum_{i=1}^{n} u_{i} x_{i}=1
$$

if $F\left(x_{n}, i=1, x_{n}\right)=0$ has a grinstive solution $/ \mathbb{Z}$ it has one in $\mathbb{Z} / M \mathbb{Z}$ for any M
$\frac{\text { sample }}{x^{2}}$
$x^{2}+3 y^{2}+4 z^{2}=0$ has no non zero solution $/ \mathbb{Z}$ ，because it has none $\mathbb{Z} / 9 \mathbb{Z}$ The only squares in $\mathbb{Z} / 3 \mathbb{Z}$ are 0 and $\mathbb{1}$
Thus
$(x, y, z) \in(z d g z)^{3}$ primitive solution
$3 \mid x$ and $3 \mid z \Rightarrow x^{2}+4 z^{2}=0(9)$
Thus $31 y$ absurd \sum ．
Why is the point of these remarks

Fad
a）and b）can be tested with an algouthn S am not daiming that there is an efficient algorithm only that，theorilically，there esabts one．

4）Toe many points
Let us consider Bernoulli＇s lemniscate

$$
\mathcal{L}:\left(x^{2}+y^{2}\right)^{2}-x^{2}+y^{2}=0
$$

Drawing

As for the circle the rational solutions of this equation correspond to the primitive integral solutions of

$$
(*)\left(x^{2}+y^{2}\right)^{2}-x^{2} T^{2}+y^{2} T^{2}=0
$$

of degree four．The degree is strictly bigger than
the number of variables so we should have very fou solutions right？wrong！

For any $t \in \mathbb{Q}$ let e_{r} be the circe centered at (t, t) and passing through $(0,0)$ ．It intersects $\&$ in exactly one more point．$\left\{M_{t},(0,0)\right\}=\varphi_{t} \cap R$ ． Tho give the following paramdingation of the rational solutions：

$$
M_{t}=\left(\frac{t\left(1+t^{2}\right)}{1+t^{4}} / \frac{t\left(1-t^{2}\right)}{1+t^{4}}\right)
$$

From this we con bectuce that \＃of primitive ablutions of (t) with $\max (|x|,|y|, \mid H) \leqslant B$
is \sim cote $B^{1 / 2}$ ．So there are a lo of volutions．The main point for this particular case is that the cure is not smooth sf ne fut

$$
F(x, y)=\left(x^{2}+y^{2}\right)^{2}-x^{2}+y^{2}
$$

$\frac{\partial F}{\partial x}(0,0)=\frac{\partial F}{\partial y}(0,0)=0$ that＇s the way we Produce the ∂y paramatization．So now we are a little bit less naive and our hopes are more reasonole and y con state a few
5 Some positive results
Chronologically the first geneal postlive result is due to Minkowsal over 0
Theorem（MiNKOWSKI，1890）
Let g br a non clegenerate quachatic form with integral coefficients then it has a primitive solutions in 2^{n} if and only if it has a non zero rede solution and a primitive solutions in $\mathbb{Z} N \mathbb{\Vdash}$ for any $N \geqslant 1$ ．
Theorem（ $B \mid$ RCH，1962）
F homogeneous of degree d in n variable sudthot
（i）$F=0$ has a non zero sere solution
（ii）$\forall M \geqslant 2 \quad F$ has a primitive solution in $(Z / M Z)^{n}$
（iii）$d_{x} F=0 \Rightarrow x=0$ in \mathbb{C}^{n}
（w）$n>(d-1) 2^{d}$ a cot of variole
then

$$
\begin{aligned}
& \#\left\{\left(x_{1}, x_{n}\right) \in \mathbb{Z}^{\prime \prime} \mid \text { primitive, } F\left(x_{1},-, y_{n}\right)-0 d \max \left(\left|x_{i}\right|\right) \leq B\right\} \\
& \sim C_{F} B^{n-d}
\end{aligned}
$$

Theorem（Faltings，1983）
If $F(x, y, 2)$ homogeneous of degree $d>3$

Satiofies

$$
\forall x \in \mathbb{C}^{3}, d_{x} F=0 \Rightarrow x=0
$$

then $F(x, y, z)=0$ has a finite number of solutions．
So ur could leliave evoything is settled bur at little loss naive hope

Fhomogeneous
Assume condutions（i）－（iii）of BIRCH＇．Steovem
－If $d \geqslant n$＂few＂solutions
－if den $\sim C_{F} B^{n-d}$ solutions
it is for from sure
6 More problems
a）no solutions
（1） $5 x^{3}+9 y^{3}+10 z^{3}+12 T^{3}=0 \quad$（SW，NNERTOW－D ER）
satisfies（i）－（iii）but has no pinilive solution
Ihs one corresponds to a homogeneous equation bat is rather more complicated to explain so instead
Y am going r_{2} esofoin：
（2）$y^{2}+2^{2}=\left(3 u^{2}-v^{2}\right)\left(v^{2}-2 u^{2}\right) T^{2}$
In that case a＂primitive＂solution ought is
te defined differently．
On can reduce a non trivial solution to one wist

$$
\operatorname{gcd}(u, v)=\operatorname{gcd}(x, y, z)=1
$$

（i）F has u solution \mathbb{R} with $(u, v) \neq 0$ and $(x, y, z) \neq u$
（ii＇）F （zarmizwirh (u, v) and $c x, y, z)$ primitive（I may espain that mudhlater in the leduni）

$$
\text { (iii) } p=(x, y, z, u, u)
$$

$$
d_{p} F=0 \Rightarrow(u, v)=0 \text { and }(x, y, z)=0 \text {. }
$$

But Fhas no＂primitive＂wlution（z．

Sketch of the poof
we use the following quite dosical
Fact which Sam not going ta prove today． $n \in \mathbb{Z}$ is the sum of the squares if and only if
（i）$n \geqslant 0$
（ii）for any prime $p, p \equiv-1(4), v_{p}(n)$ is even nowhere

$$
n=\prod_{p \text { prime }} p^{v_{p}(n)} \text {. }
$$

Those conditions which are relative $R_{0} \mathbb{R}$ and

$$
\begin{align*}
& \text { odd prime numbers imfire } \\
& (f x) n / 2^{v_{2}(n)}=\prod_{p \equiv 1(c)} \prod_{p}(n) \quad \prod_{p}\left(p^{2}\right)^{\frac{v_{p}(n)}{2}} \equiv 1 \tag{4}
\end{align*}
$$

So If（2）has a＂punitive＂solution，

$$
\begin{aligned}
& \text { then }\left(3 u^{2}-v^{2}\right)\left(v^{2}-2 u^{2}\right)>0 \\
& \left.\Rightarrow \frac{v}{u} \in\right]-\sqrt{3},-\sqrt{2}[v] \sqrt{2}, \sqrt{3}[
\end{aligned}
$$

C french notation for open interval．
\Rightarrow In fact， $3 u^{2}-v^{2} \geqslant 0$ and $v^{2}-2 u^{2} \geqslant 0$
Similarly $\quad \subset \operatorname{det}\left(\begin{array}{c}3 \\ 3\end{array}-1\right)=1$

$$
\operatorname{gcd}\left(3 v^{2}-v^{2}, v^{2}-2 v^{2}\right)=\operatorname{ged}\left(v^{2}, v^{2}\right)=1
$$

bo for any prime $p=-1(4)$

$$
\begin{aligned}
& v_{p}\left(3 u^{2}-v^{2}, v^{2}-2 u^{2}\right)=0 \text { (2) } \\
& \Rightarrow v_{p}\left(3 u^{2}-v y=0(2) \text { and } v_{p}\left(v^{2}-2 u^{2}\right)=0(x)\right.
\end{aligned}
$$

This $3 u^{2}-v^{2}$ and $v^{2}-2 u^{2}$ have ta be seas of tiv squares let spook at the condition $(x+)$
－If u \＆v are odd $u^{2} \equiv v^{2}=1$（4）$\Rightarrow v^{2}-2 u^{2} \equiv 3(4)$ which is absurd \＆But they are optime，thees
－If u avon，v old then $3 a^{2}-v^{2}=3(s)$ 立

In 1970 Marin esqlained in his ICM address that the known examples can be esglainad through a new deshudion，now called the BRAUER－MANIN obstudion i his lead to a now question
Question
Is the BRAUER－MANIN obsendition the only one？ Well in some sense the answer is given by the following
Theorem（pavis，Putnam，Robinson，Matijacevic，1970） $\exists F\left(X_{1},-X_{n}, T\right)$（not homogeneous）in 12 ＇vonitle with coefficients in \mathbb{Z} such that there is no algouithon to compute the map

$$
t \longmapsto\left\{\begin{array}{l}
1 \text { if } f\left(x_{1},-x_{M}, t\right)=0 \text { has a solution } \\
0 \text { otherwise }
\end{array}\right.
$$

Remarks
This proves that
Hhebat $10^{\text {rx }}$ problem ：Given a diophantine equation with any number of unknown quabrities and integral coffiaents．Find an algorithm to cetermine if there escists a solution worth intagnol coordenates．You can see this theorem in N wo ways 1）In a negative way as the final blow to the hoe of solving dighontine equations
2）In a positive manes，it means that whatever methods you have found 1 ra pore that a given equation hos no solutions there is somewhere an equation do which it does not only and for which you hove to find anew method and our job will never be cone．
b）Foo many olutions
ctheady with guadrias conider
（1）$x y-z T=0$
There is a map from the set

$$
\left\{\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \in \mathbb{Z}^{4} \mid\left(u_{1}, u_{2}\right),\left(v_{1} v_{2}\right) \text { primituve }\right\}
$$

To the quachic given by

$$
\begin{aligned}
& \left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)(2: 1)\left(u_{1} v_{1}, u_{2} v_{2}, u_{1} v_{2}, u_{2} v_{1}\right) \\
& \max _{i, j}\left(\left|u_{i} v_{j}\right|\right)=\operatorname{mar}\left(\left|u_{1}\right|,\left|u_{2}\right|\right) \max \left(\left|v_{1}\right|\left|v_{2}\right|\right)
\end{aligned}
$$

we get that the cordinoe of the ot of primiture solulions with borended coondinates in
$\frac{1}{2} \sum_{\left(l_{1}, u_{2}\right)} \#\left\langle\left(u_{1}, v_{2}\right)\right.$ primitumiture $\left.\max \left(\left|v_{1}\right|,\left|v_{2}\right|\right) \leq \frac{B}{\max \left(\left|u_{1}\right|,\left|u_{2}\right|\right)}\right\rangle$
$\max \left(\left|u_{1}\right| / \mid u_{n}\right) \leq \beta$
With a semilor argument is the one given
for points in a clish

$$
\begin{aligned}
& \sim \frac{1}{2} \sum_{d \leq B} \sum_{\substack{(u, v) \text { primiman }}} \frac{4 \times 6}{\pi^{2}} \frac{B^{2}}{d^{2}} \sim 4\left(\frac{6}{\pi^{2}}\right)^{2} B^{2} \log (B) \\
& \sim \frac{6}{\pi^{2}} d \\
& \sim(|u|)|v|)=d
\end{aligned}
$$

$$
B^{n-d} \log (B)^{t-1}
$$

for nome geometrical invariont t of the quadric
（2）$\sum_{i=0}^{3} x_{i}^{3}=0$ abbic sunfoce esgeded $B(\log B)^{t-1}$
Gver © ，pojedive cubres surfores contain 27 sinos．

This particular surface contains the srojedure line

$$
x_{1}=-x_{2}, x_{3}=-x_{4}
$$

and the one obtained by permutations

$$
(u, v) \text { primitive } \stackrel{>}{0^{2}}(u,-u, v,-v)
$$

give \sim ate B^{2} solutions
But it tums out
Conjecture（BatXREv－Manin）still open On a cubic surface the number of volution with hounded coordinate outside the 27 line is the esgeded one．
This is the first escomple of accumulating subset And there are more complicated excomples of accumulating subset
Problem
How ta characterize a cumulating subsets？

Diophantine statistics

Emmanuel Peyre

Université Grenoble Alpes
北京大学

History（18th century bc．）

The old babylonian clay tablet called＂Plimpton 322＂

Short Side	Diagonal
119	169
3367	4825^{*}
4601	6649
12709	18541
65	97
319	481
2291	3541
799	1249

[^0]
Translation

Short Side	Diagonal
119	169
3367	4825^{*}
4601	6649
12709	18541
65	97
319	481
2291	3541
799	1249

＊Corrected value

$$
\begin{aligned}
169^{2}-119^{2} & =120^{2} \\
4825^{2}-3367^{2} & =3456^{2} \\
6649^{2}-4601^{2} & =4800^{2} \\
18541^{2}-12709^{2} & =13500^{2} \\
97^{2}-65^{2} & =72^{2} \\
481^{2}-319^{2} & =360^{2} \\
3541^{2}-2291^{2} & =2700^{2} \\
1249^{2}-799^{2} & =960^{2}
\end{aligned}
$$

Integral solutions of $X^{2}+Y^{2}=Z^{2}$

u	v	$2 u v$	$u^{2}-v^{2}$	$u^{2}+v^{2}$
12	5	120	119	169
64	27	3456	3367	4825^{*}
75	32	4800	4601	6649
125	54	13500	12709	18541
9	4	72	65	97
20	9	360	319	481
54	25	2700	2291	3541
32	15	960	799	1249

Diophantus（2nd－3rd century ad）

－$X^{2}+Y^{2}=1$ defines a circle of radius 1 ；

Diophantus（2nd－3rd century ad）

－$X^{2}+Y^{2}=1$ defines a circle of radius 1 ；
－$M_{0}=(-1,0)$ is a point on this circle ；

Diophantus（2nd－3rd century ad）

－$X^{2}+Y^{2}=1$ defines a circle of radius 1 ；
－$M_{0}=(-1,0)$ is a point on this circle ；
－The equation $Y=t(X+1)$ defines a line D_{t} through this point；

Diophantus（2nd－3rd century ad）

－$X^{2}+Y^{2}=1$ defines a circle of radius 1 ；
－$M_{0}=(-1,0)$ is a point on this circle ；
－The equation $Y=t(X+1)$ defines a line D_{t} through this point；
－Let M_{t} be the second point of intersection of D_{t} with the circle ；

Points in a disk

$$
\left|\sharp\left\{(u, v) \in \mathbf{N}^{2} \mid 0<u^{2}+v^{2} \leqslant B\right\}-\pi(\sqrt{B})^{2}\right| \leqslant C \sqrt{B} .
$$

$$
\left(X^{2}+Y^{2}\right)^{2}-X^{2}+Y^{2}=0
$$

$$
\left\{\begin{array}{l}
x=\frac{t\left(1+t^{2}\right)}{1+t^{4}} \\
y=\frac{t\left(1-t^{2}\right)}{1+t^{4}}
\end{array}\right.
$$

Matijacevič＇s theorem

Theorem（Davis，Putnam，Robinson，Matijacevič，et al．（1970））

There exists a polynomial $P\left(X_{1}, \ldots, X_{11}, T\right)$ in 12 variables with integral coefficients such that the application mapping a integer n to

$$
\left\{\begin{array}{l}
1 \text { if } P\left(X_{1}, \ldots, X_{11}, n\right)=0 \text { has a solution } \\
0 \text { otherwise }
\end{array}\right.
$$

can not be computed with an algorithm．

In particular，Hilbert＇s tenth problem can not be solved．

Hilbert＇s tenth problem

Hilbert gave during the 1900 International Congress of Mathemati－ cians a list of the problems he thought the most important for the 20th century．

10．Entscheidung der Lösbarkeit einer diophanti－ schen Gleichung．Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt ：man soll ein Verfah－ ren angeben，nach welchen sich mittels einer endlichen Anzahl von Operationen entscheiden lässt，ob die Glei－ chung in ganzen rationalen Zahlen lösbar ist．
10．Determination of the solvability of a Diophantine equation．
Given a diophantine equation with any number of unknown quanti－ ties and with rational integral numerical coefficients：To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers．

141412016 Today，s am going to explain move precisely very elementary escamples．My aim is to have a move please idea about what con be esgeded when counting volutions of equations with bounded coordinates
II Elementary examples
1）The projective of ace
a）points on $\mathbb{T P}^{n}$
Def／rotation
－Ret A be a commutative ring not necessarily integral such that any ideal of A is generated by one element（eg $\mathbb{Z}(n \nsim)$
Such a ring is called a prinapal ideal ring
－For such a ring－，
$\mathbb{P}^{n}(A)=\left\{\right.$ primitive dement in $\left.A^{n+1}\right\} / A^{*}$ whore A^{*} is the group of invertite elements in A．I denote by
$\pi:\left\{\right.$ primitive elements in $\left.A^{n+1}\right\} \rightarrow \mathbb{P}^{n}(A)$
the proje dion and put

$$
\left[x_{0}:-: x_{n}\right]=\pi\left(x_{0},-x_{n}\right)
$$

for $\left(x_{0},, x_{n}\right) \in A^{n+1}$
$\left(x_{0},, x_{n}\right)$ are colled homogeneous coordinates of the point $\left[x_{0}:-: x_{n}\right]$ ．
－Let A be a commutative ring and let $F_{1},, F_{\Omega} \in A\left[T_{0},-, T_{n}\right]$
be homogeneous polynomials
We put $I=\left(F_{1}, \rightarrow F_{r}\right)$ the ideal generated by $\left\{F_{1},-F_{r}\right\}$
For any A－algelra B which is a prinajol ideal sing，we can define
this condition does not depend on te dace of lomajeneous coordinate

$$
V_{I}(B)=\left\{\left[x_{0}:-: x_{n}\right] \in \mathbb{P}^{n}(B) \mid \nabla_{i \in\{1,-, n\}}^{\text {Parks }}, F \cdot\left(x_{0}, x_{n}\right)=0\right]
$$

－For a fired primitre＝non zara．
－If $4: B \rightarrow C$ is a moyhirm of A－algebras which are prinajal ideal rings then we have a map

$$
\begin{aligned}
& { }^{T} \varphi: \mathbb{P}^{n}(B) \longrightarrow \mathbb{P}^{n}(C) \\
& {\left[b_{0}: b_{1}:-: b_{n}\right] \longmapsto\left[\varphi\left(b_{0}\right): \varphi\left(b_{1}\right):-: \varphi\left(b_{n}\right)\right]}
\end{aligned}
$$

Indeed

$$
\text { If } \sum_{i=0}^{n} u_{i} b_{i}=1 \quad \text { then } \sum_{i=0}^{n} \varphi\left(u_{i}\right) \varphi\left(b_{i}\right)=0
$$

So 4 maps primitive elements to primitive elements and envoritic elements to invertible elements

$$
\varphi\left(V_{I}(B)\right) \subset V_{I}(C)
$$

we get a map $\varphi: V_{D}(B) \rightarrow V_{I}(C)$
Example
GRe map $\mathbb{P}^{n}(\mathbb{Z}) \rightarrow \mathbb{P}^{n}(\mathbb{Q})$ is bijedive Indeed，take $\left(x_{0},-, x_{n}\right) \in Q^{n+1}$（o）let u be least common multiple of the denominators

$$
\begin{aligned}
& d=\operatorname{gcd}\left(u x_{0},-u x_{n}\right) \in \mathbb{X}^{n+1} \\
& {\left[x_{0}-: x_{n}\right]=\left[\frac{u x_{0}}{d}:-: \frac{u x_{n}}{d}\right] \text { and }} \\
& \left(\frac{u x_{0}}{d},-\frac{u x_{n}}{d}\right) \text { is pimilue in } \mathbb{Z}^{n+1}
\end{aligned}
$$

b）Elementary height
Definition
Let $\|$ ．$\|_{\infty}$ be a norm on \mathbb{R}^{n+1}

Is remind you Rat any two norms are equivalent on \mathbb{R}^{n+1} ．
we define the exponential height associated $\mathbb{I}\left(1 \|_{\infty}\right.$ as a function $H: \mathbb{P}^{n}(\mathbb{Q}) \rightarrow \mathbb{R}_{2} 0$ defined
by

$$
H\left(\left[x_{0}:-x_{n}\right]\right)=\left\|\left(x_{0},-, x_{n}\right)\right\|_{\infty}
$$

if $\left(x_{0},-x_{n}\right) \in \mathbb{z}^{n+1}$ is primitive
Examples
As nouns，we may lake

$$
\begin{aligned}
& \left\|\left(x_{0},-1, x_{n}\right)\right\|_{\infty}=\max _{0 \leq i \leq n}\left|x_{i}\right| . \\
& \left\|\left(x_{0},-, x_{n}\right)\right\|_{\infty}=\sqrt{\sum_{i=0}^{n} x_{i}^{2}} .
\end{aligned}
$$

or

Notation
$F_{1},-F_{\Omega} \in \mathbb{Z}\left[x_{0},-X_{n}\right]$ homogeneous which defences V
H defined by $\left\|\|_{\infty}\right.$ on $P^{n}(Q)$
$W \subset V(Q) \subset \mathbb{P}^{N}(0)$ any subset but what follows will be interesting only for infinite W

$$
W_{H \leqslant B}=\{P \in W|H(P) \leq B\rangle
$$

NB
Tho set is finite ge is enough ra prove it for $I P^{n}(Q)$ and we are going to pore a move preax statement
b）Result
dotation

$$
\# X=\text { cardinal of } X \text {. }
$$

Proposition

$$
\frac{\text { Proposition }}{\# P^{n}((Q)} H \leq B \frac{\operatorname{Vol}(B(0,1))}{2 \times 3(n+1)} B^{n+1}+\left\{\begin{array}{l}
G\left(B^{n}\right) \text { of } n \geqslant 2 \\
G(B \log (B) \text { if } n=1 .
\end{array}\right.
$$

when $\mathbb{B}(\underline{r}, r)=\left\{\underline{y} \in \mathbb{R}^{n+1} \mid\|y-\underline{x}\|_{\infty}<r\right\}$ ．
Proof

$$
\begin{aligned}
& =\frac{1}{2} \sum_{d \geqslant 1} \mu(d) \#\left\{\left(x_{0},-x_{n}\right) \in(d Z)^{n+1}-\left\{0_{0}\right)\left\|\left(x_{0},-, x_{n}\right)\right\|_{\infty} \leq B\right\} \\
& =\frac{1}{2} \sum_{d \geqslant 2} \mu(d) M\left(\frac{B}{d}\right) \\
& \text { where } M(B)=\# \overbrace{\left\{\underline{x} \in \mathbb{Z}^{n+1}-\{0\rangle \mid\|x\|_{\infty} \leqslant B\right\}}^{d} \\
& \text { for } x \in \mathbb{R}^{n+1} \text { write } C_{x}=x+[9,1]^{n+1}
\end{aligned}
$$ stol cube of size 1 at x ．We have implication $C_{x} \subset \mathbb{B}_{n \cdot \|_{\infty}}(0, B) \Rightarrow\|x\|_{\infty} \leqslant B \Rightarrow C_{x} \cap B_{\|\cdot\| \|_{\infty}}(0, B) \neq \phi$

Set $\alpha, \beta>0$ be oud that，for any $\left(x_{0},-, x_{-1}\right) \in \mathbb{R}_{1}^{n+1}$

$$
\begin{aligned}
& \alpha \max _{0 \leq i \leq n}\left(\left|x_{i}\right|\right) \leq\left\|\left(x_{0},-, x_{n}\right)\right\|_{\infty} \leq \beta \operatorname{mox}_{0 \leq i \leqslant n}\left(\left|x_{i}\right|\right) \\
& \forall y \in C_{\underline{x}} \max _{0 \leq i \leq n}\left(\left|y_{i}-x\right|\right) \leq 1 \text { and thus }\|y-x\| \leq \beta \\
& M(B)=\operatorname{Vol}(\underset{x}{U} \in \mathbb{N}(B) \underline{x})-1 \\
& \operatorname{Vol}\left(U r_{x}\right) \leqslant M(B)+1 \leqslant \operatorname{Vop}\left(U C_{x}\right) \\
& C_{x} C B(0, B) \quad C_{x} \cap B(0, B) \neq \phi \\
& \leqslant \operatorname{Vr}(B(0, B)) \leq
\end{aligned}
$$

$$
\begin{aligned}
& |M(B)-\operatorname{VR}(B(O, B))| \leq 1+\operatorname{Vol}\left(U C_{x}\right) \\
& C_{x} \cap \partial \beta(0, \beta) \neq \phi \\
& \left.\leqslant 1+\operatorname{Vol}\left(y \in \mathbb{R}^{n+1} \mid d(y,) B(0, B)\right) \leqslant \beta\right\} \\
& \leqslant 1+\operatorname{Vol}(B(O, B+\beta))-\operatorname{Vof}(B(0, B-\beta)) \\
& =1+\operatorname{Vol}(B(B, 1))\left[(B+\beta)^{n+1}-(B-\beta)^{n}\right] \\
& \leqslant C B^{n} \text { for } B \geqslant \alpha \text {. }
\end{aligned}
$$

Moreover $M(B)=0$ if $B<\alpha$ ．
since $\|\underline{x}\|_{\infty}<\alpha \Rightarrow \max _{c \leq i \leq n}\left|u_{i}\right|<1 \Rightarrow \underline{x}=0$ ．

$$
\begin{aligned}
& \left|\# \mathbb{P}^{n}(Q)_{H \leqslant B}-\frac{1}{2}\left(\sum_{d \leq \frac{B}{\alpha}} \mu(d) \frac{V_{o l}(B(0,1))}{d^{n+1}}\right) B^{n+1}\right| \\
& \leqslant C \sum_{d \leqslant \frac{B}{\alpha}} \frac{|\mu(d)|}{\leqslant 1}\left(\frac{B}{d}\right)^{n} \leqslant C B^{n} \sum_{d \leqslant \frac{B}{\alpha}} \frac{1}{d^{n}} \\
& \leqslant 2\left\{\begin{array}{l}
\text { caste if } n>1 \\
1+\log \left(\frac{\beta}{2}\right) \text { i } n=1
\end{array}\right. \\
& \text { and }\left|\sum_{d>\frac{B}{\alpha}} \mu(d) \frac{1}{d^{n+1}}\right|<\sum_{d>\frac{B}{\alpha}} \frac{1}{d^{n+1}} \leqslant 2\left(\frac{\alpha}{B}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
\left(\sum_{d \geqslant 1}^{\text {ac }} r(d) \frac{1}{d^{n+1}}\right)^{-1} & =\prod_{p \text { prime }}\left(1-\frac{1}{p^{n+1}}\right)^{-1}=\prod_{p_{\text {pink }}}\left(\sum_{k \geqslant 0} p^{-k(n+1)}\right) \\
& =\sum_{d \geqslant 1}^{d^{n+1}}=3(n+1) .
\end{aligned}
$$

Which conclude r the poof a
The nice point of this statement is that we see preasily how the main Term in asymptotic behaviour degends on the chore of the nom on \mathbb{R}^{n+1} ．

The second example i want to peak about is the product of 2 projective spaces

2）The product of two projedive spaces a）Sleighs

Tint of all 3 have to realize it as V_{I} for some ideal I generated by homogeneous polynomial．Choose $a_{1}, a_{2} \geqslant 1$

$$
\begin{aligned}
& \phi_{a, b}: \mathbb{P}_{\mathbb{Q}}^{m} \times \mathbb{P}_{a}^{n} \rightarrow \mathbb{P}_{\mathbb{Q}}^{N} \\
& \left.\phi_{a, b}: \mathbb{P}_{\mathbb{Q}} \times \mathbb{P}_{a},\left[x_{0}:-x_{m}\right],\left[y_{0}:-: y_{n}\right]\right) \longmapsto\left[\mathbb{P}_{Q}^{N}\left(x_{0}, \ldots, x_{n}, y_{0},-, y_{n}\right)_{M \in \mathbb{H}}\right] \\
& \mathcal{M}=\left\{\prod_{i=0}^{m} x_{i}^{\alpha_{i}} \prod_{j=0}^{n} y_{j}^{\beta_{j}}, \quad \sum_{i=0}^{m} \alpha_{1}=a \& \sum_{j=0}^{m} \beta_{j}=b\right\} \\
& N=\# M-1 \\
& \left.I=\left\{P \in Z\left[X_{M}, M \in \mathcal{M}\right] \mid P(M)_{M \in \mu}\right)=0\right] \\
& \text { for example } \left.T_{0}^{T} x_{0}^{a} y_{0}^{b}\right)^{\top} x_{1}^{a} y_{1}^{b}-T^{T} x_{0}^{a} y_{1}^{b}{ }^{\left.M \in \frac{a l}{1} x_{1}^{a} y_{0}^{b}\right)}
\end{aligned}
$$

$M \in M$
I is an ideal generated by a finite number of homonereous polynomials

$$
\phi_{a, b}: \mathbb{P}^{m}(\mathbb{Q}) \times \mathbb{P}^{n}(\mathbb{Q}) \rightarrow V_{I}(\mathbb{Q}) \subset \mathbb{P}^{N}(\mathbb{Q})
$$

is a byedive map．
Ytake for $\left(x_{m}\right)_{m \in M} \in \mathbb{R}^{M}$

$$
\left\|\left(t_{m}\right)_{m \in M}\right\|_{\infty}=\max _{m \in N}\left|t_{m}\right|
$$

$$
\begin{aligned}
& \text { Then } \\
& \left\|\left(M\left(x_{0},-x_{m}, y_{0},-y_{n}\right)\right)_{M \in M}\right\|_{\infty}=\left\|\left(x_{0}, \tau x_{m}\right)\right\|_{\infty}^{a}\left\|\left(y_{0}, y, y_{\infty}\right)\right\|_{\infty}^{b} \\
& \text { if } \\
& \left\|\left(x_{0},-x_{m}\right)\right\|_{\infty}=\max _{0 \leq 1 \leq n}\left|v_{i}\right| \\
& \left\|\left(y_{0},-, y_{m}\right)\right\|_{\infty}=\underset{0 \leq j \leq n}{\max _{j \leq n}\left|y_{j}\right| .}
\end{aligned}
$$

we get

$$
\begin{gathered}
H_{a, b}(P, Q)=H\left(\phi_{a, b}(P, Q)\right)=H(P)^{a} H(Q)^{b} \text { definition } . ~ \\
\text { get } \\
\text {. } \\
\text {. } \\
\text {. }
\end{gathered}
$$

Progestion \checkmark definition
The cardinal $\#\left(\mathbb{P}^{m} \subset(Q) \times \mathbb{P}^{n}(Q)\right)_{H_{a, b} \leqslant B}$ is
equivalent (Q)
（i）$\left(\sum_{P \in \mathbb{P}^{m}(Q)} \frac{1}{H(P)^{\frac{a}{b}(n+1)}}\right) C\left(\mathbb{P}^{n}(Q)\right) B^{\frac{n+1}{b}}$ if $\frac{a}{b}>\frac{m+1}{n+1}$
（ii）$\left(\sum_{P \in \mathbb{P}^{m}}(\mathbb{Q}) \frac{1}{H(P)^{\frac{b}{a}(m+1)}}\right) \subset\left(\mathbb{P}^{m}(Q)\right) B^{\frac{m+1}{a}}$ if $\frac{b}{a}>\frac{n+1}{m+1}$
（iii）$C\left(\mathbb{P}^{m}(Q)\right) \subset\left(\mathbb{P}^{n}(Q)\right) B^{\frac{m+1}{a}} \log \left(B^{\frac{m+1}{a}}\right)$ if $\frac{b}{a}=\frac{n+1}{m+1}$
Remarks
（i）First excample with a power of log One has to ooglain this phenomena
（ii）if $\frac{a}{b}>\frac{m+1}{n+1}$ Take $P \in \mathbb{P}^{m}(Q)$

$$
\begin{gathered}
{P r_{1}: \mathbb{P}^{m}(Q) \times \mathbb{P}^{n}(Q) \rightarrow \mathbb{P}^{m}(Q) 1^{\text {st }} \text { projection }}^{\#\left(\mathbb{P}_{1}^{-1}(P)\right)_{H_{a, b}} \leq B=\#\left\{Q \in \mathbb{P}^{n}(Q) \left\lvert\, H(Q)^{b} \leqslant \frac{B}{H()^{a}}\right.\right\}} \begin{aligned}
& \sim \subset\left(\mathbb{P}^{n}(Q)\right)\left(\frac{B}{H(P)^{a}}\right)^{\frac{n+1}{b}}
\end{aligned} .
\end{gathered}
$$

So the main term is in fact the sum of the main terms on each fire and

The contribution of each fine is not negligeable whereas if $\frac{a}{m+1}=\frac{b}{n+1}$ the contribution of each fibre
is regligeable．Lat me show you 4 pictures．

Proof

$$
\begin{aligned}
& \# \mathbb{P}^{m}(Q) \times \mathbb{P}^{n}(Q)_{H_{a, b} \leqslant B} \\
& =\sum_{P \in P^{m}(Q)} \#\left(P_{1}^{-1}(P)\right)_{H_{a, b} \leq B} \\
& =\sum_{P \in \mathbb{P}^{m}(Q)} \frac{\left\{Q \in \mathbb{P}^{n}(a) \left\lvert\, H(Q) \leqslant\left(\frac{B}{H(P)^{a}}\right)^{\frac{1}{b}}\right.\right\}}{11}{ }^{1}{ }^{\left.1\left(\mathbb{P}^{n}(Q)\right)\left(\frac{B}{H(P)^{a}}\right)^{\frac{n+1}{b}}+O\left(\frac{B}{H(P)^{a}}\right)^{\frac{n}{b}}+\varepsilon\right)}
\end{aligned}
$$

Lemma

$$
{ }_{\text {Assume that }} \rightarrow \mathbb{R}_{0} \quad X_{f \leq B}=\{x \in X \mid f(x) \leq B\}
$$

Assume that

$$
\begin{aligned}
& \text { sure that } \\
& \text { \# } X_{t \leq B} \sim C B^{a} \log (B)^{b-1} \\
& \text { is finite }
\end{aligned}
$$

Then $\sum_{x \in \mathbb{C}} \frac{1}{f(x)^{s}} \begin{cases}\text { converges if } \operatorname{Re}(s)>a \\ \text { diverges if } s \in \mathbb{R}, s<a\end{cases}$
Proof
I am going to use STIELTJIES notations （See TENENB AUM，Introdudion to onolylue and pobabilitic number theory I．0．1）
let $g: \mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}_{\geqslant 0}$

$$
s=\sigma+i t
$$

then $\sum_{x \in x \mid} \frac{1}{\left|f(x)^{s}\right|}=\int_{0}^{+\infty} \frac{1 t}{t^{\sigma}} d g(t)$

$$
\sigma, \tau \in \mathbb{R}
$$

$$
\left(\int_{a}^{b} h d g(t)=\sum_{\{x \in x, a<f(x) \leq b\}} h(f(x))\right)
$$

Abel summation gives if h is of $\operatorname{diss}_{b} l_{b}^{2}$
So

$$
\begin{aligned}
& \text { summation gives if } \left.h \text { is of diss } \int_{a}^{b} h d g(t)=[h(r) g(t)]_{a}^{b}-\int_{a}^{\prime} / k\right) g(t) d t
\end{aligned}
$$

$$
\sum_{x \in x} \frac{1}{\left|f(x)^{s}\right|}=0+\int_{0}^{+\infty} \frac{\sigma}{t^{\sigma+1}} \frac{g(t)}{\sigma \text { for } t \text { small }} d t
$$

But $g(t)<c_{\varepsilon} t^{a+\varepsilon}$ for any $\varepsilon>0$ ．
So the integral converge if $\sigma>a$ also $g(t)>C_{\varepsilon}^{\prime} f^{-a-\varepsilon}$
So the integral diverges if $\sigma<a$ ．
The first two statements follow from the lemma
It remains to consider the equality cone
End of the poof
ctosume $\frac{a}{m+1}=\frac{b}{m+1}$
we have compute
we have $\left.\sum_{p \in \mathbb{P}^{m}(Q)_{H^{a} \leqslant B}^{m+1} \text { compute }}\left(C\left(P^{n}(Q)\right)\left(\frac{B}{H(P)^{a}}\right)^{\frac{n+1}{b}}+G\left(\frac{B}{H(P)^{a}}\right)^{\frac{n}{b}+\varepsilon}\right)\right)$

$$
\text { Q) } H^{a} \leqslant B
$$

Write $g(t)=\# \mathbb{P}^{m}(Q)_{\text {H }}$
we have \sqrt{a} compute $H \leq t 1 / a$
$\int_{1}^{B} \frac{1}{t^{\frac{a}{b}}(n+1)} d(t)=\left[\frac{g(t)}{t\left(\frac{a}{b}(n+1)\right.}\right]_{1}^{B}+\int_{1}^{B^{1 / a}} \frac{\frac{d}{b}(n+1)}{t^{\frac{a}{b}(n+1)+1}} g(t) d t$
But $g(t)=C\left(\mathbb{P}^{m}(Q)\right) t^{m+1}+O\left(t^{m+\varepsilon}\right)$

Diophantine statistics

Emmanuel Peyre

Université Grenoble Alpes
北京大学
$\mathrm{P}^{2}(\mathrm{Q})$
$\mathrm{P}^{1}(\mathrm{Q}) \times \mathrm{P}^{1}(\mathrm{Q})$

$\mathrm{P}^{1}(\mathrm{Q}) \times \mathrm{P}^{1}(\mathrm{Q})$

$\mathrm{P}^{1}(\mathrm{Q}) \times \mathrm{P}^{1}(\mathrm{Q})$

Plane blown in a point

Since $\frac{m+1}{a}=\frac{n+1}{b}$, We get

$$
\begin{aligned}
& \#\left(\mathbb{P}^{m}\left((a) \times \mathbb{P}^{n}((\alpha))\right)_{H_{a, b} \leq B}\right. \\
& =C\left(\mathbb{P}^{m}(a)\right) \subset\left(\mathbb{P}^{n}((a)) B^{\frac{n+1}{b}} \frac{\frac{a}{b}(n+1) \int_{1}^{B^{1 / a}} \frac{1}{t} \text { ever term }}{\frac{\log \left(B^{\frac{n+1}{b}}\right)}{} d t(B)}\right.
\end{aligned}
$$

For the error Term $B^{\frac{x+1}{b}}$
$E(B)<$ Cote
set us turn to our last example today 18／4／2016 3）The plane blown up in a point
a）The result
$V \subset \mathbb{P}^{2} \times \mathbb{P}^{1}$ equation $\quad \begin{aligned} y u & =x v \\ & x: y: z][u ; v]\end{aligned}$

$$
\begin{aligned}
& \quad[x: y: z][u: v] \\
& \pi=P r_{1}: V \rightarrow \mathbb{P}^{2} \\
& \pi^{\cdot 1}(P)=\left\{\begin{array}{l}
\{([x: y: z][y: x])\} \\
\left\{([0: 0: 1],[u: v]),(v, v] \in \mathbb{P}^{1}(Q Q)\right)^{i f} \cdot P P=P_{0}=[0: 0: 1] \in P_{0}^{2}(Q
\end{array}\right.
\end{aligned}
$$

Drawing

$$
\begin{aligned}
& E=\pi^{-1}\left(P_{0}\right) \subset V(U) \\
& U=V(Q)-\pi)^{-1}\left(P_{0}\right) \\
& A-B=\{x \in A \mid x \notin B\} .
\end{aligned}
$$

Again there is a two parameters family of heights

$$
\begin{aligned}
& \text { heights } \\
& \quad H_{a, b}((P, Q))=H(P)^{a} H(Q)^{b} \\
& \|(x, y, 2)\|_{0}=\sqrt{x^{2}+y^{2}++^{2}}\|(u, v)\|_{\infty}=\sqrt{u^{2}+v^{2}}
\end{aligned}
$$

sewed as benchmark of the the ry
Theorem（SERRE，MAMN，BATYREV \＆TSCHINHEL）
－Assume $b>0$

$$
\begin{aligned}
& \text { \# } E_{H \sum B}=\left(C \mathbb{P}^{1}\right) B^{\frac{2}{b}} \\
& \text { ne } a+b^{\prime}>0 \text { and } a>0
\end{aligned}
$$

Assume $a+b>0$ and $a>0$

Remarks

$$
\begin{aligned}
& \text { - \# } U_{H_{a, b \leq B}}=\sigma\left(\# E_{H_{a, b \leq B}}\right) \text { if } b<a \\
& \text { - } \lim _{B \rightarrow+\infty} \frac{\# p \Omega_{2}^{-1}(\mathbb{Q})_{H_{a, b} \leq B}}{\# \cup(\mathbb{Q})_{H_{a, b \leq R}}}>0 \text { if and only if } \frac{3}{a+b}<\frac{2}{a}
\end{aligned}
$$

So we have various behaviour about the contribution of strict subvorictios thai we have 18 asglain．
b）Beginning of the prof main term
－Let us start with E

$$
\begin{aligned}
& \text { rus start with } E \\
& H_{a, b}\left([0: 0: 0, Q)=H(Q)^{b}\right.
\end{aligned}
$$

Thus we con deduce this port of the result from the cove of \mathbb{P}^{n}
－From now on we restid ourselves ra U ie $(x, y) \neq(0,0)$
consider $(x, y, z, u, v) \leftarrow \mathbb{Z}^{5}$
$\operatorname{gcd}(x, y, 2)=1, \operatorname{gcd}(u, u)=1, \quad u y=v x$ We jut $d=\operatorname{ged}(x, y)$ then

$$
u=\varepsilon \frac{y}{d} / v=\varepsilon \frac{x}{d} \text { with } \varepsilon \in\{-1,1\}
$$

We can poramatinge the joints of V by

$$
\left\{(u, v, d, z) \in u^{4} \mid \operatorname{ged}(u, v)=\operatorname{ged}(d, z)=1\right) \xrightarrow{s}
$$

$V(Q)$
Given a joint P in u ，u ，

$$
\text { sign of }(v, v)>\text { © sign of }(d, z) \text {. }
$$

$$
\text { \# } u,-n=1 \nVdash\left((u v, d, z)+u^{4} \left\lvert\, \begin{array}{l}
\operatorname{ged}(u, v)=\operatorname{ged}(d, v)=1 \\
d \neq 0
\end{array}\right.\right]
$$

$$
\left\lvert\, \begin{aligned}
& d \neq 0 \\
& \sqrt{u^{2}+v^{2}} \sqrt[b]{x^{2}+d^{2}\left(u^{2}+v^{2}\right)} \leq \frac{a}{6 B}
\end{aligned}\right.
$$

$$
\left.\left\lvert\, \begin{array}{c}
\operatorname{gcd}(d, 2)=1, d \neq 0 \\
\sqrt{x^{2}+h^{2} d^{2}} \leq \frac{B}{h^{b}}
\end{array}\right.\right\}
$$

where $h=H(u, v)$
To estimate this we may again ably the cone

$$
\begin{gathered}
N_{(u, v)}(B)=\frac{1}{\tau(2)} \operatorname{Vol}\left((d, 2) \in \mathbb{R}^{2} \left\lvert\, \sqrt{x^{2}+l^{2} d^{2}} \leqslant \frac{p}{h^{b}}\right.\right)
\end{gathered}
$$

$$
\begin{aligned}
& \longrightarrow \frac{B^{1 / a}}{\longrightarrow \frac{B^{1 / a}}{h^{\frac{a+b}{a}}}} \text { we get } \pi \frac{B^{2 / a}}{h^{\frac{a+2 b}{a}}} \\
& \text { for the main term. }
\end{aligned}
$$

Let us consider only the main term
We have found

$$
\begin{aligned}
& \text { have found } \\
& \operatorname{MT}(B)=\frac{1}{2} \sum_{Q \in \mathbb{P}^{1}(Q)} \frac{\pi}{\frac{1}{3(2)}} \frac{B^{2 / a}}{H(\alpha) \frac{a+2 b}{a}} \\
& \text { us put }
\end{aligned}
$$

Let us put

$$
f(t)=\frac{1}{t-\frac{a+2 b}{a}} \text { and } g(t)=\# \mathbb{P}^{1}(Q)_{H \leqslant t}
$$

$$
\begin{aligned}
& \# \rho^{-1}(P)=2 \times 2 \\
& \# U_{H_{a, b} \leq B}=\frac{1}{4} k(u, v, d, z) r w^{4} \\
& \begin{array}{l}
=\sum_{(u, v) \in \mathbb{Z}^{24}} \frac{1}{} \neq\left\{(d, z) \in \mathbb{Z}^{2}\right. \\
\begin{array}{l}
g<d(u, v)=1 \\
H(u, v)^{a+b} \leqslant B \quad N_{(v, v)}(B)
\end{array}
\end{array}
\end{aligned}
$$

So we can wite

$$
\operatorname{MT}(B)=\frac{\pi}{2 \zeta(2)} B^{n / a} \int_{1}^{B^{\frac{1}{a+b}}} f(t) d g(t)
$$

Using Abel inversion formula again，we get

$$
I(B)=\frac{[f(t) g(t)]_{1}^{B \frac{1}{a+b}}+\int_{1}^{a \frac{1}{a+b}} f^{\prime}(t) g(t) d t}{I_{1}(B)}
$$

Remember that $I_{1}(B)$

So

$$
\begin{aligned}
I_{1}(B) & =G\left(B^{\frac{2}{a+b}} B^{-\frac{a+2 b}{a} \times \frac{1}{a+b}}\right) \\
& =G\left(B^{-\frac{1}{a+b}}\right)_{B \rightarrow+\infty}
\end{aligned}
$$

Now for $I_{2}(\bar{B})$
converges os $B \rightarrow+\infty$ of $\frac{2 a+2 b}{a}-2>1$ ie $\frac{2}{a}>\frac{3}{a+b}$
So if $\frac{2}{a}>\frac{3}{a+b}$（that in $2 b>a>0$ ）the sum comvages and we get．

$$
\begin{aligned}
& \text { nd we get } \\
& \operatorname{MT}(B)=\frac{\pi}{2 \xi(2)}\left(\sum_{\left.R \in \mathbb{P}^{\prime}(Q)^{H(Q)^{\frac{a+2 b}{a}}}\right) B^{\frac{2}{a}}} \frac{1}{2 a}\right.
\end{aligned}
$$

which corresponds to the $1^{\text {st }}$ case in the theorem． Assuming $\sum E_{v, v}(B)$ is negligible we get formula for $\frac{2}{a}>\frac{3}{a+b}$

$$
\begin{aligned}
& \text { sf } \frac{2}{a}=\frac{3}{a+b}(\text { that xs } a=2 b) \text { mr get } \\
& I_{2}(B) \sim \frac{\pi^{2}}{\rho(2)^{2}} B^{2 / a} \underbrace{a}_{\underbrace{a+2 b}_{1}} \int_{1}^{B \frac{1}{a+b} \frac{1}{t}} d t \\
& \text { which is the esoccted main } \frac{2}{3} \log \left(B^{\frac{2}{a}}\right)
\end{aligned}
$$

which is the esgeded main^{3} roam．

$$
\text { If } \frac{2}{a}<\frac{3}{a+b} \text { get } \operatorname{coti} B^{2 / a} B^{-\frac{-a+2 b}{(a+b) a}}
$$

Let me speak peas ely about the error term because it shows one of the main problem you get into in there counting situations．
C）En or term，joints of a lattice in bounded clomain
The point is that when we compare the number of points of a lattio in a bounded open Domain of \mathbb{R}^{n} ，the argument is gave last time can be easily begenaolized as follow Definition
Λ lattice of \mathbb{R}^{n} ，that is Λ is generated by a basis of \mathbb{R}^{n} ：
－$n=\left.\sum_{i=1}^{n} \mathbb{Z}\right|_{i}$ whir $\left(f_{1}, \tau f_{n}\right)$ is a base of $\left(R^{n}\right.$ A finizamental domain for 1 is a act of the form

$$
\sigma=\left\{\sum_{i=1}^{n} t_{i} f_{i}, \quad 0 \leq k_{i}<1 \text { for } i \in\{1, \eta\rangle\right\rangle
$$

where $\left\{f_{1,1}^{=1}, f_{n}\right\}$ is a ser of generators of Λ
－We con define f any fundamental
T for ide eudidean nom
where $\left(e_{1}, t, e_{n}\right)$ is the usual basis of \mathbb{R}^{n}

Then the proof Is explained last times give us the following Choose a fundamental domain for 1 Lemma

Let S be any bounded subset of \mathbb{R}^{n}
\checkmark dosure for neal topluyg

$$
\left|\#(\Lambda \cap B)-\frac{\operatorname{Vol}(\bar{J})}{\operatorname{covol}(n)}\right| \leqslant \#\{\lambda \in n \mid(\kappa+\sigma) \cap \partial \alpha \neq \phi\}
$$

where $\partial S=\bar{D}-\dot{D}$ boundary of D
It remains to give an user bound of this tern In general，it could be big；but we are in a particular case，Indeed we wan to apply it to a domain of the form $D_{B}=B D_{1}$ ．I do not want tooassume that the set D_{1} is convesc．Instead Sasume that
A sumption
There esaisto N functions

$$
\begin{aligned}
& \text { asti } N \text { functions } \\
& \psi_{i}: W_{i} \rightarrow \mathbb{R}^{n} \text { aver } W_{i} \subset[0,1]^{n-1}
\end{aligned}
$$

which are K－lipedity

$$
\forall x, y \in[0,1] N . \quad\|\psi(x)-\psi(y)\| \leq k\|x-y\|
$$

so that $\left.\partial \omega_{1} \subset \bigcup_{i=1}^{N} Y_{i}(5,1]^{m \cdot 1}\right)$
How we ned to ininaduce an important invariant for 1 set me describe it：
definition
The it minimum of Λ is defenced by $\lambda_{i}(n)=\min \{\lambda \in \mathbb{R}>0 \mid \lambda B(0,1) \cap n$ contains i linearly encidean ball I indqendout rectors） In particular $\lambda_{1}(n)$ is the length of the smallest non zero Nero in Λ ．

Minkowski＇s $2^{\text {nd }}$ theorem

$$
\frac{2^{n}}{n!} \operatorname{coval}(\Lambda) \leq \prod_{i=1}^{n} \lambda_{i}(\Lambda) \leqslant \frac{2^{n}}{V_{\operatorname{ol}}(B(0,1))} \operatorname{coval}(\Lambda)
$$

drover one con prove that
Fad t
We can fiend a basis（bIT，bn）generating such rat $\left\|f_{i}\right\|<n \quad d_{i}^{\prime}(\Lambda)$ ．

Peprence
JWS Cassels，An introdudion to the Geometing of numbers．
Using Phis，\rightarrow am now going $1 T$ prove the Proposition（MASSER－VAnLER）

$$
\left|\#\left(\Lambda \cap B D_{1}\right)-B^{\eta} \frac{\operatorname{Vol}\left(D_{1}\right)}{\operatorname{covod}(n)}\right| \leqslant C_{n} N\left(\frac{K}{\lambda_{1}(n)} B+1\right)^{n-1}
$$

Troop
Up to now we had liken any fundamental domain which meant that it could a terrible error term
We now rake a basis concsponding to the last fart Let M be the matice of the Coordinates of $f_{1}, 1>f_{n}$ in The standard boss $\left(l_{1}, y e_{n}\right)$ aten

$$
M^{-1}=\frac{1}{\operatorname{det}(M)}\left(\begin{array}{c}
L_{1} \\
1 \\
L_{n}
\end{array}\right)
$$

where L_{i} is given by the determinant of $(n-1) \times(n-1)$ submatices of M without the coefficients of f_{i}
Notation

$$
A<C_{n} B \text { means } \exists C_{n} e \mathbb{R}>0 \quad A \leqslant C_{n} B
$$

$$
\left\|L_{i}\right\| \leqslant \sqrt{(n-1)!} \prod_{j \neq i}\left\|y_{j}\right\| \ll_{n} \prod_{j \neq i} \lambda_{j}(n)
$$

So $\left\|L_{i}\right\| \ll_{n}^{j \neq i} \frac{\operatorname{Covel}(n)}{\lambda_{i}(a)} \ll_{n} \frac{|\operatorname{det}(M)|}{\lambda_{1}(a)}$
Now consider the norm on \mathbb{R}^{n} defined by

$$
\left\|\sum_{i=1}^{n} t_{i} f_{i}\right\|^{\prime}=\operatorname{mass}_{i \leq i \leq n}\left|t_{i}\right|^{q}
$$

 so $\|x\| \stackrel{1}{s} \stackrel{\left(x_{1}\right.}{\substack{m_{n} \\ \leq}} \leq \operatorname{Cste}_{n} \frac{1}{\lambda_{1}(n)}\|x\|$ con Take the nom of the max \downarrow
So $\forall x, y \in W_{i} \quad\|\psi(x)-\psi(y)\|^{\prime} \leqslant C_{n} \frac{K}{\lambda_{1}(n)}\|x-y\|$
But for any $x \in \mathbb{R}^{n}$

$$
\overline{\mathbb{B}}^{\prime}(x, 1)=\left\{y \in \mathbb{R}^{n}\left|\|y-x\|^{\prime} \leqslant 1\right\rangle\right. \text { cube }
$$

is contained in 3^{n} cells of A ．
（whore a cell is $\lambda+F$ for some $\lambda \in A$ ）

Now we break $[0,1]^{n \cdot 1}$ into small cubes

$$
[0,1]^{n-1} \subset \bigcup_{i=1}^{\left(\frac{B K}{n(n)} C_{n}+1\right)^{n i-1}} x_{i}+\left[0, \frac{\lambda_{1}(1)}{B K C_{n}}\right]^{n-1}
$$

$\psi_{i}\left(\left(x_{i}+\left[0, \frac{\lambda_{1}(n)}{B K C n}\right]^{n-1}\right) \cap W_{i}\right)$ meets at most $3 n$ cells of n

So the error lam is bounded by as wanted $C_{n}^{\prime}\left(\frac{k}{\lambda_{1}(n)} B+1\right)^{n-1}$

Let us go bade to our very particular case to see what kind of arron tam it giver：

The product MK conesponds to the length of the ellipe
In fact in the case you may get that

$$
\begin{aligned}
& \text { point using }\left|\left(x+[0,1]^{2}\right) \cap \partial D_{B} \neq \phi\right\rangle \\
& \#\left\{x \in \Lambda \mid\left(V_{0}\right)\left(\left\{y \in \mathbb{R}^{2} \mid d\left(y, \partial_{B}\right) \leqslant \sqrt{2}\right\}\right.\right. \\
& \leqslant v_{0} l
\end{aligned}
$$

But if the ellipse is very flat 1 his is and More peasily

$$
\text { Yore peascly } \quad \operatorname{Vol}\left(D_{B}\right)=\pi \frac{B^{\frac{2}{a}}}{h^{\frac{2 a+b}{a}}}
$$

length $\left(\partial D_{B}\right) / \frac{\frac{B}{a}^{\frac{1}{a}}}{h^{b / a}}$ is bounded
Veget an ono term bigger than ike main Fem if $h^{\frac{a+b}{a}}>B^{\frac{1}{a}}$ ．Nat is $h>B^{\frac{1}{a+b}}$ which con perfectly happen．But that is precisely the place where we are going to use that we are coventing on the open subset $U W$ We counting

$$
\left.\begin{array}{l}
\left\{(d, 2) \in \mathbb{Z}^{2} \mid \operatorname{grd}(d, 2)=1 \quad d \neq 0\right. \\
\sqrt{2^{2}+h^{2} d^{2}} \leq \frac{B^{1 / a}}{h^{b / a}}
\end{array}\right\}
$$

which is 0 if
$h>B^{1 / a} / h^{b / a}$ ie $h>B^{1 / a+b}$
So it is by reshiding to U that
we are counting where the our tarn is les than the main term．
These points on the picture are removed by ike conditions
$d \neq 0$ and $\operatorname{gcd}(d, z)=1$
In fact from the joins of view of the filtration $P_{2}: V(\mathbb{X}) \xrightarrow{\rightarrow} \mathbb{P}^{1}\left(\mathbb{Q}^{2}\right)$ the filter of which are isomorphic LG \mathbb{P}_{Q}^{1} the accumulating subset gives that most filer contain only one pint
The and of the proof use Abel＇s summation formula once more and I leave it to you II
Remark（left as an escraise）

$$
\text { For } V=\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}} \times \mathbb{P}^{n_{3}}
$$

the heights ave porametinzed
by 3 numbers (a, b, c) we may see in $\mathbb{R}_{>0}^{3}$

line $\frac{a}{n_{1}+1}=\frac{b}{n_{2}+1}=\frac{c}{n_{3}+1}$
En the interiors of the sub cones $\stackrel{G}{1}_{0}^{0} \stackrel{i}{c}_{2}^{0}, c_{3}^{0}$ the asymptotic behaviour is given by

$$
C B^{a}
$$

on $C_{i} \cap C_{i}-C_{1} \cap C_{2} \cap C_{3} \subset B^{a} \log (B)$ red pone on $C_{1} \cap C_{2} C_{3} \subset B^{\frac{3}{a}} \log (B)^{2}$ yellow line．

2014 12016 4）Remark about the constant
Now that we have three excamples，lar us look at ide constants we got
a）

$$
\begin{aligned}
& C\left(\mathbb{P}^{n}\right)=\frac{1}{2} \operatorname{Vol}(B(0,1)) \times \frac{1}{3(n+1)} \\
& =\frac{1}{2} \operatorname{Vol}(\mathbb{B}(0,1)) \times \prod_{\text {prune }}\left(1-\frac{1}{p^{n+1}}\right) \\
& =\frac{1}{2} \operatorname{Vol}(B(0,1)) \times \prod_{\text {p pane }}\left(1-\frac{1}{p}\right) \underbrace{\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{n}}\right)} \\
& =\frac{\# \mathbb{P}^{n}\left(\mathbb{F}_{p}\right)}{\# \mathbb{F}_{p}^{n}}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{1}{4} & \operatorname{Vol}\left(\mathbb{B}^{m+n}(0,1)\right) \operatorname{Vol}\left(\mathbb{B}^{n+n}(0,1)\right) \\
& \times \prod_{\text {prime }}\left(1-\frac{1}{p}\right)^{2} \frac{\# \mathbb{P}^{m}\left(\mathbb{F}_{p}\right) \times \# \mathbb{P}^{n}\left(\mathbb{F}_{p}\right)}{\# F_{p}^{m+n}}
\end{aligned}
$$

c）for the plane blown up
Sn the case $\frac{3}{a+b}=\frac{2}{a}$

$$
\begin{aligned}
& C(V)=\frac{1}{6} \pi^{2} \prod_{p_{\text {sind }}}\left(1-\frac{1}{p^{2}}\right)^{2} \\
&\left(1-\frac{1}{p}\right)^{\prime \prime}\left(1+\frac{2}{p}+\frac{1}{p^{2}}\right)
\end{aligned}
$$

What is the number of points of V on \mathbb{F}_{p} ？

$$
\begin{aligned}
\# V(\mathbb{P}) & =\# \mathbb{P}^{2}\left(\nabla_{p}\right)-1+\# \mathbb{P}^{7}\left(F_{p}\right) \\
& =1+2 p+p^{2} .
\end{aligned}
$$

St turns out that this phenomena is very generre
d）For Birch theorem（circle method）
Remember that in that coss we are considering

$$
\begin{aligned}
& V(\mathbb{Q})=\left\{\left[x_{0}:-x_{n}\right] \in \mathbb{P}^{n}(\mathbb{Q}) \mid F\left(x_{0},-x_{n}\right)=0\right\} \\
& C(V)=\sigma_{\infty} \times \prod_{\text {Prime }} \sigma_{r} \\
& \text { some volume entegroe } \\
& \sigma_{p}=\left(1-\frac{1}{p}\right) \times \frac{\left.\#\left\{\left[x_{0}:-x_{n}\right] \in \mathbb{P}^{n}\left(\mathbb{F}_{p}\right) \mid \overline{F\left(x_{0}, ~\right.} x_{n}\right)=0\right\}}{\# \mathbb{F}_{p}^{n}}
\end{aligned}
$$

for almost all p all primes outside a finite set． But it is the right place to remind you that Reminder

For any $N>0$ there is a reduction mochulo W map

$$
\operatorname{red}_{N}: V(\mathbb{Q}) \rightarrow V(\mathbb{U} / \mathbb{N} \mathbb{C})
$$

So it is quite natural to ask：What happens if we only count points for which the reduction modulo P is a given point en $V\left(\mathbb{T}_{r}\right)$ ？The leads $\sqrt{2}$

5）First point of view on equiclistibution
Is am going to do it for the projective space
a）reduction mochulam
$u_{\text {wite }}[P]_{M_{n}}$ for red (P)
Fisc $P_{0} \in \mathbb{P}^{n}(\mathbb{Z} M \mathbb{Z})^{M} M>1$ ．

Proposition

$$
\left.\frac{\text { \& }\left\{P \in \mathbb{P}^{n}(Q) \mid H(P) \leq B \text { and }[P]_{M}=P_{0}\right\}}{\#\left(\mathbb{P}^{n}(Q)\right.} \rightarrow \frac{1}{H \leq B}\right)
$$

Ene can say that the points of the projective space are evenly distributed with royect to their rechuction moctula M．This side dow not depend on the choice of P_{0}
Proof
Write $P_{0}=\left[x_{0}:-x_{n}\right]$ with $\left(x_{0},-, x_{n}\right)$ pionition Let $\tilde{x}_{0},-, \tilde{x}_{n}$ be reprensentants of $x_{0}, 1, \mu$ in \mathbb{Z} ；then since $(x, y, y / n)$ is primitive we can choose

$$
\begin{aligned}
& \text { choose } \\
& u_{1},-u_{n}+\mathbb{Z}^{n}, M \mid \sum_{i=0}^{n} u_{i} x_{i}-1
\end{aligned}
$$

we get $\tilde{n} \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \sum_{i=0}^{n} u_{i} x_{i}+v M=1 \\
& =\operatorname{add}\left(x_{i}\right) \quad \operatorname{ged}(i
\end{aligned}
$$

Let $d \stackrel{1=0}{=} \operatorname{ged}\left(x_{i}\right) \quad \operatorname{gcd}(d, M)=1$
So $d \in(z / M u)^{*}$ and

So by dividing $\tilde{x}_{0},-, \tilde{x}_{n}$ by d
we moo assume $f_{0}=\left(\tilde{x}_{0},-, \tilde{x}_{n}\right)$ is primitive
We complete it in a bosis $\left(f_{1},-l_{n}\right)$ of \mathbb{Z}^{n} and take $\left(f_{0}^{r}-1 f_{n}^{v}\right)$ be the dual basis （ $f_{i}(x)$ is the i－in coordinate of x in the basin $\left(f_{0},>f_{n}\right)$ ） It is formed of linear forms with integral coefficients

$$
\begin{aligned}
& \quad \operatorname{red}_{M}\left(\left[y_{0}:-y_{n n}\right]\right)=\operatorname{sed}_{M}\left(\left[\tilde{x}_{0}:-\hat{x}_{n}\right]\right) \\
& \Leftrightarrow \mathbb{Z} M \mathbb{Z}\left(g_{0},-y_{m}\right)=\mathbb{Z} / M_{\mathbb{Z}}\left(x_{0},-x_{n}\right) \subset(\mathbb{Z} M \mathbb{Z}) \\
& \left.\Leftrightarrow\left(\bar{g}_{0}\right), \bar{y}_{m}\right] \in \mathbb{Z} / M_{M}\left(x_{0},=x_{n}\right)
\end{aligned}
$$

$\left(y_{0},-y_{n}\right)$ primilif \leftarrow reduction macula M

$$
\Leftrightarrow M \mid f_{i}^{v}(y) \text { for } i \geq 1
$$

Then Λ is a sublattice of \mathbb{Z}^{n+1} and $\left[n: \mathbb{Z}^{n+1}\right]=M^{n}$
（Indeed $\left(f_{1}, \geqslant-f_{n}\right)$ induces an isomoyhiom from \mathbb{Z}^{n+1} / n io $\left.(\mathbb{Z} / M Z)^{n}\right)$
Now

$$
\left.\begin{array}{l}
\left.\mathbb{N}_{p_{0}(B)=\#\left\{P \in \mathbb{P}^{n}(Q) \mid\right.} H(P) \leq B \&[P]_{M}=P_{0}\right\} \\
=\frac{1}{2} \#\left\{\left(x_{0}, y^{\prime} / n\right) \in \Lambda \quad \mid \operatorname{Gged}\left(x_{0}, \nu, x_{n}\right)=1\right. \\
\left\|\left(x_{0},-x_{n}\right)\right\| \leq B
\end{array}\right\}
$$

（2）We count elements in a but the ged condition is in \mathbb{Z}^{n+1} ）
the error Noun dy mads on the bootie，y h have to esglain that $\mu(d) \neq 0 \Rightarrow d=p_{1}-p_{r} ; p_{1},-p_{1}$ didenct prime Using the basin $\left(t,-, f_{n}\right) \quad P_{1} \pi_{1,+r i n} \times M$

$$
\begin{aligned}
& x=\mathbb{Z} f_{0} \oplus \oplus=M \mathbb{Q}\left(b_{i} . n\right. \\
& A \cap(d \mathbb{Z})^{n+1}=d \mathbb{Z} f_{0} \oplus \Theta_{1-1}^{n} \operatorname{lom}(d, M) \mathbb{Z} b_{i}
\end{aligned}
$$

$$
\text { Since }(M d z)^{n+1} \subset \Lambda n(d z)^{n+1} \subset(d u)^{n+1}
$$

By dividing each coordinate by d

$$
\begin{aligned}
& \forall\left\{x \in\left(d z^{n+1} \cap \cap \mid\|x\| \leq B\right\}\right. \\
& =\#\left\{\left.x \in\left(\frac{1}{d} \Lambda\right) \cap \mathbb{Z}^{n+1} \right\rvert\,\|x\| \leq \frac{B}{d}\right\} \\
& \text { But }\left(\frac{1}{d} n\right) \cap \mathbb{Z}^{n+1}=\mathbb{Z} f_{0} \oplus \oplus_{i=1}^{n} \frac{M}{\operatorname{gcd}(d, M)} \mathbb{Z} f_{i}=\Lambda_{\text {gad }}((, M 1)
\end{aligned}
$$

$$
\begin{aligned}
& N_{p}(B)=\frac{1}{2} \sum_{d \geqslant 1} \mu(d) \underbrace{\#\left\{x \in \Lambda \cap(J 2)^{n+1} \mid\|x\| \leqslant B\right\}}_{\|} \\
& \frac{\operatorname{Vol}(\mathbb{B}(0,1))}{\operatorname{covod}\left(1 n(d 2)^{n+1}\right)} B^{n+1}+O\left(\left(\frac{1}{d n}\right) B^{n}\right)
\end{aligned}
$$

$$
\AA_{\operatorname{gcd}(d, M)}=\left(\frac{1}{d} \Lambda\right) \cap \mathbb{Z}^{n+1} \text { is a lattice }
$$

in a finite set of lattices indesced by the divines of M ．
Using the some methods as for $\mathbb{P}^{n}(\mathbb{Q})$ we

$$
\text { got in e estimate } N_{P_{0}}(B) \sim \frac{1}{2} V_{0} C(B(0,1))\left(\sum_{d \geqslant 1} \mu(d) \frac{1}{\operatorname{Covol}\left(A \cap(12)^{n+1}\right)}\right)^{n+1} B^{n+1}
$$

It romains to－compute the value of this

$$
\begin{aligned}
& \sum_{d \geqslant 1}^{\operatorname{sem}} \frac{\mu(d)}{d^{n+1}\left(\frac{M}{\operatorname{ged}(M d)}\right)^{n}}=\frac{1}{M^{n}} \sum_{d \geqslant 1} \frac{\mu(d) \operatorname{grd}(M d)^{n}}{d^{n+1}} \\
& \varphi \text { is multiplicative. }
\end{aligned}
$$

Y is multiplicative？

$$
\varphi(a b)=\varphi(a) \varphi(b) \text { if } \operatorname{gcd}(a, b)=1
$$

we get

$$
\frac{1}{M^{n}} \prod_{p \text { premier }}\left(1-\frac{1}{p^{n+1}}\right) \times \prod_{p \text { promia }}\left(1-\frac{1}{p}\right)
$$

Then we have ${ }^{10}$ device by so product $\prod_{\text {prime }}\left(1-\frac{1}{p_{\text {Pin }}}\right)$
We get We get $\frac{1}{M^{n} \prod_{\text {paine }}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{n}}\right)}$
Qaim

$$
\# \mathbb{P}^{n}(\mathbb{Z} / M \mathbb{Z})=\left(\frac{M}{\pi P}\right)^{n} \times \prod_{P, M} \# \mathbb{P}^{n}\left(\mathbb{F}_{P}\right)
$$

Indeed both sides of this equality are multiplistive so it is enough to prove it when M is the power of a prime number $M=p^{k}$ But in that case，

$$
\# \mathbb{P}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)=\frac{1}{\#\left(\mathbb{L} / p^{k} \mathbb{z}\right)^{*}} \times \#\left\{y \text { puinitue in }(\mathbb{Z} / n z)^{n+1}\right\}
$$

But y primiture $\Leftrightarrow y$ is not 0 modulo p We get

$$
\text { \# } \begin{aligned}
\mathbb{P}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) & =\frac{1}{p^{k-1}(p-1)} \times p^{(\mathbb{k}-1) n+1} \times\left(p^{n+1}-1\right) \\
& =p^{(k-1) n} \times \# \mathbb{P}^{n}\left(\mathbb{T}_{p}\right) .
\end{aligned}
$$

b）Distribution for real topology
For real topology a natural question is to consider a＂simple＂open set in $\mathbb{P}^{n}(\mathbb{R})$ Pidure

$$
\nabla \mathrm{F}
$$

The question what is the proportion of foint in U？ Question

Let U be a＂suitable＂open set in $\mathbb{P}^{n}(\mathbb{R})$ Does the quotient

$$
\frac{\#\left(P^{n}(Q) \cap U\right)_{H \leq B}}{\# P^{n}(Q)_{H \leq B}}
$$

converges to something meaningful
Wow os have to explain what sean by suitable．
Definition
A strider convex plytednal cone in \mathbb{R}^{n+1} is a subset $\sigma \subset \mathbb{R}^{n+1}$ arch that
（i）$\exists v_{1},-v_{n} \in \mathbb{R}^{n+1}$

$$
\sigma=\left\{\sum_{i=1}^{v_{1}} k_{i} v_{1},\left(v_{1},-k_{k}\right) \in \mathbb{R}_{\geqslant 0}^{k}\right\}
$$

（Id denote it by $\sum_{i=1}^{k} \mathbb{R}_{\geqslant 0} v_{i}$ ）
（ii）$\sigma \cap-\sigma=\{0\}$ ．
I shall say that an open subset U of $\mathbb{P}^{n}(\mathbb{R})$ is elementary if it is of the form $\pi(\dot{\sigma})$ for a stidely convex polyhedral cone of \mathbb{R}^{n+1} ．
Reminder
The topology on $\mathbb{P}^{n}(\mathbb{R})$ is the quotient topology of $\left(R^{n+1}-\{0\} / \mathbb{R}^{*}\right.$
d set $U \subset \mathbb{P}^{n}(\mathbb{R})$ is often if and only if $\pi^{-1}(U)$ is gen in $\left.\mathbb{R}^{n f_{1}}-\alpha a\right\}$

Proposition
Let U be an elementary gen subset of ${\left(P^{n}\right.}^{n}(\mathbb{R})$

Proof

$$
\text { Let } D_{B}=B\left(B(0,1) \cap \pi^{1}(u)\right)
$$

Then we con apply MASSER \＆VAALER

$$
\begin{aligned}
& \text { Ta got that for } B^{\prime 2} \geq 1 \\
& \left|\#\left(D_{B} \cap \mathbb{Z}^{n+1}\right)-B^{n+1} \operatorname{Vol}\left(B(0,1) \cap \pi^{-1}(u)\right)\right| \leqslant C B^{n} \\
& \text { But } \\
& \text { \# }\left(P^{n}(a) \cap \cup\right)_{H \leqslant B}=\frac{1}{2} \sum_{d \geq 1} \mu(d) \#\left(B\left(0, \frac{B}{d}\right) \wedge \pi^{1}\left(v n \mathbb{Z}^{n+1}\right)\right.
\end{aligned}
$$

We conduote as for \mathbb{P}^{n}（ \mathbb{Q} ）II
What about an open set which is not elementary Pomark
1） $\operatorname{Ler} F=\pi(\sigma) \quad \sigma$ as above，F is closed in $\mathbb{P}^{\prime \prime}(\mathbb{R})$

The same proof shows Khat
and the contribution of ∂F is negligible．
2）Consider the set M of measurable subsets W of $P^{n}(R)$ such that

What can we say about it？
（i）elementary open sets belong to M
（ii）St contains $\pi(\sigma)$ for σ studly convex polyhedral cone
（iii）M is stable by complement

$$
W \longrightarrow \mathbb{P}^{h}(\mathbb{R})-W
$$

（iv）St instable by disjoint camion
(v) Since the intersedion of two elementary gen subsets is an elementary subset ont

$$
\#(A \cup B)=\# A+\# B-\#(A \cap B)
$$

Il contains the union of a finite number of elementary gen oulsets
（vi）（Squeeze property）
If we have sequences $\left(U_{n}\right)_{n \in N}$ and $\left(V_{n}\right)_{n \in N}$ of elements of of such $n \in N a t$
$n \in \mathbb{N}\left(U_{n}\right)_{n \in \mathbb{N}}$ increasing for inclusion：
（V）$\quad \forall n \in \mathbb{N}, U_{n} \subset U_{n+1}$
$-\left(V_{n}\right)_{n \in \mathbb{N}}$ is teóreasing
－$U_{n} n \in \mathcal{Y}_{n}$ for any $n \in \mathbb{N}$ and
$-\omega\left(v_{n}\right)-\omega\left(U_{n}\right) \xrightarrow[n]{\rightarrow+\infty}$
then for any W such that

$$
\text { belongs } \forall_{\sigma}^{n} \in \mathbb{N} .
$$

Proof
Take $\varepsilon>0$
N suchirhat $\omega\left(V_{N}\right)-\omega\left(U_{N}\right)<\frac{\varepsilon}{2}$ and B_{u} such That
For any $B \geqslant B_{0}$

$$
\left|\frac{\#\left(\mathbb{P}(Q) \cap V_{N}\right)_{H \leq B}}{\#(\mathbb{P}(\alpha))_{1 \leq B}}-W\left(V_{N}\right)\right|<\frac{\varepsilon}{4}
$$

and similarly for $U_{N} \leq E / 2$
From

$$
\begin{aligned}
& \omega\left(u_{N}\right) \leq \omega(w) \leq \omega\left(V_{N}\right) \\
& \text { and } \leq \varepsilon / 4 C^{N} \quad D \leq \varepsilon / 4 \\
& \begin{array}{l}
\left.\#\left(\mathbb{P}(Q) \cap V_{N}\right) \leq(\mathbb{P}(Q) \cap W) \leq \#\left(\mathbb{P}(\mathbb{Q}) \cap V_{N}\right)\right) \\
\text { (after dividing by } \#(\mathbb{P}(Q)) H \leqslant B
\end{array}
\end{aligned}
$$

（after dividing by $\#(\mathbb{P}(Q)){ }_{1+\leq B}+1 \leq B$
we get

$$
w(W)-\#(\mathbb{P}(Q) \cap W)_{H \leq \beta} \mid<\varepsilon
$$

for $B \geqslant B$ ．
Remark
En the other hand the elementary open sets form a basis of the real topology：for any oren set U in $\mathbb{P}^{n}(\mathbb{R})$ and any $x \in U$ Here exists an elementary open set W such that

$$
x \in W<U
$$

In fad t we have an oven more prease statement：
thy gen set in $\mathbb{P}^{n}(\mathbb{R})$ is of the form $\bigcup_{i \in I} W_{i}$
where $\left(W_{i}\right)_{i \in I}$ is a countable family of $i \in I$ elementary \hat{E} open sets
From this you might be led to believe that any open set V is in M it is FALSE！
（2）Not all open sets are in M ． Indeed $\mathbb{P}^{n}(\mathbb{Q})$ is a countable set Choose a sequence $\left(P_{n}\right)_{n \in N}$ such that

$$
\left.\mathbb{P}^{n}(Q)=\left\{P_{n}, n \in\right)^{n}\right\}
$$

Then for any $n \in \mathbb{N}$ ，choose an elementary open subset U_{n} such that $P_{n} \in U_{n}$ and $a\left(U_{n}\right) \leqslant \frac{\varepsilon^{n}}{2^{n+1}}$ It is possible
Drawing

$$
\begin{aligned}
& \square \circ \square \\
& \text { ロ }{ }^{\circ} \text { 日 } \theta^{\circ} \\
& \square \square^{\circ} \text { 门 }
\end{aligned}
$$

Take $U=U_{n \in N} U_{n}$ Then $W(U) \leq \sum_{n} \omega\left(U_{n}\right) \leqslant \varepsilon$ But $\mathbb{P}^{n}(Q) \subset u$ so $\frac{\#\left(\mathbb{P}^{n}(Q) \cap U\right)_{A \leq B}}{\#\left(P^{n}(a)\right)_{H \leqslant B}}=1 \underset{B \rightarrow t \infty}{\nrightarrow \varepsilon}$
Explanation
Since $\mathbb{P}^{n}(\mathbb{Q}) \subset U$ and $\mathbb{P}^{n}(\mathbb{Q})$ is dense in $\mathbb{P}^{n}(\mathbb{R}), \quad U$ is dense in $\mathbb{P}^{n}(\mathbb{R}) ; \quad \bar{U}=\mathbb{P}^{n}(\mathbb{R})$ and $\delta U=\mathbb{P}^{n}(R)-U$ has volume $u(\partial 0) \geqslant 1-\varepsilon$ The only finite union of elementary open sets which contains U is $\mathbb{P}^{n}(\mathbb{R})$ it self！

Diophantine statistics

Emmanuel Peyre

Université Grenoble Alpes
北京大学
$\mathrm{P}^{2}(\mathrm{Q}) \cap U$

$25 / 4 / 2016$ It is high time to use some tools of probability theory c）Tools of probability theory
Definition
der X be a topological space．We equip it with the σ－algeria B of Bond subsets which is generated from open subsets and stable under difference of vets and countable union．
For any non－anpty finite subset W of X we define the counting probrbility measure abraded to W as the measure

$$
\delta_{W}=\frac{1}{\# W} \sum_{P \in W} \delta_{\mathcal{C}} \text { driac measure m } P
$$

In other words

$$
\begin{aligned}
& \text { her words } \delta_{W}(B)=\frac{\#(W \cap B)}{\# W} \\
& \forall B \in Q \\
& \text { if } f \in C(X, \mathbb{R})
\end{aligned}
$$

and if $f \in E(X, \mathbb{R})$

$$
\int_{x} f \delta_{w}=\frac{1}{\# W} \sum_{P \in W} f(P) .
$$

So now the problem we are dealing with may be rephrased as：
Question
Given a family of probability measuro $\left(\sigma_{B}\right)_{B \in \mathbb{R}}\left(\operatorname{Or}\left(\sigma_{n}\right)_{n \in \mathbb{N}}\right)$ What does it mean
for it ta convene？This is extramly classical in the theory of probability．

Definition proposition
A family $\left(\sigma_{B}\right)_{B \in \mathbb{R}}$ of probabilities on X converges zereakey to a probability measure σ as $B \rightarrow+\infty$ if it satofics the following equivalent conditions
（i）for any $f \in e_{b}(X, \mathbb{R})$

$$
\int_{x} f \sigma_{B} \xrightarrow[B \rightarrow+\infty]{ } \int_{x}^{b} f \sigma
$$

（ii）for any subset $W \in B$ such that $\omega(\partial W)=0$

$$
\omega_{B}(w) \xrightarrow[B \rightarrow+\infty]{\longrightarrow}(w)
$$

（iii）for any closed subset F of X

$$
\lim _{B \rightarrow+\infty} \sigma_{B}(F) \leqslant \sigma^{-}(F)
$$

（iv）for any gen subset V of X

$$
\lim _{B \rightarrow+\infty} \sigma_{B}(v) \geqslant \sigma(U) \text {. }
$$

we denote it $\sigma_{B} \xrightarrow[B \rightarrow+\infty]{w}$ ．
Reference
SHIRYAEV，probability，Graduate Tests in Mathematios，chapter III．

Definition
A set $-\mathrm{y} \alpha \subset B$ is collet a convergence determining dos if for any family $\left(\sigma_{B}\right)_{B \in \mathbb{R}}$ of probabilities and any probability oo the following two abertions are equivalent
（i）$\forall A \in K, \sigma(\partial A)=0 \Rightarrow \sigma_{B}(A) \xrightarrow[B \rightarrow+\infty]{\longrightarrow}(A)$
（ii）$\sigma_{B} \xrightarrow[B \rightarrow+w]{w}$
Proposition
Elementary open subsets form a convergence determining dos on $\mathbb{P}^{n}(\mathbb{R})$
This follows from the fact that
（i）the intersection of two dementary subsets is tide elementary
Thus if the convergence is tire on elementary subsets，it is bine on the Boole olyebra generated by the sets．
（ii）Any open set is the countable union of elementary subsets．
Eondusion

$$
\delta_{\mathbb{P}^{n}}(Q)_{H \leq B} \xrightarrow[B \rightarrow+\infty]{w} \omega
$$

where $w(w)=\frac{\operatorname{Voe}\left(B(0,1) \cap \pi^{-1}(w)\right)}{\operatorname{Vol}(\mathbb{B}(0,1))}$
where $\pi: \mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{P}^{n}(\mathbb{R})$ is the projection map and $\mathbb{B}(0,1)=\left\{x \in \mathbb{R}^{n+1},\|x\|_{\infty} \leqslant 1\right\}$
norm chosen is define the height．

Now we have seen various excomple and phenomena which occur when counting rational points of bounded height on varieties it is time to buy to interpret all that．Is n some sense， we are doing esforimental maltematio：we consider various examples on which we constat various results and then we buy to consturct a theory which can esglain all the result obtained for the various examples．Here the hope is to have a geometric interpretation of the ariltmette phenomena．In order rad this，we need
III Schemes and beyond（the HARTSHORNE and SGA4 in two hours）
Reference
HART SHORNE，algeleraic geometry
Jam not going to repeat the HARTSHIORNt but go le yond
1）Starting point of algebraic geometry
－One of the motivation of algebraic ge omety comes from the realization that
＂Moyhions between commutative algebras I® are the joints of a geometric＂object defined by polynomial equations＂More gener．ly and precisely Let A be a noetherian commutative sing， Let B and C be finitely generated commutative A algebras．We can find integers n, r ，

$$
f_{1}-, f_{r} \in A,\left[T_{1}, \tau T_{n}\right]
$$

and an isomoyhism

$$
A\left[T_{1},, T_{n}\right] /\left(f_{1},=f_{n}\right) \cong B
$$

Then there is a canonical byection

$$
\operatorname{Mor}_{A-0 l y}(B, C) \longrightarrow\left\{\left(c_{1},-c_{n}\right) \in C^{n} \mid \forall_{i} f_{i}\left(c_{1},-, r_{n}\right)=0\right\}
$$

－En the hand differential geometry touight people that．
A geometric object is obtained by gluing toyecter pieces of a more elementary eyer（open sets of \mathbb{R}^{n} for differential geometry） It was grothendiech who was able to－ produce the first good category，namely the category of schemes
Aim
Define a category Sch（category of schemes）with a fundor
Spec：Category of commutative rung \rightarrow Sch which contravariant and fully failtful： that is for any commutative rings A and B the functor gives a lie dive map

$$
\operatorname{Mor}_{\text {sing }}(A, B) \longrightarrow \operatorname{Mor}_{\text {sh }}\left(\operatorname{Spec}(B), S_{\text {pec }}(A)\right)
$$

In fact you get back De ring A from its conespording scheme as the ring of functions on Syce（A）．
choreover to each object in Sch conerponds a topological space and is obtained by glueing together Syectrum of rings．
As often in mathematics the important thing is the properties of the object（hole the category of schemes）you nowt lo get not the explicit

Constüdion You use Roget it．What one should remember about edemes is the dearijtion 9 just gave．
2）Enrothendieck topologies，pesheaves，sheaves Fol lota use，＇s wish to intüoluce te very nice idea of grothendieck to see a topology as a category
Reprences
－Artin（1962）Grothendieck topologies
－Grotiendiecr et al．S6A4
－Milne Érale cohomology
a）Classical topology（Reminder）
A Topology on set x is a set $U \subset \overparen{F(x)}$ of subsets of x such that
（i）$\phi \in U$
（i）for any finite family $\left(v_{i}\right)_{i+1}$ of dement r of $u_{\text {with } I \neq \varnothing} \cap_{i \in I} U_{i} \in L^{2}$
（iii）for any $f=\frac{1}{}$ oily $\left(v_{i}\right)_{i \in I}$ of clements of x

$$
\bigcup_{i \in I} U_{i} \in u^{0}
$$

NB．$(i i i) \Rightarrow(l)$ for $I=\phi$
The comeoponding coregory is defined Z_{x}
－objects are the open subsets of X
－mophiams are $j: U \longrightarrow V$ if $V \subset V$

$$
x \longmapsto x
$$

The conditions（ii）and（iii）may be translated as the existence of some products
or copraducts
b）Dived and inverse limits
Let I be a category．It is said to be filtered if ir has an objed，
（R）for any diagram
$i \int_{j}^{j}$ can be completed as

（ii）for any pairs j, j of objects there scut．

$$
\stackrel{i}{i>k}
$$

It is said to be cofiltered if the opposite category I＇0 obtained by reversing arrows is filtered

Escomple
Set I be a set with a poutial orders such that for any $j, j^{\prime} \in T$ there excists $k \in I, j \leq k \& j^{\prime} \leq k$（filtered set）
Then rake as a coteyony：
－Gjeds $\quad i \in I$
－mophisms pairs $(i, j) \in I^{2}, 1 \leq j$

$$
(j, k) \cdot(i, j)=(1, k) .
$$

（Inporticilar we may rake

$$
\mathbb{N}, \leq, \geqslant \text { or } \mathbb{N}-\{0 y, 1 \text { a its onozit }
$$ C divisibility

the colledion of objecs is a set
－Let I be a small filtered catejory Let C be a cotajory and $F: I \xrightarrow{C}$ be a feendor：We vorite $C_{i}=F(1)$ thon a inverse limit of＂F denoted by $\lim _{I}$ For $\lim _{\lim _{i c o}} C_{i}$ es an cobject L of C with a family of mophisms $f_{i}: L \rightarrow C_{i}$ for ieGbj(I) so khar $\forall \alpha: i \rightarrow j$

$$
L \xrightarrow[f_{i}]{\stackrel{f_{1}}{\longrightarrow} C_{i}} C_{i} F(x) \text { commutes }
$$

and ouch that for any objects x of c andany family $g_{i}: X \rightarrow C_{i}$ which solisfies $\forall \alpha: _\rightarrow 1$
lthere esaists a cenique $\varphi: X \rightarrow L$ so that $\forall_{i} x \xrightarrow[i]{g_{i}}$ commentes，

$$
y \underset{L}{\downarrow} \xrightarrow[p_{i}]{\stackrel{i}{s}} C_{i}
$$

such L is unique eep l_{σ} a unique esom oyhism
Excomples
Inithe cotegory Sets of sets Nhis fundor is we may kable

$$
\left\{\left(x_{i}\right) \in \prod_{i \in I} X_{i} \mid \forall \alpha: j \rightarrow j^{\prime}, F(\alpha)\left(x_{j}\right)=x_{j}\right\}
$$

Same construdion in the category Ab of abelian
abelian groups or the category of commutative sings
Particular cases
－If I is a cotegory with 3 objeds and mophisms $j S I d$ ，

a functor from this category to C is a diagram

$$
\begin{aligned}
& x_{1} \\
& \\
& \downarrow f_{1} \text { in } c
\end{aligned}
$$

If the inverse limits esasts we denote it $X_{1} x_{\text {y }} X_{2}$（remomber renique up to isomoyhiom ）and no say that the square

$$
\begin{aligned}
x_{1} x_{y} x_{2} & \longrightarrow x_{2} \\
\downarrow & \square \downarrow \\
x_{1} & \longrightarrow y
\end{aligned}
$$

In the category of Sets

$$
x_{1} \times x_{y}=\left\{\left(x_{1}, x_{2}\right) \in x_{1} \times x_{2} \mid f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)\right\}
$$

－If X_{1} and X_{2} are subsets of Y and $f_{1} \cdot x_{1} \rightarrow y, f_{2}: x_{2} \rightarrow Y$ are the inclusion maps

$$
{ }^{1} x_{1} x_{y} x_{2}=x_{1} \cap x_{2}
$$

finite inverse limits generalize intersections
－If the only moyhisms in I are the idontitis id x for x objet of I（diserote category）then a fundor from I to C Is a family（ X_{i} ） ie I of oboe cs C and if it esoists，the inverse limit is the proud $\prod_{i \in I} X_{i}$
－Ene way lo define the p－adic integer is ta the the category associated to $\mathbb{N} \geqslant$ and define the fundor in the rolegory of rings defined by
$R_{n}=\mathbb{Z} / p^{n} \mathbb{Z}$ where p is a prime number and for $m \rightarrow n$（ie $m \geqslant n$ ）
$\mathbb{Z} / p^{m} \mathbb{Z} \rightarrow \mathbb{Z} / p^{p} \mathbb{Z}$ is the only moyhism of rungs

$$
\mathbb{Z}_{p}=\lim _{n} \mathbb{Z} / p^{n} \mathbb{Z} \subset \prod_{n} \mathbb{Z} / p^{n} \mathbb{Z}
$$

It is equipped with the topology induced by the product topology（each $\mathbb{Z} / p^{n} \mathbb{Z}$ being equipped with the discrete topology）
direct limits on C are inverse limits in C^{0} they are denoted by $\lim _{I} F$ or $\underset{i \in I}{\lim _{i}} r_{i}$
Eocompes
－In the category of sets $\left(X_{i}\right)$

$$
L=\frac{\|_{i \in I}}{1 \in} X_{i} / R \quad{ }_{i \in G l j} I
$$

where $x_{i} \widetilde{R} x_{j}$ if \exists diagram ${ }_{i>\beta}^{\alpha}$ in I

$$
i \lambda_{\beta}
$$

and $x_{k} \in X_{k}$ such that $\alpha_{i}<F(\alpha)\left(x_{k}\right)$ and $x_{j}=F(\beta)\left(x_{k}\right)$
－In the category ab of abelian groups
$\bigoplus_{i \in I} A_{i} / C$ where C is generated by the cements of the form，for $\alpha: j \rightarrow j^{\prime}$

$$
\left(a_{i}\right)_{i \in I} \text { where }\left\{\begin{array}{l}
a_{i}=0 \text { for } i \phi\left(j, j^{\prime}\right\} \\
a_{j}=-F(\alpha)\left(a_{j}\right)
\end{array}\right.
$$

Particular case
－For a dis ore category Land a fundor $F: I \rightarrow C$ coneoponding to a family $\left(X_{i}\right)$ we get the sum（or coproduct）denaitred by $\frac{1}{i \in I} X_{i}$ or，when it is meaningful，$\oplus \in X_{i}$
c）An example：the glueing of spaces
Data
$\left.C X_{\lambda}\right)_{\lambda \in L}$ family of topological paces $\operatorname{For}(\lambda, K) \in L^{2}, U_{\lambda K}$ gen subset of X_{λ} and a continuous map

$$
\text { such that } \varphi_{K \lambda}: U_{\lambda, K} \xrightarrow{ } U_{k, \lambda}
$$

（i）$\forall \lambda \in L, \quad U_{\lambda, \lambda}=X_{\lambda}$ and $\varphi_{\lambda \lambda}=I_{x_{\lambda}}$
（ii）$\forall \lambda, \mu, k \in L_{\lambda} \forall x \in U_{\lambda k} \cap v_{\lambda \mu} h_{k \lambda}(x)=U_{k \mu}$ and $h_{\mu k}\left(h_{k \lambda}(x)\right)=h_{\mu \lambda}(x)^{\prime}$
From a more categorical point of view，using a a total order on L ，chis data may be given． as follows

Let I be the caltagong
－objects：finite subsets of L,
－moytism (A, B) if $B \subset A$
Then we consider a fundor $F: I \longrightarrow \sigma_{\text {of }}$ ． whore Tor or is the caticyory of topological spaces with the open immersions as moyhisms such that $\forall A, B \subset L$

$$
F(A \cup B) \rightarrow F(B)
$$

（take $F(A)=\bigcap_{K \in A} U_{\min (A), K}$ ）
Then $X=\frac{\lim }{I} F$ is the space obtained by glueing Together the $\left(X_{\lambda}\right)_{\lambda \in L}$ along $U_{\lambda \mu}$ using the homeomoyhisms $P_{\mu \ell}$
Pron
Let $f_{\lambda}: X_{\lambda} \rightarrow X$ be the canonical map then
（i）$f_{1}\left(x_{\lambda}\right)$ y open in X
and f_{λ} is an homeomoyphism from $x_{\lambda} t_{a} f_{\lambda}\left(x_{x}\right)$ en porticalon
（i）$U \subset X$ is open（resp．dosed）iff $\forall \lambda \in L, \cup \cap f_{\lambda}\left(x_{\lambda}\right)$ is open（resp closed）．
$(i i) \quad \mathrm{g}: x \longrightarrow>\sim$ continuous off $\forall \lambda \in L, g \circ f \lambda$ is contimuon．

Remark
This does not say，anything about the meytiums to X ！

$$
P^{n}(A)=\operatorname{Mor}\left(\operatorname{srec}(A), \mathbb{P}_{0}^{n}\right)
$$

are not that easy to describe
25／4／2016
d）Enathendieck Topology
Definition
CA Erottendieck topology is a category T equipped with a colledion $\operatorname{Cov}(T)$ of families $\left(U_{i} \xrightarrow{\phi} U\right)_{i \in I}$ of moyhisms in T called coverings，such that
a）For any isomoyhism φ in $T,(\varphi)$ belongs So $\operatorname{Cov}(T)$ ．
$(i i)$ If $\left(U_{i} \xrightarrow{\phi_{i}} U\right)_{i \in I_{d_{i j}}}$ is a covering of U ，and for any $i \in I,\left(V_{i j} \xrightarrow[d_{i j}]{ } U_{i}\right)_{j \in J_{i}}$ a covering of $U_{i,}$

$$
\left(V_{i, j} \xrightarrow{\phi_{i} \cdot \phi_{i j}} U\right)_{(i}
$$

$$
(1, i) \in \prod_{i \in J} J_{1}
$$

（iii）If $\left(V_{i} \xrightarrow{\phi_{i}} V\right)_{i \in I}$ is a coveting \＆V and $V \rightarrow U_{i}$ amorphism then $U_{i} \times{ }_{V} V$ escists for any $i \in I$ and $\left(U_{i} X V \rightarrow V\right)$ is a covering of V

Reminder
In the category of sets，$\frac{11}{i \in I} J_{i}$ is formally

$$
\left\{(j, i) \in\left(\bigcup_{i \in I} J_{i}\right) \times I \mid j \in J_{i}\right\}
$$

Remark
In the following we consider topolajie on categories T which admits finite inverse limits an finite copraduds．
e）Prosheaves
Definition
－Let T and A be categories a prosheave on T with values in A is a contravariont fen dor From T to A ．If Tadmits an initial objed \varnothing and A a terminal object 0 we impose that

$$
F(\phi)=0
$$

－A moghism of peskeaves from FTGG is a natural transformation from F to l C so the presheaves on C with volucs in A form a category．
Frendamental escomple
Let X be an objet et of C
We define a presheof h_{x} on （with
values in set by

$$
\begin{aligned}
& h_{x}(y)=\operatorname{Hom}_{c}(y, x) \\
& \text { and } h_{x}\left(f: y \rightarrow y^{\prime}\right): \operatorname{Hom}_{c}\left(y^{\prime}, x\right) \rightarrow \operatorname{Hom}_{c}(y, x) \\
& g \longmapsto g \circ f
\end{aligned}
$$

Theorem（YONEOA）
The fundor which maps x io h_{x} is fully failiful

Definition
It pesheof F from C ta Lets is said IQ be representable if More assists an object X of C such that F is isomorphic 1 to h_{x} An objid X of C with an isomoyhism from h_{x} to F is called a realization of F

Escorase
Lot I be a filtered category
and C be a category
lat F be a fund ion from Ito c
For any X in C be $k_{x}: I \rightarrow c$
be the fonder moping any
offed $10-X$ and any monhium
to Id x．Check that rite prosheof which maps an object X of $\left(\right.$ Ko $\operatorname{Hom}\left(k_{x}, F\right)$ is $\sum_{I} h_{x} \circ F$ and that，if it assist Fond (I, C) $\lim _{I} F$ gives a realization of $\lim _{I} h_{x}$ oF．
f）Sheaves
$\frac{\text { Definition }}{\text { Set } T}$
Set The a cotegory with a frothenclick topology Let A be a category admitting prochuds． of sheave on C with values in A is a prosheave F on C with values in ${ }_{i}{ }^{A}$ such that for any covering $\left.\left(U_{i} \stackrel{\varphi_{i}}{=}=U\right)_{i \in I}\right)$

$$
\begin{aligned}
& \text { the sequence } \\
& \underset{F(U) \xrightarrow{\varphi}}{\text { exact, where }} \prod_{i \in I} F\left(U_{1}\right) \xrightarrow{\psi_{1}} \prod_{\psi_{2}}(i, j) \in I^{2}
\end{aligned}
$$

φ is characterized by $p . \circ \varphi=\varphi$ ．for any $i \leqslant I$ and ψ_{1}, ψ_{2} by the commutationily of the diagrams

$$
\prod_{i \in 2}^{\prod_{i} F\left(U_{i}\right)} \xrightarrow{\psi_{1}} \prod_{(i, j) \in I^{7}} F\left(U_{i} \times U_{j}\right)
$$

$$
\begin{aligned}
& F\left(U_{i}\right) \xrightarrow[\psi_{2}]{\stackrel{F}{\left(n_{1}\right)}} F\left(U_{i}^{\psi} \times v_{v}\right) \\
& \prod_{i \in I} F\left(U_{i}\right) \xrightarrow{\psi_{2}} \prod_{(i, i) \in I^{2}} F\left(U_{i} \times U_{j}\right) \\
& \downarrow \quad F(\mathbb{R}) \quad \downarrow \\
& F\left(U_{j}\right) \xrightarrow{F(\mathbb{R})} F\left(U_{i} x_{j} U_{j}\right)
\end{aligned}
$$

and a diagram

$$
X \xrightarrow{\text { fam }} y \xrightarrow[g_{2}]{g_{1}}, 2
$$

is said to be exact is for any objet U of C

$$
\operatorname{Hom}(U, X) \rightarrow \operatorname{Hom}(U, y) \xrightarrow{u}+\operatorname{lom}(v, 2)
$$

is exact：that is for any $h: v \rightarrow Y$ such r hot $g_{1} \circ h=g_{2}$ oh there sass a unique $u: v \rightarrow x$ such that ${ }^{2} h=$ fou

Remarks
－If A is a subcategory of the category of sets，this means that if is a byedion from X ri $\left\{y \in Y \mid g_{1}(y)=g_{2}(g)\right\}$
－If A is an abelion cottajory 1 his means that $0 \rightarrow F(u) \xrightarrow[i \in I]{\varphi_{>}} \prod_{i} \underset{\left(u_{i}\right)}{\substack{\psi_{i}-\psi_{i}}} \prod_{i=I^{2}}\left(v_{i} x_{v} v_{j}\right)$ is exact

Escample
If x is a（dassical）topological space and u the conespon ding category of its open Subsets with the open coverings
For any topological space Y ，the functor $h_{y}: v \mapsto E(U, Y)$ is a sheaf．

Definition
At moyhiarn of sheaves is a moyhism of presheaves，let $\theta: S \rightarrow P$ be the inclusion foetor from the cultyory of sheaves to the cotegory of presheave
Theorem
The inclusion functor $\llcorner: \& \rightarrow 0$ admits a left adjoint．In other words，for any preskeof F there escist a sheaf $F^{\#}$ and a moyhism of pesheaves $\varphi: \sigma \rightarrow \sigma^{\#}$ so that for any cheof G

$$
\begin{array}{r}
\text { Homs }\left(F^{\#}, g\right) \underset{\text { equivalent } p}{\longrightarrow} \operatorname{Hom}(F, i(g)) \\
\text { of bundors }(\text { in } l)
\end{array}
$$

3）Stores
[of.HARTSHORNE, skipped]

4）Group scheme
Defintion
Let X be a schemne
－The category Schx of shemes above X is the following calayory
Gbjeds：Shemes Y with a mompism $\pi_{y}: Y \rightarrow X$ called stundural mophism：
Cloyhisms：a moyhirm from $Y B X^{\prime}$ is a moxhism of ocheme，$\varphi: y \rightarrow y^{\prime}$ nech That

$$
\begin{gathered}
y \xrightarrow{y} y^{\prime} \\
\pi_{y} y^{y} x^{\downarrow \pi y^{\prime}} \text { C. }
\end{gathered}
$$

commutes
（Denoted by $\operatorname{tim}_{x}\left(y, y^{\prime}\right)$ ）
Vany algebrair sturdures，like group on simp moy le inteyrelef as commulative diagroms in ine cotegory of eet．Thorefore，they have anologs in the theory of schemes
－A group scheme over X is a scheme G over X（that is with a moyhism $\pi_{G}: G \rightarrow X$ ） equiped with moyhims in Sch_{x}

$$
\begin{aligned}
& m: G x_{y} G \longrightarrow 6 \\
& c: x \longrightarrow G \longrightarrow G \\
& 6: G \longrightarrow G
\end{aligned}
$$

so that the following diagroms commute：

Peforence

（Inverse）

A．Borof linear algebraic groys （Eraduate Teschs in Mathamatios，Syringer）
Remark
Let A se a commutative ring and G be group acheme overspe（A）then Gelefines a covoriant feindor from lhe catejory of commutative A－algebra ta the cateyory of group

$$
B \stackrel{\text { is aiven lar: }}{\text { com } \sec (A)}(\operatorname{Sec}(B), G)
$$

The multijliation is given by：

$$
\begin{aligned}
& (\varphi, \psi) \in G(B) \times G(B) \\
& \operatorname{Spec}(B) \xrightarrow{4} G \\
& \psi \underset{\sigma}{\downarrow} \xrightarrow[\pi_{0}]{\downarrow} \operatorname{Sjec}(A)
\end{aligned}
$$

Cotation
X a scheme over a commutative ring A B a commutative A－algelra

$$
\begin{aligned}
& X_{B}=\operatorname{Lec}(B) x_{\sec (A)} X \text { (Oxtansion of scalans) } \\
& X(B)=\operatorname{Hom}_{\operatorname{skc}(A)}(\operatorname{Spec}(B), X) \quad B \text {-poins of } X .
\end{aligned}
$$

Esemples
－Fa（additive group）

$$
\begin{aligned}
& \mathbb{G}_{a}=\sec (\mathbb{Z}[T]) \text {, } \\
& m: \mathbb{G}_{a} \times \mathbb{G}_{a} \rightarrow \mathbb{G}_{a} \\
& 1 \otimes T+T \otimes 1<1 T \\
& e: \operatorname{Sec} \mathbb{U} \rightarrow \mathbb{\sigma}_{a} \\
& 0 \leftrightarrow T \\
& \because \Phi_{a} \longrightarrow \sigma_{a} \\
& -T<T
\end{aligned}
$$

B－points
Thore is a cononical isomphism from Ta（B）ta 2 he atditive grow B for＋
－σ_{m} mulifificative groun）

$$
\begin{aligned}
& \sigma_{m}=\sec \left(\mathbb{Z}\left[T, T^{-1}\right]\right) \\
& m \sigma_{m} \times \sigma_{m} \longrightarrow \sigma_{m} \\
& T \times T \\
& e: \operatorname{Sec}(2) \\
& L: \sigma_{m} \longleftrightarrow T \\
& L: \sigma_{m} \longrightarrow \sigma_{m} \\
& T^{-1} \longleftrightarrow T
\end{aligned}
$$

B－yoints
$\Phi_{m}(B)$ is the mulijlicative group B^{*} of inverible elements in B

IV Veter bundles，Picard group，K_{0}
1）Vedor bundles
a）Matrices
Definition

$$
\begin{gathered}
M_{m, n}=\operatorname{Sjec}\left(\mathbb{Z}\left[T_{i, j,} 1 \leq i \leq m, 1 \leq j \leq n\right]\right) \\
\text { with }
\end{gathered}
$$

$+: M_{m, n} \times M_{m, n} \longrightarrow M_{m, n}$ moyhiom of schemes definéd by $T_{i, j} \mapsto T_{i j} \otimes 1+1 \otimes T_{i j}$
and

$$
\begin{aligned}
& x: M_{m n} \times M_{n p} \rightarrow M_{m, p} \\
& \text { defined by } T_{k j} \stackrel{n}{k} T_{i k} \otimes T_{k ;}
\end{aligned}
$$

Similarly on $\mathbb{A}^{n}=\sec \left(\mathbb{Z}\left[T_{1}, v T_{n}\right]\right)$
we may define

$$
T: \mathbb{F}^{n} \times \mathbb{B}^{k} \rightarrow \mathbb{F}^{n} \quad \text { addition }
$$

bey $T_{i} \longmapsto T_{i}^{(\otimes)} 1+1 \otimes T_{i}$
$x: \mathbb{A}^{1} \times \mathbb{B}^{n} \longrightarrow \mathbb{F}^{n}$ mulfiflication by a scalar
lip $T_{i} \longmapsto T \otimes T_{i}$
and an action of M_{n}

$$
x: M_{m, n} \times \mathbb{T}^{n} \longrightarrow \mathbb{A}_{n}^{m}
$$

defined
Write
$M$$M_{n=}^{m} M_{i} \longmapsto \sum_{k=1}^{n} T_{i, k} \otimes T_{k}$
Remark 1
cull this laws are compatible which means that we have a lot of commutative diagrams

$$
\begin{aligned}
& M_{n} \times M_{n} \times \mathbb{A}_{n} \xrightarrow{I d \times x} M_{n} \times \mathbb{A}_{n} \\
& \times \times I d \downarrow \\
& M_{n} \times \mathbb{B}_{n} \xrightarrow{ } \times \mathbb{A}_{n}
\end{aligned}
$$

or $M_{n} \times M_{n} \times \mathbb{A}_{n} \xrightarrow{+x I d} M_{n} \times \mathbb{A}_{n}$
2 mulnflicalion \downarrow

$$
\mathbb{A}_{n} \times \mathbb{F}_{n} \xrightarrow{+} \mathbb{H}_{n} \ldots
$$

Remonk 2
We may use Yoneda femma and consider a ocheme S as a fundtor which I ako denote by $S:$ ERings \rightarrow sets caregory of commutalive ringe

$$
\left.A \longmapsto \frac{S(A)}{A \cdot j o u n t s}=1 \operatorname{src}(A), S\right)
$$

Then
$M_{n}(A)$ is the A－algelora of $n \times n$ matinios and $\mathbb{A P}^{n}(A)$ is A^{n} seen as a $M_{n}(A)$－module
－The linear gromp

$$
\begin{aligned}
& \text { linear growp } \\
& G L_{n}=\operatorname{Spec}\left(\mathbb{Z}\left[T_{i j}, 1 \leq i, i \leq n\right]\left[\frac{1}{\operatorname{Pet}\left(T_{i j}\right)}\right]\right. \\
& \text { is an ojen subscheme of } M_{n}
\end{aligned}
$$

wich is an open subscheme of M_{n}［Per $\left.\left(T_{i j}\right)\right]$
with the induced Mullificiction
$1 \leqslant k i n$

$$
1<j \leqslant n
$$

$$
\begin{aligned}
& \times G L_{n} \times G L_{n} \rightarrow G L_{n} \\
& \text { e: } \operatorname{sjec}(2) \rightarrow G L_{n} \\
& \left\{\begin{array}{l}
0 \text { if } i \neq 1 \longleftarrow T_{i j} \\
1 \text { if } i=j
\end{array}\right. \\
& L: G L_{n} \longrightarrow G L_{n}
\end{aligned}
$$

defines an algébroicicged

$$
\frac{B \text { point }}{\sigma l_{n}}(B)=M_{n}(B)^{*}=G l_{n}(B)^{\prime \prime}
$$

b）Vector bundles
I want to consider vedor bundle as schemes and not as coherent sheaves．
Let $n \in \mathbb{N}$ we consider the category
V_{n} ：objects are products $x \times$ of $^{n} n$
a monhism $U \times \mathbb{T H}^{3} \rightarrow X \times \mathbb{A}^{n}$
is a moyhism of schemes $\left.\varphi: U \times \mathbb{T}^{n} \rightarrow X \times I\right)^{n}$ such that hove escorts
－an open immersion $c: U \rightarrow X$
－a moyhism $\quad f: U \rightarrow M_{n}$
such that

$$
\begin{aligned}
& U \times \mathbb{A}^{n} \xrightarrow{I d \times f \times I d} U \times M_{n} \times \mathbb{A}^{n}
\end{aligned}
$$

commutes
（In corms of A－joins，this means

$$
\begin{aligned}
U(A) \times T^{\prime} & \longrightarrow X(A) \times A^{n} \\
(u, t) & \longrightarrow(L(u), f(u) \times t))
\end{aligned}
$$

Tore are Iwo fen dons from V_{m} to the category of scheme
（i）i the inclusion founder
（ii）pr the projection functor which $\operatorname{mop} X \times \mathbb{1 7}^{\text {n }}$ to X
for any object $x \times \mathbb{A}^{n}$ of $V_{m} \quad \pi_{x}: x \times\left(A^{n} \rightarrow x\right.$ defines a natural etronsformation from $1 T_{\alpha} p r$ ． for any E of V_{n} we also have the addition morghism $t: i(E) x_{r(E)} i(E) \rightarrow i(E)$ which may also be seen as a natural transformation between fundors
and the multiplication

$$
x: \mathbb{H}_{1} \times i(E) \rightarrow i(E)
$$

（2）for $n \geqslant 2$ the matrices do not commute so $M_{n} \times E \xrightarrow{x} E$
$\downarrow I d x \phi \downarrow \phi$ is not commutative

$$
\Pi_{n} \times E \xrightarrow{x} E
$$

Thus the multiplication by Mn does not define a natural transformation

Definition
－Let X be a scheme．At vedor bundle of rank n E over X is a scheme E with
（i）a projedion map $\pi: E \rightarrow X$
（ii）an addition map $+: E X_{x} E \rightarrow E$
（iii）a scalar multiplication $x \mathbb{A}_{1}^{x} x_{x} E \rightarrow E$
such that E is obtained by gleveing together objects from V_{n} that is there is a set L and a fundor F from The category $I=\oiint f(L)$ of finite non anjty sets of $L E$ Lo V_{n} such that
K moyhiam in $t F(A \cup B) \rightarrow F(A)$
i．$F(A \doteq B)$ is an gen and $\downarrow \quad \downarrow$ when $A \cap B \neq \varnothing$ immersion of schemes $F(B) \longrightarrow F(A \cap B)$
sud that $E=\frac{\lim }{I}$ io f，$X=\frac{\operatorname{lem}}{I}$ pr of，
π is induced by $\pi: i \rightarrow p r$

$$
+\cdots+i x_{p r} i \rightarrow i
$$

and $\times \longrightarrow \quad \mathbb{H}_{1} \times i \rightarrow i$
π is called the structural monhism of E A veter brindle of nook 1 is called a live bundt．
－Let E be a vector bundle of rank m over X and F \qquad n over X a moypism $\varphi: E \rightarrow F$ is a moyhissm of Δ chemes such that

$$
\begin{aligned}
& +E \times E \rightarrow E \quad \mathbb{T}^{1} \times E \rightarrow E
\end{aligned}
$$

commute
Che vector bundles with these moyhisms form ak category．

From the point of view of A－joints we get maps

$$
\begin{array}{rl}
\pi: E(A) & \rightarrow X(A) \\
& +E E(A) \times x(A) \\
\text { and } x & x A E(A) \rightarrow E(A)
\end{array}
$$

so that for any $x \in X(A) \quad \pi^{-1}(x)$ has a sturdine of $A-$ module．

We denote $E(x)=\pi^{-1}(x)$ and call it the file of E at x ．
if $\varphi: A \rightarrow B$ is a morfism of commutative rings Let $x_{B}=x_{0} \operatorname{Sjec}(\varphi): \operatorname{Sec}(B) \rightarrow X, x_{B} \in X(B)$

We get an isomoyhism

$$
E(x) \otimes_{A} B \xrightarrow{\rightarrow} E\left(x_{B}\right)
$$

This follows from the fact that $E(x)$ is，by definition，locally froe of constant rank n and we ron che d locolly wether a moyhiom is an isom orphism．
c）Sections
Definition
Let E be a vector bundle on X of rook n and U an open set of X
a section Δ of E over U is a moyhis m $\Delta: U \rightarrow E$ such that T oi s is the injection map from U lox． The set $\Gamma(U, E)$ of ikese sections has a shindine of $G_{x}(U)$ module f_{x} ？

$$
\text { for } f \in G_{x}(J), \Delta \in \Gamma(v, E)
$$

$U \xrightarrow{f \times i} \mathbb{H}_{1} \times E$
fo $\searrow_{E}<x$
Fads
（i）$U \longmapsto \Gamma(U, E)$ defines a coherent sheaf of 6_{x}－module which is locally free of constant rook n
（ii）This defines an equivalence of categoric between the category of vedor bundle on X and the category of coherent $G_{x}-$ modules which are locally free of constant rook and in H_{e} aitersture te vector biencles are sometimes defined as coherent sheaves lent I prefer tease them as schemes．
d）Escomples and construdion
（1）Trivial vedion bundt：

$$
\pi \mathbb{R}^{n} \times \times \longrightarrow \times
$$

its sheaf of sections is G_{x}^{n}
（2）The projidive pace \mathbb{P}^{n} may be refined over \mathbb{Z} as the flatting of $n+1$ affine spaces

$$
\begin{aligned}
& U_{i}=\sec \left(\mathbb{Z}\left[T_{0}, \stackrel{1}{T_{i}}, T_{n}\right]\right) \\
& U_{i, j}=\sec \left(\mathbb{Z}\left[T_{0,}, T_{i},-T_{n}\right]\left[\frac{1}{T_{i}}\right]\right) \\
& U_{i, j} \longleftrightarrow U_{i, i} \\
& T_{k} / T_{i} \longleftrightarrow \frac{T_{k}}{T_{i}} \quad k \neq i, j \\
& 1 / T_{i} \longleftrightarrow 1
\end{aligned}
$$

We que The $\mathbb{A}^{1} \times U_{i}$ using the moxhisms （in $\left.V_{1}\right): \mathbb{A}^{n} \times U_{i j}^{i} \longrightarrow \mathbb{H}^{1} \times U_{j \cdot i}$

$$
T \otimes 1 / T_{j}{ }^{11} \longleftarrow T \otimes 1
$$

For $k \in 0, \ldots, n$ we have commutative diagrams

which define a sedion T_{k} of this line bundle This line bundle is den oted as G（1）．
（3）Let E beavedor bundle orer x and $f: Y \rightarrow X$ be a moyhism of shemes Then $E X_{x} Y$ is a vector bundle over Y with α_{2} as the sturdinal map Indeed if $E=\lim _{i \in I} U_{i} \times \mathbb{T}^{n}$
Then $E x_{x} y=\lim _{i \in I} f^{-1}\left(v_{i}\right) \times \mathbb{A}^{n}$
$f^{*}(E)=E x x^{y}$ is called the pull－back of E by f
en portionlar if U is an open subset of X $E_{I V}=E_{X_{x}}$ is colled the reskidion of Erou
Terminology
By definition for any vedor bundle E of rouk n overx ithere excists an ojen covering $\left(U_{i}\right)_{i \in T}$ of X and a family of is $2 m$ oykisms of redor bundes

$$
\left(\phi_{i}: v_{i} \times \mathbb{T}^{n} \rightarrow E \mid v_{i_{2}}\right)
$$

such a covering is eaid to trivialye E and the fomily $\left(\psi_{i}\right)$ is colled a bocal burialization of $i t$ ！
（4）Definition
A limear rgpresentation of an algelnaic group G is a moyhism of algelnaic group

$$
G \rightarrow G L_{m}
$$

Consturdion
Let $S \cdot G L_{n} \rightarrow G L_{m}$ be a representation of $G L_{m}$ and bet E be a vedor bundle geven as

$$
E \rightarrow \operatorname{lem}_{I} \text { i of }
$$

where $F: I \rightarrow V_{n}$ is a gluzing data In fact all moyhisms $F(\varphi)$ are given ly pairs (i, f) wher $1: U \rightarrow V$ is an open immession and $f: U \rightarrow G L_{n}$ a moshism
We conote by V_{M}^{*} ithe cotegory with
the some objeds as V_{M} but with ithis lyge of moyhrioms
Then define a fundor
by $\rho\left(U^{\rho}: V_{n}^{*} \rightarrow \mathbb{H}^{n}\right)=V_{m}^{*}$
\mathbb{F}^{m}
and if $\varphi: U \times \mathbb{T}^{n} \rightarrow V \times \mathbb{F}^{n}$
corrosponds $r_{0},:: U \rightarrow V$ and $f: U \rightarrow G L_{n}$ and $\rho(\varphi)$ is eefined by

$$
\begin{aligned}
\cup \times \mathbb{A}^{m} \xrightarrow{ } V \times \mathbb{T}^{m} \\
\left.I_{d} \times \rho \cdot f \times I_{d}\right\rangle_{1} \times \mathbb{R}^{m} \times X
\end{aligned}
$$

We defeine

$$
\rho_{*}(E) \text { as } \lim _{I} \log \cdot G
$$

Since it is defined using a fundior on V_{n}^{*} $I_{1}(E)$ ，up to isomoyhism，eyends only on ρ and the closs of isomoyhism of E ．
and S_{*} is fundorial on the category of vector bundles of rank n ．

This works also for representations of produds of 6 ln ：If we have a moyhism of algebraic groups $\prod_{i=1}^{n e} G L_{n_{i}} \rightarrow G L_{m}$／ we get a functor

$$
\prod_{i=1} P_{n_{i}}(x) \rightarrow P_{n}(x)
$$

where $P_{n_{i}}(x)$ denotes the category of vector bundles of rank n_{i} over x ．
（5）Applications
We con aply this construction to the fundovial construction in linear algelera
－direct sumo

$$
\begin{aligned}
& \sigma L_{n_{1}} \times \sigma L_{n_{2}} \longrightarrow G L_{n_{1}+n_{2}} \\
& \left.\left(M_{1}, M_{2}\right) \longmapsto\left(\begin{array}{cc}
M_{2} & 0 \\
0 & M_{2}
\end{array}\right) \quad \text { (in terms of A joint) }\right)
\end{aligned}
$$

Taking vedor bundle E_{1}, E_{2} on X we get a vedor bundle $E_{1} \oplus \oplus E_{2}$ colled The dived seem of E_{1} and E_{2}
For any commut alive ring A and any $x \in X(A)$ ， we have a cononical isomoyhism

$$
E_{1} \oplus E_{2}(x) \rightarrow E_{1}(x) \oplus E_{2}^{\prime}(x)
$$

－Tensor product
$\operatorname{Let}\left(l_{1},, l_{m}\right)\left(\right.$ resp．$\left.\left(l_{1},-, l_{n}\right)\right)$
be the usual basis of \mathbb{Z}^{m}（rem \mathbb{Z}^{n} ）
Then $\left(e_{i} \otimes f_{j}\right)$ is a basis of $\mathbb{Z}^{m} \otimes \mathbb{Z}^{n}$

$$
(i, j) \in\{1,-m\rangle \times\{1,-n\}
$$

and we got a representation

Taking vedor brendles E_{1}, E_{1} on X we get a vader bundle
$E_{1} \otimes E_{2}$

$$
E_{1} \otimes E_{2}
$$

called the tensor pracluct of the vector bundles

$$
E_{1} \otimes E_{2}(x) \rightrightarrows E_{1}(x) \otimes E_{2}(x)
$$

4／5／2016 En portíalor
－the fund tor $E \mapsto E^{\otimes k}$
Taking the usual basis $\left(l_{1}, v_{n}\right)$ of \mathbb{Z}^{n} $\left(e_{i_{1}} \otimes \cdots \otimes e_{i k}\right)$

$$
\left(i_{1},-i_{k}\right) \in\{1,-n\rangle^{k}
$$

is a basis of $\left(\mathbb{Z}^{n}\right)^{\otimes k}$ given a representation

$$
G L_{n} \rightarrow G L_{n} k
$$

and $E^{\otimes l}$ is the vector bundle obtained from E

Reminder（tensor algebra） given a commutative sing A and a A－moclule M ，

$$
T^{*} M=\underset{n \in \mathbb{N}}{\oplus} T^{n}(M) \text { where } T^{n}(M)=M^{\otimes n}
$$

is a graded algelara over A ，the product being defined by

$$
\left.\left(x_{1} \otimes \otimes \otimes x_{m}\right) \otimes\left(y_{1} \otimes \cdots y_{m}\right)=x_{1} \otimes \otimes-\otimes\right) x_{m} \otimes y_{1} \otimes-\otimes y_{n}
$$ and

$$
T^{m}(M) \otimes t^{n}(M)=T^{m+n}(M)
$$

we define

$$
\Lambda^{*} M=T^{\neq} M(x \otimes x, x \in M)
$$

bilateral ideal generated by $x \otimes x$
This ideal is graded：

$$
\begin{aligned}
& I=(x \otimes x, x \in M) \quad I=\bigoplus_{n \in \mathbb{N}} I_{n} \text { whore } I_{n}=I n^{n}(M) \\
& \text { and we define }
\end{aligned}
$$

and we define
whore

$$
\begin{aligned}
A^{*}(M) & =T^{*}(M) / I \\
& =\underset{n \in \mathbb{N}}{\oplus} a^{n}(M)
\end{aligned}
$$

$$
n^{n}(M)=T^{n}(M) / I_{n}
$$

The product in $A^{*} M$ is denoted by A

$$
x a y=(-1)^{m+n} y a x \text { for } x \in 1^{m} M, y \in \Lambda^{n} M
$$

Pop
－If M is a free A－module with a basis $\left(e_{1},-e_{n}\right)$ then $a^{k} M$ is free with a basis given by $\left(e_{i_{1}} \alpha-1 e_{i_{k}}\right)_{1 \leqslant i_{1}<-<i_{k}<n}$
－By defining $a^{k} \varphi\left(x_{1} n-n x_{n}\right)=\varphi(x) a-n \varphi\left(w_{n}\right)$ we get functor from A－Mad to A－Mod Estovior product
This we have a representation $\sigma L_{n} \rightarrow G L_{\binom{n}{k}}$ and we con define
$n^{k} E$ which is a vedor bundle of $\operatorname{ronk}\binom{n}{k}$
for a vedor bundle of ron n
es n particular
$\operatorname{ctt}(E)=\Lambda^{n} E$ is a line bunche．
Symmetric product
Semilarly $S^{*}(M)=T^{+}(M) /(x \otimes y-y \otimes x, x, y \in M)$ is a graded commutative algebra over A and we con clefini
$S^{n} E$ which is a vedor bunch of rank $n^{k}-\binom{n}{k}$
$-\frac{d u a l}{w \sqrt{2}}$
We consider the contragredient representation

$$
\begin{aligned}
G L_{n} & \mapsto G L_{n} \\
M & \mapsto M^{-1}
\end{aligned}
$$

We get fundor $P_{n}(x) \rightarrow P_{n}(x)$
we denote by E^{V} the image of the vector bundle of E and call is the dual of E ．
$E \longrightarrow E^{V}$ defines a contravariont fund ten which is an equivalence of category from $P \& P^{\circ}$

$$
\begin{aligned}
& E^{V}(x)=s \text { Home } A \cdot \bmod (E, A) \\
& \text { ernal Hor }
\end{aligned}
$$

－Internal Hoo

$$
\text { Hem }(E, F)=E^{v} \otimes F
$$

Exarase
There is an national equivalence
between

$$
\Gamma(x, \underline{\operatorname{Hom}}(E, F)) \xrightarrow{ } \operatorname{Hom}_{v . b}(E, F)
$$

e）Vedor benches and projedive modules Let me state a result from commutator algebra
Theorem／Definition
Let A be a commutative noetherian sing and let P be a finitely generated A－module Then P is projedive if and only if it satires the following equirabit conditions：
（i）The functor $M \longmapsto \operatorname{Mom}(P, M)$ is excad a．mot
（ii）There escists a A ．mackle Q such that $P \oplus Q$ is a free A－module
（iii）For any A－algebra B which is a local ring，$P \otimes_{A} B$ is a pres B－module
（iv）for any prime ideal A of A $P \otimes_{A} A_{P}$ is free
（v）for any masainal ideal in of A

$$
P \otimes_{a} A_{m} \text { is free }
$$

（v）There esaist a primitive element $\left(f_{n}, V f_{r}\right) \in A^{r}$ such that
for $R \in\{1,-r\} \rightarrow P \otimes A\left[f_{i}^{1}\right]$ is froe
（vi）The functor $M \rightarrow M \otimes_{A} P$ is coact．
For any prime ideal is of A^{A} ，the rank of the free A_{p} module $P \in A_{p}$ is called de rook of $H 1$ at r ．This defines a map $\operatorname{Spec}(A) \rightarrow \mathbb{N}$
which is locally constant（The inverse image of an integer is an open subset of spec（A）） If it is onstant of value r then one says that M has constant rank Ω

Remark
If A is integral then Spec（A）is conneded and therefore any finetily generated projective module has a constant rank．

Prop
Let A be a commutature noitherian rung Let $\eta=I d_{\sec (A)} \in\left[\operatorname{Spec}^{(A)](A)}\right.$
The founder $E \rightarrow E(\eta)$ defines an equivalence of catayorie from the category of vedor bundles of rank r over Spec（A） la the category of Projedtre A．module of constant rank r ．

Example
If A is a principal domain，any sub－morlule of a free module is free and attergore cony projective module is free．Thus any vedor bundle over Spec（A）is isomoyhic $1 \overline{0}$ $\operatorname{Sec}(A) \times \mathbb{A}^{r}$ where r is the rank of the vector bundle and the category of vedor bunches over spec (A) is equivalent to the category of free moclule of finite rank over A ．
e）Subbundes，quotient，esca d sequences
Definition
A subbendle of bundle E is a sulschome F equiped with a strudive of vector bundle over X so that The inclusion map

$$
i \cdot F \longrightarrow E
$$

is a moyhism of vector bundles
Remark
We have commutative diagrams

$$
\begin{aligned}
& F \rightarrow E \text { and } \\
& \pi_{F} \searrow \downarrow \pi_{F}
\end{aligned}
$$

$$
E x x E \xrightarrow{+} E
$$

So there is a unique stridure of vedor brindle on F which mokes it a subbundle of F ．

Example
Let E be a vedor bundle on a scheme then the zara section $0: x \rightarrow E$ fine an isomorphism from X sa a subbunalle O_{X} of E（the rank of tithes subbenclle $i v$ ）
We want to define the kernel of moyhisms but there is a problem with that

Reminder
In a additive category the kernel of a mophism $\varphi: E \rightarrow F$ is a moyhirm $K: K \rightarrow A$
sud that，for any object H

$$
0 \rightarrow \operatorname{Hom}(H, K) \xrightarrow{\psi} \mathrm{Ko} \mathrm{\psi}_{0}(H, E) \rightarrow \operatorname{Hom}(H, F)
$$

is exact．
The cokernel is defined as the kernel in the opposite category
The cokernel is a moyhism $\gamma: F \rightarrow C$
such $M_{\text {at }}$ ，for any objed H ：

$$
0 \rightarrow \operatorname{Hom}(C, H) \rightarrow \operatorname{Hom}(F, H) \rightarrow \operatorname{Mom}(E, H)
$$

is exact
Example
rake $X=\operatorname{Sec}(\mathbb{Z})$ ．Take $E_{\text {as }}$ the trivial vector bundle of rank 1．As s explained the category of vedor bunches oven \mathbb{Z} is isomonhie to the category of free \mathbb{Z}－modules．
Take the moyphism f of wedtor bundles coneyonding to
For any n

$$
\gamma_{\varphi}: \mathbb{Z}_{\underset{k s}{n}}^{\underset{x}{x}} \mathbb{Z}
$$

is enjedtur and

$$
\operatorname{Hom}\left(\mathbb{U}, \mathbb{Z}^{n}\right) \xrightarrow{x z} \operatorname{Hom}\left(\underline{V_{2}} \mathbb{Z}^{n}\right)
$$

$$
\psi \longmapsto \psi_{0} \varphi
$$

is infective．Thus in the category of vector bundles

$$
\operatorname{Ker}(f)=0 \text { and } \operatorname{coken}(f)
$$

But
（2）i）ft is not an isomorphism （and fo is not the kernel of its cokerned since $0 \longrightarrow \operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}^{n}, \psi\right) \rightarrow 0$

$$
\psi \longmapsto \varphi_{0} \psi
$$

is not exact）
ii）Sf we consider the T_{2} point of Sur（ (\mathbb{Z})

$$
\begin{aligned}
& x: \operatorname{Sec}\left(\mathbb{F}_{2}\right) \vec{E} \sec (x) \\
& f: E(x) \xrightarrow{l}
\end{aligned}
$$

is the zero map and has a non trivial kennel and cokernel．

So the kennel does not commute with
filters！
（iii）The cokernel of $\mathbb{Z} \xrightarrow{x^{2}} \mathbb{Z}$ is not 0 in the category of \mathbb{Z}－module
so the fundor from the category vector bunch to the category of wheront sheaves does not presewe cokemes
The point is that the category of vedor bundle is not an abclian category but it has a nice notion of short exact se quinces：
dotation
Let X be a scheme．We denote by $X_{(k)}$ the set of points of dimension k of X in jortioular $X_{(0)}$ is the set of closed joints of X ．For the yjecturm of a ring，it conesponds to the set of maximal ideals of the ring．
If $x \in X, G_{x, x}$ is the local ring or x
$m_{x, x}$ its maximal ickal and $K(x)=G_{x, x} / \pi_{x, x}$ its $r^{x} x x^{x}$ duce field

Definition
A sequence

$$
0 \rightarrow D \xrightarrow{\varphi} \in \xrightarrow{\psi} F \rightarrow 0
$$

of redon bundles over a scheme X is oscact if it satisfies the following equivalent conditions
（i）For any point x of X the sequence of $G_{x, x}$ modules

$$
0 \rightarrow D\left(\eta_{x}\right) \rightarrow E\left(\eta_{x}\right) \rightarrow F\left(\eta_{x}\right) \rightarrow 0
$$

is escad，where $\eta x: \operatorname{Sjec}\left(0_{x}, x\right) \rightarrow x^{x}$ This condition says exactly that
（ii）Let D, ξ, F be the she of of section of D, E and F respedively the sequence

$$
0 \rightarrow D \rightarrow \varepsilon \rightarrow \theta \rightarrow 0
$$

is exact
（iii）For any closed point x of X the sequence of $k(x)$ vedor spaces

$$
0 \rightarrow D(x) \rightarrow E(x) \rightarrow F(x) \rightarrow 0
$$

is exact（here x denotes also the mophism $\left.\mathrm{S}_{\mu}(K(),) \rightarrow x\right)$
（iv）For any commutative ring A and any $x \in X(A)$ ，The segenence of A－module

$$
0 \rightarrow D(x) \rightarrow E(x) \rightarrow F(y) \rightarrow 0
$$

is exact
Note that in conditions（i）and（iii）we are considering free module of constant rank． This works only for shout excad sequence Definition of the kernel for vendor bundles
－Let $\varphi: E \rightarrow F$ bra moyhism of vedor bun the over the scheme x ．Then $\varphi^{-1}\left(O_{x}\right)=E X_{F} O_{x}$
is a closed subscheme of E
Assume the the rank of φ is constant， that is

$$
\begin{aligned}
& X \rightarrow \mathbb{N} \\
& x \longmapsto \operatorname{rk}\left(\varphi_{x}: E(x) \rightarrow F(x)\right)
\end{aligned}
$$

is constant，then $\left.\varphi \cdot 1 \sigma_{x}\right)$ is a subbundle K of E
so that the indusion map is a kernel of φ
In the cense of additive categories．
We denote it by $\operatorname{Kar}(\rho)$
Now the duality is an equivalence of category
So we may define
－If φ is of constant rook，ω is $\varphi^{V}: F^{V} \rightarrow E^{V}$ and $\operatorname{Coker}(\varphi)=\operatorname{ker}\left(\varphi^{\prime}\right)^{v}$ ．

Example
If S is a subbundle of E then the infusion mapihas constant rook and the quotient EIF is defined as coper（i） For any commutative ring A and any $x \in X(A)$ $E / F(x)$ is canonically ismonpic lo $E(x) / F(x)$ and we shall identify these A modules． The sequence $0 \rightarrow F \rightarrow E \rightarrow E / F \rightarrow 0$ is escact
（2）Even if 4 and ψ have constant rook
（2）Even if φ and ψ have constant rook， The rook of Ψ ．φ may not be constant
Example
L trivial line bundle of rank L / \mathbb{A}^{1}

$$
L \rightarrow L \oplus L \longrightarrow L
$$

$$
\begin{aligned}
& L=T^{1} \hat{1} \times \mathbb{F}^{1} \\
& (x, t)
\end{aligned}
$$

$$
(x, t) \longmapsto(x,+x,()) \stackrel{\mathrm{P}_{\mathrm{h}_{2}}}{\longrightarrow}(x, f x)
$$

e）Tangent bundle，cotangent bundle，canonical bundle Definition

Let A be noetherion commutative ring Let X be amooth conneded scheme over Sped（ A ） the tangent bundle aver X is defined as the unique shame TX such that the functor of points asssacted to $T X$ which maps a commutative A－algebra

$$
B \rightarrow \operatorname{Hom}_{\operatorname{spc}(A)}\left(\operatorname{Spe}^{(B)}, T X\right)
$$

is isomoyhic to the fundor

$$
B \rightarrow \operatorname{Hom} \sec (A)\left(\operatorname{Sec}\left(B(T] /\left(T^{2}\right)\right), X\right)
$$

with the moyhism $\pi: T X \rightarrow X$ coneogonding to the natural transformation

$$
\operatorname{Ham}\left(\operatorname{spcc}\left(B[T] /\left(T^{2}\right)\right), X\right) \rightarrow X(B)
$$

induced by $B[T] /\left(T^{2}\right) \longrightarrow B$
The scalar multiplication is induced by moyhisms

$$
\begin{aligned}
B[T] /\left(T^{3}\right) & \longrightarrow B[T] /\left(T^{2}\right) \\
T & \longrightarrow b T
\end{aligned}
$$

for $b \in B$
and the addition map might be conotuded as follows：

But the commutative diagram

which gives an isomorphism

$$
\begin{aligned}
& T_{1} T_{2} \\
& \frac{J}{T} \frac{T}{T}
\end{aligned}
$$

$$
\sec \left(B\left[T_{1}, T_{2}\right]\left(T_{1}^{2}, T_{1} T_{3} T_{2}\right)\right)
$$

$$
)^{\sim} \underset{\operatorname{Spec}\left(B C T /\left(T^{2}\right)\right.}{\operatorname{Sjcc}(B)} \operatorname{Spr}\left(B C T / /\left(T^{2}\right)\right)
$$

See（B［T］／（ $\left.T^{2}\right)$ ）
（Sse below for a simpler poof）
Remember：the tired limits does not exist in general in the category of rings so it is only in that particular case that the glueing of these ojedra is an affine scheme

9／5／2015
Remark
a）It is only to check that TX is locally of the form $X \times 7^{n}$ that we need to assume X ta le smooth over Syr（A）．In general，the above conseñdion gelds an abclion group scheme TX on X b）Files：Let B le a commutative A－algebra Conc assume X is office $X=$ spec（C） Let $x \in X(B)$ corresponds to a moypism of C－algelios $C \rightarrow B$
Now $B[T] /\left(T^{2}\right)$ as a B module is froe of rook 2 with a basis given by $(1, \varepsilon)$ ，where $\varepsilon=\bar{T}$ ．Write $T_{x} X=T X(x)$

If $y \in T_{x} X$ ，then y conezonds to a moyhim $\left.\varphi: C \rightarrow B[T] / C T^{2}\right)$ given by

$$
\varphi(c)=\varphi_{0}(c)+T \delta(c)
$$

S is A linear and satisfies

$$
\delta\left(C_{1}, c_{2}\right)=\varphi\left(\left(C_{1}\right) \delta\left(r_{2}\right)+\delta\left(G_{1}\right) \varphi\left(r_{2}\right)\right.
$$

So it is a derivation from the A－algebra C into the A－module $B E$ ．We jet in that way an isomoyhirm of B modules

$$
T_{x} \times \sim \operatorname{Der}_{A}(C, B \varepsilon)
$$

Escomple

$$
\text { If } c=A\left[x_{1},-x_{n}\right] /\left(f_{1},-f_{r}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
T \operatorname{Sec}(c)=\operatorname{Mor}\left(A\left[x_{1},=x_{n}\right] /\left(b_{1}, i \sigma_{n}\right), B(T) /\left(T^{2}\right)\right) \\
\text { be identified with all }
\end{array} \\
& \begin{array}{l}
=\left\{\left(x_{1}+\varepsilon u_{1},-x_{n}+\varepsilon u_{n}\right) \in B(T) /(T y) \mid f_{i}\left(x_{1}+\varepsilon u_{1}, \ldots, x_{n}+\varepsilon n_{n}\right)=0\right. \\
\text { for i } e(1,1,1)\}
\end{array} \\
& =\left\{\left(x_{1}, y_{n}\right),\left(a_{1}=y_{n}\right)\right) \in\left(B^{n}\right)^{2} \mid f_{i}\left(x_{1}, x_{n}\right)=0 \text { for } i=1, ~ ; ~ \Omega
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{(x, u) \in X(B) \times B^{n} \mid u \in \bigcap_{i=1}^{n} \operatorname{Kar}\left(d_{x} h_{i}\right)\right\}
\end{aligned}
$$

Proof of the statement
I have Ix proof that TX is unique （up l＇s isomaypism）and esabls as a vader bundle．

Vinaty
Since all schemes are obtained by glueing together ope core and the foot what

$$
\underset{x}{ }: y \mapsto \operatorname{Hom}(y, x)
$$

is a sheaf h_{x} is determined by its rettidion ts opera of sings．We then aptly Yoneda！ lemma to get in at X is determined by it fuendor of points

$$
B \longmapsto X(B) \text {. }
$$

Escitence
We only have to deck that X admits a covering $\left(U_{J}\right)_{i \in I}$ by open substeme so that
$T X_{1 U_{i}}=T U_{i}$ is a vedor bundle $/ U_{i}$ We may Therefore assume that

$$
x=510 c c
$$

where $C=A\left[T_{1}, T_{n}\right] /\left(f_{1},-, f_{\Omega}\right)$
and $d f: \mathbb{A}_{A}^{n} \longrightarrow M_{n} n$ has constant rank
But then by the excankyle y gave，
$T X(B)=\left\{(x, u), x \in X(B), u \in \operatorname{ker}\left(d_{x} f\right)\right\}$
That is，if we see as a moghism between bivial vedor bundles，

$$
d f:\left(A_{A}^{n} \times \mathbb{A}_{A}^{n} \rightarrow A\right.
$$

and $T X=\operatorname{ker}(\mathrm{ff})^{A}$ ．
From now on y denote G for the trivial
bundle on V（although it is rather its sheol of sedions）
Definition
－der X，Y be smooth conneded schemes over Spec（A）and $f: X \rightarrow Y$ be a moyhism
of schemes．Then the natur of tran formation

$$
\begin{aligned}
& \left.\underset{\operatorname{gec}(A)}{ } 110 \mathrm{sec}\left(B[T] /\left(T^{2}\right)\right), x\right) \xrightarrow{-0 f} \operatorname{Hom}\left(\operatorname{spec}_{\text {sec }}\left(B[T] /\left(T^{2}\right)\right), Y\right) \\
& \text { Sec }(A)
\end{aligned}
$$

induces a map

$$
T X \longrightarrow T Y
$$

such that \downarrow_{x}^{π} f $\downarrow \pi$
and a moyhism of vedor bund ls over X ．

$$
d f: T X \rightarrow f^{*}(T Y)
$$

－If f is a dosed immersion，which means that $d f$ is of constant rink $\operatorname{dim}(K)$ ， then

$$
N_{x / y}=f^{*}(T Y) / d f(T x)
$$

as a vector bundle on．
－The cotangent bundle is the deal of the tangent bundle，it is dented by $\Omega^{1} X$ Its sections are the 1 －forms We put $\Omega^{2} x=\Lambda^{k}\left(\Omega^{1} x\right)$ its section are the Reforms
There is a vorkuct

$$
\Gamma\left(u, \Omega^{p} x\right) \times \Gamma\left(u \Omega^{a} x\right) \rightarrow \Gamma\left(u, \Omega^{p+a} x\right)
$$

－The canonical line bundle is

$$
\omega_{x}=\Omega^{n} x
$$

the anticanomical line bundle is its duad

$$
\omega_{x}^{-1}=\omega_{x}^{v} \cong \operatorname{det}(T x)
$$

This line bundle is young No pay a control role on our
game．
Examples
1）The projective space
First，remember that we defined a line bundle $G_{p n}(1)$ on the projedive ounce

$$
G_{\mathbb{P}^{n}}(k)=\left\{\begin{array}{l}
G_{\mathbb{P}^{n}(1)^{\infty k}} \text { if } k \geqslant 1 \\
\text { hivial live bundle if } n=0 \\
\left(G_{\mathbb{P}^{n}}(1)^{v}\right)^{\otimes-k} \text { if } k<0
\end{array}\right.
$$

It is a line bundle on \mathbb{P}^{n} ．The sections of $G_{p^{n}}$（1）give by duality $n+1$ moyhisms of vector bundle

$$
X_{i}: G_{\mathbb{p}^{n}}(-1) \longrightarrow G_{\mathbb{p}^{n}}
$$

and

$$
f:\left(x_{0},-x_{n}\right): G_{\mathbb{p}^{n}}(-1) \rightarrow G_{p^{n}}^{n+1}
$$

By conshuction x_{i} does not vanish on

$$
U_{i}=\operatorname{Sjec}\left(k\left[x_{0},-\hat{x}_{\hat{1}},-x_{n}\right]\right)
$$

Thess ρ is of constant rank 1 ，it give en embedding of $G_{p^{n}}(-1)$ in

$$
\mathbb{P}^{n} \times \mathbb{P}^{n+1}
$$

Looking at fibres，we get for any commutative ring A and any $x \in \mathbb{P}^{n}(A)$

$$
G_{p n}(-1)(x) \subset A^{n+1}
$$

is a projective submoclule of constant rook 1 Moreover every whore locally，it is a died factor so the quotient $Q=A^{n+1} / \sigma_{1 P^{n}}(-1)(A)$ is everywhere locally free and hence proje dive By definition of projedive modules

$$
\operatorname{Mor}\left(Q, A_{\Delta}^{n+1}\right) \rightarrow \operatorname{Hom}(Q, Q) \rightarrow 0 \text { is escact }
$$

and this jeves a glitting

$$
\begin{aligned}
& \text { his jeves a sjesting } a+1 \leftarrow^{0} Q \rightarrow 0 \\
& 0 \rightarrow G_{p n}(-1)(A) \rightarrow A^{\circ} \rightarrow 0 \\
& \text { d thus }
\end{aligned}
$$

and thus

$$
A^{n+1}=Q(1) \rho\left(G_{\mathbb{P}^{n}}(-1) /(A)\right)
$$

In fact we get in that way Proposition

He map

$$
\mathbb{P}^{n}(A) \longrightarrow \rho\left(G_{\mathbb{P}^{n}}(1)(A)\right)
$$

is a byection from she A－point of \mathbb{P}^{n}
To－the set of submodules L of A^{n+1} such rhat
（i）L is a clired su m mond：
$\exists Q \subset A^{n+1}$ such that $L \oplus Q=A^{n+1}$
In portical ar L is proje dür
（ì）L is of ronk 1
Jote that it is always worthwile to des aile a gpac as a moduli space，thot is to have a nica intoppetation of the fund or of points．
Bemork
If A is a principal ideal ring and $\left(x_{0},-x_{m}\right) \in_{n} A^{n+1}$ is primilive （hat is $\exists\left(u_{0}, u_{n}\right) \sum_{i=0}^{n} u_{i} x_{i}=1$
Thon elt

$$
\begin{aligned}
& L=A\left(x_{1},-\bar{x}, x_{n}\right) \\
& Q=A) \\
& \quad\left(A^{n+1} \longrightarrow,\right) \longmapsto \sum u_{i} x_{i}
\end{aligned}
$$

We have $A^{n+1}=L \oplus Q$
（2）Remember that in general a projeduve module 1 of conk 1 is not pronated by one of its dement Now let us turn back lo the tongent space Let $x \in \mathbb{P}^{n}(A)$ conosponding to $L \subset A^{n+1}$ We want to describe the trongent space at x As a A－moclule $\left.\left(A[T] / C T^{2}\right)\right)^{n+1}=A^{n+1} \oplus \Sigma A^{n+1}$ We aply our description of point to the ring $B=A[T] /\left(T^{2}\right)$ ．A joint $y \in T_{r} X$ conesponds to a B－subs ache $M \subset A^{n+1} \oplus \in A^{n+1}$ such Γ at $p r,(M)=L$ and it is a direct factor of rank 1 For $\varepsilon(x+\varepsilon y)=\varepsilon x$
We get $\varepsilon M=\varepsilon L \subset \varepsilon A^{n+1}$
If A is a prinajal domain，L is free of rank 1 generated by a primitive element u Let $w \in M$ be of the form $w=u+\varepsilon v$ Then $(u+\varepsilon v, \varepsilon u)$ is a basis of the A ．moduli M （You can complete $(u+\varepsilon v, \varepsilon u)$ in a basis of $A^{n+1}+\varepsilon A^{n+1}$ ， $A(u+\varepsilon v)+\varepsilon u A \subset M$ which is free of rook 2，we gategpality） We yet $\varepsilon A_{n+1} \cap M / \varepsilon M$ is 0 locally and Therefore $\varepsilon A_{n+1} \cap M=\varepsilon M$
and $L \approx M / \varepsilon M \subset A^{n+1} \oplus \varepsilon\left(A^{n+1} / L\right)$ Thus $M / \varepsilon M$ is the graph Γ_{u} of a moytism $u: L \rightarrow \varepsilon\left(A^{n+1} / L\right)$ Conversely，one con check that given $u: L \rightarrow A^{n+1} / L$

$$
\begin{aligned}
& \text { seven }\left\{A^{n+1}+\varepsilon A^{n+1} \mid x \in L \quad \bar{y}=u(x) \text { in } A^{n+1} L\right\} \\
& \text { is a } B \text { - submodule of } A^{n+1}+\varepsilon A^{n+1}
\end{aligned}
$$

is a B－submodule of $A^{n+1}+\varepsilon A^{n+1}$ which satisfies the conditions．

So we may summarize as follows Conclusion

Let $x \in \mathbb{P}^{n}(A)$ conenonds $t v$ the A submodute $L \subset A^{n+1}$ ，then there is a canonical isomorphism

$$
T_{x} \mathbb{P}^{n} \rightrightarrows \operatorname{Hom}\left(L, A^{n+1} / L\right)
$$

Remark
Using the fact that L is pojedive，
$\operatorname{Hom}\left(L, A^{\min 1} / L\right) 工 A^{n+1} / L \otimes L^{V^{V}}$

$$
\simeq A^{n+1} \otimes L^{v} / L \otimes L^{v}
$$

Thus we get an escad sequence

$$
0 \rightarrow \sigma_{\mathbb{p}^{n}} \xrightarrow{\left(x_{0}, 1, x_{n}\right)} \sigma_{\mathbb{p}^{n}}(1)^{n+1} \rightarrow T \mathbb{P}^{n} \rightarrow 0
$$

In particular

$$
w_{\mathbb{p}^{n}}^{-1} \leftrightharpoons G_{p^{n}}(n+1)
$$

2）Let A be an integral domain $K=E r(A)$ Let $V \subset \mathbb{P}_{A}^{n}$ be defined by
 that is $f_{i}\left(T X_{0},-T X_{n}\right)-T^{d_{1}} \rho\left(X_{0},-X_{n}\right)$ for any $x \in \mathbb{P}^{n}(A)$ corresponding $t_{0}\left(C A^{n+1}\right.$ $K \otimes L \subset K^{n+1}$ is a vedor you of dim 1 So for $\left(x_{0},-, x_{n}\right) \in L-\{0\},\left(y_{0},-y_{n}\right) \in L-\{$,

$$
f_{1}\left(x_{0},-, x_{n}\right)=0 \Leftrightarrow f_{1}\left(g_{0},-, y_{n}\right)=0
$$

$V(A)$ corvosonds to the set L such that $\left.f_{i}\right|_{L}=0$ for $i \in\{1,-, \Omega\}$ ．

Assume V smooth over See A

Ger a field k

$$
W=\pi^{-1}(V) \cup\{0\} \subset \mathbb{T}_{k}^{n+1}
$$

defined by $f_{i}=0$
$x \in X(\mathbb{R})$ corresponds to a line LCW

$$
\begin{aligned}
& T_{L} W \quad T_{L} W=\Omega=\Omega \text { Kor } d g f_{i} \subset k^{n+1} \\
& \text { for } g \in L-\{0\}=1 \\
& T_{x} V \leadsto \operatorname{Hom}\left(L, T_{L} W / L\right) \subset T_{x} \mathbb{P}^{n} \text {. }
\end{aligned}
$$

In a more intrinsic manner
Prop
The space $\Gamma\left(\mathbb{P}_{A}^{n}, G_{\mathbb{R}^{n}}(d)\right)$ is isomorphic to she space of homogeneous polynomial of degrees over A
See，for example HARTSMORNE＇s book（pol．S．13）
Let $G_{V}(n)=i^{-1}\left(G_{p n}(n)\right) \quad i: V \rightarrow \mathbb{P}^{n}$ $\frac{\partial f}{\partial x_{i}}$ olefines a moyhism of vedior bundle

$$
\sigma_{V}(1) \xrightarrow{\sigma_{V}\left(d_{i}\right)}
$$

and therefore If may be seen as moyhism of vedor bundles ：$G_{V}(1)^{n+1} \longrightarrow G_{v}\left(d_{i}\right)$
The formula

$$
\sum_{i=0}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=d_{i} f
$$

implies it vanishes on ${ }^{\partial x_{i}}$ the in aye of

$$
G_{v}\left(\frac{1}{0} \cdot x_{n}^{n}\right) G_{v}(1)^{n+1}
$$

We get a moyhism

$$
d f \cdot i *\left(T \mathbb{P}^{n}\right) \longrightarrow \overrightarrow{(\uplus)} G_{V}\left(d_{i}\right)
$$

Since V is smooth this moyhis＇m has constant
rank and

$$
T V \leadsto \operatorname{ker}(d f)
$$

In vorticular if V is a complete intersedion $\Omega=n-\operatorname{dim}(v)$ we have an exact sequence

$$
\text { re have an escact sequence }{ }^{0} \rightarrow T V \xrightarrow{n}\left(T P^{n}\right) \rightarrow \bigoplus_{i=1}^{n} G\left(d_{i}\right) \rightarrow 0
$$

$$
\text { and } \omega_{v}^{-1} \simeq \operatorname{det}\left(i^{*}\left(T \mathbb{P}^{n}\right)\right) \otimes \operatorname{dat}\left(\mathcal{M}_{i=1}^{i=1} \in\left(d_{i}\right)\right)^{-2}=G_{v}\left(n+1-\sum_{i=1}^{\eta} \lambda\right)
$$

2）The Picard group
Definition
on $\Delta m o t h$ varieties there are several equivalent definitions：

The Picard group of a scheme V
is the set of isomoyhism classes of
line bundles over V equipped with (\mathbb{X})
The neutral element is G_{V} ，
The opposite of L is the dual $L V$ ．
yr is denoted by $P_{i c}$（V）．
Examples
If A is a princjal ring $P i c($ Spec $(A))=\{0\}$
－the map $\mathbb{Z} \rightarrow P_{i c}\left(\mathbb{P}^{n}\right)$ is an isomoyhiom

$$
k \longmapsto G_{p^{2}}(k)
$$

of groups（See HARTSHORNE，corollary 6．17）
Definition
Let R be a field，k an algebraic closure of k
－A nice variety over k is a smooth，pojedive variety oven k which is geometrically integral （that is $V_{\bar{k}}$ is integral）

Theorem
Let V be a nice variety／field $k, n=\operatorname{lem}$（V）

$$
\begin{aligned}
\operatorname{Piv}(V) & \longrightarrow \operatorname{lec}_{c}(V) \\
D \quad & \longmapsto G(D)
\end{aligned}
$$

induces an oxad sequence of obclian group

$$
\begin{aligned}
& 0 \rightarrow k^{*} \rightarrow k(V)^{*} \xrightarrow{\text { dive }} \mathrm{Div}^{2}(V) \longrightarrow P_{i C}(v) \rightarrow 0 \\
& (H A R T S H O R N E, \xi 1.6)
\end{aligned}
$$

（ $\rightarrow \mathbb{Z} p$

$$
P \in V_{(n-1)}
$$

The reason for which the Picard group ploys a central role in our game is the following one．
Remark
Let $\phi: V \rightarrow \mathbb{P}_{h}^{h}$ be a moyfism of k－varieties
Then
$L=\phi^{*}\left(G_{\mathbb{R}^{n}}(1)\right)$ defines an element in $\operatorname{Pic}(V)$
canc $V \rightarrow \mathbb{P}_{k}^{n}$ defines $n+1$ sections s_{i}

$$
D_{i}>\downarrow_{\mathbb{p}^{n}}^{\downarrow^{n}(1)}
$$

of L such That
（＊）

$$
\bigcap_{i=0}^{n}\left\{x \mid 0_{1}(x)=0 \text { in } L(x)\right\}=\phi
$$

Comosely given a line bundle L and $\Delta_{0}, \geqslant \Delta_{n} \in \Pi(V, L)$ such that $(*)$ ，this defines a moytiom

$$
\begin{gathered}
\phi: V \longrightarrow \mathbb{P}_{k}^{n} \\
\text { by }\left(u_{0}, u_{m}^{4}\right) \in \phi(x) \leftrightarrow u_{i} \nu_{j}(x)=u_{j} \Delta_{i}(x) \text { for } i, j+\{0,-, p\}
\end{gathered}
$$

（in fat $\phi(x)=\operatorname{ker}(\Delta \mapsto \Delta(x))^{\perp} \subset \Gamma(v, L)^{v}$ dual ） Remember that heights were defined by such mouhisms Up to linear transformation the moyhism is determined
by the doss of L in the Picand group Definition
$L \in \operatorname{Pic}(V)$ is said to be effective if $\Gamma(V, L) \neq\{0\}$
11／4／2016 3）Grotfondieck ring $K_{0}(x)$
Definition
Let X be a conneded noethorian scheme
Let $K_{0}(X)$ be the porous
－generated by $[E]$ where E u a vedor bundle／X
－relations：for any short accad sequences

$$
\begin{aligned}
0 & \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0, \\
{[E] } & =[F]+[Q]
\end{aligned}
$$

There is a anigue strudure of ring on $K_{0}(x)$ which saliffies

$$
[E] \cdot \Gamma F]=[E \otimes F]
$$

Pomanks
1）It follows from the fat that the tensor by a projective module is exad that If $0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0$ is exact then $0 \rightarrow F \otimes G \rightarrow E \otimes D G \rightarrow Q \otimes G \rightarrow 0$ is exact and therefore the proclus is wall defined
2）There is another operation on $K_{0}(x)$

$$
\lambda_{i}: K_{0}(x) \rightarrow K_{0}(x)
$$

which satisfies

$$
\begin{gathered}
\lambda_{i}([E])=\left[\Lambda^{i} E\right] \\
\lambda_{i}(x+y)=\sum_{a+b=i} \lambda_{a}(x) \lambda_{b}(y)
\end{gathered}
$$

and
$K_{O}(X)$ is what is called a λ－anear $(S G A 6)$ ．
Prop
－ri：$K_{0}(x) \rightarrow \mathbb{Z}$ is a moyhism of rings Ito kernel I is called the augmentation ideal
－The determinant defines a group homomoyhism

$$
\begin{aligned}
& K_{0}(x) \longrightarrow P_{i c}(x) \\
& {[E] \longrightarrow[\operatorname{tet}(E)]}
\end{aligned}
$$

Indeed if $0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0$
is exadt $\operatorname{det}(F) \widetilde{\vec{c}} \operatorname{det}(F) \otimes \operatorname{der}(Q)$ ． hater，y shall eglain an arithmetic analog of this ring．Now let us tum bach to joints of bounced height
$\frac{\text { Examples }}{*-\rho}$
＊Sf A is a prinajal domain，any pojedūr A module of finite rank is froe．Sa they are dosified by their rank

$$
K_{0}(\sec (A)) \longrightarrow \mathbb{Z}
$$

$[E] \longmapsto \operatorname{rk}(E)$
is an isomoyhism
＊For \mathbb{P}^{n}, We have a moyhism of rings

$$
\begin{aligned}
\text { eva }: \mathbb{Z}[T] & \rightarrow K_{0}\left(\mathbb{P}^{n}\right) \\
T & \longmapsto\left[\sigma_{\mathbb{P}^{(1)}}\right)
\end{aligned}
$$

Theorem
av induces an isomorphism of rings

$$
\mathbb{Z}[T] /(T-1)^{n+1} \cong K_{0}\left(\mathbb{P}^{n}\right)^{0}
$$

Ihs is ration difficult to pore．
Idea（See QUILLEN Higher K－theory） The category of wheen sheaves on X is an abelion category， 0 we con defence
$K_{0}^{\prime}(x)=$ group generated by isomoypism doves of coherent heave and relations given by the short escact se quences

We have a mophism $K_{0}(x) \rightarrow K_{0}^{\prime}(x)$ which is an isomoyhism if X is smooth and from the coca sequence of sheaves

$$
G_{H_{i}} \otimes_{G_{\mathbb{P}^{n}}} G_{H_{j}} \rightarrow G_{H_{i} \cap H_{j}}
$$

hyperform
we get a moypian $\mathbb{Z}[T] /(T-1)^{n+1} \rightarrow K_{0}(x)$ Then the result is a consequence of the existence of asgliat resolutions．
For any vector bundle on \mathbb{P}^{3} ，there exist a ouyedture moyhism

$$
G^{\text {moypum }}(-m)^{k} \rightarrow F
$$

by taking the kernel of 1 this moyhism and iterating we get a rowlution

The pobiem is \rightarrow sh aws that it stop．Using cohomoldgy， Theorem There exact a finite resolution of this type （2）In general $K_{0}(X)$ is extremely bug
（eg not finitely generated）．
4）Back to heights
a）Absolute values

Definition
An absolute value on a fido \mathbb{K}
is a map $1.1: \mathbb{K} \rightarrow \mathbb{R}_{\geqslant 0}$ such that
（i）$|x|=0 \Leftrightarrow x=0$
（ii）$\forall x, y \in \mathbb{K} \quad|x y|=|x||y|$
（iii）$\forall x, y \in \mathbb{K} \quad|x+y| \leq|x|+|y|$
1.1 is said to be uthametric if
（iii＇）$\forall x, y \in|K,|x+y| \leq \sup (|x|,|y|)$
archimedean othenurse
Examples
－σ_{n} any field

$$
\begin{aligned}
& \mid K \longrightarrow \mathbb{R}_{\geq 0} \\
& x \longmapsto|x|= \begin{cases}0 & \text { if } x=0 \\
4 & \text { othawise }\end{cases}
\end{aligned}
$$

is an absolute which is called trivial
－On $\mathbb{a}:\left\{\begin{array}{l}1 \cdot l_{\infty} \text { usual absolute value } \\ p \text { prime } \\ \left|\frac{a}{b}\right|_{p}=p^{v p}(b)-v_{p}(a) \text { if } a, b \neq 0\end{array}\right.$
Put Pl $(Q)=\{$ prime numbers $\} \cup\{\infty\}$
one has

$\frac{\text { Remark }}{\text { If }} 1.1$ is ulthametic
$\left\{x \in K||x| \leq 1\}\right.$ is a subbing G_{K} of K and $\left\{x \in K||x|<1\}\right.$ is an ideal of G_{K} ．

Definition
－For an absolute value 1 ．I on \mathbb{K}
$d(x, y)=|x-y|$ defines a distance on \mathbb{K} The conesjonding toplojy on K is called the topology Refined by 1.1
SI gives the stmidine of topological fid on IK： $+, x,-1()^{-2}$ are continuous
－II and $1 \cdot 1$＇are said to be equivalent if they define the some topology
$\frac{\text { Proposition }}{\text { Let } 1.1 \text { and }}$
Let 1.1 and 1.1 ＇be absolute values on $1 K$ The following assertions are equivalent
（i） 1.1 and 1.1 are equivalent，
（ii）$\left\{x \in \mathbb{K} \quad||x|<1\}=\left\{\left.x \in \mathbb{K}| | x\right|^{\prime}<1\right\}\right.$
（iii）$\exists \lambda>0$ sud that $\forall x \in \mathbb{K},|x|^{\prime}=|x|^{\lambda}$
Peforena
JACOBSON Basic algclena II，\＆g
NE UKIRCH Algebraic number theory $\$$ II． 3
Definition
ct face of field IK is a Topology defined by a non trivial absolute value on $I K$ S denote by Pe (\mathbb{K}) the set of faces of \mathbb{K}
Theorem［OsTRouski］
Let P be the set of prime integers

$$
\begin{aligned}
P \cup \alpha(\infty) & \longrightarrow P P_{v}(k) \\
v & \longrightarrow 1 \cdot I_{v}
\end{aligned}
$$

is a bigedive mop．
b）Completions
Let K be a field and let v be a ploce of $1 K$ refined by an absolute value 1.1 The completion of \mathbb{K} for v is denoted \mathbb{K}_{v} it is a \mathbb{K}－algebu which is a field with an absolute value which extends 1.1 so that
（i）K_{v} is complet for the conoyonding topology
（ii） \mathbb{K} is dense in K
up to isomoyhism，this characterize \mathbb{K}_{v}
Example
－ $\mathbb{R}=\mathbb{R}_{\infty}$
－QR p is the completion of Q for $1 \cdot I_{p}$
Construction in a porlicilar case
Definition
It discrete valuation on a field \mathbb{K} is a map

$$
v: \mathbb{K} \rightarrow \mathbb{Z} \cup\{+\infty\}
$$

such Thor
（i）$v^{-1}(\{+\infty\})=\{0\}$
（ii）$\forall x, y \in \mathbb{K} \quad v(x y)=v(x)+v(y)$
（iii）$\forall x, y \in \mathbb{K} \quad v(x+f) \geqslant \min (v(x), v(y))$
with the usual comention：

$$
x+(+\infty)=+\infty \quad \min (r,+\infty)=x
$$

Remark
a disade valuation Sefirie a place of $t k$ via $|x|_{v}=\lambda^{-v(x)}$ for some $\lambda>1$

Cote that the place does not Legend on the croce of λ ．This place is ultrometic with a ring and ideal given by

$$
\begin{aligned}
& \sigma_{v}=\left\{x \in \mathbb{K} \mid v\left(G_{v}\right) \geqslant 0\right\} \\
& M_{v}=\left\{x \in \mathbb{K} \mid v\left(G_{v}\right) \geqslant 1\right\}
\end{aligned}
$$

Example
If p is a prime number $a, b \in \mathbb{Z}, b \neq 0$

$$
v_{p}\left(\frac{a}{b}\right)=v_{p}(a)-v_{p}(b)
$$

is a dos－adte voludion which deferrer the face covenonding to s p ．
Lemma
If v is a tisane valuation，then G_{v} is a euclidean ring（with eudidean division） and any ideal of G_{v} is of i te form $m_{v}{ }_{v}$ for some $k \in N$ ．In particular $1 n_{v}$ is the only masainal ideal in σ_{v}

$$
k_{v}=G_{v} / m_{v} \text { is a field. }
$$

Proof
－Sin $G_{v}=\{x \in(K / v(x) \geqslant 0\}$

$$
a \mid b \text { in } G_{v} \Leftrightarrow v(b) \leq v(a) \text {. }
$$

So if $a, b \in \sigma_{v}$ with $b \neq 0$ either

$$
a=b \times \frac{b}{a}+0 \text { if } v(b) \leqslant v(a)
$$

or

$$
a=b \times 0+a \text { if } v(a) \leq v(b)
$$

$v: G_{v}-\langle a\rangle \rightarrow \mathbb{N}$ give the eudidean division．
－In $\left(v / k^{*}\right)$ is a subgrory of \mathbb{Z} let $d \in \mathbb{N}$ be its nonnegative generator If $d=0$ then $\mathbb{I}=G v$ and it has two ideals $1 n_{v}^{0}$ and $\left.m_{v}=\alpha 0\right\rangle$ Grhenvise let $\pi^{v} \in M_{v}$ be such $v(\pi)=d$ we have

$$
H_{1 v}=(\pi)
$$

（ π is called a uniformize）
Let I be a non zero－ideal of σ_{v} and lat $k=\min \{v(x), x \in I-\{c)\}$ and let $x \in I$ be such t hat $v(x)=k$ By the proof of the fad that cudideon rings ore prinajoe

$$
\left.I=(x)=\left(\pi^{k}\right)=1 H_{v}^{k} \cdot \square\right]
$$

Notation

$$
\text { Let } \hat{\sigma}_{v}=\lim _{k \geq 1} G_{v} / 1 n_{v}, \mid \hat{k}_{v}=\operatorname{Frac}^{2}\left(\hat{\sigma_{v}}\right)
$$

$\hat{\sigma}_{v}$ is an $\hat{\sigma}_{v}$－algebra we put $\hat{i n}_{v}=\pi_{v} \hat{G}_{v}=\pi \hat{\sigma}_{r}$ and deferie

$$
\text { define } \quad \underset{N}{ }(x)=\max \left\{k \in \mathbb{Z} \mid \pi^{-k} x \in \hat{G}_{v}\right\}
$$

for $x \in \mathbb{K _ { v }}$
Proportion
（i）The moyhism $\sigma_{v} \rightarrow \mathbb{K}_{v}$ extends to a moyhism $\mathbb{K} \longrightarrow \mathbb{R}_{v}$
（ii）\hat{v} deferies a tis－acte valuation on $\widehat{\mathbb{R}}_{v}$ which extends v ．
（ii）is a K algebra with the place defined by \hat{v} ，
\hat{K}_{v} is the completion of \mathbb{K} for v and \hat{G}_{v} is the dosure of she image of G_{v} in \mathbb{R}_{v} （iv）The moypiarn of rings

$$
\sigma_{v} / m_{v}^{k} \xrightarrow{c} \widehat{G}_{v} / M_{v}^{k}
$$

is an isomoypismv
Proof
（i）The kernel of the mouphiom

$$
\begin{aligned}
\sigma_{v} & \left.\rightarrow \frac{\lim }{n} G_{v} \right\rvert\, n_{v}^{k} \\
\text { is } \bigcap_{k \in \mathbb{N}}^{k} v & =\left\{x \in G_{v} \mid v(x) \geq k, \forall k \in \mathbb{N}\right\} \\
& =\left\{x \in \sigma_{v} \mid v(x)=+\infty\right\}=\{\gamma\}
\end{aligned}
$$

So $G_{v} \longrightarrow \widehat{\sigma}_{v}$
and we get a moyphism $\mathbb{K} \rightarrow \widehat{K}_{v}$ which means that we may see \mathbb{R}_{v} as a \mathbb{K}－algebra
（ii）Ser $x \in \hat{\sigma}_{v}, \vec{v}$ is wed affined on \vec{G}_{r}

$$
\frac{x}{x_{k}}=\left(x_{k}^{k}\right) \text { where } x_{k} \in G_{v}
$$

and \bar{x}_{k}^{k} is is red reaction modulo M_{v}^{k} QO that $\bar{x}_{k}^{l}=\bar{x}_{l}^{l}$ for $l<k$ ．
This means that

$$
x_{l}-x_{k} \in m_{r}^{l} \text { for } l<k
$$

$\Leftrightarrow v\left(x_{l}-x_{h}\right) \geqslant \min (l, k)$ for any l, k
－If $\overline{x_{1}} \neq 0$ ，we have $v\left(x_{k}\right)=0$ for any $k \geqslant 1$ and $x_{k} \in \sigma_{v}^{*}, w \bar{a}_{k}^{L} \in\left(G_{r} \mid m_{v}^{k}\right)^{\alpha}$
Moreover
and

$$
\left(\overline{x_{k}^{-1}}\right)_{k \geqslant 1} i \text { an inverse of } x \text { in } \hat{\sigma}_{r} \text {. }
$$

－Let $l=\sup \left\{k \mid \bar{x}_{k}^{k}=0\right\} \in \mathbb{N} \cup\{+\infty\}$ we con toke $x_{k}=0$ for $k \leqslant l$ and then we have $x_{k} \in m_{v}^{i}$ for any k

So $\pi^{e} \mid x_{k}$ and $x_{k} x_{k} \pi^{e} \in G_{v}$
Let $y=\left(\pi^{-l} x_{k+l}\right)_{k \geqslant 2}^{2}$ we have $\pi^{l} y=x$ so $\hat{v}(x) \geqslant e$
Conversely if $x=\pi^{m} y, y=\left(g_{k}\right)_{k \geqslant 1}$
then

$$
\bar{x}_{k}^{k}=\pi^{m} \bar{y}_{k}^{k}=0 \text { for } k \leq m
$$

so $l=\hat{v}(x)$ ．
－for $x \neq 0, \pi^{-v(x)} x \in \hat{\sigma}_{v}^{*}$

$$
\begin{aligned}
& \text { Let } x \in \widehat{x}_{v}, \hat{x}=\frac{a}{b}, \vec{a}, b \in \widehat{\sigma}_{v}, b \neq 0 \\
& \pi^{\hat{v}(b)} x=a\left(b \pi^{-\hat{v}}(b)-1, \hat{b}^{\prime} \in \hat{G}_{v}\right.
\end{aligned}
$$

so \hat{v} is well defined and from the description of \hat{v} on $\hat{G_{v}}$

$$
\left\{x \in \mathbb{X}_{v} \mid v(x)=+\infty\right\}=\{0\rangle
$$

Thus \widehat{v} is a disade valuation on \widehat{k}_{r} Recover v induces v on G_{v} and therefore on $\mathbb{K}=\pi r\left(\sigma_{v}\right)$ ．
（iii）Sd wis how that \mathbb{R}_{v} is complete Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Caus sequence in \mathbb{I}_{v} that is for ant N There escosts M so That $\forall p q \geqslant M$ ，$\hat{v}\left(x_{p}-x_{q}\right) \geqslant N$
By removing the firs terms of the seywena if necerbony，we may assume that

$$
\begin{aligned}
& y_{k}=x_{k}-x_{0} \in G_{v} \text { for } k \in \mathbb{N} \\
& (a) \text { is a Cauchy sequence as }
\end{aligned}
$$

and $\binom{k}{g_{k}}_{k \in N}$ is a Cauchy sequence as will
for $j \geqslant 1$
let $k_{j}=\min \left\{M \mid \forall_{l \rho} \geqslant M, \hat{v}\left(y_{p}-g_{q}\right) \geqslant j\right\}$ and jut $z_{j}=$ the image of $g_{k_{j}} \operatorname{in}^{p} \sigma_{v} / \mathrm{m}_{v}^{j}$

$$
\left(\hat{\sigma}_{v}=\lim _{k \geq 0} G_{v} / m_{v}^{k}\right)
$$

we have $z=\left(z_{k}\right)_{k \geqslant 1}^{k \geqslant a} \in \widehat{O_{v}}$
and $\hat{v}\left(z-y_{n}\right) \geqslant j$ for $n \geqslant k ;$
so

$$
y_{n} \rightarrow z \quad \text { no } \quad x_{n}=g_{n}+x_{0} \rightarrow+3+x_{0}
$$

so \hat{K}_{r} is complete
－Moreover if $x=\left(\bar{x}_{k}^{l}\right)_{k \geqslant 2}$ in \hat{G}_{v}
Then $x_{k} \rightarrow x$ in \hat{b}_{v}
so $\hat{G}_{v} \subset \overline{\sigma_{v}}$ but as $\hat{\sigma}_{v}=\left\{x \in \hat{\mathbb{R}}_{v}| | x \mid \leqslant 1\right\}$
it is closed and $\hat{\sigma}_{v}=\frac{v}{\sigma_{v}}$
Since any element of \mathbb{R}_{r} may be written as $\frac{a}{\pi^{r}}$ will a $\in \widehat{G_{v}} \mathbb{K}$ in deme in \mathbb{K}_{v} ．
（iv）If $x=\left(\bar{x}_{k}^{k}\right)_{k \geqslant 1}$ then $x-x_{c} \in \hat{m}_{r}^{l}$
so $\sigma_{v} / m_{v}^{2} \rightarrow \hat{\sigma}_{v} / \hat{m}_{v}^{1}$ is shigictive it is inge dire since

$$
\begin{aligned}
& \text { inge dire since } \\
& \sigma_{v} \cap m_{v} c=\left\{x \in G_{v} \mid \hat{v}(x) \geqslant \rho\right\} \\
&=\left\{x \in G_{v}|v(x) \geqslant \rho\rangle\right. \\
&\left.=\operatorname{mn}_{v}^{1} \cdot \square\right]
\end{aligned}
$$

We may put $\mathbb{K}_{v}=\mathbb{R}_{v}$

Corollary
If $K v$ is a finite field，then σ_{v} is pofinite， compact and \mathbb{K}_{w} locally compact
Proof
－$\left(\pi^{k}\right)$ is a basis of the K_{v} vector spode

$$
T n_{v}^{k} / 1 n_{v}^{k+1}
$$

So $\sigma_{v} / 1 \Lambda_{v}^{k}$ is finite for any k which，by definition，says chat \hat{G}_{v} is profinite
－The ropolagy on Av coincide with The topology induced by the posit of The dis arete topology on $G_{v} / \pi 1_{v}^{a}$ ：
Indeed ike topology on $\hat{\sigma}_{v}$ is generated by the open subset of che form

$$
\begin{aligned}
& \{y \mid \hat{v}(g-x) \geqslant k) \text { for some } x \in \hat{\sigma}_{v}, k \in N \\
& \operatorname{pr}_{k}^{-1}\left(p_{k}(x)\right) \rightarrow \sigma_{v} \int_{v} M_{v}^{k}
\end{aligned}
$$

and the topology induced by rte product
topology is precisely yereratea log open subsets of this form．Then we sophy Tychonov＇s theorem la get that
$\hat{\sigma}_{V}$ is compact
for any $x \in \mathbb{K}_{v} x+\pi^{k} \hat{G}_{V}$ is a conyact neighlourhosd of x ，so \mathbb{k}_{v} is－locolly compact
Remark
You should think of \hat{G}_{v} as a Cantor set： let $E_{0}=\bigcup_{n \in \mathbb{N}}[2 n, 2 n+1] \subset \mathbb{R}$

Let $q=\# K_{v}$

$$
\begin{aligned}
& K_{0}=[0,1] \\
& K_{n}=K_{n \cdot 1} \cap(2 q-1)^{-n} E_{0} \text { for } n \geqslant 1 \\
& K=n K_{n \in \mathbb{N}} K_{n}
\end{aligned}
$$

［T］00］
［4］OC
（ C （］）（7）
wive $K_{v}=\left\{\bar{x}_{1}^{1},-\bar{x}_{q}^{1}\right\}$
Then any element in G_{v} may
be uni writion as k

$$
a=\lim _{k \rightarrow+\infty}\left(\sum_{i=0}^{k} x_{i_{k}} \pi^{i}\right)
$$

with $\left(i_{k}\right)_{k \in N} \in\{1,-, 9\}^{N}$
（Usadeed $\sum_{i=0}^{k} x_{i k} \pi^{i}=\mu_{k+1}(d)$ determine $\left.i_{0, V} i_{k}\right)$ and $\hat{G}_{v} \longrightarrow K \underset{i_{k}}{ }$ is a homeomoyhism

$$
a \longmapsto \sum_{k \in \mathbb{N}} \frac{2 i_{k}-2}{(2 q-1)^{k+1}}
$$

（Sleave it as an esorcise，writ numbers in ［0，1］wing $(2 q+1)$ as a numeration bosis）．
In fact i hore is a very general resub－ Projontion

Let K be a compact non empty mehic yace such that
（i）K is totally diseonneded：Fo any $x, y \in K$ thore esaist ojen subsets U and V suchithat

$$
x \in U, y \in V, \quad \cup \cap V=\phi
$$

（ii）K is perfect：For any non emply ogen subset U in V ，$\# \geqslant 2$ ．
Thon there is an homeomoyhirm from k to the usual dyadic Contor set
Drfinition
The v－adic Kopology on $\mathbb{P}^{n}\left(\mathbb{K}_{n}\right)$ is the quatient tojolaly for Dhe projection $\left.\pi \cdot K^{n+1}-10\right) \rightarrow \mathbb{P}^{n}\left(\mathbb{K}_{5}\right)$ If V is a projedive voricty $/ \mathbb{K}$ the u－adic Toplogy on $V\left(K_{v}\right)$ is the one indulaed topolagy．
Ecample
$\mathbb{P}^{n}(\mathbb{R})$ is compat since the conlímuou map $5^{n} \longrightarrow \mathbb{P}^{n}(\mathbb{R})$ is suyjedice
noter

$$
5^{n}=\left\{\left(x_{0},>x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} x_{i}^{2}=1\right\}_{i}
$$

Proposition
tosume that v is a place cefoined
by a disordet valualton v and K firite we have $\mathbb{P}^{n}\left(\mathbb{K}_{v}\right)=\mathbb{P}^{n}\left(\sigma_{v}\right)$
is a compact topolajical opace
（it is totilly disconnected and pafect as woll）． More generally，if V is a prope dive voriety over $\mathbb{K}^{\prime}, V\left(\mathbb{K}_{r}\right)$ is compad．

Proof
－The sing \hat{G}_{v} is a prinajal domain， 10
$\mathbb{P}^{n}\left(\hat{O}_{v}\right) \approx\left\{\right.$ primitive cements in $\left.\hat{\sigma}_{v}^{n+1}\right\} / \hat{G}_{v}^{*}$
－If $\left[x_{0}:-: x_{n}\right] \in \mathbb{P}^{n}\left(\mathbb{K}_{v}\right)$ ，

$$
\left(x_{0},-x_{n}\right) \neq 0
$$

$$
\begin{aligned}
& \text { Do } \quad k_{0}=\min \left(v\left(x_{0}\right),-v\left(x_{n}\right)\right) \in \mathbb{Z} . \\
& \quad\left[x_{0}:-: x_{n}\right]=\left[x_{0} \pi^{-k_{0}}:-: x_{0} \pi^{-k_{a}}\right]
\end{aligned}
$$

$$
\text { For }\left(y_{0},-y_{n}\right) \in \mathbb{K}_{v}^{n+1}
$$

$\left(y_{0},>y_{n}\right)$ is a primitive element in σ_{v}^{n+1}
if and only if $\min \left(v\left(g_{0}\right), v\left(g_{n}\right)\right)=0$ ．
Here we have

$$
\min _{0 \leq i \leq n} v\left(x_{i} \pi^{-k_{0}}\right)=0
$$

Do $\left[x_{0}:-: x_{n}\right]$ is in the imp age of $\mathbb{P}^{n}\left(\hat{\sigma}_{v}\right)$ ．
－\｛premilive elements in $\hat{\sigma} v v+1\}$

$$
=\left\{\left(x_{0},-x_{n}\right) \in \mathbb{Z}^{n+1} \mid \max _{\hat{n+1}}\left\{\left|x_{0}\right|,\left|x_{n}\right|\right\}=1\right\}
$$

$$
\text { is compact }\left(\text { dosed in } \hat{\sigma}^{n+1}\right)^{n}
$$

So $\mathbb{P}^{n}\left(\hat{\sigma}_{V}\right)=\mathbb{P}^{n}\left(\mathbb{K}_{\nu}\right)$ is compact
－If V is a variety

$$
V\left(\mathbb{K}_{v}\right) \subset \mathbb{P}^{n}\left(\mathbb{K}_{v}\right) \text { is closed. }
$$

c）Adele ring，local global pinajle
Remember

$$
\begin{aligned}
& P l(\mathbb{Q})=P \cup\{\infty\} \\
& \mathbb{Z}_{p}=\lim \mathbb{Z}^{L} / p^{n} \mathbb{Z} \\
& \left.\mathbb{Q}_{p}=\mathbb{Z}_{p}\right) \\
& \mathbb{Q}_{\infty}=\mathbb{R}
\end{aligned}
$$

$$
\mathbb{Z}_{p}=\lim \mathbb{Z}_{F_{r}}\left(\mathbb{Z}_{0}\right) \mathbb{Z} \text { for } p \text { prime }
$$

Definition

$$
\mathbb{T}_{\mathbb{Q}}=\left\{\left(x_{v}\right) \in \prod_{v \in R(Q)} \mathbb{Q}_{v} \mid\left\{p \in P \mid x_{p} \notin \mathbb{U}_{p}\right\}_{\text {is finite }}\right\}
$$

it is a subring of $\prod_{v \in \operatorname{Pl}(\mathbb{Q})} Q_{v}$ and contains the image of Q
Indeed if $x \in Q$ ，
$\left\{p \in Q \quad \mid v_{p}(x) \neq 0\right\}$ is finite
so $Q<\mathbb{H}_{a}$
Demark
The reason to introduce 代㐫 is That this ring is locally compact．
Pron
Let V be a projedive ranidy over \mathbb{Q} ，

$$
\left.V C \mathbb{R A}_{(Q)}\right)=\prod_{v \in \operatorname{Pl}(\mathbb{Q})} V\left(\mathbb{Q}_{v}\right)
$$

Lemma
Let $\varphi: A \rightarrow B$ be an injedive moyhism of ring then the induced map

$$
\mathbb{P}^{n}(A) \rightarrow \mathbb{P}^{n}(B)
$$

is ingidive
Proof
we alsodenote by φ the $\operatorname{map}: A^{n+1} B^{n+1}$

$$
\left[\left(a_{0}, a_{n}\right) \mapsto\left(\varphi\left(a_{0}\right),-\varphi\left(a_{n}\right)\right)\right.
$$

and 1 he $\operatorname{map} \mathbb{P}^{n}(A) \rightarrow \mathbb{P}^{n}(B)$

$$
L \longmapsto B \varphi(L) \subset B^{n+1}
$$

In fact we are going to pore the move precise
statement：$L=\varphi^{-1}(B \varphi(L))$
L is a direct summand of A^{n+1}
so there is a linear mop $P: A^{n+1} \rightarrow A^{n+1}$ sud that $p \circ p=0$ and $L=\operatorname{Kor}(p)$
Let $P_{B}: B^{n+1} \rightarrow \beta^{n+1}$ be the mop induced by extension of escolars．
Then $B Y(L) \subset \operatorname{Kan}\left(P_{B}\right)$
Thus $\varphi \varphi^{-1}(B \varphi(L)) \subset \subset^{\beta} \operatorname{kar}\left(P_{B} \circ \varphi\right)=\operatorname{Kar}(P)=L$ and $L \subset \varphi^{-1}(B \varphi(L))$ is thee
If 4 is an indusion，w identify $P^{\prime}(A)$ with it image．
Proof of the mopontion
T Re incursion map $T_{\mathbb{Q}} \rightarrow \prod_{v \times P e(Q)} \mathbb{Q}$
gives a par

$$
V\left(\mathbb{F}_{Q}\right) \rightarrow \prod_{v \in \operatorname{PP}(a)} V\left(\mathbb{Q}_{J}\right)
$$

injedive \downarrow a $\Omega_{\text {infective．}}$

$$
\mathbb{P}^{n}\left(\mathbb{H}_{(v)}\right) \longrightarrow \prod_{\text {in ed }}^{\text {vive }}
$$

injedive
toneme that V is defined by $f_{1},-1 / r$
homogeneous in $Q\left[T_{0},-\frac{1}{T_{n}}\right]$
Let $y=\left(y_{v}\right)_{v \in P_{l}(\theta)} \in \prod_{v \in P_{l}(Q)} V\left(a_{v}\right)$
For any prime p ，since \mathbb{Z}_{p} is pina＇jal，we may take $y_{p}=\left[x_{0},-x_{p}\right]$ with $\left(x_{0},-, x_{p}\right) \in \mathbb{Z}_{p}^{\text {nth }}$ primitive p and $f_{i}\left(x_{0}, フ x_{p}\right)=0$ for $i \in[1, ッ \pi]$

$$
\begin{aligned}
y \in V(\mathbb{R}) \times \prod_{P \in P} V\left(\chi_{P}\right) & =V\left(\mathbb{R} \times \prod_{P \in P} \mathbb{Z}_{P}\right) \\
& \subset V\left(\mathbb{H}_{Q}\right) \cdot \square
\end{aligned}
$$

Corollary
If V is a projedive voridy $/ a$ Then $\mathrm{V}\left(\mathrm{H}_{Q}\right)$ is a compact to polagical face．
We have

$$
V(\mathbb{Q}) \subset V\left(\mathbb{A} \mathbb{Q}_{\mathbb{Q}}\right)
$$

The following question
Question
dot V be a nice voricty／ब
（nice $=$ projective smooth and geometicidy interval voricty）
yo the implication
tire？

$$
V\left(A_{a}\right) \neq \phi \Rightarrow V(\theta)
$$

If V is defined by $b_{n},-h_{n} \in \mathbb{Z}\left[x_{0},-x_{n}\right]$ homogeneous This question is equivalent ts

A scene tat the system of equations

$$
\begin{aligned}
& f_{i}\left(x_{0}, \rightarrow x_{n}\right)=0 \text { for } i \in\langle 1 \\
& \text { a romero solution in } \mathbb{R}^{n+1}
\end{aligned}>\Omega
$$

（i）has a nomger solution in \mathbb{R}^{n+1}
（ii）has a prumilvive solution in $\left(\mathbb{C}(\mathrm{Mz})^{n+1}\right.$
for any $M \geqslant 1$

$$
\text { Does it have a primitive solution in }\left(<^{n+1}\right) \text { ? }
$$

Terminology
－If V satisfies the implication，one says that \checkmark calisfics tasse pin ajfe
－If $V\left(\mathrm{CO}_{2}\right)$ is dense in $V\left(\mathbb{H}_{a}\right)$ then we say that V salsifies weak apposa＇mation

16／5／2016 d］Arakelov heights
Remember
1）On \mathbb{P}^{N}（0．）we have heights given by

$$
H_{N}(\pi(x))=\|x\|_{\infty}
$$

if x is a primitive element in \mathbb{Z}^{N+z} whore $\|\cdot\|_{\infty}$ is a norm on \mathbb{R}^{N+1}
For any moyhism of variatice

$$
\phi: V \xrightarrow[R]{\longrightarrow} \mathbb{P}_{\mathbb{N}}^{N}
$$

we get an exponential height

$$
H=H_{N}^{r} \circ \phi: V(Q) \rightarrow \mathbb{R}_{\geqslant 0}
$$

Let us rewrite this height in a slightly
different language
2）If $\left(x_{0},-, x_{n}\right) \in \mathbb{Z}^{N+1}$
$\left(x_{0}, 1, x_{m}\right)$ is punitive
iff $\operatorname{gcd}\left(x_{0},-, x_{n}\right)=1$
If for any prime $p, \min _{0 \leq i \leq n}\left(v_{p}\left(x_{i}\right)\right)=0$
If prime， $\max _{0 \leqslant i \leqslant N}\left|x_{i}\right|_{p}=1$
For $\left(x_{0}, \ldots, x_{n}\right)$ in \mathbb{Q}_{p}^{N+1} witt $\|\left(x_{0},-, x_{N} \|_{p}=\max \left|x_{1}\right|_{p}\right.$
Then for a premilíve $\left(x_{0},-, x_{N}\right) \in \mathbb{Z}$
we have $\left.\left\|\left(x_{0},-x_{N}\right)\right\|_{\infty}=\prod_{v \in P l\left(r_{0}\right)}, x_{1}\right) \|_{v}$
But $\forall \lambda \in \mathbb{Q}_{p}, \forall x \in \mathbb{Q}_{p}^{N+1} \quad\|\lambda x\|_{p}=|\lambda|_{p}\|x\|_{p}$
So if $\lambda \in \mathbb{Q}^{*}$ and $\left(y_{0},-y_{N}\right)=\lambda\left(x_{0},-, x_{N}\right)$

$$
\prod_{v \in P l(a)}\left\|\left(y_{0},=y_{N}\right)\right\|_{v}=\frac{y_{N}}{\| \in P l(a)}|\lambda|_{v} \times\left\|\left(x_{0},=x_{N}\right)\right\|_{v}
$$

Conclusion
For any $\left(g_{0}, \geq g_{N}\right)$ in $Q Q^{N+2}$

$$
H\left(\left[y_{0} i-: y_{N}\right]\right)=\prod_{v \in P l(a)}\left\|\left(y_{0},=y_{N}\right)\right\|_{V}
$$

But we would like an expression of the height－ which does not depends on the choice of the embedding but is more intrinsic，alt tough one has to make choice ro－lefire a height．For that let us consider
$\left.L=\phi^{*} C G_{\mathbb{P}^{n}}(1)\right)$ which is a line brindle over V ．
If $x \in V(R)$

$$
\in V(\mathbb{R})
$$

which is the 1 dimensional vector pace in \mathbb{Q}^{n+1} corresponding $t_{\theta} \phi(x)$ that is if $\phi(x)=\left(y_{0}:-: y_{N}\right)$ then $L(x)=\mathbb{Q}\left(y_{0},-y_{N}\right)^{V}$ ！
$\|\cdot\|_{v}$ ，by restriction defines a norm on $L(x)^{v}$ we get a map

$$
\|\cdot\|_{v}: L^{v}\left(\left(a_{r}\right) \rightarrow \mathbb{R} \geqslant 0\right.
$$

which is continuous and such thar
and

$$
\begin{gathered}
\left.\forall y \in L^{v}\left(Q_{v}\right) \forall \lambda \in \mathbb{Q}_{v}\|\lambda y\|_{v}=\mid \lambda\right)_{v}\|y\|_{v} \\
\forall x \in V(Q), \forall y \in L(x) \quad H(x)=\prod_{v \in P_{P}(Q)}\|y\|_{v}
\end{gathered}
$$

Low the tradition is to define in toms of L
not LV

For $v \in \operatorname{Pl}(Q)$ those exists a unique $\|\cdot\|_{v} \cdot L\left(Q_{s}\right) \rightarrow \mathbb{R}_{\geqslant 0}$
such that

$$
\begin{aligned}
& \forall x \in V(\mathbb{Q}, v) \forall y \in L(x), \forall y^{\prime} \in L(x)^{V} \\
& \left\|y^{\prime}\right\|_{v}\|y\|_{v}=\left.\left|<y^{\prime}, y\right\rangle_{C_{v}}\right|_{\text {duality }} \\
& \text { es } x \in V(Q) \text { i } \in L(x), \|^{\prime} \in L(x)^{V} \text { bilinear }
\end{aligned}
$$

$$
\text { If } x \leftarrow V(a) \text { y } \in L(x), y^{\prime} \in L(x)^{V} \text { bilinear form }
$$

$$
\left(\prod_{v \operatorname{cPR}(\mathbb{Q})}\left\|y^{\prime}\right\|_{v}\right) \times\left(\prod_{v \in \operatorname{PR}(\mathbb{Q})}\|y\|_{v}\right)=\prod_{r \in P R(a)} \mid \overbrace{\left.\left\langle y^{\prime}, y\right\rangle\right|_{v}}^{\leftarrow a Q}
$$

$$
\text { By the proind-formula }=1
$$

Conclusion
we have written

$$
H(x)=\prod_{v \in \mathbb{P}(a)}\|y\|_{v}^{-1} \text { for } y \in L(x)^{V}
$$

where $\|\cdot\|_{v}: L\left(a_{v}\right) \rightarrow \mathbb{R}, 0$
is continuous and olefines a norm in each fibre
oshis is the setting we are going lo generalize in the nest chapter before we speak of inteyretation．

Example
On $\mathbb{P}^{n}(\mathbb{a})$ ，for $\phi=I d_{p^{n}}$
X_{i} is a lection of $L=G_{\mathbb{p}^{n}}(1)$
we have
$\left\|x_{i}\left(x_{0}:-: x_{n}\right)\right\|= \begin{cases}\frac{\left|x_{i}\right|_{v}}{\max \left|x_{i}\right|_{v}} & \text { if } v \neq \infty \\ 0 s_{i} \leq n \\ \frac{\left|x_{i}\right|_{\infty}}{\left\|\left(x_{0},-, x_{n}\right)\right\|_{\infty}} & \text { if } v=\infty\end{cases}$
depend on the does noicos of the homogeneous coordinates，so it is well defined．

[^0]: ＊Corrected value

