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DIOPHANTINE STATISTICS

Emmanuel Peyre

Consider a simple polynomial equation like

X4
1 +X4

2 +X4
3 = X4

4 .

Finding a solution with modern computers ought to be easy: it is enough to check for all triple
of integers whether the sum of their fourth powers is itself a fourth power. However, one of the
first solution found by N. Elkies with X1X2X3 ̸= 0 was

958004 + 2175194 + 4145604 = 4224814 ,

which can not be effectively found with a naive approach. The central question is to be able
to locate the solutions either for real topology, or by looking at the reduction modulo N of the
coordinates. In other words, one would want to understand the distribution of the solutions of
diophantine equations.

As an example, one can cansider the real surface given by the equation

X2 +Y 2 = T(T − 1)(T +1)

and the rational solutions on this surface with bounded size; we get figure 1. When the bound

FIGURE 1. Châtelet surface

goes to infinity, is the distribution given by a measure with a continuous density on the surface?
If this is the case why do we see circles on the picture?






2 EMMANUEL PEYRE

Outline

1. First examples.
2. Counting measures, convergence.
3. Accumulating phenomena.
4. Adeles, and adelic measures.
5. Back to examples.
6. Obstructions to density.
7. Equidistribution.
8. Slopes and accumulation.

Prerequisite

This lecture requires no previous knowledge of advanced mathematics and is open to third-
year and fourth-year students who are majoring in mathematics. The necessary notions in alge-
braic number theory and algebraic geometry will be introduced as needed during the lecture.
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11 1412016 I Tnkodudion
,

Some history
D Gldcst example

The theme 9 want to speak about has a very
long history .

9n modern terms
,

9 am interested
in the solutions of polynomial equations with

integral coefficients :

Ein ain
, in

Xi '
- xinn = o

with a
i. ,

,

, in
€27

.

The oldest reference S know to this kind of

problem is a babylonian tablet

PLIMPTON 322 by the script used itwas probably
written 3 8  00 years ago .

Tf ya are not fluent in babylonian
,

let me

explain the content of this tablet
. First of all

,
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thestructure should look familiar to you since

it is organized like an Exceu file with a table

of calls
, except that the line numbers are on the

right .

Each all contains a number, esayt on the

top where
,

you can find the titles of the columns

9 am going to concentrate on the 2nd and 3rd
columns

. More is a

translation
of these columns

of the tablet

Table
short side diagonal

11 9 1  69

3 3  67 4 8  25
←

46 On 6 6  49

12705 1 8 54 1

6 5  52

You can easily deck that they satisfy the following
relations

1692 - 11 92  =  120

482 52 - 33672  =  3 45 6
2

66 492 - 4 6  072  =  68002

185412- 127092  = 135002972 - 6 52  =  722

Sn other words you get Pythagorean triples
that is solutions of the equation

⇐ ) X
2

+7 2
 =  22

My motivation in showing you
this tablet

goes
beyond stressing the antiquity of Diophantine equations
(By the way ,

9 would be interested to know what is

the oldest chinese study of a Diophantine equation )
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well before D , opt

ant

us ( 2nd -

3rd

century
AD )

.

As

you
can see

,

some
of

these numbers
are

quite large
. so

A natural
question

is : how more

babylonians
able

to
produce

these rather
large

solutions
.

There are at

least two possible answers

1) There are a

"

lot

"

of
solutions

,

Later

,

5 will

come back to this statement and make it
precise;

The second answer which is related to the
first

one

is that

2)
there is a method to

produce all solutions .

You probably
know it

already but let
me remind

you

how it is done

•

Sf ( x

,

yitto

is solution

,

d. -

god
( a

, y ,

2)

( Nd
, YK,

21 d) is also
a

solution

We

may
assume ( x

, of ,

2) primitive ( ie ycd ( x
, yp

) =D

All
babylonian solutions are primitive

*

Gf we
look modulo 4 ( in 211421 )

a

square
is 0

or
I so

looking
at the solutions

in 21162 since one of
che numbers is odd

we

get
that

2 is odd and either K
on

y

es odd

( not both
of

them )
By exchanging

x
and

y

we

may
assume x odd

, y
even .

y
=

2ys
Write x

, y ;
2 >

,

o

⇐He
= yn

But
if p jvmie

divides x and z
it

divides
2

so

god
( x

,

z ) = 1
 ⇒

gcd ( 25
, HI )

= 1

Using
the

wniaty of
the

decomposition of
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integers
in

a

product
of prime

numbers
,

we

get
that

2¥
and

2¥
are

squares

A a

,

ve
Z

,
god

(
a

,

v )= I and

EE
li

2¥

v

'

we

get

x =
u2 - v2

y
=

2 uv z =
on

+
v2

3rd

tom
2,5 )

→ ( 119

,

169 )

( 27364 )
→ (

3367,6825
)

( 32,75 ) →
( 4601

,

6649 )

( 54,125 ) → (
12709,18541

)

( 4
,

9 ) → ( 65
,

57 )

So it is

quite fair to

suppose

that
babylonian

know this method
of solving

the problem on a similar

one
. One can

say
that Dighanhis was the

first

to write a look about

solving
various kind

of polynomial equations
in several variable

with

integral equations including equations

of higher degree
.

Gme

of
his

problem
was

Problem # .

8 rational solutions
of

X

-

+42  =  92
,

This solution can be

interpreted geometrically
and

gives
a more

geometric interpretation of
the

previous
@

parameterization
.

circles

{ ( x

, g , z )
ez3

,

primitive
&x4Y = 223

→ {
K,y)ea3x4y'=D

•

( x

,
g , z ) -

Eg,⇒
M×= ( -

1,0
) is

an obvious

joint
on the

aideMe An
affine

line
through

M

•

has

M€t

%

an

equation of
the

form

e .

D
t

:

of

:

-

t C x t1)
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one

:{KEEFE

' ' ⇒

synapses,⇒itn⇒o

which

gins
two

point Mo = C
to ) & Me -

Hjt÷, II )

taking
t  

=

If
we

get uIt÷ ,

I

which is the
previousparametrized'T

this
parameterization gives

a

precise
estimate

of
the

number
of primitive

solutions with founded

coordinates

N ( B )

=#

{Cosy ,z)ez3 / Gsy ,

2) primitive
,x'+y2=y

121 < B)

nm

= 16 # { ( a
,

v ) E IN

'

I
( a ,v

) primitive
,

42+02
e

B )

T

may exchange
x

, g ,
signs

the
only difficulty

is

to deal with the primitive
condition

M ( Bt :#{ 14

,

v )

ENT

as I u2+v~ E B ) F#↳

= Area ( fufv )
FRIol u

'

the B)

+609

-

YEB

+694

N

'

(B) = M ( B)
-

§gu.
#{ ( a

,

t ) EH
2

1

Pla
,

Plv
,

u4v4B )

if
a

,v
are

divisibleby
the

product of
2

primed
removed them twice

!

+ E # KUN) EN

'

/
P

,
PZIYP

,
Pdr

,

litre B >

Pn

,

.Pz primer Pntpz

=

§z
µ (d) M (

ff
)

where
m

is the Moebuis
function

( i ) µ ( ab) =µ( a)
µ

( b )
if gcd Cgb ) =1

in µ
( pk ) =

{
1 if k=o

- 1

if
k = 1

0 otherwise

Moreover M ( B ) = 0

if
B < 1

k

IN
'

' B)
-

Ea
,

.ms
¥1

a-

Eg
,

.BA#Qf*9ddtFhiB
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we

get
N ( B ) = 16×4

,

,Mof¥
) Fe

B +6 (

Bklog

(B))

?q.no#=pknpID=ttA
.

⇒
.

.

he
,

,⇒t

= T ( 251
=

E

so N ( B ) ~

24
+2

3 Higher degree

F

B
.

You may

think s

spent
too much time on

the
rose

of
the aide

;

but it is
a

good
sandbox example

to start with
.

9t
was in the

margin of
a translation

of
the

work
of

Diop
in AN t us

,

next to this
problem

that Reine de

FERMAT made his
famous

statement

Last theorem
of

FERMAT ( FERMAT 1762

,

W
Iles 1  995)

Let
n 33

,
for any

x

,
y ,

2 fz

xntyn
= zn

⇒
xy

2=0

In other words the
only

solutions are
the obvious

ones

The situation is

radically different
in

degree

two and

for higher degrees .

Can we

esglain
that

?
9 am not

going
to

prove
Fermat last theorem in 5 minutes

;

But there is a

very
single

argument
to

explain

the member
of

solutions

for homogeneous polynomials

F  

=

su.  

tin =  

of in
> in

Xi
'

- xnin

Put C =

Ign

19
in

, yin

'
i

d

Gf
1 til s B

for ie
< 1

Tn } Fan
, ,

Km ) E C B

we

get
a

map

4 n [
- B

,

BT

cardinal ~¢B + ,,n

-

[ - CB

d

,

CB

4

]

cardinal 2C Bd
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So
if one believes that a

polynomial function
behoves

randomly enough
on

integers , you may naively hope

that

drain hope

-

Gf
n >

d ACBN

' £

solutions

-

sf
n

=D
"

few

"

solutions

-

If
n

< d a

finite
number

of
solutions ( or none )

95
is

of
course

too naive and almost

everything

can

go wrong
.

first there

might
be

3) too
few point

a) Gf
there is a

primitive
solutions in 21h

there is a

nonzero
one

in Rn

Gconye
§

,

ai X2=o has no

nonzero
solution

if
a

;
> 0

for
i e { i

,

-

,

m

)

b) Cover
a

ring
A

,

let
us

say
that -64

,
pin )

E A

"

is
primitive if F(a.

, old
← An st

£
Ui Xi

 
= 1

if
FCXNYI

,

xn ) =o hasaprimitive
solution /z

it has one in 2hm z

for any
M

example
+ 3Y~+ 422  =  0

has
no non

zero

solution 121
,

because it has none
/ 21192

The
only squares

in 21134 are
0 and h

TheC

, y ,
2) E@1gz)3 primitive solution

31 and 31
z

⇒
X2t 422 =

o ( 9)

Thus 31
y

absurd
§ .

Why
is the

point of
these remarks
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Fa

: and
b)

can
be tested with

an algorithm

9
am not

claiming
that there is an

efficient algorithm

only thattheoretically ,there
esabts

one
.

4) Too

many points

Let
us consider Bernoulli 's lemniseale

L ; $442 )

2

- X2 + Y

-

= o

Drawing

a

yµnTH

,

%)

As
for

the aide the rational solutions
of

this

equation
correspond to the

primitive integral
solutions of

( *
\

¢2+42P
- ×

2

T2 + Y2T2= o

of degree four
.

The

degree
is

strictly bigger
than

the number
of

variables so we should have

very few
solutions

right
?

wrong
!

For

any
tealet

Er
be the aide centereddttitl

and

passing through
(

0,0 ) .

Tt
intersects L in

exactly
one more

point
. { Me

,

(
0,0

) > = Ee n L
.

This

give
the

following parameterization of
the rational

solutions
-

=

finites , ttTt÷ )

from this
we con deduce that

#

of

primitive

solutions
of

Ctl with mad
'd

,
YHHKB





GO

is ~ ate BK
.

So there
are a lot

of
solutions

.

The

main

point for
this

particular
case is that the

curve is not smooth Tf we

put

F C ×

,
41=1×2+-142

-

x 2+4
'

Fx
( 0

,

°

) =

of
,

(
go

) =o

that's the

way
we

produce
the

parameterization
.

So
now we

are a little bit less naive and
our

hopes
are

More reasonable and 9
con stole a

few

5 some
positive

results

Chronologically
the

first general positive result
is

due to MIN Kow 5 Kl over
0

Theorem ( MIN Kow s KI

,

1  890
)

Let

q

be
a non

degenerate quadratic form
with

integral coefficients
then it has a primitive solutions

in Y

if
and

only if
it has

a
non

pro
reoe solution

and
a

primitive
solutions

in ZNN z for
any

N 31 .

Theorem ( BIRCH

,

1962 )

F
homogeneous of degree

d in n variables such that

Ci ) F  

= o
has

a

nonzero
real solution

CD
FM 32 F has a

primitive solution on ( ZCMZ
)

"

@) d
×

F
 

to ⇒ x=o in an

(
w ) n > @

- n ) Zd
a

lot
of

variables

Then

# { ( x.
, .mn#YpimilivgFhh,

-

,
%)

:
 o

&
Marashi ) < B }

~
C

.

Bn

- d

Theorem ( FALTIN os

,

1983 )

Tf
FCX

,

Y
, 2) homogeneous of degree

d > 3






@

satisfies
¥

xe
�1�

3

,

d
,

,

F. - o ⇒ x = o

then FCX
,

y
,

2)
= o has a

finite
number

of

solutions
.

So
we

could believe
everything

is settled but

A little less naive hope

F

homogeneous

Assume conditions ( i )
-

( iii )

of
Birch 's theorem

-

Sf
d n

"

few
"

solutions

-

sf
d.sn

~
C

,=

Bn

' d

solutions

it is

for from
hire

6 More
problems

a) no solutions

? ( 1) 5×3 +943 +10 23+12+3 = o ( SW
,

NNERT on - Dy E R
)

satisfies li )
- Win ) but has

no

nimilwesohtionrehis
one corresponds to a

homogeneous equation
but

is rather more complicated to explain so instead

9
am

going
to

explain
:

( 2)
Y 2+22 = ( 302 - V2 ) ( ✓

2
-

zu 2) T

2

bn that case a ''primitive
"

solution ought
la

be
defined differently

1

On
can reduce a nontrivial solution to one with

gal
IU

,

V
) =

gcd
( ×,Y,

2)
= 1

Ci

'

) F hasin solution 1 R with W
,

V
) to and ( x

,

Y

,

21 to

Civil) F
-

/ Ztmz with ( a

,

v

) and
Gsy

,

2)

primitive (
G

may
explain

that much later in the
lead

(

iii
) p= ( x

, y ,

2

, up
)

dpf
 

= o ⇒ ( u
,M=o

and
Gyy

,

4=0
.

But F has
no

"

primitive

"

solution to
.
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Sketch
of

the poof

we use
the

following quite
classical

fact which son not

going
to

prove today
.

n Ez is the
sum of two

squares if
and

only if

Ci ) mzo

( ii
) for

any
prime p

,

p=
- 1 (4)

, up
Cn ) is

even

where

n= IT

Pnime

PTC
" '

.

These conditions which are relative to R and

odd
prime numbers implies

a- * ) n fish
'

=

TPTM T(pTk±=
1

( G)

P=n ( c ) PE 3 (C)

So
If (2) has

a

"

primitive

"

solution
/

then ( 3 az - VY ( v2 - zur ) > o

⇒

nut
e ]

- A
,

- R [ v ] vi
,

A [

Efendi
notation

for gen
intend

.

⇒
In

fact
,

3 at
-

vs
Zo

and v2
-

2 u2Zo

Similarly <
def ( 32

-

? )
- 1

gad
( 3 u

'

-

T

,

VH
u

'

) - gad( U

;
VY = 1

so
for

any
prime p

=
- ^ C4 )

Vp
( 3d2 - ~

}
vh - ZUY = o ( 2)

⇒

up
( 3 u

'
-

vy = u ( l ) and N

p

( ✓
2-

2uY±o
fy

Thus 3 u2 - it and V

2

- 2 u2 have to be

seems
of

tv

squares
lets look at the condition C * * )

. If
a & v are odd U-=v2± ^ ( 4) ⇒ v 2-242=34 )

which
is absurd E But

they
are

agrime
,

likes

o

If a even

,

v
add then 3 a

'

- v2 =-3 (g)
§
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Gn 1970
,

Manin explained in his ICM address that

the known examples can be explained through
a new obstruction

,
now called the Brauer - MAN in

. obstruction this lead to a new question
Question
Gs Gte BRAUER -

MAN in obstruction the only one ?
Well in some sense the answer is given by the

following
Theorem ( DAVIS

,
PUTNAM

,
ROBINSON

,
MMTIJA cehc

,

1970 )
F F ( ×n , > Xn ,

T ) ( not homogeneous ) en 12 variables

with coefficients in 21 such that there is no

algorithm to compile the map

t - f if fkn , km
,

t ) to has a solution

0 otherwise

Remarks

This proves that

Hilbert 10h problem : Given a diophantine equation
with any number of ink noon quantities and

integral coefficients . Find an algorithm to determine

if there exists a solution with integral
coordinates . Ton can see this theorem in two ways
^ ) bn a negative way as the final blow to the

hope of solving diophantine equations
r ) In a positive manner

,
it means that

whatever methods you
have found to move that

a given equation Aos no solutions there is

somewhere an equation do which it does not

apply and for which
you

have to find anew method

and on job will never be done
.
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b) Too
many

solutions

Already with quadrics consider

(1) XY - ZT = o

There is a map from the set

{( Iu
, , nu ) ,

( v
, ,vu))Ez4 / (Un

,
hd

,
he , use )primitive >

to the guachuc given by
( ( un

,
oh ,

( N
, ,

k ) ) t> ( UM
,

Uzuz
, Upz ,

UZY )
( 2 : n )

Mqsg( luivjl) = max (14^1,141) max ( Hl
,
#

we get that the cardinal of the set of primitive
solutions with bounded coordinate in

A E # Kun
,

and primitive
,

max (hhblvd) s

B- Moxaud
,

1k$
(4%42) primitive

max ( Ihl
,

IMDEB
With a similar argument to the one given

for joints in a dish

~ ^= E E 4*6 ±
~ 4/6×5 B2hg(B)

de B @,v) pimihi
ok

Max ( lul
,

hi
~

ga

: - 1
West

gnenpn - d

log (B)

for some geometrical invariant t of the gnadric

(2) ¥oXP = o cubic surface

expected B @gB)tt
Gren E

,
projectivecube surfaces contain 27 lines .
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This particular surface contains the pojcdue line
X

,

= - Xz
,

X
3

= - Xu
and the one obtained by permutations

( a ,v) primitive - ( u
,

- u
, v,÷v )

gives ~ ate B
'

solutions

But it turns out

Conjecture ( Batxrev
-

MAN inl still open
on a cubic surfacethe number of solutions

with hounded coordinate outside the 27 lines

is the expected one .

This is the first example of accumulating subset

And there are more complicated examples of
accumulating subsets

Problem

fxow to characterize accumulating subsets ?



Babylonians Bernouilli’s lemnicate Hilbert

Diophantine statistics

Emmanuel Peyre

Université Grenoble Alpes

北京大学

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 一/九



Babylonians Bernouilli’s lemnicate Hilbert

History (18th century bc.)

The old babylonian clay tablet called “Plimpton 322”

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 二/九



Babylonians Bernouilli’s lemnicate Hilbert

Translation

Short Side Diagonal
119 169
3367 4825∗

4601 6649
12709 18541
65 97
319 481
2291 3541
799 1249

∗ Corrected value

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 三/九



Babylonians Bernouilli’s lemnicate Hilbert

Translation

Short Side Diagonal
119 169
3367 4825∗

4601 6649
12709 18541
65 97
319 481
2291 3541
799 1249

∗ Corrected value

1692 − 1192 = 1202

48252 − 33672 = 34562

66492 − 46012 = 48002

185412 − 127092 = 135002

972 − 652 = 722

4812 − 3192 = 3602

35412 − 22912 = 27002

12492 − 7992 = 9602

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 三/九



Babylonians Bernouilli’s lemnicate Hilbert

Integral solutions of X 2
+ Y 2

= Z 2

u v 2uv u2 − v2 u2 + v2

12 5 120 119 169
64 27 3456 3367 4825∗

75 32 4800 4601 6649
125 54 13500 12709 18541
9 4 72 65 97
20 9 360 319 481
54 25 2700 2291 3541
32 15 960 799 1249

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 四/九



Babylonians Bernouilli’s lemnicate Hilbert

Diophantus (2nd-3rd century ad)

X 2 + Y 2 = 1 defines a circle
of radius 1 ;

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 五/九



Babylonians Bernouilli’s lemnicate Hilbert

Diophantus (2nd-3rd century ad)

(−1, 0)

X 2 + Y 2 = 1 defines a circle
of radius 1 ;

M0 = (−1, 0) is a point on
this circle ;

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 五/九



Babylonians Bernouilli’s lemnicate Hilbert

Diophantus (2nd-3rd century ad)

(−1, 0)

X 2 + Y 2 = 1 defines a circle
of radius 1 ;

M0 = (−1, 0) is a point on
this circle ;

The equation Y = t(X + 1)
defines a line Dt through
this point ;

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 五/九



Babylonians Bernouilli’s lemnicate Hilbert

Diophantus (2nd-3rd century ad)

(−1, 0)

Mt
X 2 + Y 2 = 1 defines a circle
of radius 1 ;

M0 = (−1, 0) is a point on
this circle ;

The equation Y = t(X + 1)
defines a line Dt through
this point ;

Let Mt be the second point
of intersection of Dt with
the circle ;

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 五/九



Babylonians Bernouilli’s lemnicate Hilbert

Points in a disk

∣

∣

∣
♯{ (u, v) ∈ N2 | 0 < u2 + v2

! B }− π(
√
B)2

∣

∣

∣
! C

√
B.
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Babylonians Bernouilli’s lemnicate Hilbert

Bernoulli’s Lemniscate

(X 2 + Y 2)2 − X 2 + Y 2 = 0

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 七/九



Babylonians Bernouilli’s lemnicate Hilbert

Bernoulli’s lemniscate (parametrisation)

( t2 ,
t

2)

Mt

{

x = t(1+t
2)

1+t4
,

y = t(1−t
2)

1+t4
.

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 八/九



Babylonians Bernouilli’s lemnicate Hilbert

Matijacevič’s theorem

Theorem (Davis, Putnam, Robinson, Matijacevič, et al. (1970))

There exists a polynomial P(X1, . . . ,X11,T ) in 12 variables with
integral coefficients such that the application mapping a integer n to

{

1 if P(X1, . . . ,X11, n) = 0 has a solution

0 otherwise

can not be computed with an algorithm.

In particular, Hilbert’s tenth problem can not be solved.

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 九/九



Babylonians Bernouilli’s lemnicate Hilbert

Hilbert’s tenth problem

Hilbert gave during the 1900 International Congress of Mathemati-
cians a list of the problems he thought the most important for the
20th century.

10. Entscheidung der Lösbarkeit einer diophanti-
schen Gleichung. Eine diophantische Gleichung mit
irgendwelchen Unbekannten und mit ganzen rationalen
Zahlkoefficienten sei vorgelegt : man soll ein Verfah-
ren angeben, nach welchen sich mittels einer endlichen
Anzahl von Operationen entscheiden lässt, ob die Glei-
chung in ganzen rationalen Zahlen lösbar ist.

10. Determination of the solvability of a Diophantine equation.
Given a diophantine equation with any number of unknown quanti-
ties and with rational integral numerical coefficients : To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

Emmanuel Peyre (Institut Fourier) Diophantine statistics 2016年4月11日 十/九
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^ 4/4/2016 Today ,9 am going to explain more precisely
very elementary examples . My aim is to have

a more precise idea about what con be

expected when counting solutions of equations
with bounded coordinates

I Elementary examples

1)
The projective space

a) points on IT
"

Def Notation

• Let A be a commutative ring not

necessarily integral such that
any

ideal of A

is generated by one element (
eg In z )

Such a ring is called a principal ideal ring
• For such a ring ,

Pnc A) = { primitive elements in An
"

}/A*
where A* is the group of invade element

in A .

9 denote by
it

:{
primitive elements in Ant

'
} → PNCA )

the projection and put
[ x. : - : Xn ] = I ( Xo

, y
xn )

for GG
,

-

, xn ) e Ants
( Xo

,
-

,
Xm ) are called homogeneous

coordinates of the point [ Xo : - iXn] .

• Let A be a commutative ring
and let Fn

,
-

, Fr E A [ To
,

- Fn ]

be homogeneous polynomials
We put I = ( Fn , → Er ) the ideal generated by { F.

, yt⇒
For

any
A - algebra B which is a principal

ideal suing ,
we can define
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this condition does not depend

on the choice of homogeneous
coordinates

VI (B) = { [ xo : - : XD E P
"

(B) I Fitts yrs ,Fko ,
⇒ =D

Remarks

;
For a field jrimihn = non zero .

Gf 4

:B
→ C is a moyhism of A . algebras

which are principal ideal rings then we have

a map
4 : IP

"

( B ) → Pn (c)

[ bo : bi.

- : bi - [ 4 ( b
°

) : Y Cbn ) : - : 41 b.) ]

Tndeed

9f §ua ;
b

.

= 1 then §w 9 ( a ;) 4 ( bi ) =o

So 4 map primitive element to primitive
elements and invertible elements to invertible

elements

y ( v§B ) ) a VIK )

we get a map 4 : Va (B) → V± G)

&%mkmap pncz , ) → pita ) is

ubje
die aIndeed

,
take ( to

,
-

, In ) e Qin - { D
be least common multiple of the denominators

d = gcd ( u %
, =

u un ) EZM +1

[ no : - : xi = [ usf : - : udI ] and

CI , > hit ) is primitive in Z
" 't

.

b) Elementary height
Definition

Let 11 . He be a norm on R
" +1
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9 remind
you

that
anytwo

norms are

equivalent on Rnt '
.

we define the exponential height associated tall . His

as a function H : P
"

Can ) → 112>-0 defined
by

H ( [ No : - : xD ) = H ( x.
,

-

,
Xm No

if ( Xo
, Y

Xn ) FZ " + '

is primitive

Gcamyles
As norms

,
we may

take

1146
, 7h ) 11

a
= Mozart n

bel
.

•
11 ( no

, -

, Kao = input .

Notation
Fn

,
-

, For ←K Go
,

-

,
Xn ] homogeneous

which defines V

H defined by
11 the on P

"

CQ )

W c VCOD a PNCOD
any

subset but what

follows will be interesting only for infinite W

N B

W
H §B

= { PEW / Hcp ) £ B)

This set is finite It is enough to prove it

for PNCQD and we are going to prove a more

precise statement

b) Result

Notation
#X =  cardinal of X

.
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b#9fpstd9⇒µapVol(BGMBntt{
GHH ifmz

-

6(Blog(BDifn=1 .2 × 3 Cnt 1)
when

IB
( ±

,

r ) = { g- ER
" "

1

11¥

-111£
r )

.
.

Proof
#PYa)µ< B

= 12 #{ Gio
, -,x ,

) ezhygcdko , ;H .

- 1 ){

il@oyNl15B-tzzzMoDHtcx.nxnieQ2FttoHl1ku-ikN.a
.

B >

= IS recd ) M ( pen ) MCB )
0131 -

where MCB ) = # { 1 €

anthill
11111 .

-< B)

for 1 e Rnt '

write C
±

= I + Co, Dnt '

small cube of size 1 atx . We have implications

Csa
C Bn. " .C9B ) ⇒ 11×11

.
< B ⇒ 5 ,

n By
. , ,£QB)¥¢

Ld€¥"eesudthatfonaycn,
- awe'RY'

q max Gtil ) E 11 ( xo
, >Xn ) 11

of
p moxcixil )

Kian oeion

4¥ EE oziacfyi- til ?< 1- and thus

HUEIIKP
M ( B ) = Vol ( U Cx ) - 1

IEMCB)
-

Vol ( U cu ) s M ( B ) +1 < Vol ( U Cx )

Ga CBCGB ) Cnn 436
,

B) ¥0

/, the GBGB ) ) 5 11
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1 M (B) - Vol ( BG
,

B) ) 1 E 1 + Vol ( U C
x )

cxnd IBCYB )±¢

E 1 + Volcfarnt
'

I d(y_pB( o

,
B) ) sp )

S tt Vol CBCO
,

Btp
) ) - VA ( B co

,
B - p ) )

= 1 + Val ( B Cgi ) ) [ (B+p)nt '
- CB-pp ]

§ C Bn forBZL .

Moreover M (B) =o if B < X .

since 11111
.

< a ⇒ marc blil on 1 ⇒ 1=0 .

CE is n

l#PYot+ , , ,
- If,{ BMHVoegeli " ) Bn

"

/
.

a

=

cE±lYI1H⇒£ca€±te* ate if n > I

At log ( E-) if n=I

and ⇐>±µ'd ' of / < a{ztnI,
£2 (F)

"

are%na¥D±Eia¥IElE5↳Y
= € ,

ant =3 ( na ) .

Which concludes the proof D

The nice point of this statement is that

we see nearly how the main term in

asymptotic behaviour depends on the choice of
the norm on Rnt '

.

The second example 9 want to speak
about is the product of 2

pop dive spaces
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2)
The

product of two projective spaces

ajfleighis

First of all 3 have to realize it as VI

for some ideal I generated by homogeneous
polynomials .

Choose an , 9221

a ,b POTxPom → Pna¢
( [ xoi- :X ,n]

,
[ yo : - :yn] ) -KM ( xonxn , YuriYntn

,

]
n= { Foxitpnteoxji

, Ekg

.=a&EgoPo=b

}i. -

N =#N - 1

I =L PER [ XM
,

Meal ] 1 P ( ( M )
man

)=0]
( for example

t@bTx.ay.btxoay.bTAIBI)

Meal

I is an ideal generated by a finite
number of homogeneous polynomials

¢a
,

b
: PMCQ ) x Rca )

→V±(a)cp%p
is a bizedive map .

9 take for C Xm )m←µ ERM
11 An)m←m His = max 1

tml meal

Then
a

b

H@konxm.yaTYnDmanHoalK6nxmH6H1YonYHi.o

, yxm ) Honkanen I " il

111 Yo ,
-

/ Yn ) Hu =

ing.sn
I Yjl .
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we

getb99Ethgfnfeagn
( BQ ) ) = HCP )

"

H

cap
,

Proposition
The cardinal # ( PVQ ) × P

"

(a))µa
,

↳ < B
is

equivalent to
n#

ciKpEpmcanfhppbHCCPYaDBbifaesMnIzmtnWCpEpyannlppnaDc@YaDB.fEinmFCiidccPmCa.D

CCPTOD

)BM¥hg(BM¥

) if !l=nj7n

Remarks

C i ) First example with a power of log
One has to explain this phenomena
lit ) if of > mnttty Take P e PVOD

pm : Pm (a) xp
"

(a) → IPMCQ ) 1st projection
# ( Mi

' CP ))µa
,

yrs
#{ QEPYOD I Hca )

bstffpa
}

~ capita ) )(B=)nIH ( p )

So the main term is in fact the seem of the

main terms on each fibre and

lgI+
. (

#⇐i'cB3taaaT
> o

# ( PVQDXP
"

(4) )
Ha,b4B

)
The contribution of each fibre is not negligible
whereas if not = ntg the contribution of each fibre
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is negligible .
Let me show

you
4 pictures .

Pictures Jj

i¥¥ta
,

al"l÷,n÷¥EH±F÷÷
Proof pm (a) *PYOD

Ha ,b£B

=p£pm( a ,

* #:^* )
Kaiser

= psgxa,#{ Qepn CashI Hca ) , ⇐f⇒÷}
÷can f%gy¥tO¢÷,§

"

)
Lemma

f : X → R
> o Xp , ,

={ xex 1 fk ) c- B)

Assume that

pant.tn#eeo~cBalagCBjbt.&Ixe.=s

tomes
it Rcs ) > a

diverges if S a R
,

s < a

Proof
9 am going cto use STIELTJIFS notations

( See TENENBAUM
,

Introduction to analytic
and probabilistic number theory I

.
01 )
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let
g

: Rzo → R
} o

s = rtit

t 1- #X←← 5
,

t←R

then ,{
× put=f⇒÷sdgltt

Haga ''E⇐&aeosh9mK
Abel summation gives if his of doss th

fishday at = [hw gutta -Hh '

way wit

so

q←×.pt#=ot5otFif8odfatEsnaee
But g ( H < statefor any

e > o
.

So the integral converges if 0 > a
.

also g ( t ) > C 's fat

So the integral diverges if 0 < a .

The first tv statements follow from the lemma

It remains to consider the equality core

End of the poof
Assume max =n+&±

we have to compute

Fp%%⇒k*⇐"k÷I÷oRk*PD
Write glt ) = # PYOHH

stya
Va

we have to compute B
B

tttasniisglttt!t¥eud!tfd¥natk,÷+,
suit

7

But got )= CCPYQ))tn+l 0 (
tmte

)



Diophantine statistics

Emmanuel Peyre

Université Grenoble Alpes

北京大学
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P2(Q)
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P1(Q)× P1(Q)
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P1(Q)× P1(Q)
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P1(Q)× P1(Q)
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Plane blown in a point
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Since mat = net ,

We get

# ( PYOD × PYOD )
Ha ,b< B " a

error term

= capm (a) ) ccpnaa ) ) B "¥a=@+D{Bet at  te
log ( Bnbty

For the error term

e (B) < ate B¥' , ]

Set us turn to our last example today
18/4/2016 3) The plane blown up in a point

a) The result

V c P
2

xp '

equation y u = xv

[x:y ;D [ un ] po = [ o : oil ] e IPYOD

it
 = pr ,

: V → 1102

a
. yp ) ={$×

: Y :D,H : " D) if p±p
,

{ Ho:O :^)
,

[ u ND
,

Cup ] HPYQDif p = Po

Drawing

⇐ e=E
' ( Pdc VNH

U = VCQI ) - T
-

YPO )* £
€0 A - B =L x ← A / x ¢ B }

.

Again there is a two parameters family of

heights
b ( ( B Q )) .

- HCP)
" Hlajb

11 ( x
, y

,
311 .

- Text 11 ( yr ) H
-

= Fit
served as benchmark of the theory

Theorem ( SERRE
,

MANN
,

BATYREV d TSCHINKEL )
• Assume b > 0
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Z

# Eµ{ B
= CCM ) BT

Assume atb > o and a > o

⇐.pe#4miYasDBEgzuz
# U ~ €# ftp.lhtpfaap#FkglBFifZ52a"

air ' '

< ( ÷a , Btaf
if 3¥ > ¥

Remarks

•
# UHA

. ,< •

= • ( #

Eta
,

, ± ,

) if b < a

• lent
# Pri

.ta,b±B_
> o if and only if ÷+b< Za

B → to
# U ( 0 )

Ha
,

b .< B

So we have various behaviours about the

contribution of strict svbvovichis that we

have to explain .

b) Beginning of the proof ,

main term

• Let as start with E

Ha
,

b
( C 0 : 0 : D

,
Q ) = HCQ )

b

Thus we con deduce this port of the result

from the case of Pn

• From now on we restrict ourselves to U

ie ( x
, y ) # ( go )

consider ( x
, y ,

2

,
a ,v ) EZS

g
cd ac

, y ,
2) = 1

, god
( 4

,
u ) =1

, Uy
= vx

We put d = god Gsy ) then

k = e !t ,
v = e Yy with Eett

,
1)
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We can poramehize the points of V by
{ ( a ,Yd , yet'llgod ( a ,v ) = gcd ( d ,z)=7 )1 %-)
Given a joint p ?mYf92 ) - ( [ dv : du :z3[ a :b )

# g-
'

( P ) = 2

signoff,DT
×

k
sign of ( d

,z ) .

*
hair

.B=÷k4mn'
a

FIEGEL.IT#gaB
= 2 ÷#{Cd ,2 ) e 22

|gcd(
d

,zt1a
,

dto

( uiyez ref e

%)
gcd ( uyv ) =L - -

µ ( up )a+b{ B Niu
,

v ) ( B ) where he Hcu,v)
To estimate this we may again apply the case

of P1 me get a

N (B) = jl
,

Vol ( @,DeR2 /ix..c⇒( a ,v )

BY a + Eu ,r ( B )

D- I a

← r
,

k¥1
we get

itB÷zbBehah
ha for the main term

.

Set us consider only the main term

We have found
{

# Bha
MTCB )

£  32 )tabQEP'Cotµ< Blob

HCQ
) a-

Let us put

fit ) =
I and

gat - # IPYOD

e

¥bHst




 @

I (B)
So we can write

-
¥b

MTCB ) = I B% / f It ) dg It )

23(2) 1

Using Abel invasion formula again ,
we get

ICB ) = [ ftttgli:)]Bza÷b+ ),Ba÷hf%µg G) dt

t JCB )
Remember that

+2+6 ( tlog At )

so

"Iih÷Io#T¥×⇒7

1

=

 6 ( B
-

tab ) - o

Now for I
,

(B)
B → to

✓

IDB) = .FIB%¥,
B¥b¥¥ ←

'

our + E
'

(B)
-

converges as B → to iff 2ata2t - 2>1

ie ±a >atb
So if Ia > 3+x ( that in zb > a) o) the sum

aomagesmantTnMEw@ap.ca
,t¥¥B

"

whoh corresponds to the 1st case in the theorem
.

Assuming E Eu
,

r( B) is negligible
we get formula for 2=>3

at b
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H Is =

3- ( that is a=2b) we get
d t b

I (B) ~ .FIB%¥Pa÷b± dt

÷
log (

BY
which is the esgeoted main term .

' f It < Ifs get costa B
- Eattssba

= ate B
¥

.

Let me steak precisely about the error term

because it Shows one of the main problem you

get into in these counting situations
.

9 Error term
, points of a lattice in bounded domain

The joint is that when we compare
the

number of points of a lattice in a bounded open
Domain of Rn

,
the

argument
9

gave
last

time can be easily begenaolized as follows
Definition

.

A
lattice

of Rn that is A is generated

by a basis of lrn .

.

/

• A = §uzfiwhereCfe,Tfn) is a bases of R "

A
fmdamentd

domain for n is a set

of the form
A { ?{nti fi,

0£ ti < 1 for i e L 1 yn ) )

where {
fn

, >

fny
is a set of generators of A

o We can define a any fundamental
cool Cn ) = Vol ( RYN =

Vol ( F ) tdete
. ,
? in

t for the euclidean norm

where @n, ,
en is the usual basis of Rn

.
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Then the poof 9 esqlained lost times
give

us the following Choose a fundamental domain for n

Lemma
.

8 le
any

bounded subset of Rn

f closure for real topology

1 #
CnnB)

-Vaadoffnyl

|4#{×€n1¢+fHaD±oD

whered
D=J

-

so
boundary of D

St remains to give an when bound of this term

In general ,
it could be big ; but we are

in a particular case
,

Indeed we want to apply it

to a domain of the form D•=B D
± . T do not

want to assume that the set D
,

is convex
.

Instead

G assume that

Assumption
There esoists N functionsYi: Wi → R "

owes Wi C [ 0,1 ]
" -1

which are K - Lifschitz :

Y x
, y e [ o

,
1 ]

' . 'IM;
he )iffy) 11 s K Hoc -y 11

so that 2 D
z C §

,

Y;
( a

,
Dn

.

' )

Now we need to introduce an important
invariant for n Let me describe it .

.

Definition
The i.th minimum of A is deferred by

t
; Cn) = min { to IR > 01 X

BIO,
^ ) A N contains i linearly

end dean boll independent vectors )

Tn particular t
.

( h ) is the length of the smallest

non zero theorem in A
.
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Mikowski 's 2nd theorem

2÷
,

come c ^ ) € II

tickfaw
,

and ( ^ )

dormer one can prove
that

Foot

We can find a basis ( by,
-

, fn ) generatingN

such that 11 fill < n ki CA ) .

Reference
JHS Cassels

,
An introduction to the Geometry of

numbers .

Using this
,

9 am now going to
prove the

Proposition ( Masse R -VAA le R)
n . 1

I #tnnBad - B
"

Flynn,KcnN (Kenan)

Proof
Up to now we had taken

any fundamental
domain whichmeantthat it could a terrible

error term

We now take a basis corresponding to the last fact
Let M be the malice of the coordinate

of f , , > fn in the standard basis ( h
, yen )

soon

← , =L ( tindettm )

where L i is given by the determinant of ( n - n ) xlm . n )

submohiaes of M without the coefficient of f. .

Notation
A Kn B means F cneIR

, o
A < Cn B
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11

Lille
at

yhtt KYJH Kn j±T tjk '

So

kill
←

.

coolant ⇐
n

IDDFTI
t ; Cn ) Al a )

Now consider the norm on R
"

defined by
" ⇐

,

ti fill
'

:

YES .

Hit

Then for k .

- Inociei ( tln ) = (

HE
)

ie ti  =L it ? ) 1
so 11×11 's

stent
11×11

cqnfqkema.tt#m
So Yx

, gewi11M¥) -Hy) 11

'

Ecnxtymnhx - yll

But for any
x e Nn

B
'

Cos 1 = { ye R
"

1 Hy - xD 's 1 ) cube

is contained in

)3n
cells of A

.

( where a cell is ttf for

#| some ten )

Now we break [ 0,1 ]
"

. "

into small

abesa

,n¥g±j¥¥I?"

+ [ gx¥±t
"

B Cn

Yikxit
[ o

,

ted ]
"

Ynw; ) meet at most

37 cells of a

B K C n

So the error lam is bounded by

as

wantefdk
(
t÷h

,
Btnjn

't






320

Let us go
back to our very particular Cose

to see what kind of error term it gives :

Dj
The product MK corresponds
to the length of the ellipse

Sn fact in this case you may get that

joint using
# { x e n loft[ on ]Dn2Dot 0 )

< Vol ( { y.cat I d (
y ,

J SB ) Sk )
4- K B length ( 2 B± ) + that

But if the ellipse is
very flat this is bad

More precisely
Vol C Dp ) - *

B±
fiatat

length ( d DB ) / BI is bounded

h %

Ve
get an error term bigger than the main

term if h a¥ > Ata that is h > Bats

which can perfectly happen .
But that is

precisely the place where we are going
to use that we are counting on the gen
subset U We are counting

{ ( d
,

2) e Zi I god ( d
,

2) = I d to

which is 0 if
t#2 = By;D

h > Btoygbia ie h > Bttatb
So it is by restricting to U that

we are counting where the error term is

less than the main term
.

These joints on the pictures are removed by the conditions
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d ⇒ o and god ( a
,

21=1

Sn fact from the point of view of the film alien

pri

HQ
) →

Pta
) the fibres of which are

isomorphic to Pea the accumulating subset

gives that most fibers
contain only one point

The and of the poof use Abel 's summation

formula once more and G leave it to
you

D

Remark ( left as an exercise )

for V = BN × Pm × p 73

the heights are parametrized
by 3 numbers Cqb ,

c ) we
may see in RP

.

a

n÷h¥,[¥n#
Hair CBQM =

Hema Hcasbturi

# b We with 113,3 .= GUGUS← .

c b-
= =

Nan nztl

line not that ktstr
Gm the interiors of the sub ones E

,
Eu,%

the asymptotic behaviour is given by
C

Baon C
;

n Cj
 - C

, ncnb C B
"

lag (B) red planes
on C

, ncz 5 C Baby C BP yellow line
.
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20/4/2016 4) Remark about the constant

Now that we have three examples ,
lotus look

at the constants we got
4 MY's pn ) = } VDCB ( 95k¥

, ,

= 12 he ( B Can ) ) xptpuhtptnn )

=¥ Vol CB ( 91 )
)xpJmA

- F) Attpt .
.  + Fn )
.

=#PnCFp)whoeftp.Z/pz , for p prime # Epn

b) PMCQK PYQ )
Sn the case of = nba

= ÷ Vol ( Bmt6,1 ) ) Vol ( B
" %

,
i ) )

x

ftp.nprpp#PnCF)xHrYFp9

for the plane blown
up

# #pm+
"

Sn the case yes .

.

ZCC ✓ ) = to #ftp.m.cl
-

t⇒
I

( t - top ( 1 + It ⇒
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What is the number of points of V on Ep ?

# V ( P ) = # BY Fp ) . 1 + # P
'
C Fp )

= A + 2 p + p ?

St turns out that this phenomena is

very general
d) For Bench theorem ( circle method )

Remember that in that case we are considering
✓ ( a )

= { [ xo : - : oh ] EP
"

C On ) IF (Xu .  yxn ) .

- o }
c ( V ) = To × Ehime %

Toluene integral in

Tp = ( a 1p ) ×

# { [ ×
o

: -

.

. old EPYFP ) I Flxo
, pintos÷

=p
"

for almost all
p

all primes outside a finite set
.

But it is the right place to remind
you

that

Reminder

For
any

N > 0 there is a reduction modulo W

map
red

n : V ( On → V 12/1 Nz )

So it is guilt natural to ask : What happens

if we only count points for which the

reduction modulo p is a given point in

VCFD? This leads to

5) First point of view on eguiclisliibution
9 am going to do it for the projective pace

a) reduction modulo M

Write [ P ]
m for red

m
1P )

Eisc Po ← Pnc Zlmz ) M > 1
.
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Proposition
# PEPYO . ) l HCP) .< Band [P]µ=

Pot
-

# ( P
"

( Q)µ< B
) B → to # BYYPRD

Gne can

soy
that the joints of the projective

space are evenly distributed with respect to

their reduction modulo M
.

This side does not

depend on the chaise of Po

Proof
Write Po .

- [ Xo : - ikn ] with Gco
,

.

,
oh ) primitive

Let to
,

-

,
In be rgrensentanh of X.

, ,
Kn

in 21 ;
then since ( no

, , oh ) is primitive
we can choose n

Un , , Un t2
,

M I E 4
; sci  - 1

we get ve Z such that
it °

§÷ ouiXi  tvM = 1

Iet d
= gad ( xi ) god ( d

,
M ) - 1

So d e zflmzd
't and

[ xo : - : sin ] = [ dig .

.

÷d
"

oh ]

So by dividing %
,

-

,
In by d

we may assume

o=
C I

, ptn ) is primitive
We complete

¥ in a basis (fn ,
-

, fn) of 21
"

and take ( fr ,
-

, fi ) be the dual basis

( fi ( x ) is the
0

i - th coordinate of x in the basis A. , yfn ))
Gtis formed of

linear forms with integral
coefficients

redn ( [ yo :-. yn ] ) = red
m

( [ E : - : In ] )
# Ema ( go , Tym ) = zlnz ( xo

,
y×n ) c&lnzT

"

g⇒
( ofo, yotm )€21421

( " oiiln )

( go , , Yn ) frimilf
~ reduction modulo m
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⇒ MIFY (g) for iz1

Let A , { zeznt' 1 M 1fify ) for is 1)
Then A is a sublattia of zntn

and [ n : znt '
] = Mn

( Smoked ( b
, y y

fn ) induces an isomorphism

from zntsln to @1MzY )
Now

NA) #{ P e IPYO. ) I HIP ) < B & [ P ]m , Po )

E÷#{
cxonxnvn 1§YykYYj'YIYUEB )

¢ We count element in A

but the god condition is in z
" 't !

Npµ1=122 µ (d) # { ten nldzdnt
'

I killers }
a , , -

"

Vol ( BC#cnn.ca#IBn.At6(tg Bn )
the error termdgenobonfheldtiu,9have to% glad

that

µ (4) ⇒ o ⇒ d =p
,

- p ; p. , pp ,

distinct prime
Using the basis 1 f. , -

,
FF) I P × M

A = Z fo QIQ ,

MZ fi .

Plot ¥
A ncdzsnt '

= dzfo +0 ÷Q lam ( DM ) 2/8 ;

Since down
" cnn.dz/jnncqz/ynt '

By dividing each coordinate by d

# { x e C dwt '

n A I 11×115 B )

= # { x e ⇐A) nznttlux 4 e th )

But fpn)

nznttzfoo

¥
,
gamut Zfi

 
= Agdbyx
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^gd(am ,

=

⇐A) A Z
" "

is a lattice

in a finite set of
lattices indexed

by the

divisors of M
.

Using
the some methods

as for
P

"

CQ . ) we

get
the estimate NH

Np
.

(B) ~ zt Vol CB 191))⇐,sMcd}od%#u⇒B

:remains to compute the value of this

seem
µ ( d)

⇐
a an ftp.D.hn &±HYindd!$÷

)
4 is multiplicative ?

Y Cab ) = 4 (a) 4 (b) ifgcd ( a

,
b) = I

msetnpfyyyeh
-

Fans ×pFyglF÷
)

Then we have

go
divide

byte productFueled

-
get

mn * (net +
.

.tk )
Pprime

%n# pneuma ) =(p¥npJ" ×Fn#

PYF
)

Tndoed both sides
of this equality are multiplicative

so it is enough to
prove

it when M is the
power

of
a prime number M =p

k

But in that case

,
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#P (211 pkz ) = *lµ-p↳*×#fy primitive in @1n¥}

Bury primitive # y
is not 0 modulo

p

We
get

# P ( 4Pkz ) = pate,
×

p@
'

DYT ( pnth )

= p&
' ' ' n

× # IP
"

(Fp )
.

�1�

b) Distribution for
seal

topology
For real

topology a natural question
is

to consider a

"

simple
"

open
set U in P

"

CR )

Picture

WEH.!÷H÷
.

✓

The question
what is the proportion of faint in U ?

Question

Let U be a

"

suitable
"

gen
set in PNCIR )

Does the guoltnftcpn
(g) NU )

He B

÷PYOD
Has

converges
to something meaningful

Now 9 have to explain what 9 mean

by suitable .

Definition
A

strictly
course polyhedral cone in Rnh

is a subset o can't such that

( i ) F
v. ,

- ,vµ
a

land

-
= { §

,

ti vi
,

Ch
,

,ta ) e Rko }

H denote it

by §g R
, ovi )
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Cri ) on - r ={ o }
.

9 shall
say

that on

gen
subset U of IPYR )

is elementary if it is of the form
ICE ) for a strictly convex polyhedral cone of IR

"

?
'

Reminder

The topology
on Pnar ) is the

quotient

topology of C Rn
t '

- [ 051 |R*

A set V a PYR ) is ofen if and
only if

Ti
'

( U ) is
gen

in Nt
'

- dig

Proposition
Lei U be an

elementary open
subset of

IPYIR )

then
# ( un PYA ) )

, , ,B

Vol ( ital u ) NB Cgi))

=# P
"

Cal ,← a

Voe ( B Cgn ) )

Proof
Let DB =

B (B ( on
) A I

.

YU ) )

Then we con only
M ASSER & VAALER

to get
that for Bat

HFDBnznt
'

) - Bn
"

Vol ( 1B ( on
) nttlu ))|{ c B

"

But

# ( PYOD nu )µ
,

51$
,

ma ) # (

Blgpfhtillynzn

"

)
2

We conclude as for PNCQ ) D

What about an open
set which is not elementary

Remark

y
Let F  

= ICT ) 8 as above
,

F is closed in PYID
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The same proof shows that

# CFNPNCDD ) ken
→

Vol ( 430,1 ) n it

'⇐# ( PYO ) )
t.rs B → o

Vol ( Ben ) )

and the contribution of ZF is negligible .

2) Consider the

setdlof
measurable subsets W

of PYR ) such that
Val (

Bbn
) AI

.

'
( W ) )

#(WnPV0D)H<= → WCW ) = -

# p nca )
,

B → to Vol CIB ( o

,

n ) )
toB .

-

T
definitionWhat can we

say
about it ?

( i ) elementary gen
sets

belong to M

Cir ) St contains IT ( r ) for
t strictly

convex polyhedral cone

Cui) ul is ldtoble
by complement

W - Pnc R ) - W

( iv ) Stistolle
by disjoint union

( w ) Since the intersection of two elementary

open
subsets is an elementary subset out

# ( A U B) = # A  + # B - # ( A NB )

M contains the union of a finite number

of elementary gen
subsets

Lvij ( Squeeze property )

Tf we have
sequences

( Un)n€µ
and

( Vm )n←µ of
elements of al such that

- ( Un)jsµ increasing for inclusion :

ht ne N
,

Un C Unit
- ( Vn)n€µ is decreasing

[
Un c Vn for any

new and

W ( Un ) - W ( Un ) →

on→ to
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then for any
W such that

belongs ¥1!n
a

Wan?
"
Nn

Proof
Take E > o

N such that W C Vw ) -
w ( Un ) <

{
and Bosuch that

For
any

BZ Bo
,

#@GDnVn)µ<=
- WCVN ) | <

E
\

# ( PCQ ) )
, ,±B

4

and
similarly for UN

<

qrFrom -

w ( un ) s WCW ) s WCVN )

and£441\ e% ,

# ( BCODNA,§es#CPCQHW
)µ<of

* ( PCQWD
, ,µ( often dividing by # ( PCOD

}+±
,

we

get
| w ( w ) - #@(a) nw)µ⇐

,

1

< E

for BZ Bo

Remark

On the other hand the elementary open
set

form a basis of the real
topology : for

any gen
set U in Pn CIR ) and

any
x ← U

there exists an elementary open
set W

such that

xew a U
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Gn fact we have an even more tease

statement :

Any gen
set in PCR ) is of the form ¥±Wi

where ( Wi )
;€±

is a countable family of

elementary gen
set

From this
you might be led to believe that

any open
set V is in ck it is FALSE !

§
Not all

gen
sets one in dl

.

smoked PYQ . ) is a countable set

Choose a

sequence
( R )

man
such that

Pn (a) ={ Pn
,

near )

Then
for any

men
,

choose an elementary

Open
subset Un such that Pn e Un and

a ( Un ) ftp.
St is possible

Drawing

÷ .

Take
U=nU←µ Un Then W ( U ) s z warn ) { E

But on (a) a U so #(pCoDnU)t=B
= 1$ e

#C P
"

(a) )
µ

,
, B

B → to

Gglanation
since P

"

Can c U and IPYQD is dense in

LMCR )
,

U is dense in IT
"

GR )
j

J =P
"

GR )

and 2 U = PYIR ) - U has volume WC 203,1
. E

The
only fence

union of elementary open
sets

which contains U is PYR ) itself !
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251412016 Bt is high time to use some tools ofprobability theory

d toolsof probability theory

Definition
Let X be a topological space .

We
equip

it

with the o
- algebra

B of Bond subsets

which is

generated from gen
subsets

and stable under
difference of

.

sets

and
countable union

.

For
any

non - empty finite subset W
of

×

we define
the counting probability measure

associated to W as the measure

Sw = ¥w Fars Edina measure

.

mp

Gn other words
,

F B toSw (B) =

HTWABT

and
if f e @ CX

,

R )
# W

§fsw=±# Intl
So now the problem me are dealing with

may
be rephrased as :

Question

given
a

family of jrobibilily measures

(7)
, ← ,

( or

@n)n←µ
) What does it mean

for it to
converge

? This is extremely
classical

in the
theory of probability .
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Definition proposition
A family C oz )

Been of probabilities on X

converges weakly to a probability
measure a as B → to if

it satisfies
the following equivalent

conditions

C i ) for any f e EBCX,

R )

a bounded

¥53 # 5×80

C ii ) for any
subset WEB such that of WHO

is
( w ) - &(WT

B → to

liii ) for any
closed subset F of X

BhI+o0•G⇒ s Ict )

( nr ) for any gen
subset V of X

hit OB ( v ) 3 J ( U )
.

B → to

we denote it
at

t O

B → to

→

Reference

SH
IRYAEY probability ,

Graduate Texts in

Mathematics
,

chapter #
.

Definition
A set Kc B is called a

convergence determining
dob

if for any family (

on
) Bar

of probabilities

and
any probability a the following two

abortions are equivalent
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( i ) F A e K
,

OGAI

=o⇒&•(

a )

#*OCA
I

Cii ) Or¥+5

Proposition

Elementary gen
subsets form

a

convergence

determining
doss on PYR )

This follows from the faotthat
c i ) the intersection of two elementary

subsets is still elementary
Thus if the

convergence
is hire on elementary

subsets
,

it is line on the Boole algebra

generated by these sets
.

C ii ) Any open
set is the countable union

of elementary subsets .

conclusion

→w
w£

PYQD
µ, B

B → to

where W ( W ) = Voe(B(9DnIYw=
oe ( B ( on ) )

where it : Rntko 3 → P
"

( R ) is the
projection map

and B (
0,1

) =L x ER
" "

,
11>41

a
51 }

a

norm chosen to define the height .
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Now we have seen various example and

phenomena which occur when
counting notional

points of bounded height on varieties it is time

to try
to interpret all that

.
Gn some sense

,

we are doing esgerimental mathematics : we

consider various examples on which we constant

various results and then we tug to construct a

theory which can explain all the results obtained

for
the various examples . Here the hope is to

have a geometric interpretation of
the arithmetic

phenomena .

Tn order to do this
,

we need

#

themes
and

beyond C The HARTSHORNE

and 56 A 4 in two hours )

Reference
H ART S HORNE

, algebraic geometry .

Tam not going to repeat
the Hartshorn 't but

go legend
A) Starting point of algebraic geometry

• Come of
the motivation

of algebraic geometry
comes from

the
realization that

"

ohoyhisms between commutative algebras /¢ are

the points of a geometric object defined by
polynomial equations

"

More
generally

and precisely
Set A be a noetherian commutative

ring ,

Set B and C be
finitely generated

commutative

A
algebras .

We can

find integers
n

,

n
,

by ,
-

, fr ← A CT
, , ytn ]

and an isomorphism
ACT

n , ytn ] / ( f , , y fn ) ~→ B

Then there is a canonical
ligation
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Mokfyb ,
C) - { ( 4

,
-

,
cried Hi film ,

- H=D

• Gm the hand
differential geometry taught

people that

A geometric object is obtained by
gluing together pieces of a more elementary

type C
gen

set of Rn for differential geometry )

Tt was grothendieck who was able to

produce the first good category, namely
the

Aesnateyoyof
schemes

Toefine a

category
Sok C

category
of schemes ) with

a funder
spec : Category of commutative

ring
→ Sohm

which contrarian
.

ant and
fully faithful

:

that is for any
commutative

rings
A and B

the
function gives a big

dive
map

Mon ( A
,

B) →

Morsdcsgea

(B)
,

Spec (A) )

ring

In
fact you get

back the
ring A from

its

corresponding
scheme as the

ring of functions
on Spcc A)

.

Moreover to each
object in Sch

corresponds a

topological space
and is

obtained
by gluing together spchim of

rings .

As often in mathematics the
important thing

is the properties of
the

object ( here the
category

of
schemes )

you
wont to

get not the explicit
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construction You use the
get

it
.

What one

should remember about a demes is the description
9

just gave
.

2) grothendieoh topologies ,
pesheaves ,

sheaves

For later use ;
7 wish to introduce the

very
nice idea of grothendiedk to see a

topology
as a category

Ref

.tn•
( ngbz ) grdfendieck topologies

ART IN

GROTHENDECF et oh
.

56 A 4•

.
Man ←

Etole cohomology
set of subset

a) Classical topology ( Reminder ) k×
it

topology
on set X is a set Uc BCX )

of subsets of × such that

c i ) ¢ EU

( i ) for any finite family
( Vi )i+± of element

of

Uwith
I±0 p←± U

;
EU

C iii ) for any family
1 Ui )

; ⇒
of elements of

U

it
,

Ui EU

NB
. C iii ) ⇒ C e ) for I=¢

The
corresponding category

is ilefened Tex :

- objects are the
gen

subset of X

- moyhisms are j
: u → V

if
Uc V

X 17 7c

Jfe conditions ( ii ) and C iii )
may

be

translated as the existence of some products
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or

copodndsbj
Direct and inverse limits

Let I be a

category .

Gt is said to be

filtered iff it has an objcd ,

C i ) for any diagram

if jean
be completed as iT÷g⇒k

Cii ) for any pairs j , j
'

of object

there esatt

j
→ ,

j
'

7

Tt is said to be oofiltered if the
opposite

Category IO obtained
by reversing

arrows

is filtered

Example
I be a set with

a partial order f

such that for any j , j
'

e I there exists

k e I

,
j £ k &

j
'

< k ( filtered set )

Then take as a

category
:

- Gjeds i e I

- moyhisms pairs ( i ,j ) EI
?

,

is j

( j ,
k ) o

In ,j ) = li
,

A)
.

( Snyohiador we
may

take

a its oppositeIN
,

e

,
>

,
a What he

eivisibility
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←

the collection of objects is a set

.
Let I be a small filtered category
Let C be a category and F :I→ C be

a funder .
We write C

;
.

- Flt )
.

aimagelimit
of

F denoted by

#tEm
For him is

ah
aged

.

Lofcmrth
a

T=
<

ice

family of moyhisms f;

:L
→ C for ie Gbjlt )

so that

to
i →

j

i

[

K¥.tcFk
) commute

and

and
that for any objects

X
of

C

anoany family gi:X→c
,

which
satisfies

Fa : it ' I

×
HI
stcjtk

) commutes

there exists a

unique Y : X → L

so that Fi
× g
; commutes

ytrao
i

such L is
unique up to a unique

isomorphism

Examples

snake
category

Sets
of sets

g

this
fund or is

we

may
take now cowiavariant

{ P¥÷tI±×iltd :j→y
'

,FK ) ( xjikxj }

Same construction in the
category Ab of abelian
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abelian
group

or the
category of commutative

rings

Particular cases

• 9ft
is a

category
with 3 objects

and moyhinms

jotdj
j

.

→
to

IF
°

Id
;j

a

fondant
from this

category
to C is a

diagram

:
f

,
in C

X
z

- Y

bs

Tf the inverse limit exist we denote it

X
, xy

Xz ( remember unique up to

isomorphism ) and no

say
lrhot the

square

Xnxy Xz → X

tg
.

] ly
"

is cartesian ( denoted

by the
square

in the
square )

In the

category

of
Sets

Xnxyxz =

La
,

We
Xnxxzl f

you
) = fd oh ) )

• If X
,

and X
<

are subsets of Y and

fg
'

Xn ' Y
, fz :X

-
→ Y are the inclusion

maps

Xn xxXz = Xn n Xz .

finite inverse limits
generalize

intersections
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• If the only moyhisms in I are

like identities id
×

for × object of I (discrete

category ) then a fund
-

on

from
I

to
C

is a family
CXD

:# of objectsC

and
if

it exists
,

the insane limit is the

PE
T Xi

ie I

• One
way

to define the
p

-
alia

integers
is to the the

category
associated to

IN
,

>
,

and define
the

fund or in the

category
of rings defined by

Rna Ip nz
where

p
is a prime number

and
for

m → n ( ie m )
,

n )

4pmz→ 2hpm z
is the

only moyhism

of
rings

p

=

linen Xlpnz C nTK/pnz

It is equipped with the
.

topology
induced

by the product topology ( each
K/pnz , being

equipped with the discrete
topology )

direct lent in C
are inverse limit in Co

they
are denoted

bykings F on

less
ri

Ecomfles
•

Sn like
category of set ( × Di

. abj ±
E ¥±×ilR

where xi

y

Xj
if F

diagram

"

j£3k in I

p
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and
xne Xk such that Li : FK ) ( xh ) and

xp
.

.

- Ftp ) (µ

Anthe
category

Ab of abelian
group

¥,=Ai/[
where C is

generated by the elements

of theform .
for a

:j→y
'

Cai )i←± where
{ ai

 = o

for iekjj's

Particular case

9j
= - FK ) ( a

g.)
•

for a discrete
category

Iand a

fund or F iI→ C

corresponding to a family ( X
; )

; ⇐

we get
the seem ( or coproduce ) donated by

¥
±

Xi or

,

when it's
meaningful

. f0←±Xi

attn example : the gluing of spaces

D:
××)×←

( family of topological spaces
For cx

,
K ) th

, Uxk gen
subset of Xx

and a

continuous
map

such that %
:

VIK
±

Vky
Ci ) Fx el

, U××=X× and Yx

,x=
Id

xx

Cie ) FX
, M

KEE
H x ← Uxk A Uxpe
hkxkle Uk

µ

andhmk(hkdx ) ) =

'hµ
,

his
i

From a more

categorical joint of view
, using a

a total order on L
,

this data
may

be given
as follows
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fat I be

thecategory
- objects : finite subsets of

4
- moyhism CA

,
B) if

Bc A

A → B

Then we consider a fund or F : I →

Jopg
,

where Toyah
is the

category of topological
spaces

with the
gen

immersions as moyhisms
such that F A

,
B C L

FCA UB ) →

FCB
)

f D t is cartesian if AnBt¢
F ( A ) → FCAAB)

( take FCA ) =

I
a

Umin
(a)

,
K

)

Then

t.biz
F is the

space
obtained

by

gluing together the (X×)* , along Uxm using
the homeomorphisms %

Proa
-

fx : Xx → X be the canonical
map .

there
fdxx ) is

open
in X

and f ,
is an homeomorphisms from Xxtaf >(XD

Sn particular
C ii ) U a × is open ( resp .

closed ) iff
FXEL

,
U n fdx >

) is open ( ran closed ) .

C iii )
g

: x→Y is continuous iff
F tel

, g of ,
is continuous

.
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Remark
This does not say anything about the

moyhisms to X !
PNCA ) = Mor Cska CAI

,
Pn )

are not that easy to describe
.

2514146

[ oygothendieok Topology

Definition
A Grotfendieok topology is a category T

equipped with a collection Cov CT ) of
families ( Ui 9- U )

ice of moyhisms in T

called coverings ,
such that

Ci ) For any isomorphism 4 in T
,

(4) belongs
to

fnF§f→tunkv) is a covering of U
,

and
it'd n ,j

for any iet
,

( Vij  → Vi )
* ,= ,

a covering of Up
then

olio
& iii

)
0

( Viii' U

c i

,*¥*Jo( iii ) Yf ( Vi  
¥ V )

e.ee
is a covering of ✓

and V → U amoyhism then Uixuv exists

for any i EI and ( Uixuv → V ) is a covering
of V

Reminder
9n the category of set

, ftp. Ji is formally
constructed as

{ C j ,
i ) a (U⇐±JDxI I j et }
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Remark
Gm ihe following me consider topologies
on categories T which admits finite
inverse limits an finite cofrodnots .

d Pres heaves

Definition
. Let Tand A be categories a freshen out

with values in A is a conliavariantfeendor
F from T to A

. Gf Tadmits an

initial object 0 and A a terminal object 0

we impose that
F C 0 )=o

.
A moykism of pesheaves from F to 6

is a natural transformation from F to 6

so the jresheaves on C with nolucs in A

form a category .

Fundamental example
Let X be an object of C

We define a jretheaf hx on Cwiek

values in Set by

hx
CY )

.

- Homa ( Y
,

× )
and h × C f : Y → ×

'

) : Horn cc YSX ) → Horn DY ,
D

Theorem ( y one , a )
8 - of of

The fund or which maps X to h ×

is fully faithful
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Definition
a pesheaf F from C to Set is said

to be representable if there exists an object
X of C such ihat F is isomorphic to h

×
An object X of C with an isomorphism
from h

×
to F is called a realization

of F

Garcia
. I be a filtered category

and C be a category
let F be a funded from I to c

For
any X in C be k× : I→ a

be the fender moping any
object to X and amjmoyhism
to Idx .

Cheak that the pesheaf
which maps an object X of C to Hon,=ona!k#,¥⇒

is
being h× of and that

, if it oscist
,

Qin F gives a realization of king h
×

of
.

I

f)

Sheaves

inflatea . otegoywithafrotfendieck topology
Let A be a category admitting products .

of sheave on C with Nahas in A is

a pesheave F on C with Nolues in A

such that for any covering ( Vie V) ; # )
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the sequence rh
Flu ) k>eI±HU

. )=yg¥⇒H Uixuvj )
exact

,
where Yz

4 is daaaenized by pri 04 = 4; for any
i⇐I

and Y ik by the commutating of the

diagrams
IIwit

,.TN#FlVixuVr
. )

¥u.is#i+ctvixy
.

)

ftp.flui#,F*.ttuixjvpt¥
, up TE F ( Uixuvj )

and a diagramy ,

X - Y #
, z

is said to be exact¥

for
any object U of C

Horn ( V
,

× ) → tom ( V,Y) =Homa,2)is exact : that is for any
h :U→Ysuch that

gn o h - of ,

oh there exists a unique a : V→x

such that he a f on

Remarks

• Gf A is a subcategory of the category
of sets

,
this means that f is a big edion

from X to { y < Y I go.ly ) = gz ( g) )
• Sf A is an ole lion category this means that

o → Flu )

→titI±#j¥f#,t⇐µ
uiguj ) is exact
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Example
Gf X is a ( dossier ) topological space

and U the corresponding category of its open
subsets with the gen coverings
For any topological space Y

,
the feenotor

hy : u to E ( YY ) is a sheaf .

Definition
it moyhism ofsheavesis a moyhism

of pres heaves
,

let o : S → P be

the inclusion fund or from the category
of sheaves to the category of pnesheove

Theorem
The inclusion funder i : S → P admits

a left adjoint . In other words
, for any

jresheaf F there exist a sheaf f
* and a

moyhism of pesheobes 4 :
F  → f#

so that
,

for any sheaf gHoms
( F#

, G) - Hon
p

( f
. i ( g) )

equivalence
of fund on ( in g) ]

3) Schemes
[ of . HARTSHORNE

,
skipped]
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4) Group schemes

definition
Let X be a scheme

.

• The category Sok
× of schemes above X is

the following category
Gbjeds : Schemes Y with a moyhismty : Y → ×

called structural moyhism :

Oloyhisms % a moyhism from YLZY '
is

a moyhism of schemes 4 : Y → Y ' neck that

y 4¥Ty\ ×[ Ty ,

commutes ( Denotedby Hand Y Y
' ) )

along algebraic structures
,

like
group or rings

may be interpreted as commutative diagrams
in the category of sets . Therefore , they have

analogs in the theory of ' schemes

.
A

group
scheme over X is a scheme G

over X ( that is with a moyhism to : 6 → X )

equipped with moyhisms in Lohx
m :

Gx§
→ 6

C : X → 6

( : 6 - 6

so that the following diagrams commute :

mxtdc

(associating )
°×x6×x6 → 6%6

Iv Idoxm fm

6××6
# G
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6 =>

Xx
6

x

of e\gIdo
(identity element ) g€#6g××6ytdgxefm

G××6 m→ 6

6 c¥"> o x×6
( smase ) ( Ftd this* fm

6××6 - G

Reference
m

A . Bo Rfc
.

linear algebraic group
C Graduate tests in Mathematics

, Springer)

Remark
Let A be a commutative ring and

6 be group scheme over Gec CA ) then
6 defines a covariant fund 'd from the

categor of commutative A . algebras
talkYcotegoy of group

B - GCB ) = Hon
sp , ( a

,(SpdBl
,
6)

The multijliolion is given by :

( 4,4) E 6 C B ) x GCB )

Spec ( B )

Is
6

Y t ↳ too
G → fed at

To

gives spec ( B )¥$ 6gn.at:Y
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Notation
X a scheme over a commutate ring A

B a commutative A - algebra
Xps = sec (B) xqes ( D ( osdansion of scalars )

X (B) = Horn
g. . ,

( Spc ( Bl
,

X ) B - joins of X
.

Exempla
6

a
( additive

group )
�1�

a
= Spec ( Z[T] ) ,

M : Qa × Qa → �1�
a

18T t TO1<-1 T

e : Sec 21 → Fa
0 ←l T

( : Gla → Ga

- T H T

B . points
There is a canonical isomjhism from

Ga ( B ) to the additive group B for +

• Gm ( multiplicative group )

Gm = Eec @ [ T
,

T
- 1 ] )

M Gm X Gm → Gm
Tx T H T

e : Spec ( 21) - Gm

1 ← T

L : Gm - Em
T

- 1<-1 T

B - points
Gm ( b ) is the nullification group

B*of invertible
elements in B
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# Vector bundles Picard group ,
Ko

1) Vector bundles

a) Matrices

Definition

Mm,n=
Spec ( X [ To ,j ,

t.is

m
,

1£ jam )
With

+ :

Mm,n×Mm,n
'

Man
moyhism of schemes

defined by I ; ; ttoo 1+1×0 Tij
and

X i

Mm,nXMnp→Mm
,P

defined by Ij l→} ,
Tik Qtkj

Similarly on Itn = Gec ( 21 [ T
, , ytn ] )

we may define
+ :#

"
× inn → A

"

addition

by

Ti-Ti@1tnxOT.x

: A
'

x A "
- A

"

multiplication by a scalar

leg
.

Ti 1- Toti
and an action of Mm

,

× :Mm,nxAn → an

defined by Ti t £yTi,Roth
Write Mm

.

- Mn
,

Remark 1

All this laws are compatible which means

that we have a lot of commutative diagrams
Mn X Mm × IAN ¥4 Mm XIA

n

xxtdt bx
Mnxlan ×- Ian
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a Mnx Mm xlttn ¥06 Mm x IAN

2

multiplicationTtntxian To ¥n×
. . .

Remark 2

We may use Yoneda lemma and consider
a scheme S as a funder which 9 also
denote by S : Cringe → Sets

catchment alive
rings

A \→ SCAI

Then
Fenison lsndabs )

Mm ( Al is the A - algebra of nxn matrices

and AYA ) is A "
seen as a Mm ( A ) - module

• The

www.T.BZ?(zCtij,neeiienMpa#jl.*...?n

nick is an gen subsume of Mm
with the induced Multiplication

x Gln xGln → Glen
e : Spec ( 21 ) → Glen

{o if it j c- Tij
1 if i=j

l : Gln → 6 Ln

( .pits
.

Tau at Tij
⇐ ; )Dd#r .

rmooea

removed

defines an algebraic group
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B points
ln C B ) = MNCBF IGlen (B)

"

b) Vector bundles

G want to consider vector bundles as themes
and not as coherent sheaves

.

Set neIN we consider the category
Vn : objects are products X x at

"

a moyhism Ux An → X xian
is a mioyhismof schemes 4 : Ux IN.→XxtD

such that there exists

- an open immersion ( : U → ×

- a moyhism f : U → Mn
such that

Iaxfxtd
Ux Ian - Ux Mm x#

4 t ex,⇒ / Fd × ×

X x It
"

← U × Ftn
commutes .

( Gn towns of A . points ,
this means

U ( A ) x an → XCA ) x 117
n

( u
,

H 1- ( i cu )
, flu ) it ) )

Here are two funders from Vm to the category
of schemes

Ci ) i the inclusion funder
ai ) pr the projection fund

'

or which

map xxian tax
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for any olze A Xxla " of Un
,

it : xx IA '
→ ×

defines a natural transformation from l to pr .

for any
E of Vn we also have the addition

moyhism + : ice)xµ⇐,
ices→ ICE ) which

may
also be seen as a natural transformation between

funotos
and the multiplication

x : It
,

x ice ) → ice )

§ for n 32 the matrices do not commute

to Mm x E  

5
E

1 Idxd to is not commutative

Mn × E

×→E
Thus the multiplication by Mn does not

define a natural transformation

Definition
• Let X be a scheme

.
.

A neater bundle of rank n

E over × is a scheme E with
C i ) a projection map it : E  →X
Cii ) an

additionmap + : Ex×E  → E

OWD a scalar nullification X At ,x×e→E
such that E is obtained by gluemg together

objects from Vn that is there is a set L

and a funder Ffrom the category
I = Bp ( L )

of finite non empty set of L to Vn such that

f moyhism in I FC A U B) → FCA )

I ofC A > B) is an gen and D t when An Bat
immersion of schemes FYB

) → FC Al B)
.






@

such that E  = edgei of
,

× =kg Prof
,

it is induced by it : i → pr
+  - + : ixpni → i

and × - x It
,

xi → i

IT is called the structural moyhism of E

A vector bundle of rank 1 is called a line bundle
.

• Set E be u vector bundle of rank mover X
and F - -

n over X

a moyhism g : E→F is a moyhismof
schemes such that

E  

# F + Ex E → E → E

¥×t 't
+

,=t×uxI, ¥4 and l#IF⇒×y
tyIAKF - p

commute .

the vector bundles with these moyhisms
form a category .

Remak
From the point of view of A - joints

we get maps
I : E C A) → X ( A )

t : E (A) ×× , MECA) → E (A)
and × .

. A xtcn
. , - E ( A)

so that for any
XEXCA I

-Yx ) ohas a

structure of A . module
.

We denote E ( x ) .

. it
. ' ( x ) and call it

the fibre of e at x .

if 4 : A → B is a motion of commutative rings
Set Xp = x o Spec (4) : Spec C B) → X

, x•←X( B)
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We get on isomorphism
EBD % B ~→ ECX

•
)

This follows from the fact that EGD is
, by

definition , locally free of constant rank n

and we con check locally nether a moyhism
is an isomorphism .

c) Sedions

Definition
Let E be a vector bundle on X of rank n

and U an gen set of X

a section s of E over U is a moyhism s : U →E

such that too is the injection map from UTOX
.

The set TCU
,

E) of these sections

has a structure of 6×1 U ) module ?

for f c- Gx ( ✓ } ser ( v
,

e) Utes It
,

xe

false A

foxis U tr ( u
,

E ) defines a coherent sheaf
of 6

×
- modules which is locally free

of constant rank n

C ii ) This defines an equivalence of categories
between the category of vector bundles

on X and the category of dent Gx . modules
which are doeolly free of constant rank

and in the literature the vector bundles are

sometimes defined as coherent sheaves but
G prefer to see them as schemes

.
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d) Examples and construction

�1� Trivial vector bundle :

t An x X → X
.

its sheaf of sections is Gxn

�2� The
projective space

P
"

may
be defined

over 21 as the globing of m +1 affine

Has
vi. Spc ( K [ To ,=Fi

,

€
In ] )

VuigrjI§tuf?[ton ntn ] ftp.D

Tktj - Tak t i
,

j
^

IT .

- Ti

We glue the #
'

x Ui using the moyhisms

( in Vz ) : H
'

x vi ;

-
At x Uj . i

TO 11T
j

- T 01

For k€  0
,

.

,
n

,
we have commutative diagrams

Uij→Vj ,
i

thgejfttjdh:#-t ¥
( rap 1 if h :*

It x Vij - It 'xVji
, * ,TQIT - ,

j

which define a section Ta of
this line bundle

This line bundle is denoted as Got )
.
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�3� Let E be a vector bundle over x

and f : Y → X be a moyhism of schemes

then e X×Y is a vector bundle over Y

with for ,
as the structural map

Indeed if ⇐  
=

Qgin Vixttn

then E××Y= being ftui ) x An

f*
le ) = Ex *Y is called the pull . back

of
E by f

sn particular if
U is an open subset of X

E
, ✓

= Ex×U is called the restriction of
E to U

Terminology
By definition for any

rector bundle E

of rah n ovax there exists an

open covering ( Ui )
, ⇒

of X and

a family of isomorphism of red on bundles

( di : Uix an → Elui ) .

Such a

covering
is said to trivialize E

and the family ( di )
⇐ ±

is called a

localtrivialization of e
.

Qtdnijhimean
ropes

entaiion of an algebraic

group
6 is a moyhism of algebraic

group
g → Glenn
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Construction

Lets : Gln → Glm be a representation

of
6 Lm

and let E

be
a vector bundle

given
as

E I Am i OF
←

I

where F : I →

Vn
is a glinting data

Gm fact
all moyhisms Tt 4) are

gain leg pairs ( i
, f ) where i : U→V is

an open immersion and f :
U → 6L

n

a moyhism

We denote by Vm* the
category

with

the some objects as Vm but with this life
of moyhisms

Then define a

funota
g :

Vn*→VEby g C Ux Hh) =Ux #
m

and if Y : U x an →VxH
"

corresponds to c : v → V and f :
U → Gln

and 9 ( Y ) is defined by
U x lam - V ×

It ixx

Idxs of x¥✓ ×

An
,× It

"

We

define
*

(e) as
large

as
° 6

*

Since it is defined using
a funota

on Vm

S
, ,

le )
, up

to isomorphism,
depends only on

g and the loss of isomorphism of
E

.
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and g*
is funotoid on the

category of
vector bundles

of
rank n

.

This works also for representations of

products of Gln .

. If we have a moyhism
of algebraic group ¥I

,
6Lni→6Lm ,

We get a funota
IT Pnicx) → Pncx )

where Pm
;

( X ) denotes the category of vector

bundles of rank Ni over X
.

�5�

Applications
We can

apply
this construction to the

fund
oviol construction in linear algebra

- direct sums

Gln
,

x 6
LNT Glnntnz

( th
,

Md 1- ( Mj°MD ( in terms of
A point)

Taking vector bundles En
,

Ez on X

we get a vector bundle E
, to Ez dolled

the direct seem of E
,

and Ez

For
any

commutative ring A and
any

xfN⇒
we have a canonical isomorphism

Ento Ez ( x ) I E
, ( sc ) QECX )
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- tensor product
Lot ( en

, ,
em ) ( rcsp . (f ,

,
-

, fn ) )
be the usual basis

of In ( ram Z
"

)
is a basis of ZMOZMThen ( ei * fj )

, ;
,

j ,e{n
, on > x{ 1

,
-

in >

and we

get
a representation

Glm x G Ln → Glmn

( ( did?±'÷n&hg%,?
- (air

base )

Taking vector bundles En
,

E
,

on X

we get a motor bundle

E
,

Q Ez

called the tensor product of the vector bundles

E
,

Q Ez ( sc ) =s En ( N ) QE
z

( X )

4/5/2016 In particular
-

the funder
E  A Eok

Taking
the usual basis ( en

, yen ) of 21
"

( ein 0 . .

. 0 ein ) k

Cin ,
.

,
in ) e { ^

, yn )

is a basis of (zy*h giving
a representation

GL
n

→ Glnk
and E*k is the vector bundle obtained

from
E
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Reminder ( tensor algebra )

given
a commutative ring

A

and a A . module M
,

T
*

M =

+0T
"

( Ml where Th ( M ) = M
On

new

is a graded algebra over A
,

the product

being defined by

⇐,
* .

.
. oxm ) 0 ( of

,
Q . .  

xoyn ) = ×nQ
-

QXMQY .Q*Yn
and

Tmcm ) OF ( ml = TMTYM )

we define
At M = T±M / C xo x

,
x EM)

-

bilateral ideal
generated by

XQX

This ideal is graded :

I= C xo x
,

xe M ) I  

=on← ,µIn
where In .

. IATYM)

and we define
At ( M ) = TIM ) / I

= +0 A
"

( M )

where
new

N ( M ) = T
"

( M ) 1 In

The product in A * M is denoted by
^

xny =  EDmtnynxfor x ← nmm
, ye

MM

Pioif M is a free
A . module with a basis

C er
,

-

,
en ) then MM is free with

a basis given by ( ein ^ - ^ lilei
,

< - < i < n

k k
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• By defining
Nk 41 oh n - nxn ) :

- 4th ) n - " YKD
me get funder from A -Mad to A . Mod

Exterior product
This we have

a representation GL
n→

GL
( nu )

and we con define
Nk E which is a vector bundle of rank ( na )

for a vector bundle of nah n

Gn

particular
e) = An e is a line bundle

.

Symmetric product

Similarly 5*1M ) = Tt CM ) / ( xo y
.

yox ,
" ,y€M )

is a

graded
commutative algebra over A

and we con

define
Sn E which is a vector bundle

of
rah nh

- ( nh )

- dual

We consider the contra gradient representation

Gln → o Ln

M ms tm
- 1

We
geta funder PNCX ) → Pncx )

we denote
by

EV the
image of the vector

bundle
of

E and call it the dual of E
.

E  → EV defines a contrarian out fund
-

on

which is an equivalence of category from Pro Po

EVCX ) I

Homa
. mod

( E

,
A)

- Internal Hlom

Hot ( E
,

F) =
EV OF

Gcorcise

There is an natural equivalence
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between

M ( X
,

Hot ( E
,

F) ) = Horn C E
,

F)
v. b

.

e) Vector bundles and projective modules

Let me state a result

from
commutative

algebra
Theorem ( Definition

Let A ee a commutative noetherian
ring

and let

P be a finitely generated A . module
. Then

P is projective if
and

only if
it satisfies

the
following equivalent

conditions :

Ci ) The fund or M l→ Mom ( P
,

M ) is

exact
A . Mod

CD There exists a A . module Q such

that POQ is a free A . module

Cii) For

any
A . algebra B which is a

local
ring ,

P %
B is a free B - module

C in )
for any prime idea p of A

P On.
Ap is free

(A) for any
maximal ideal m of A

P
Qa Am is free

G) There exist a primitive element

/ fn
, > for ) ear such that

for its a
, ,

r )toA [ fit is free
Cvi) The fiend on

M →

MQNP is exact
.

For
any prime

ideal p of A
,

the rank of
the free Ap module P D

Ap is called the rank

of
M at

p .

This defines a map Spec C A) → IN
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which is locally constant ( The inverse image

of an integer
is an

open
subset

of Spec CAD

Gf it is constant of value r then one

says
that M has constant rank r

Remark

Sf A is integral
then Sped A) is connected

and
therefore any finetely generated projective

module has a constant rank
.

Prost
- A be a commutative noetherion

suing
Let

z=
Id

sec ( a )
E ffecCAD (A)

The feendbr E  → EC
y ) defines an

equivalence of categories from the
category

of vector bundles of rank r over Sec CA )

to the
category of Projc dive A .

modules

of constant rank r .

Example

Tf A is a frinoipal
domain

, any
sub module

of a free module is free and therefore any

projective module is

free .
Thus

any
vector

bundle over Spec CA ) is isomorphic to

Sfc LA) x#^ where r is the rank of the

vector bundle and the
category of vector

bundles over Spec ( A ) is equivalent to the

category of free
modules of finit rank over

A
.
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e) Subbundbs
, quotient,

exa d-
sequences

Definition
t subbwndle

of
bundle E is a subsohcme F

equipped with a structure of vector bundle

over X so that the inclusion map
c. .

F  → E

is a moyhism of vector bundles

Remark

We have commutative
diagrams

F

'→
⇐

+4=4×8
it

⇐

and F×yFt→ F

tixi ti

Exxt 's E

So there is a unique
structure of vector

bundle on Fwhidn makes it a subbundle of F
.

Example

Let E be a vector bundle on a
scheme

then the
zero

section 0 : X → E defines
on isomorphism from

X to a subbundle 0×

of
E ( the rank ofihis subbundle is 0 )

We want to define the kernel of moyhisms
butthore is a problem with that

.

Reminder

In a additive
category

the kernel of a

moyhism 9 : E  → F is a moyhism K : K → A
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such that
, for any object

H

o → Horn at
,

K ) - Hon ( Hye ) → Horn (H
,
F)

Y1→ KOY

is exact
.

The colonel is defined as the kernel in the
opposite

category
:

The
cokemel is

a moyhism 8 : F  → a

such that
,

for any object H :

0 → Horn ( C
,

⇒ → Hon ( F
,

H) → Mom ( E
,

H )

is exact

Example
Take X. - Spec ( x ) . Take E

as
the trivial vector

bundle
of rank 1

.
its 9 explained the

category of
vector bundles over 21 is isomorphic to the

category of free Z - modules
.

Take the moyhismfof vector bundles corresponding to

4 : 21 't z un

z
n

For
any

m is

xz

ts

Horn ( zn
,

z ) - Horn ( zn
,

4)

is injective and

Y ~ To Y

Horn ( 4 Zn ) ×2- Horn (
21,2in)

T 1- To 4

is injective .
Thus in the category of

vector

bundles

Ken ( f ) =
o and coker ( f )

But
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§
i ) f is not an isomorphism

end f
is not the kernel of

its wkend

since 0 → Horn C xn
,

2) → Horn (2%21) → o

is not exact )

Y 4 Yo X

ii ) 9f we consider the E joint of Spdz)

er

¥ixkE¥ssnow
is the

zero map
and has

a non trivial

kernel and cokemel .

µfoµ
the kernel does not commute with

Civil The cokomel of 2134 is not 0

in the
category of 21 - modules

so the fund or from the category
vector

bundles to the
category of coherent sheaves

does not preserve wkemels

The
point

is that the
category of vector bundle

is not an abelian
category

but it has a

nice notion of
shot exact

sequences
.

.

Notation

Let X be a scheme
.

We denote
by X

, µ ,
the set

of point of dimension k of
X Gn portion an X

co ,

is the set of closed points of X
.

For the
spectrum

of a ring ,
it corresponds to the set of maximal

ideals
of the ring .

bf x e X
, Gx

,
, ,

is the local
ring

at x

Mx
,

×

its maximal ideal and K ( x ) :
- Gx

,
,,

/ Mx
,

, ,

it

residue field
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Definition
of

sequence y y

o → D → E  → F→ o

of vector bundles over a scheme X

is exact if it satisfies the
following equivalent

conditions

C i ) For
any point

x of X the
sequence

of Gx
,

, ,
modules

0 → D ( 2
, , ) → E

Cy
, ,

) → F ( %)
→ o

is exact
,

where
n

,
c

: Spec Cox ,"
)

→ ×

This condition
says exactly that

( ii ) Let D
,

E F be the sheaf of sections

of D
,

E and Froze direly . The sequence
o → D → E → f→ o

is exact

fix For
any

closed joint x of X the
sequence

of
K hi ) vector

spaces

o → D ( x ) → Ebi ) → Fix ) → °

is exact ( here x denotes also the moyhism Sped KCHHX )

(iv) For

any
iommntabive ring

A and
any

X HCA )
,

the
sequence of A  - modules

0 → D ( x ) → E ( ] ) → Fbi ) → o

is exact

Note that in conditions li ) and C iii ) we

are considering free
modules

of constant rank
.

This works
only for short escad

'

sequence

Definition of the kernel for vector bundles

Let 4 : E  → F beamoyhism of vector bundles•

over the scheme ×
.

Then Y
" '

( Ox ) = Ex ,=0×
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is a closed subtheme of E

Assume that the rank of 9 is constant
,

that is

× → W

x its rk ( 4
, ,

; Ecx ) → Fcx ) )

is constant
,

then 4 "Yox ) is a subbundle K
of E

so that the inclusion
map is a kernel of 4

Sn the sense of
additive

categories .

We denote it by ken (e)

Now the duality is an equivalence of category
So we

may define

Tf Y is of
constant rink

,
so

is 4
V

:
FV→ EV

•

and Cokely ) = ken CYYV.

Example

sf s is a
subbundle of E then the

inclusion map
has constant rank and

the
quotient ETFis defined as

cohen ( i )

for
any

commutative ring
A and

any
x←XlA)

Elf ( x ) is
canonically isomorphic to EGD / ax )

and we shall identify these A modules
.

The
sequence

0 → F  → t→ Elf → o is exact

Up to isomorphism ,
all exact sequences are of this form

¥ Even if 4 and Y have constant rank
,

The rank of Y of may
not he constant

Example
L trivial line bundle of honk 1- / Ft L

.

- a
'

x#
'

L → Lo L → L Cx, + )

( x
,

H - Gstost ¥1 's fx )






860

e) Tangent bundle
, cotangent

bundle
,

canonical bundle

Definition
Let A be a noetherion commutative ring

Let X be smooth connected sdeme over fedA)
The tangent bundle over X is defined as the

unique scheme TX such that
the founder of joint associated to TX

which map a commutative A - algebra
B → Hongoaf SRCB )

,
Tx )

is isomorphic to the fund or

B → Hangedn§5k@0kty),× )

with the moyhism it : Tx → × corresponding
to the natural transformation

Horn Gee ( B [ T ] / ( Ty
)

,
X ) → X ( B )

induced by B [ TJKTY → B

T F o

The scalar multiplication is induced

by moyhismex, ,← ,
→ BEJKT )

T 1- BT

for be B

and the addition map might be constructed as

copout
aol.IMt.FI:b , gypsy B) = Hon ( specCBak+Mzu•,se

But the commutative diagram
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Ti
- +

Tz - o

aBTEIIJKTI,
t.tt#TBakty

- 2. I D $ in the
category

o T of rings .BCT ]ge ) - > B
which gives an isomorphism

+
. ,

sped Batyftp..hn#Se(BaktyHzafreBaktylI I
^

/ .

+ +

spe ( BCTJKT ) )
C see below for a simpler proof )

Remember : the dined limits does not exist

in general in the category of rings so it is

only in that particular case that the gluing
.

of these spectra is an affine scheme

9/5/2015 Remark

a) This only to check that TX is locally of the form
Xxittn that we need to assume X to be smooth

over Spc CA ) .
Fn general , the above construction

yields an abelian
group

scheme TX on X

b) Filers : Let B be a commutative A - algebra
and assume X is affine X = speak )
Let x e X (B) corresponds to a moyhism of C . algebras

4 :c → B

Now B CA # as a B module is free of
rank 2 with a basis given by ( 1

, e)
,

where

E =F . Write Tx X = TX ( x )
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Gf YEIX ,
then

y corresponds to a moyhism
4 : C → B[T]dTy

given by
ya , =p

.

( ⇒ +T Scd
S is A linear and satisfies

Scc
, q ) = HE)Sce ) + SCG ) 462 )

So it is a derivation from the A- algebra
C into the A . module BE

.

We get in

that
way an isomorphism of B modules

IX d- Derpfc ,
Be )

Example
Tf C = A C Xn , yxn ] Kf , ,yf~ )
Then

Tspck ) = Mora
oeg

( AQN , TXNXQ
. ,

;pyµ%|
can be identified with

= { ( xnteun ,
- plnteun )eB[%"y |ffk+Eh,

.
. .ph Hutto

for ie { n
, ,n ) )

={¢k, .mn ),(oh ,-,hDe@Y' / fi C xyytn ) to for 've
, .

Etybxtjnh, ok ) ' ajoforia :X

={(x,u)eXCB)xBn|aefnKa(dxfi÷↳

Proof of the statement

9 have to proof that TX is unique
Cup to isomorphism ) and exists as a

median bundle .
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Unity
Since all schemes are obtained by gluing

together speak and the foot that

hx : Y - Homes × )
is a sheaf

,
hx is determined by its restriction

to spectra of rings .

We then apply Yoneda 's

lemma to get that X is determined by
its funder of points

B l→ X ( B )
.

Existence
We only have to check that X admits

a covering ( Uo )
; # by open substance

sothawvi  =TUi is a vector bundle / Ue .

We
may therefore assume that

X = Spec C

where C = A CT
, Fil ( f ^ , -

, fn )
and d f : ETA → M

, ,n
has constant rank

But then by the example 9
gave ,

TX ( B ) = { @,
a)

,
x e X ( B ) ,

u ← hold
, , f) )

That is
, ifwe see as a moyhism between

trivial vector bundles
,

d f : IAF x Ana - a

and TX = her ( dfl . D

From now on
,

9 denote 6
✓ for the trivial

bundle on V ( although it is rather its sheaf of sections )
Definition

Let X
,

Y be smooth connected schemes•

over spec ( A ) and f : X → Y be a moyhism
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of qghemes.
Then the natural transformation

omgefnfpec
( Balay)

,
X )in Horn ( be ( Balay),Y)

Fc CA )

induces a map
Tx - Ty

and that

ftp.ft
x - y

and a moyhism of vector bundles
over X :

d f : TX → f* CTY )

. If f is a dosed immersion
,

which means

that df is of constant rank dim ( x )
,

then

N×
, ,,

= FTTY) / dfctx )
as a vector bundle on X

.

. The cotangent bundle is the dual

of the tangent bulk
,

it is denoted

by su X
.

Sts sections are the t
- forms

We put skx = AR ( su × ) its section

are the k
- formsThere is a product

rcu
, sex) × M ( u

,

six ) → n ( gray )
. The canonical line bundle is

W
×

= Rn ×

the anti canonical line bundle is its dud

WI
'

= w×V I det ( Tx )
.

This line bundle is going to play a anti ol role in on
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game .

Examples
1) The projective space

First
,

remember that we defined a line bundle
qpn ( m on the

pojedtf,p%YFhif k > 1

Gpn ( k ) =\ trivial line bundle if n= o

@,pn
( w )

* ' k

if Kao

Gt is a line bundle on Pn
. The sections

of 6
pn

( ^ ) give by duality not moyhisms
of vector bundles

Xi : Gpn C- 1) → Gpn
and

nt 1

9 : C to
,

- , Xn ) : 6 pn C- D → Gpn
By construction xi does not vanish on

Ui  = Syec ( k [ xo ,
-

,
Ii .

-

,
XD )

Thus g is of constant rank I
,

it give
en embedding of Gpn 1- 1) in

Ph × Mint 1

Looking at fibres , we get for any commutative

ring A and
any

x e MCA )

Gpn C. 1) ( x ) c An +1

is a projective submoclule of constant rank 1

Moreover everywhere locally it is a direct factor
so the quotient Q =

Ant ' 16
,pn

C- i ) ( A ) is

everywhere locally free and hence projective
By definition of projective modules
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Ma ( Q
,

Ant ' ) → Horn CQ ,
Q ) → 0 is exact

so - Iota
and this gives a glinting

0 → Gpn C NA ) → Art '→%→ o

and thus

an -n= of gfpntHAD
Sn fact ,

we get in that may
Proposition

The map
P

" (a) → f( Gpnl. 1) (A))
is a legation from the A . joint of P "

to the,
set of submodules L of An

' ' such that

L is a fired summoned :

F Q < An " such that LQ Q = Ant '

Gm particular L is jrogedtie
( ie ) L is of rank I

Note that it is always worthwile to describe a you as

a moduli space ,
that is to have a nice interpretation

of the fund or of point .

Remark

If A is a principal ideal ring
and ( X.

, yxn ) e Antis primitive
that is F ( no

, , un )
,.§o an " it 1

Then lee- A GG
,

-

, xn )
Q

.

- her ( Ant '

-
A )

(
o .

, n
) l→ E U Pci

We have Ant '
a Lot Q
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2,0 Remember that in general a projective module

of rank 1 is not generated by one of it dement

Now let us turn back to the tangent space
Let x e Ph ( A ) corresponding to L c Ant '

We want to describe the tangent space at x

As a A . module ( A [ TH ( Tyfnt '

= Anti + EAM '

We apply our description of point to thee
ring B = ACT ] KTY

.
A joint yet ,cX

corresponds to a B -submoduleM car
' ' OEAnt ' such that Pr ,

( M ) =L

and it is a direct factor of rank 1

From E ( xi E y ) = e x

We get E M = E L c E Ant 1

9f A is a principal domain
,

L is free of rank 1

generated by a primitive element a

Set W e M be of the form W .

- Ute v

Then ( Ut Eu
,

Eu ) is a basis of the A -

mob( You can complete ( Ut Eu
,

Eu ) in a basis of A " 't e Ants
Alut Ev ) + Eu A a M which is free of rank 2

,
we getquality)

We yet E Ann AM / EM is 0 locally
and therefore E Ann RMTEM

and L I M / em a Ant'to EAC+11L )
Thus Men is the graph ru of a

moyhism a : L → E ( Anti 1 L )

Conversely ,
one can check that

glien u : L → ant 't

{ xtey c. Anh + Eantnlxeyg = uk ) in ATYL)
is a B - submodule of Anti + a Ant '

which satisfies the conditions
.
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so we may summarize as follows
Conclusion

Let xe Pn CA ) corresponds to the

A . submodules Lc Ant '

,
then

there is acanonicalisomorphismTx put Horn ( L
,

Ant 'll )
Remark

Using the fact that Lis projective ,

Horn ( l
,

Ant 'll ) I Ant 'll ON
to Anti ON / LOW

Thus we get an exact sequence -1

0 → 6
,pn

¥3
Gp .CM 't

→ Tpn → osnpertwafje
,Gpncnt' )

2) Let A be an integral domain K - EKA )

Set V a Panlcshfined by
fj ( to

,
-

, In ) =o for t e { ^
, yn )

where fi is homogeneous of degree d ;
that is fi ( TXO

,YTXN ) : th . f( Xo
, In )

for any x ← Pnca ) corresponding to KAH '

Kalc Knt '
is a vector you of dim 1

So for ( xo
, Pln ) EL - to )

,
( Yo , yyn ) cL- Ii

f ( 36 , y In ) = o # fly . , yyn ) to

V ( A ) iconogondsto theit L

such that fi 1 ,
= o for i € Ln

.
- or )

.
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Assume V smooth over Spec A

0 Gver a field k

h¥thuJwidneiibryiiotoann
"

pw
× e Xlk ) corresponds to a line Law

+
forLIFE.in?ntndgfia kntn

x
V I Horn ( L

,
IWK ) a Tx IP

"

.

Gm a more intrinsic manner

Proshe space RC Pna
, Gpn (d) ) is isomorphic

to rhe space of homogeneous polynomials
of degreed over A

See
, for example Hartshorne 's look (pop .

5.13 )

Let Gr In ) =
it ( Gpn In ) ) i : V → ph

E defines a moyhism of vedor bundle
oxj

Gy ( 1) → 6
✓

( d

;)
and

therefore
df , may

be seen as moyhism of vector

bundles : Grhjnt
'

- 6✓ Cdi )

The formula {oxpyty . dib
enylies it vanishes on the image of

6
✓

EX G✓ ( njnt 1

We get a moyhism
df . i*CT BY →

£
G✓(di )

Since V is smooth thismotion has constant
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rank and
Tj y ken ( df )

Gnyohtalar if V is a complete intersection n = n . dim ( v )
we have an exact sequence

0 → TV →
.

ECTP " ) → ¥
,

Gcdi ) → o

and Wi '
e detci 's

LTP " ) ) Q dell ¥n6GW)t=G✓nt1th⇒

2) The Picard group
Definition

on smooth varieties there are several

equivalent definitions >

.

The Picard group of a scheme V

is the set of isomorphism classes of
line bundles over ✓ equipped with @
The neutral element is Gv ,

The oppositeof L is the dual LV

gamps
is denoted by Pic ( v )

,

.

Tf A is a principal ring Pic ( spec CAD to )
. The map z → Pic ( Pn) is an isomorphism

k toGpnlk )

of groups
( See HARTSHORNE

, corollary 6.17 )

Definition
Set k be a field ,

Tan algebraic closure of k

. A nice variety over k is a smooth
, projective

variety over k which is geometrically integral
( that is VE is integral )
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Theorem
Let V be a nice variety / field k

,
n .

- dim ( V )
The map Div ( V ) → Pica )

D to 6 ( D )
induces an exact sequence of abelian group
0 → k* → k ( Dk Div ( V ) → Pidv ) → o

( HARTSHORNE
,

§ 1
,

G ) 11+0
zp

Pe

Vern
)

The reason for which the Ricard
gray ploy

a central rote in our game
is the following one :

Remark
Set ¢ : V → Pnh be a moyhism of k - varieties

Theref*( Gpu (i ) ) defines an element in Pic ( V )
and V → PQ defines ntn sections s ;

k
,

Xxi of L such that

Gpn (1)

n

C * ) A { x I s ; lx ) .

. o in Lbc ) ) .

- ¢
i - o

Conversely given a line bundle L and

so .  ysn e M ( V
,

L ) such that ( * )
,

this

defines a moyhism
¢ : v → pa

by ( no
, . , un ) e of K ) tuisjbitnjsilx ) for iji { o

, . , D
( bn fat ¢C× ) = Ken ( st s (xD 's

a MYW dual )

Remember that heights were defined by such moyhisms
Up to linear transformationthe moyhism is determined
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by the class of L in the Picard group
Definition

L epic ( V ) is said to be effective if MCV
,

L ) this

11/4/2016

3)
Grotfondieok ring to CX )

Definition
Let X be a connected noethouon scheme
Let Ko ( X ) be the group

- generated by (E ] where E is a vector

bundle /×
-

relations
: for any

short oscaot sequences
o → F → E  → Q → o /

[ E ] = CF ] + C Q ]

There is a unique structure of ring on ko C × )

which salt
fig

€ ]ff] = [ Eto F ]

Remarks
D st follows from the fact that the tensor by

a projective module is escad - that

Gf 0 → F  → E  → Q→ o is exact

then o → FXOG - E 06 → QQG → o is exact

and therefore the product is well defined
2) There is another operation on Ko ( X )

which satisfies
't : Kok ) - Kocx )

and
xi ( #) = [ ni E ]

x ; ( xi y ) = E ta Gc ) Xbly )
.

at bei
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Ko ( X ) is what is called a k
- annum ( 56 A 6 )

.

Prop
rk : Ko ( X ) → 21 is a moyhism of rings•

Tts kernel I is called the augmentation ideal
• The determinant defines a group
homomorphism

Kok ) → Pick )
[ E ] - Hett ED

emdeed if o → F  → E  → Q → o

is exact det C E ) I dct ( F ) Q det ( Q ) .

Later
.

9 shall explain an arithmetic analog
of this ring .

Now let us turn back to point
of bounded height

Examples
* sf A is a principal domain

, any projective
A module of finite rank is free . So they are

classified by their rank

Ko ( spec I a) ) → z

[ E ] a rk ( E )
is an isomorphism

* For Ph
,

We have a moyhism of rings
ev

:X
CT ] → Ko ( pn )

T 1- > [ 6 pull ) )
Theorem

ev induces an isomorphism of rings
21 [ T ] ⇐ -yntn I K

.
CP " )
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This is rather difficult to prove .

9 dea ( See Quiver Higher K - theory )
The

category of coherent sheaves on X is an

abelian
category ,

so we con defense
K ! C × ) = group generated by isomorphism doses

of coherent sheaves and relations given by
the short exact sequences

We have a moyhism K ok ) → K ! CX )
which is an isomorphism if X is smooth

and
foon→

the exact sequence of sheaves

Gpnc
' ^ )

t
6

pn
C n ) → Gµ→°

and the fact that a i

6Hn%*n6 Hj
→ GH

in µj
hyphae

we get umoyhism XCTJKT . pntn - Ko ( X )
Then the result is a consequence of the esa's

Anaof explicit resolutions .
.

For
any Atonbundle on Mr

,
there exist

a surge dive moyhism µ

Qpn ( - m ) → F

by taking the kennel of this moyhism
and iterating me get a resolution

Gpf -make . . . → Gpntmdh 't F → o

The problem is to shows that it stop . Usingcohomology
,

Theorem here exist a finite resolution of this type
§ Sn general Kok ) is extremely big

( eg not finitely generated ) .

4) Back to height
a) other values

.
.






@

Definition
An absolute value on a field IK

is a map
1 . 1 : IK → Rzo such that

( i ) I x 1=0 ⇐ x = o

C ii ) Hx
, y

elk
I xy 1=1×1 lyl

Gi ) Vx
, y elklkty 1<-1×1+1 yl

I . I is said to be uthamehic if
C iii ' ) F x

, y

←#
lxtyl = sup C 1×1

, IYI )
auchimedean otherwise

Examples
. on

any t.lt
1k →Romoil - { o if x=°

A otherwise
is an absolute which is called trivial

On Q : li I
•

usual absolute value•

{
Pfambmgg = prpcb

' ' Ha '
if a ,b to

Put Pl (a) = {prime numbers ) Udo }
one has

Rethondes
oetkeca ,klv = 1 lpakd - formed

bf It is ulkamehic

{ xe K I 1×1<-13 is a subring Gk of K

and { x e K I 1×1<1 ) is an ideal of GK .

Definition
. For an absolute value I

. I
on IK
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d ( x
, y ) .

- bc - y
1 defines a distance on IK

The corresponding topology on IK is called

the topology defined by I
. I

bet
gives the structure of topological field on IK :

+
,

x
,

-

,
Ht are continuous

• It and 1.1 '

are said to ae equivalent if
they define the some topology

Proposition
Let It and 1.1 ' be absolute values on IK

The following assertions are equivalent
C i ) 1 t and 1

. 1
'

are

eguia@) { xe IK I 1×1<1 3€ x c- IK I 1×1
'

e 1)

( iii ) Z Do such that F x ← It
,

1×1 '
= 1×1 ' '

Reference
JACOBSON Basic algebra II

,

§ 9

NF V KIRCH Algebraic number theory § II
.

3

Definition
A place of field IK is a topology defined
by a non trivial absolute value on In

S denote by Pl C K ) the set of places of IK

Theorem [ Ostrowski )
Let P be the set of prime integers

P u do ) - Peak )

w 1 → 1
. Iv

is a bje dive map .
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b) Completions
Let IK le a field and let v be a place

of IK defined by an absolute value 1.1
The completion of IK for v is denoted lkv
it is a IK . algebra which is a field

with an absolute value which extends 1 . 1

so that
C i ) lkv is complete for the corresponding topology
CD IK is dense in lkv

Up to isomorphism ,
this characterize lkr

Example
- Q

•
"

. Qp is the completion of Q for I . I
p

Construction in a particular case

Definition
of discrete valuation on a field IK

is a ma

: : 1k → z u { to )

such th
i ) v

- ' ( { to ) ) = { o )

C ii ) F x ,y
elk vcxy ) .

- vcx ) try )

liii ) F x
, ye IK vcxtglz min ( vcx ),

vc g))

with the usual convention ?

x + ( to ) =  to min ( x
,

to ) =K
.

Remark
a discrete valuation define a Race of He via

1 xlv = XVM for some t > 1
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Note that the place does not depend on the
akoia of t

.
this place is ultramdhic with

a ring and ideal given by
Gv = { xe IK / v C Gr ) 303
Mr = { x E IK I ~ ( or ) >, 1 ]

Example
bf p is a prime number a

,
be 4 b to

v (Ib ) = Vp (a) - vp C b )
P

is a cksadf voludton which defines
the place corresponding to p .

Comfy
~ is a diode notation

,
then Gv

is a euclidean ring ( with euclidean division )
and

any ideal of Gv is of the form MQ
for some Kew . In yohiada mu is the only

maximal ideal in Gv

Proof
kv = Grtmv is a field .

• since Gr =L x elk / v Gc ) zo >
a lb in Gu # v (b) Ev (a) .

so if a ,b < Gv with b to

either

a = b*±a to if v ( b ) < vca )
or

a = b x o + a if v (a) < v ( b )
~ : Gv - toy → IN gives the euclidean

division
.




 @

. Gm ( v
) ,k* ) is a subgroup of X

let d EN be its nonnegative generator
Gf D= o Ehen IK =Gv and it has

two ideals mov and mv =L OY

Otherwise let it e M
✓

be such v CI ) =D
We have

Mr =Ct )
( IT is called a uniformity )

Set I be a non zadided of 6~
and let k

.

- min { vac )
,

sc c. It is )
and let x ← I be such that vG4=k

By the proof of the fact that euclidean rings
are nearly

, . , = Has =m9 .

D ]
Notation

Let @ = Ein Grtmge ,E= Fnac ( Er )KZ
1 ^for is an Er - algebra,

we ptnhv .

-

Mr€t6r
and

define
x)= max { kez / t

-k
x e %)forx e #

Proposition
C i s The moyhism Gr → fkv extends to a

moyhism 1k →#w
C ii ) I defines a disorder valuation onfkv
which extends v.

aid As a 1k algebra with the place defined by T
,
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# is the completion of It for v

and tv is the closure of the image of Grin#
C iv ) The moyhism of rings

91mg → tv bark
is an isomorphism

Footage
hand of the moyhisma

q → bE6r1m !

is §←µMF : { 's e Gv I vcx ) zk
,

then )
= { xtcv I v ( x ) =  to > .

- ho }

so Gr as €
and we get a moyhism 1k → #
which means that we may see Rv as a IK . algebra

CD Set x e for

per
is well defined on 6T

XE( Ih)

ayz
where Her E Gv

and In is its reduction modulo M~k
so that The = Ile for l < k

.

This means that

x
e

- sin E Mlr for l< k

⇐ ) V ( xe - %) z min ( e
,

k ) for any
l

,
k

• of In=/ o
,

we have v Cock ) = 0 for any
by

and xne 6T
,

so Isle Erlmhr) ←

Moreover

an
.is#=Ei5E*e
( f ) hyz

is an inverse of x in £
.
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.
It l = sup { k I In

&
= o ) e IN U{ to ]

we can takexr = o for kEl and then
we have xes E Mer for any

k
So It lock and in I

- e
E Gv

Let
y = ( I#,e)µzwe have it ly =x

so rvcx ) , e
m

Conversely if x=t y / y = ( yen )
• , ,e

then
Ink =Anger= 0 for kEm

So l

=^v
( x ) .

a for k±g I *Mx ← ⇐
-

Let K e Fw x = 9- a ,b ← Gv
,

b to

Tomb)
× = a (bfitcbytbc

'

€~
so A is well defined
and from the description of A

on £v
{ x e Ffvl vac )=t is } = Go )

Thus Tis a diode valuation on #r
vloeover

itinduces
v on Gv

and thereforeon IK = Fr(6v ) .Capletus show ihatfkv is complete
Let txn )

n← ,
be a Candy sequence

in lkv
that is for any N there exists M so that

n

tp , q >
,

M
,

V ( xp -

xq ) > N

By removing the first terms of the sequence
if necessary ,

we may assume that

Yq = xr - xo e GT for ke IN

and (gµ)p.µ is a Candy sequence as well






@

for j 31
let kj  

= min { MVP,g%v(yptyg )3j )
and put zy.

= the image of

Yergin Gvtmj
( Er = life.6nmY )

^

wehovez
= (Zh)⇒ ,

E Or

and I ( z
-

Yn ) 3 j for n > kj
so

Yn → z soohigntxo→ ztto
m→ to n→ to

softer is complete
.

Moreover if x.to#)r,.zinGv
^

Then xp → x in Or
k . > tx

so % Ctv but as @ .

- { xeifwlbdrk )
it is closed and # 6T

Since any
element of #r may

be

written as ff with a efv
,

IK is dense in & .

Cnd sf x = b#p± then x - xeehtr

so Ovtmr → % tmi is shrjedive
it is injective since

or NMY .

. { xe GRIT ( xb
,

e)
=L x ← Gv Iv ( x ) , e >

We
may put lkr

Ehmer

°
" ]
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Corollary
sf Kv is a finite field ,

then } is pofinit ,

compact and fkv locally compact

Proof
. ( ⇒is abasis of the Kv veda space

MTI mrhtn
So Gv / mg is finite for any k
which

, by definition, says that tv is pofiiwt
. The topology on Er coincide with

the topology induced by the poohed of
the diode topology on Gv/m9 :

Gndoed the topology on for is generated by
the open subset of the form

Ly I Ifg- x ) > k ) for some .cc#kaW
MK ( pa ( x ) )

where pr µ
: tv → 6v/m%

and the topology induced by the product
topology is precisely generated by gen subset of
this form . Then we only Fghonov's theorem
to getthatis compact

for any k€ Av ,xth%is a compact neighbourhood

of x
,

so fkv is locally compact
Remark

You should think of for as a

cantor
set :

let to = Un
← µ

[2n
,
2nA ] C R
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Set q .

. #kv

Ko
= [ 0,1 ]

Km = Kn . ,
A ( 29 - 15

"

Eo for n >
,

1

K = n Kn
new

ko WMDEJD$¢
) C

]$
-1 -1

write Kv = { xn , 7 Kg } n

Then
any

element in Gr may
be uni written as

a = line, .
( {oxinhi)

with ( in)*←we{
^

,
-

, q 3 *

fsndoed §#h¥pµ ,

(a) determineno ,;Di
h

and A - K is a home omoyhism
k -2

a -

English
( 9 leave it as an exercise

,
write numbers in

[ 0.1 ] using ¢q+1 ) as a numeration basis )
.

In fact there is a very general result

Proposition
Let K be a compact non empty metric space

such that

li ) K is totally disconnected : Faonyx, yetthere exist gen subsets U and V such that

xeu
, yev , vnV=¢






@

C ii ) K is perfect : for any non empty
.

gen subset U in V
,

# U 22 .

Then there is on homomorphism from K

to the usual dyadic Cantor set

Definition
The v -

adic topology on Pnclkr ) is the quotient

topology for the projection it : Hint '
- Log → PYIKD

GFV is a projective variety 11k the r - add topology
on Vakv ) is the one induced topology .

Example
Pn C R ) is compact since the Continuous map

§n - PYR ) is surjeotic
where

§n= { ( xo
, pin ) did \ ¥0 t.it 1 } is

compact

Proposition
Assume that v is a place defined

by a discrete valuation v

and
Kv finite

We have IP
"

C IK
~

) .

- Png )
is a comfort topological space

C it is totally disconnected and jafed -

as well ) .

More generally , if V is a pnge
dive variety

over IK
,

VCIKR ) is comfad .

Proof
• The ring £v is a principal domain

.

so






@

PNCGV) e- { primitive elements in # "

}/@t
• Tf [ xo : - : xn ] ⇐ P

"

Clkv )
,

( xo
,

-

, Xn )

to
so ko = min ( v ( xo )

,
-

, van ) ) EX
.

[ Xo :  - : kit = [ Xot
- k 0

; - ; xo I
- kin ]

For ( go , -

, yn ) e Knvt '

( o , > Yn ) is a primitive element in GP +1

ifand only if min ( v ( go ) , , vcyn ) ) = o
.

there we have

Teen VGC ;
Tho ) .

- o

so [ xo : - iixn ] is in the image of P
"

CEV )
,

• { primitive elements in tvnt 'S

= { ( xo , yxnleznt '
I max { Hd

, , KD =D
is compact ( closed in @nh )
so Pna ✓ ) =P "

C lku ) is compact
• Gf V is a variety

VCIKU ) a P
" ( lkv ) is closed

.

D

c) Aide ring ,
local global principle

Remember
( on ,

p←
setof Mines

U { is }

Xp .

- Emi 2/1 pnz for p penne
QP = Er ( Zp )
Q

• .
- R

Definition
Moi { Gcv ) evletp, of Kpe Plxp

ftp.isfinitef
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=

Ygneueato.si#aDxFs21v
it is a sebring of Ipe . ,Qv and contains

the image of a

Indeed if xe Q
,

{ p EP lvplxl to ) is finite
so a c Fta

Remark
The reason to introduce Eta is that this

ring is locally compact .

Prost
V be a projective variety over Q

,

V C Itta ) = IT

Lemma
ve Peca )

✓ ( O'
v

)

Set 4 : A → B be an injective moyhism of rings
then the induced map

Pn CA ) → PYB )

is injective

Proof
Wealsodenohi by p the map : ANIBnt '

( a
% , an ) H 1 Qldo )

,
-

,
4 land

and the map P
"

( A ) → PTB)

L 1-7BY ( L ) a B
" +1

Sn fact we are going to prove the more precise
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statement : L= 4
' ' ( B al ) )

L is a direct summoned of Ant '

so there is a linear map p : Ant ' → Ant '

seed that pop =o and L= Ken ( p )

Let
ppg : But '

→ Bnt ' be the map
induced by extension of scalars .

Then B 4 C c ) ctu( •
)

Thus 4- ' ( B 414 ) e Ker ( P •
04 ) = keep ) =L

and L C 4 't ( B 414 ) is the D

Tf Yis an inclusion
, widentify BYA ) with it image .

Proof of the proposition
The inclusion map #a→ In a,Q

gives a

parato ) → ITDvepec
,aYCQ~)

injective a I injective .

Photo
,
)atP

"

ingedifocpecod

(9)

tssume that V is defined by f. ,
-

, fn
homogeneous in Q [ To

,
-

, Tn ]

Let y=(Yv)r←pe( *
← vIpecaY CAD

Foray prime p ,
since Zp is principal , we may

take
yp

= [ xo : - : xp ] with Ho
, yxp ) ← Zpnt'

punitive and fi ( xo
, >xp ) to for i c{ Tyr )

thus

ye VCR )×p€tpV
C Xp ) =V ( Rxpletp Zp )

c VCIAOD . D
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Corollary
Gf V is a projective variety la

then vad a) is a comfort topological
space -

We have
Via ) cvaa a)

The following question
Question

Let V be a nice variety 1 a

( nice = projective smooth and geometrically
integral variety )
ys the implication

the ?

✓ ' # a) ±¢ ⇒ v (a)

Gf V is defined by f^ , the ZCXO
,

. ,Xn] homogeneous
This question is equivalent to

Assume that the system of equations
fi ( xo

, → xn ) .

- o for i okn
, yn ]

( i ) has a nonzero solution in Rntn

ai) has a premiere solution in ⇐/Mzpt
'

for any
M >,

1

Does it have a primitive solution in ⇐" + ') ?

Terminology
9f V satisfies the implication ,

one says that
"

V satisfies Hasse principle
. Sf V Co . ) is dense in V Clttal then

we say that V solo fines weak approximation
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16/5/2016 d) trakelov heights

RememberyouPN
Con we have heights given by

Hftt
( xD = 11×11 a n

if x is a primitive element in Z tt

where 11 . Ho is a norm On IRN + '

For
any moyhism of varieties

¢ : v → pya
we get an exponential height

H .

- two 01 : Vca ) → 113,0
Let us rewrite this height in a slightly
different language nDGF( x.

, yxn ) E z
→

( xo , -

, In ) is pemihve
iff gcd ( xo ,

-

,
In ) = 1

if for any prime p . jmjngfvpbci) ) = o

Off prime p
,

omq.sn#lp=1For ( x. , - , xn ) in

QYP
"

route llkon"nllp = mass

nblilp
Ten for a primitive ( xo

,yyn) ← zntt
° ' is

we haveIkon
'pkIfkYaYVN

But F X e Qnp
,

txEQY"
11 Xxllp =

1 Hpllxllp
So if × E OF and Cyo , TY µ ) = 't ( xo

,
-

, xn )

IT

H
( Yo , , Y ) It =~I daplv < 1166

,

sxntb
ve

plan
)

N pl
÷

-
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Conclusion
For any (go , ygn ) in at 't

H ( [y .
: - :YP ) =

ftp.ca
,

11 ( Y . it YDHV

But we would like an expression of the height
which does not depends on the choice of the

embedding but is more intrinsic
, although one has

to make choices to define a height .

For that
let us consider

L = of * CG
pn

( n ) ) which is a line bundle
over V

.

Tf x e Via
- Qpn 4) ( 10 (xD = Gpf -DCDKDVwhich is the 1 dimensional vector space in Ohnt '

corresponding to of k ) that is

if 4 k ) =L go : - : y n
) then Ux ) = Q ( yo ,

-

, YI !
But

11 . Hv , by restriction defines a norm on Lbc ) v

we get a map
11 . Hv :

LYQD
→ R

, o

which is continuous and suchthat
ye How ) t tear lily Hr = IHRHYH ✓

and
t x e Via ) it y e Mx ) H Gc ) =T 11 y 11

✓

v€ Peca ,
Now the tradition is to define in terms of L

not LV

For ve Pe (a) there exists a unique ll . Hj UQDHR
, o
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such that
t x ← V ( Qv ) F y c- LGDYy

'
← LK )

V

" yHr" Y "
o = KY '

18¥ duality
Gf x←V C at y

elk )
, y

' HKY bilinear

fozna -

HIpeiaYYHDxv@apeuaYHDttEreaoYYiPlrBylkefrodud-formula-1QondusionWehaveronttonHixI-oIpecaYyHiiforyeLcxYwherell.l

)
v

: L ( ar ) → R
> o

is continuous and defines a norm in each

fm
This is the setting we are going to generalize

in the next chapter before we speak of

einteyretahon .

Example
on P

" (a)
, for of - Idpn

Xi is a Aeolian Of L= Gpn (1)

we have
Ki

11 Xi ( x. : - ; x
.

) 11 = ⇐¥×[if v to

the quotient does not
boil if v=S

depend on the ohoios of 11 ( xo
, , xn ) Hs

the homogeneous coordinate
,

so it is well defined .


