
Module MAT-INFO

Année 2009–2010

Chris Peters

December 9, 2009

2

Contents

1 Computational group Theory 7
1.1 Permutation Groups . 7
1.2 Computations: orbits and stabilizers 8

2 Euclid’s algorithm 11
2.1 Division with remainder . 11
2.2 Euclid’s algorithm . 12
2.3 Extension to several polynomials 12

3 Multi-variable division 15
3.1 Introduction . 15
3.2 The Hilbert Basis Theorem . 15
3.3 Monomial orderings . 16
3.4 A division algorithm . 18

4 Gröbner Basis; Buchbergers algorithm 21
4.1 Monomial ideals and Gröbner bases 21
4.2 S-polynomials . 22
4.3 Buchbergers’s algorithm . 25
4.4 Reduced Bases . 25

5 Applications of Gröbner bases 27
5.1 Ideal membership and equality of ideals 27
5.2 Elimination: the case of linear equations 27
5.3 Elimination: the general case . 28
5.4 Geometry theorem proving . 30

6 A polynomial factorization algorithm 33
6.1 Berlekamp’s algorithm . 33

6.1.1 Preliminaries . 33
6.1.2 The algorithm . 34

6.2 Polynomials with integer coefficients 36
6.3 Factoring integer polynomials . 37

6.3.1 Discriminant . 37
6.3.2 An algorithm . 38

3

4 CONTENTS

A GAP and REDUCE lessons 41
A.1 GAP Lesson 11 . 41
A.2 GAP Lesson 2 . 43
A.3 GAP Lesson 3 . 45
A.4 Reduce Lesson 1 . 47
A.5 Reduce Lesson 2 . 49
A.6 Reduce Lesson 3 . 51
A.7 GAP Lesson 4 . 51

Introduction

This course is intended for third year students with some background in algebra;
they need to know:

• what a group is and be familiar with the euclidean algorithm for the
integers;

• how to do long division with polynomials in one variable;

• finite fields.

The main aim of the lectures is to familiarize the students with symbolic calcu-
lations in algebra as a research tool.

I have chosen to focus on two separate public domain packages: GAP and
REDUCE. The first is particularly suitable for group calculations while the
second is useful for calculations in polynomial rings.

The first chapter is devoted to computational group theory where Schreier’s
algorithm in its most primitive form is explained. Most symbolic calculations
software for groups is based on this algorithm.

To pave the way for the theory of Gröbner bases we revise Euclid’s algorithm
for the polynomial ring of one variable, deduce the standard consequences about
ideals in that ring, discuss a possible generalization to several variable polyno-
mials and end with a discussion of the difficulties. For general polynomial rings
computations are based on finite generation of ideals and so, in chapter 3 I start
with a proof of Hilbert’s basis theorem. Then I show how to solve the difficul-
ties we met with at the end of Chapter 2 using the leading term ideal and the
associated Gröbner basis.

The next chapter treats how to recognize such a basis using the S-polynomials
and how this leads to Buchbergers algorithm which lies at the heart of all sym-
bolic calculation packages dealing with polynomial ideals.

In Chapter 5 I give some applications of Gröbner bases: elimination theory
on the one hand and automatic theorem proving in elementary geometry on the
other hand. Only a few examples are given but they are chosen in such a way
that some of the essential problems show up.

Chapter 6 is about factoring integer polynomials. I explain how one can
do this by first reducing modulo a suitable prime and then apply Berlekamp’s
algorithm. This algorithm is explained in detail. This last chapter is the most
advanced and most difficult chapter in that it combines several techniques from
different branches of algebra.

I want to thank Hans Sterk from the Technical University Eindhoven for
help in making sensible choices for topics of such an introductory course. His
notes and suggestions have been most helpful.

5

6 CONTENTS

Chapter 1

Computational group
theory: Schreier trees and
algorithmic applications

1.1 Permutation Groups

We suppose that the student knows the following concepts:

• Groups, subgroups, factor groups;

• Order of an element; order of a group;

• Homomorphisms of groups, normal subgroups;

In addition, we suppose that he/she knows :

Theorem ((First) isomorphism theorem). : if f : G1 → G2 is a surjective
homorphism of groups, then ker(f) is a normal subgroup in G1 and there is a
canonical isomomorphism f̄ : G1/ ker(f) ∼−→ G2.

For a set S we let Sym(S) be the group of all its permutations; if S =
{1, . . . , n} this is simply the symmetric group on n letters, Sn. The notation of
a permutation is as follows: (n1, . . . , nk) is the cyclic permutation sending n1 to
n2, n2 to n3 etc. A permutation can always be written as a product of disjoint
cyclic permutations. The convention for composing two permutation is that one
reads them from left to right :

(1, 2)(2, 3) = (1, 3, 2).

A permutation group is a subgroup of some Sym(S). We then have an action of
G on the set S, in fact, an effective action.

Example 1.1.1. The group O of the symmetries of the cube with vertices
labeled {1, 2, 3, 4, 5, 6, 7, 8}. Bottom: {1, 2, 3, 4} (in circular order) and top
{5, 6, 7, 8}. There are rotational symmetries such as (1, 2, 3, 4)(5, 6, 7, 8) and
reflections such as (2, 5)(3, 8).

7

8 CHAPTER 1. COMPUTATIONAL GROUP THEORY

Lemma 1.1.2. Every finite group G is a permutation group.

Proof : Let S = G and assign to g ∈ G the right-multiplication Rg : G → G
(sending h to hg. Check that this gives and injective homomorphism G →
Sym(G).

To analyze permutations we need some further notation. If G acts on S we
let sg be the result of applying g to s. The orbit sG of s ∈ S is the set of all
sg when g varies over G. There is a complementary notion, the stabilizer Gs of
s: the subgroup of elements of G that leave s fixed, i.e. g ∈ Gs if and only if
sg = s. Here is how these notions relate:

Proposition 1.1.3. If a finite group G acts on a finite set S, then for all s ∈ S
we have

|G|/|Gs| = |sG|.

Proof : Consider
f : G→ sG, g 7→ sg.

It is surjective and f(g) = f(h) precisely when hg−1 ∈ Gs, i.e. if and only if
the cosets Gsg = f−1(f(g)) and Gsh = f−1(f(g)) coincide. This shows that
sG is in bijection to the number of right cosets Gs\G which is exactly equal to
|G|/|Gs| as stated.

Special case of the above: S = H\G, the right cosets of H in G with action
of G given by

Rg : H\G→ H\G, Rg(Hh) = Hhg.

Since the stabilizer of H1 is just H, we get

Corollary 1.1.4 (Lagrange’s Theorem). If G is a finite group, H a subgroup,
then |H| divides |G|. In particular, the order of g ∈ G is a divisor on the order
of the group G.

1.2 Computations: orbits and stabilizers

A subset X ⊂ G of a group G is called a generating set (and its elements
generators of G) if every g ∈ G can be written as a finite products of elements
from X or their inverses. We can do without the inverses if G is finite. Why?
We write G = 〈X〉.

Orbit of s ∈ S

Here is an algorithm

Input: X,s
Output: orbit
orbit:={s};
FOR each x in X DO
IF s^x not= s THEN orbit:={s^x,orbit}
ELSE orbit:=orbit

The end result will be the orbit sG.

1.2. COMPUTATIONS: ORBITS AND STABILIZERS 9

Stabilizer of s

The algorithm uses a Schreier tree for the generating set X and any α ∈ S (the
root of the tree). To construct the tree:

1. place α at the bottom;

2. let the generators a, b, c, . . . act on α. This produces new vertices one level
up connected by edges labeled a, b, c,

3. Then let X again act on the new vertices. Of course, α is among then,
but there may be new vertices “higher up”.

Be careful not to create cycles in this process. At the end the vertices s give
the orbit of α and from the tree one can find g written in terms of X for which
s = αg: go down from s to the root α and write down the labels on the edges in
the reverse order. This gives the permutation t(s) with the property αt(s) = s

Using the tree we can find a subset Y ⊂ G generating the stabilizer Gα as
follows. Indeed, for every h ∈ X the element t(s)h[t(sh)]−1 first maps α to s,
then to sh and then to α, i.e. this particular Schreier element is in the stabilizer
Gα. Graphically, h “bridges” the two branches labeled by t(s) and t(sh) but is
not itself an edge. But these elements suffice:

Lemma 1.2.1 (Schreier). Gα = 〈Y 〉, where Y is the set of the Schreier elements
t(s)h[t(sh)]−1, s ∈ αG, h ∈ X.

Proof : We need to show that any g ∈ Gα, written as a product of generators,
say g = b1 · · · br, bi ∈ X can be rewritten as a product of Schreier generators,
We may suppose that r > 0. Consider a path α, αb1 , αb1b2 , . . . , β = αb1b2···bj in
the tree with j maximal. Then j < r (otherwise we would have a loop). Note
also that since bj+1 is a bridge t(βbj+1) corresponds to a path in the tree starting
from the root but ending a level lying not above β. Since β = αb1b2···bj we have
t(β) = b1 · · · bj . Consider[

t(β)bj+1[t(βbj+1]−1
]−1

g = t(βbj+1)bj+2 · · · br := g1.

The left hand element stabilizes α, so does the right hand and we can replace g by
g1. Repeat the procedure with g1 and recall that t(βbj+1) corresponds to a path
in the tree starting from the root α. The maximal such path might also include
some of the “tail-elements” bi with i ≥ j+2, but in any case the procedure gives
a g2 ∈ Gα with a new “tail” starting at some bt with t ≥ j + 3. Continuing this
way we construct g3, . . . , gs where each time the remaining tail shortens and we
finish when no tail is left and then gs = 1. So gs−1 is Schreier, and going up we
find recursively that gs−2, . . . , g are products of Scheier elements.

This leads to the algorithm

Input: X, orbit
Output: stabilizer
stabilizer={emptyset};
FOR each x in X and i in orbit DO
IF [i,x,i^b] not an edge THEN
stabilizer:={stabilizer, t(i)b[t(i^b)]^[-1}}
ELSE stabilizer:=stabilizer

10 CHAPTER 1. COMPUTATIONAL GROUP THEORY

Order of G

Using the two algorithms and Proposition 1.1.3 we find an algorithm to compute
the order of a group acting on S = {1, . . . , n} as follows: Consider the orbit of
1 and count. If G1 = 1 we are done; if not we look at the orbit of 2 under G1

and continue that way.

Example 1.2.2. Return to the example of the cube. Its symmetry groupG = O
acts transitively, so |O| = 8|G1|. Use (2, 5, 4)(3, 6, 8) a rotation of 1200 about
the diagonal to see that the G1 orbit contains 3 elements. Finally, the reflection
(45)(3, 6) is the only non-trivial symmetry fixing 1 and 2 and it has an orbit
of size 2. Clearly, if an isometry fixes {1, 2, 3} point-wise it is the identity. It
follows that |G| = 8 · 3 · 2 = 48.

Membership

Clearly, to test if some permutation p ∈ Sn belongs to the permutationgroup
G ⊂ Sn it is sufficient to compare the orders of G and 〈G, g〉. This can be used

• To test if a group H ⊂ Sn is a subgroup of G: test membership of G for
every y ∈ H;

• To test if H is a normal subgroup of G: test in addition membership of
H of every conjugate g−1yg, g ∈ G, y ∈ H.

Making things more efficient using a base

If G acts on a set S we say that an ordered set B = {s1, . . . , sk} is base for the
action, if the stabiliser

GB := {g ∈ G | g(sj) = (sj), . . . , j = 1, . . . , k}

is the identity. Such a base can be used to calculate the order of G by observing
that by Prop 1.1.3 we have

|G| = |sG1 |·|Gs1 | = |sG1 |·|s
Gs1,s2
2 |·|Gs1.s2,s3 | = · · · = |sG1 |·|s

Gs1,s2
2 | · · · |s

Gs1,··· ,sk−1
k |.

Suppose S = [1, . . . , n]. Then a base is produced at the same time as one
calculates the orbits and the stabilizers: start with the algorithm for 1G, the
orbit of 1. Then compute G1. Next pick an element not in the orbit of 1, say
2 and calculate 2G1 and continue in this fashion. The algorithm stops when we
have found a base [1, 2, . . .] for the action and it also finds |G|.

Exercise:

Write pseudo-code for the above algorithms for the order, membership, sub-
group, base and normal subgro

Chapter 2

Euclid’s algorithm for
polynomials in one variable

2.1 Division with remainder

Fix a field k. A non-zero polynomial of degree d with coefficients in k can be
written

f = a0x
d + a1x

d−1 + · · ·+ ad, aj ∈ k, a0 6= 0.

We write LT(f) := a0X
d, the leading term of f . Note that

deg(f) ≤ deg(g) ⇐⇒ LT(f) divides LT(g). (2.1)

You learned in school how to perform division with rest:

Lemma 2.1.1. Let g be a non-zero polynomial. Every polynomial f can be
written

f = qg + r, r = 0 or deg(r) < deg(f).

We say q is the quotient of f by g, written quotient(f,g) and r the remainder,
written remainder(f,g).

There is an algorithm for this

Input: g,f
Output: q, r
q:=0, r:= f
WHILE r NOT zero AND LT(g) divides LT(r) AND DO
q:= q+ [LT(r)/LT(g)]
r:= r- (LT(r))/LT(g))g.

One needs to see why it terminates. Look at the last step. Suppose that

r = a0x
m + · · ·+ am, g = b0x

k + · · ·+ bk.

Then the coefficient of xm in r − LT(r)
LT(g)

g is equal to a0 −
a0

b0
b0 = 0 and so the

degree of the new r has become strictly less.
This has some well known consequences:

11

12 CHAPTER 2. EUCLID’S ALGORITHM

Corollary 2.1.2. 1. A non-zero polynomial of degree d has at most d roots
in the field k.

2. k[X] is a principal ideal domain, i.e. every ideal is generated by one
element.

Proof : 1) This is by induction on d. It is obviously true for d = 0 and if x = a
is some root in k perform division with remainder with (f, x − a) to see that
f = (x− a)q with deg q = d− 1 and apply the induction hypothesis to q.
2) If I = (0) we are done, if not, there is some not zero f ∈ I of minimal degree.
If g ∈ I is any other element, perform division with remainder on (f, g) to see
that the remainder r ∈ I. But deg r < d and so by minimality r = 0, i.e.
g ∈ (f).

2.2 Euclid’s algorithm

Question: given f, g ∈ k[X], find the polynomial h ∈ k[X] for which (f, g) = (h).
Such h is called greatest common divisor GCD(f, g) because

1. h divides f and g;

2. Any polynomial p dividing both f and g must divide h.

So see the first, write f = ah, g = bh. For the second assertion, note that the
assumption means that f, g ∈ (p) and so (p) ∈ (f, g) = (h) i.e. p divides h.
Note that the GCD, as a generator of a principal ideal in k[X] is unique up to
a multiplication by a non-zero constant.

Here is Euclid’s algorithm to compute GCD(f, g)

Input: f,g
Output: GCD,s
GCD := f
s := g
WHILE s NOT 0 DO

rem:= remainder(GCD,s)
GCD: = s
s: = rem

Let us explain why this works. So we need to do two things: at the end GCD
should be equal to GCD(f, g), and we also need to see that the algorithm stops.

Note that at the start the pair (GCD,s) equals (f, g) and s = g. Write
f = qg + r. Then clearly (f, g) = (f − qg, g) = (r, g) = (g, r). Now, after
the first step (GCD,s) = (g, r) and s = r which has degree strictly less than
g. So the ideal (GCD,s) equals (f, g) during the entire algorithm while the
polynomial s keeps on decreasing its degree until s = 0. At that moment
(GCD, s) =(GCD)=(f, g) as claimed.

2.3 Extension to several polynomials

Suppose now that we want to find a generator h for the ideal (f1, . . . , fs). Such
h is called greatest common divisor GCD(f1, . . . , fs) for similar reasons as the
case s = 2. To find it use the obvious

2.3. EXTENSION TO SEVERAL POLYNOMIALS 13

Lemma 2.3.1.

GCD(f1, . . . , fs) = GCD(f1,GCD(f2, . . . , fs)).

By induction this yields indeed an algorithm for finding GCD(f1, . . . , fs).

Exercises

1. Show that k[X,Y] is not a principal ideal domain by showing that (x, y)
cannot be generated by a single polynomial.

2. Give pseudo-code for the algorithm that calculates GCD(f1, · · · , fs) where
s is some fixed number ≥ 3.

3. Use REDUCE to calculate GCD(x4 +x2 + 1, x4−x2− 2x− 1, x3− 1) and
also GCD(x3 + 2x2 − x− 2, x3 − 2x2 − x− 2, x3 − x2 − 4x+ 4).

4. Decide wether x2− 4 belongs to the ideal (x3 +x2− 4x− 4, x3−x2− 4x+
4, x3 − 2x2 − x− 2).

14 CHAPTER 2. EUCLID’S ALGORITHM

Chapter 3

Division with polynomials
in several variables

3.1 Introduction

We now fix a field k and consider the ring k[x1, . . . , xn] in n variables where n is
some natural number. Recall that an ideal I in a ring R consists of a subgroup
under addition which is closed under multiplication by any element of R. So
this is stronger than being a subring where we only demand closure under self-
multiplication. We have seen that in k[X] every ideal I is principal: I = (f) but
this no longer holds for 2 or more variables. We address the following questions
in general:

1. Ideal description: can every ideal be generated by finitely many elements,
i.e. is every ideal ofthe form I = (f1, . . . , fr), with fj ∈ k[x1, . . . , xn];

2. Ideal membership: given I and f , decide wether f ∈ I;

3. Solving polynomial equations: find the common solutions in kn of a system
of polynomial equations f1 = · · · = fr = 0, fj ∈ k[x1, . . . , xn].

Example 3.1.1. 1) For n = 1 the membership question is easily solved using
the fact that I = (g) for some polynomial g: just divide f by g; then f ∈ I if
and only if the remainder is 0.
2) The easiest case of finding solutions is the case when all f are linear. You
have seen this in your first year: you apply Gauss’ method of row-reducing the
matrix of the coefficients of the linear forms. This is indeed an algorithm.

3.2 The Hilbert Basis Theorem

We address the first problem. We have

Theorem 3.2.1 (Hilbert Basis Theorem). Every ideal I of k[x1, . . . , xn] is
finitely generated: there exist f1, . . . , fs such that I = (f1, . . . , fs).

15

16 CHAPTER 3. MULTI-VARIABLE DIVISION

The proof will be by induction on the number of variables. It is useful to
introduce:

Definition 3.2.2. A ring is called noetherian if every ideal in it is finitely
generated.

We have a useful criterion:

Lemma 3.2.3. A ring is noetherian if and only if it satisfies the ascending
chain condition: every increasing chain of ideals I1 ⊂ I2 ⊂ I3 · · · must stabilise,
i.e. Im = Im+1 = · · · .

Proof : Let R be a ring and let I1 ⊂ I2 ⊂ I3 · · · be an ascending chain of ideals.
The set I :=

⋃∞
i=1 Ii is an ideal of R. If there exists a strictly increasing chain

I1 (I2 (I3 (· · · , then I cannot be finitely generated since the generators
g1, . . . , gs all would belong to a common Ik, but I contains Ik+1) Ik so that
I) g1, · · · , gs). Conversely, if all ideals are finitely generated, also I must be
finitely generated and so its generators g1, . . . , gs all would belong to a common
Ik and so the chain stops at Ik.

Now we can give the proof of the Hilbert basis theorem. The induction starts
with k which is clearly noetherian. So it suffices to prove:

Proposition 3.2.4. If R is noetherian, then so is R[x].

Proof : Let I ⊂ R[x] be a non-zero ideal and pick f1 ∈ I, f1 6= 0 of minimal
degree d1. If I = (f1) we are done. If not we can choose f2 ∈ I − (f1) of
minimal degree d2 and keep continuing in this fashion. We want to show that
this process terminates when we have reached a system of generators for I. Let
ai be the leading coefficient of fi. The chain of ideals

(a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ · · ·

in R must terminate, say at stage m. Then am+1 = b1a1 + · · · bmam for some
bj ∈ R. We claim that I = (f1, . . . , fm). Suppose that this is not the case so
that we can choose fm+1 ∈ I − (f1, . . . , fm) of minimal degree dm+1. Consider
the polynomial

g := fm+1 −
∑

bjfjx
dm+1−dj .

By construction, the coefficient of xdm+1 equals am+1−
∑
bjaj = 0, i.e. deg(g) <

dm+1 while g ∈ I − (f1, . . . , fm), a contradiction.

Example 3.2.5. Since we can perform euclidean division in Z this ring is also
a principal ideal domain and in particular Noetherian. It follows that the rings
Z[x1, . . . , xn] are also Noetherian.

3.3 Monomial orderings

For one variable the degree orders the polynomials uniquely: we say f < g if
deg(f) < deg(g). Now for more variable this is more complicated. First agree
to write the monomials like this:

xa = xa1
1 . . . xan

n , a = (a1, . . . , an).

3.3. MONOMIAL ORDERINGS 17

The exponents belong to the semi-group Zn≥0 and we want to order this semi-
group. First of all note there is the total degree which for a = (a1, . . . , an) is
given by |a| := a1 + · · ·+ an, but is not a good order. Indeed we need more, as
specified in the following definition:

Definition 3.3.1. A monomial ordering on k[x1, . . . , xn] is a total semi-group
well-ordering > on Zn≥0, i.e

total ordering: for any couple x, y ∈ Zn≥0 either x > y, y > x or x = y;

semi-group ordering: if x > y and z ∈ Zn≥0, then x+ z > y + z;

well-ordering: every non-empty subset of Zn≥0 has a smallest element under
>.

The well-ordering property can be checked fairly easily:

Lemma 3.3.2. On order > is a well-ordering iff every strictly decreasing se-
quence a1 > a2 > · · · has a smallest element.

This is most easily seen by showing the contrapositive form: > is not a
well-ordering iff there is an infinite strictly decreasing sequence.

The following orders will be used:

Definition 3.3.3. 1. The lexicographic order or lex-order. We say a >lex b
if in the vector difference a − b ∈ Zn the left-most non-zero entry is
positive;

2. The graded lexicographic order or grlex-order. We say that a >grlex b if
either |a| > |b|, or |a| = |b| and then a >lex b.

3. The graded reverse order or grevlex-order. We say a >grevlex b if either
|a| > |b| or |a| = |b| and then in the vector difference a − b ∈ Zn the
right-most non-zero entry is negative.

Of course one still needs to prove that the above examples do give monomial
orders. For instance, the lexicographic order clearly is a total order and it is easy
to see that it is a semi-group ordering. To see that it is well-ordered we argue
as follows. Suppose that the lex-order is not well-ordered and let a1 > a2 > · · ·
and infinite strictly decreasing sequence. Look at the first entries: they are
decreasing non-negative integers and thus must stabilize, say from ak on. Next
consider the second entries in the sequence ak,ak+1, · · · . Continuing in this way
we finally reach an element ar with the property that in ar,ar+1, · · · all the n
entries remain the same. This is a contradiction.
Remark. 1. Often we write xa > xb for a given monomial order > instead

of a > b.

2. In the above we use the variables x1, . . . , xn. In particular, these are
ordered: for any of the three examples the order is x1 > x2 > · · · > xn. If
you use other variables, such as (x, y, z) they must be viewed as ordered
variables where conventionally the alphabetical order x > y > z is used.

3. The lexicographic order is modeled upon the order of the words in a dic-
tionary (with variables the letters of the alphabet) and ‘annual’ comes
before ‘annoys’. Note however that in a true dictionary the words can
have any length.

18 CHAPTER 3. MULTI-VARIABLE DIVISION

4. Both grlex and grevlex first order according to total degree but next the
order is completely different. Grlex looks at the leftmost variable and
prefers the higher power, while grevlex looks at the rightmost variable
and prefers the smaller power. For instance x5y2z >grlex x4y2z2 since
x5 > x4, but x5y2z >grevlex x

4y2z2 since z >grevlex z
2.

Once we have an order we can order the individual terms in a polynomial.
If we write the polynomial terms of f in this order, the first term is the leading
term, LT(f). If LT(f) = cxa we call c the leading coefficient and xa the leading
monomial. Moreover, a = deg(f), the multidegree of f . We reserve a special
name for polynomials whose leading coefficient is 1:

Definition 3.3.4. A monic polynomial is a polynomial whose leading coefficient
is 1.

Note that this depends on the chosen monomial order, in contrast to the
one-variable situation.

Example 3.3.5. Let f = 5x4 − 7x2y2 − 8y3z3 + z5. With > the lex-order we
have

f = 5x4 − 7x2y2 − 8y3z3 + z5, LT(f) = 5x4 ,deg f = (4, 0, 0).

but with respect to grlex (and also grevlex) we have

f = −8y3z3 + z5 + 5x4 − 7x2y2, LT(f) = −8y3z3 ,deg f = (0, 3, 3).

3.4 A division algorithm

Instead of division of f by a single polynomial g we need to be able to perform
division by several polynomials f1, . . . , fs at once, i.e. we want to write

f = a1f1 + · · ·+ asfs + r

with quotients a1, . . . , as and remainder r in k[x1, . . . , xn]. We want to mimic
the division with remainder for one variable observing that the order enters in a
hidden way since we multiply a given polynomial in order to increase its degree
in a maximal way. Let us use any polynomial order to find leading terms for
the polynomials.

1. Start by looking if LT(f1) divides LT(f) and if this is the case use division
with remainder to get rid of the leading term.

2. If this is not the case, continue with f2 and so on;

3. If at some intermediate step the leading term of the newly created remain-
der is not divisible by any of LT(fj) we remember it to use it for r and
move it away.

4. At the end all the terms moved away should be summed up to get r which
then is a sum of monomials each of which is not divisible by any of LT(fj).

3.4. A DIVISION ALGORITHM 19

Example 3.4.1. f = x2y + xy2 + y2, f1 = xy − 1, f2 = y2 − 1. Choose the
lex-order. So LT(f) = x2y, LT(f1) = xy, LT(f2) = y2 and after the first step we
have f = x(xy − 1) + xy2 − x + y2 and then, replacing f by xy2 − x + y2 we
do the second division by f1 which leaves x + y2 + y. Its leading term is x so
this is put apart for r. Then go on with y2 + y which can be divided by y2 − 1
leaving y + 1 which also has to be put into r. So

x2y + xy2 + y2 = (x+ y)(xy − 1) + (y2 − 1) + x+ y + 1.

This leads to the following division algorithm.

Input: f[1],....,f[s],f
Output: a[1],....,a[s],r

a[1]:=0;......;a[s]:=0;r:=0
p:=f
WHILE p NOT=0 DO

i:=1
divisionoccurred:=false

WHILE i <= s AND divisionoccurred=false DO
IF LT(f[i]) divides LT(p) THEN

a[i]:=a[i]+ LT(p)/LT(f[i])
p:=p-(LT(p)/LT(f[i])*f[i]
divisionoccurred:=true

ELSE
i:=i+1

IF divisionoccurred=false THEN
r:=r+LT(p)
p:=p-LT(p)

Some remarks are in order. While the algorithm gives a remainder, the result
depends on the ordering of the fi. This is visible in the above example when
we interchange f1 and f2. We get

x2y + xy2 + y2 = (x+ 1)(y2 − 1) + x(xy − 1) + 2x+ 1.

So, unfortunately, this algorithm is not applicable to the ideal generated by f1
and f2 as it was in the 1-variable situation. This also makes clear that it cannot
be used to test whether a given f belongs to (f1, f2).

Example 3.4.2. f = xy2 − x, f1 = xy + 1, f2 = y2 − 1. Then

xy2 − x = y · (xy + x)) + (−x− y) = x(y2 − 1)

where the first identity comes from division by f1, f2 and the second identity
from division by f2, f1. This last division shows that f ∈ (f1, f2).

Exercises

1. Rewrite each of the following polynomials as ordered by the lex order,
the grlex order and the grevlex order. Give also the total degree, the
multidegree.

20 CHAPTER 3. MULTI-VARIABLE DIVISION

(a) f(x, y, z) = 2x+ 3y + z + 2x2 − z2 − x3.

(b) f(x, y, z) = x2y8 + 3x5yz4 + xyz3 − 7xy4

2. Do the same when we order the variables z > y > z.

3. Let > be some monomial order on k[x1, . . . , xn].

(a) Let f be a polynomial in R = k[x1, . . . , xn] and m a monomial in R.
Prove that the leading term of f ·m is the product LT(f) ·m.

(b) If f, g are two polynomials in R, is it true that LT(f · g) = LT(f) ·
LT(g)?

(c) What can one say about LT(f + g)?

(d) If fi, gi ∈ R, i = 1, . . . , k. What can one say about LT(
∑
figi)?

4. Compute (by hand) remainder on division of f by the ordered set F .
Next, change the order in a cyclic way. Use the grlex order and then the
lex-order in each case. After you did the calculations verify them using
REDUCE.

(a) f = x7y2 + x3y2 − y + 1, F = (xy2 − x, x− y3);

(b) f = xy2z2 + xy − yz, F = (x− y2, y − z3, z2 − 1).

Chapter 4

Gröbner bases and
Buchberger’s algorithm

4.1 Monomial ideals and Gröbner bases

By definition, a monomial ideal is generated by monomials. These behave better
from a computational point of view, mainly because a monomial ideal can always
be generated by finitely many monomials (this is not a priori clear: we only
know that we can choose finitely many polynomial generators). One sees this
as follows. First we prove:

Lemma 4.1.1. Let I be a monomial ideal. Then
a) A monomial xa belongs to I if and only there is some generating monomial
of I which divides xa.
b) f ∈ I if and only if every term of f belongs to I.

Proof :
a) Write xa =

∑
pjx

aj where the xaj are amongst the generators of I. Expand
the pj as a sum of monomial terms pj =

∑
i aijx

bij . So the terms for which
bij + ai = a do not all get cancelled and in particular at least one such term
must be present and then xai divides xa.
b) Write f as a sum of monomial terms, f = f1+· · ·+fr. We can also write f as
a polynomial combination of generating monomials, say f =

∑
pjx

aj . Expand
pj as a sum of monomial terms, say p

(1)
j + p

(2)
j · · ·+. So each term fi must be

equal to a sum of terms p(i)
j xaj of the same degree as fi. In particular we have

fi ∈ I. The converse is clear.

Corollary 4.1.2. A monomial ideal is generated by finitely many of its gener-
ators.

Proof : The monomial ideal I generated by a priori infinitely many monomial
generators xα, α ∈ A. Write down some finite polynomial basis (this exists
because of Hilbert’s basis theorem) and consider for each member of the basis
the monomials in the monomial expansion. By the lemma, part (b) these belong
all to I and by construction they generate I. Now apply part (a) to replace each
of the finite monomials found so far by some monomial generator xα. These
still generate I.

21

22 CHAPTER 4. GRÖBNER BASIS; BUCHBERGERS ALGORITHM

Every ideal I has associated to it a canonical monomial ideal:

Definition 4.1.3. The leading term ideal of I, LT(I) is the ideal generated by
the leading terms in I, i.e.

LT(I) := {LT(f) | f ∈ I}.

Since this ideal is monomial, application of Cor. 4.1.2 shows that LT(I) =
(LT(g1), . . . , LT(gs)) for a finite set {g1, . . . , gs} of elements in I. Remarkably,
the gj themselves form a basis of I as we’ll see shortly. Not only that, but
division with remainder works much better using these gj . To see this, let f
any polynomial and perform division with remainder:

f = a1g1 + · · · asgs + r

where either r = 0 or no term in r is divisible by any of the leading terms LT(gj).
Observe that f − r ∈ I.

Suppose next that f ∈ I. Then r ∈ I hence its leading term belongs to
LT(I) = (LT(g1), . . . , LT(gs)) and so by Lemma 4.1.1 a), if LT(r) 6= 0, it must be
divisible by one of its generators which is impossible by assumption. So r = 0
and f is a polynomial combination of the gi, i.e. the gi must form a basis for I.

Summarizing, {g1, . . . , gs} a basis of I and the ideal membership test we
discussed previously in § 3.4, works for this basis. This merits a definition:

Definition 4.1.4. A finite collection {g1, . . . , gs} of elements of I is a Gröbner
basis of I if its leading terms generate LT(I).

So, using this terminology, the preceding discussion shows:

Proposition 4.1.5. 1. A Gröbner basis is a basis;

2. Every non-zero ideal has a Gröbner basis;

3. For a Gröbner basis the ideal membership test works. More precisely,
division by g1, . . . , gs leaves a unique remainder r independent of the order
of the gj; it is characterized as the unique polynomial r such that

(a) r = 0 or no term is divisible by any of the LT(gj);
(b) f − r ∈ I.

In fact, we have not yet proven the uniqueness of r but this is easy: if r′ has
the same properties, r− r′ ∈ I and if it is not zero, none of its terms is divisible
by the LT(gj) and as before this leads to a contradiction.

4.2 S-polynomials

We want to give a criterion to recognize whether a given basis is a Gröbner
basis. This makes use of the S-polynomial S(f, g) associated to a given pair
f, g ∈ k[x1, . . . , xn]:

Definition 4.2.1. Let deg f = a = (a1, . . . , an), deg g = b = (b1, . . . , bn) and
put c = (c1, . . . , cn) where ci = max(ai, bi). The S-polynomial of f and g is
then

S(f, g) :=
xc

LT(f)
f − xc

LT(g)
g.

The monomial xc is called the least common multiple of LT(f) and LT(g).

4.2. S-POLYNOMIALS 23

Note that the coefficient of xc in S(f, g) vanishes, i.e.

degS(f, g) < c. (4.1)

And here is the test:

Theorem 4.2.2. A basis G = {g1, . . . , gs} for an ideal is a Gröbner basis iff
the for all pairs i 6= j the remainder on divison of S(gi, gj) by G (in some order)
is zero.

Start of the proof : It is clear that ifG is a Gröbner basis, then, since S(gi, gj) ∈ I
division by G gives zero remainder.
The proof of the converse is more involved. Let f ∈ I be a non-zero polynomial.
We need to show that its leading term is in the ideal of the leading terms of the
gi ∈ G if the property as stated holds. Write

f =
∑

higi. (4.2)

Note that
deg(f) ≤ max(deg(higi)) (4.3)

and that if equality occurs we must have deg(f) = deg(higi) for some i. In
that case LT(g) is divisible by LT(gi) and we are done. So we need to see what
happens when we have strict inequality, i.e. when some cancellation occurs. It
is there where we use the property involving the S-polynomials as follows:

Lemma 4.2.3. Suppose g is a sum of monomial products of the same multide-
gree d but deg g < d:

g =
t∑
i=1

cix
aigi, ci ∈ k, ai + deg gi = d, deg g < d.

Then for some constants djk ∈ k we have

g =
∑
djkx

d−cjkS(gj , gk),
cjk = the least common multiple of LT(cj) and LT(ck),

and each term in this expression has multidegree < d.

Proof : Note that the last assertion follows immediately from (4.1). Let us
prove the other assertions. Suppose that

LT(gi) = dix
bi .

Then
∑
cix

aiLT(gi) vanishes, the degree of this sum being < d and so we have∑
cidi = 0. (4.4)

On the other hand,

xd−cjkS(gj , gk) = xaj
gj
di︸ ︷︷ ︸

pj

−xak
gk
dk︸ ︷︷ ︸

pk

.

24 CHAPTER 4. GRÖBNER BASIS; BUCHBERGERS ALGORITHM

Now we re-arrange terms to make appear the differences pj − pk

∑
cix

aigi =
∑

cidipi = c1d1(p1−p2)+(c1d1+c2d2)(p2−p3)+· · ·+(
t∑

j=1

cjdj)pt.

Because of (4.4) the last term vanishes and so the above expression has the
desired form.
Now we can complete the proof of Theorem 4.2.2:
We consider all possible ways to write f as in (4.2). The multi-degree d of the
right hand side might each time be different. Now we use the fact that we have
a well-ordering: it is possible to choose an expression for which d is minimal.
We shall use the property of the S-polynomials to show that then equality must
hold in (4.1) which, as we saw at the start of the proof, implies the desired
result. We argue by contradiction. So assume that deg(f) < d and rewrite
(4.2) so as to isolate the terms of multidegree d. With deg(higi) = di we have:

f =
∑
di=d

LT(hi)gi +
∑
di=d

(hi − LT(hi))gi +
∑
di<d

higi. (4.5)

Since the last two sums have multi-degree < d so must the first sum. This
means that we can apply Lemma 4.2.3 and write it as∑

di=d

LT(hi)gi =
∑

djkx
d−cjkS(gj , gk). (4.6)

Now use the hypothesis. By the division algorithm we have

S(gj , gk) =
∑
i

aijkgi, deg(aijkgi) = deg(S(gj , gk)) (4.7)

Consider now the terms in the right hand side of (4.6). Each is a product of
djk and the polynomial

xd−cjkS(gj , gk) =
∑
i

aijkx
d−cjk︸ ︷︷ ︸

bijk

gi.

By Lemma 4.2.3 and (4.7) we have

deg (bijkgi) < d

and so (4.6) can be rewritten

∑
di=d

LT(hi)gi =
∑
i

∑
jk

djkbijk

 gi,

and each term has multi-degree < d since the djk are constants. But this gives
a rewrite of first term in (4.5) as terms in the ideal (g1, . . . , gs) each of which
has multi-degree < d and since the other terms also has this property we have
reached a contradiction.

4.3. BUCHBERGERS’S ALGORITHM 25

4.3 Buchbergers’s algorithm

This is the algorithm

Input F=(f1,...,fs) a list of poynomilas generating the ideal I
Output G=(g1,...,gt) a Groebner basis for I with G containing F

G:=F
REPEAT

G’:=G
FOR each pair (p,q) in G’ with p not=q DO

S:= remainder of S(p,q) on division by G’
IF S not=0 THEN G:= (G,S)

UNTIL G=G’

It does the following. It starts with the set F and takes it to be G at the
first step. Then it does the remainder test from Theorem 4.2.2 and stops if it
is fulfilled. If not it adds the non-zero remainders of the S-polynomials to the
“old” G. These remainders by construction all belong to I. The new collection
G thus is still a basis of I. Again, it does the remainder test and so on. Why
does this terminates? In the loop G′ is the old G and the new G consists of G
together with the remainders and (LT(G′)) ⊂ (LT(G)) where the inequality is
strict if G′ 6= G. Indeed, let r be a non-zero remainder. Its leading term is not
divisible by any of the LT(G′) but LT(r) ∈ (LT(G)). Since an ascending chain
of ideals must stabilize this shows that the algorithm terminates.

4.4 Reduced Bases

Unfortunately a Gröbner basis is not unique, but it becomes unique if we make
some extra requirements:
Step 1. We can first of all assume that all of the gi are monic (Def. 3.3.4).
Then, if for some gj we have that LT(gj) is contained in the ideal J generated by
LT(gi), i 6= j, then we can leave out this gj . Indeed, then the ideal J equals the
ideal generated by all the LT(gi), i = 1, . . . , s and so equals LT(I) which means
that taking away gj still gives a Gröbner basis. We end up with a minimal basis
G, i.e. the g ∈ G are monic and for all p ∈ G its leading term is not in the ideal
generated by LT(g), g ∈ G− {p}.
Step 2. Let G = {g, g1, . . . , gr} be any minimal Gröbner basis. We say that
g ∈ G is G-reduced if no term of g is in the ideal (LT(g1), . . . , LT(gr)). We shall
show how to replace g by g′ so that the new G′ = (G−{g})∪{g′} is a minimal
basis for which g′ is G′-reduced. The g′ we are after is found upon division with
remainder:

g =
∑

aigi + g′, g′ 6= 0 and no term of g′ is divisible by the LT(gi). (4.8)

If you perform the division, you first test whether LT(f) is divisible by any
of the LT(gi) and since this is not the case by minimality of G, the algorithm
puts LT(g) in the remainder. This is the largest term of the remainder g′. So
LT(g) = LT(g′) and we have

LT(G) = LT(G′), (4.9)

26 CHAPTER 4. GRÖBNER BASIS; BUCHBERGERS ALGORITHM

where the notation means the set consiting of the leading terms LT(g), g ∈ G
respectively g ∈ G′. This implies first that G′ is a Gröbner basis and second
that G′ is minimal. Now the full non-divisibilty (4.8) of all terms of g′ precisely
says that g′ is G′-reduced. Now repeat this procedure with G′ and g′. We get
a new minimal Gröbner basis G′′ = (G′ − {g′}) ∪ {g′′} with g′′ G′′-reduced
and where because of (4.9) the set LT(G′′) has not changed. From the very
definition of being G-reduced it follows that any element which is G′-reduced
automatically is G′′-reduced. So we end up with a minimal Gröbner basis in
which every element is reduced with respect to this basis. Such a basis is called
a reduced Gröbner basis.
Step 3. We show now that reduced Gröbner bases are unique. It is not hard to
see that any two minimal Gröbner bases have the same set of leading terms. So
it suffices to see that if G, G̃ are two reduced Göbner bases with LT(g) = LT(g̃)
for some g ∈ G and g̃ ∈ G̃, then g = g̃, Consider g− g̃ which is of course in I and
so, upon division by G gives zero remainder. On the other hand, LT(g) = LT(g̃)
so in g− g̃ these terms cancel and since G as well G̃ are reduced, the remaining
terms cannot be divisible by LT(G) = LT(G̃). So the remainder of g − g̃ upon
division by G must be equal to g − g̃ and so, by the previous remark, equals
zero.

Chapter 5

Applications of Gröbner
bases

5.1 Ideal membership and equality of ideals

Once we have a Gröbner basis for I the membership test is easy: a polynomial
f belongs to the ideal I = (g1, . . . , gt), where the G := {g1, . . . , gt} is a Gröbner
basis exactly when the remainder of f upon division by G equals zero.

To test whether two ideals are equal, we have to compute two reduced
Gröbner bases for them since these are unique. So I = J if and only if the
reduced Gröbner basis for I is the same as the reduced Gröbner basis for J .

5.2 Elimination: the case of linear equations

A system of linear equations can be solved using Gaussian elimination: first
bring the system in upper-echelon form and then, starting from the last equa-
tion, eliminate successively the other variables. The equations correspond to
generators of an ideal and one can show that Gaussian elimination corresponds
to finding a Gröbner basis for this ideal. The row-reduced echelon from gives a
reduced Gröbner basis.

Example 5.2.1.

3x − 6y − 2z = 0,
2x − 4y + 4w = 0,
x − 2y − z − w = 0.

The corresponding ideal is

I = (3x− 6y − 2z, 2x− 4y + 4w, x− 2y − z − w) ∈ k[x, y, z, w].

The echelon form and row reduced echelon forms are1 −2 −1 −1
0 0 1 3
0 0 0 0

 1 −2 0 2
0 0 1 3
0 0 0 0


27

28 CHAPTER 5. APPLICATIONS OF GRÖBNER BASES

One should think of the row reduced echelon form as giving a minimal set of
equations without superfluous parameters: the variables x and z corresponding
to the pivots can be expressed in the remaining free parameters y, w and one
needs precisely 2 equations to describe the solution set which only depends on
the ideal I and is customarily denoted V (I). Since one needs 2 free parameters
the dimension of this set is 2. Note also that these free parameters can not be
eliminated further. Finally observe that the projection onto the (z, w)-plane
gives a line whose equation is precisely z + 3w = 0, i.e. I ∩ k[z, w] = (z + 3w).

The corresponding bases for I are G = {g1 = x− 2y − z − w, g2 = z + 3w}
and G′ = {g′1 = x − 2y + 2w, g′2 = z + 3w}. To see that the first is a Gröbner
basis we compute the S-polynomial S(g1, g2) = −(3xw + 2yz + z2 + zw) and
the remainder of S(g1, g2) upon division by G. We find 0 since

−(3xw + 2yz + z2 + zw) = −3w(x− 2y − z − w) + (2y + z + w)(z + 3w)
= −3wg1 + (2y + z + w)g2.

It is easy to see that G and G′ are minimal. That G′ is reduced follows since
the leading term ideal of g2 is generated by z which is not in LT(g1) = (x).

This works in general. To explain this, note that we may assume

g1 = x1 +
∑
j≥2

ajxj , g2 = xr +
∑
j≥r+1

bjxj ,

and then

S(g1, g2) = −
∑
j≥r+1 bjx1xj +

∑
j≥2 ajxjxr

=−(
∑
j≥r+1 bjxj)(x1 +

∑
k≥2 akxk) + (

∑
k≥2 akxk)(xr +

∑
j≥r+1 bjxj)

= −(
∑
j≥r+1 bjxj)g1 + (

∑
k≥2 akxk)g2.

For a row reduced matrix, the pivots 1 give monic leading monomials. The basis
then is automatically minimal. For a row reduced matrix the matrix elements
in the same column as the pivot 1 on the diagonal are all zero. Suppose that
gj is the polynomial corresponding to the j-th row. Its terms correspond to
the non-zero elements in this row. The leading term ideal of the gk, k 6= j
correspond to the rows containing the pivots. These rows have zeros in the j-th
row and so no term of gj is in the leading term ideal of the gk, k 6= j, i.e. the
basis is reduced.

5.3 Elimination: the general case

We start with an example. Suppose that we have a parametrized curve in the
plane given by

x = t2, y = t3.

Of course, it is easy to eliminate t from this equation: we find x3 = y2. But we
can show that it automatically comes out if we compute a Gröbner basis for the
ideal

I := (f1 = t2 − x, f2 := t3 − y)

provided we use the lex-order for which t > x > y. Check that the Buchberger
algorithm yields the basis

G := {f1, f2, f3 := tx− y, f4 := ty − x2, f5 := x3 − y2}.

5.3. ELIMINATION: THE GENERAL CASE 29

This basis G is not minimal since LT(f2) = t3 is divisible by LT(f1) = t2 and we
may leave out f2. It can be seen that G′ := {f1, f3, f4, f5} is minimal but not
reduced. Note that the last basis element f5 gives the desired equation for the
curve. This curve lives in the (x, y)-plane and is just V (I ∩ k[x, y]) = (x3− y2):
the curve has equation x3−y2 = 0. The set V (I) is a space curve in (t, x, y)-space
and elimination corresponds geometrically to projection onto the (x, y)-plane.

The general result is:

Theorem 5.3.1 (Elimination). Let G be a Gröbner basis for the ideal I in
k[x1, . . . , xn] with respect to the lex order (with x1 > x2 > · · · > xn). Then

Gk = G ∩ k[xk+1, . . . , xn]

is a Gröbner basis for the ideal Ik := I ∩ k[xk+1, . . . , xn].

Proof : Let G = {g1, . . . , gm}. Fix some k between 0 and n and, relabelling if
necessary, assume that Gk = {g1, . . . , gr}, i.e the first r basis-elements belong to
k[xk+1, . . . , xn]. We shall show that Gk is a basis of Ik. Clearly, (g1, . . . , gr) ⊂ Ik
and so we need only show that every f ∈ Ik can be written as f = h1g1 + · · ·+
hrgr where the hk only involve the last n− k variables. We first note that since
G is a Gröbner basis for I, division of f ∈ Ik ⊂ I by G gives zero remainder so
that we do get an expression f = h1g1 + · · ·+ hrgr + · · ·+ hmgm.

Since we are using the lex-order with x1 > x2 > · · · > xn, the leading terms
LT(gr+1), . . . , LT(gm) must all involve at least one of the first k variables and so
are all greater than every monomial in f ∈ k[xk+1, . . . , xn]. Thus if we apply
division of f by the gj , the gr+1, . . . , gm are not present. This also implies that
the division entirely takes place within the ring k[xk+1, . . . , xn] and so the hi
are also in this ring.

It remains to see that Gk is a Gröbner basis. By Theorem 4.2.2, it suffices
to show that the remainder of S(gi, gj) on division by Gk is zero. But this
calculation also takes place within the ring k[xk+1, . . . , xn] and since the S-
polynomials belong to Ik these remainders are zero.

Now one can ask if the solution set V (Ik) in (xk+1, . . . , xn)-space is exactly
the projection of V (I) onto this subspace. This is a surprisingly subtle question
and the answer is no in general. What is true however is that V (Ik) contains
this projection, but there may be extra points.

Example 5.3.2. Consider I = (xy − 1, xz − 1) in k[x, y, z]. Then a Gröbner
basis is G = {xz−1, y−z} so that I1 = (y−z) and V (I1) is the line y = z in the
(y, z)-plane. However the projection of V (I) onto the (y, z)-plane is contained
in this line but misses the origin since xy = 1, xz = 1 cannot have (∗, 0, 0) in its
solution set! The points in the projection are all of the form (a, a) with a 6= 0.

Note that in the above example the missing point itself can be described by
an ideal. This can also be generalized but only for special fields: those that are
algebraically closed.

Example 5.3.3. Consider I = (x2 − y, x2 − z) in R[x, y, z]. Elimination of x
gives the equation y = z but the projection consists of the points (a, a2, a2),
a ∈ R which forces y, z ≥ 0 so that the missing points consist of a half-line
which cannot be described as the set where some polynomial vanishes.

We are not going to discuss this further but refer to [C-L-O’S, Chapter4].

30 CHAPTER 5. APPLICATIONS OF GRÖBNER BASES

5.4 Geometry theorem proving

We give two examplesonly.

Example 5.4.1. Let C be a circle, P,Q ∈ C two diametrically opposite points.
Claim: for any R ∈ C the segments RP and RQ are orthogonal. To show

this, one first has to choose coordinates (x, y). For instance such that the circle
becomes x2 + y2 − r2 = 0, P = (−r, 0) and Q = (r, 0). One has a point
R = (u, v) on the circle and

−→
RP = (u+r, v),

−−→
RQ = (u−r, v) with inner product

(u+ r) · (u− r) + v2 which leads to:

Hypothesis: u^2+v^2-r^2 =0
Thesis: (u+r).(u-r) +v.v =0

Clearly, the thesis follows directly from the hypothesis. How does one see this
in terms of ideals? The hypothesis concerns the ideal (u2 + v2− r2) in R[u, v, r]
and the thesis states that T := (u + r).(u − r) + v.v vanishes on V (I). This
follows if T ∈ I which in this case is trivial, but in general such an assertion can
be tested using the ideal membership test.

This can be generalized if the thesis can be seen as the condition that R ∈
V (I) for some ideal I and if the hypothesis can be rephrased as a polynomial
condition T stating that T (p) = 0 if p ∈ V (I). Unfortunately, the resulting
condition that T ∈ I is in general only sufficient, but not necessary. For instance,
one might have that T 6∈ I, but T 2 ∈ I and then also T vanishes on V (I).

There is yet another subtlety which has to do with the fact that one needs
to ensure that a statement is not for some logical reason always trivially true.

Example 5.4.2. Consider a right triangle ABC with right angle at A. Let AH
be the altitude line (with foot H). Claim: the midpoints of the sides and H lie
on a circle (circle theorem of Appolonius).

5.4. GEOMETRY THEOREM PROVING 31

The classical proof goes as follows: there is a circle passing through the ver-
tices of the rectangle APQR. Then apply the previous example to A,Q,H.

To prove this analytically, choose coordinates so that A = (0, 0), B = (2x, 0),
C = (0, 2y). Then P = (x, 0), Q = (x, y) and R = (0, y). The circle through
P,Q,R has the equation (X− 1

2x)2 +(Y − 1
2y)2− 1

4 (x2 +y2) = 0 which simplifies
to

X2 −Xx+ Y 2 − Y y = 0,

and H = (p, q) must satisfy

1. (p, q) ⊥ (−x, y) which leads to yq − px = 0;

2. (p, q) is on the line BQ with equation yX + xY − 2xy = 0 so that yp +
xq − 2xy = 0.

So we have

Hypothesis: I=(y.q-p.x,y.p+x.q-2.x.y)
Thesis T:=p^2-x.p+q^2-y.q belongs to I

Compute a Gröbner basis for I with respect to the lex-order with x > y > p > q
gives

G = {g1 = −yp− xq + 2xy, g2 = −yq + px, g3 = −yq2 − yp2 + 2y2q}

Unfortunately, doing division on T with G does not give zero remainder. We
get:

−qg2 − pg1 = T · y.

So there is the extraneous factor y. What is going on here? Apparently, one
has to assume here that y 6= 0 which is equivalent to the fact that we have

32 CHAPTER 5. APPLICATIONS OF GRÖBNER BASES

an honest triangle with C 6= A. This has of course been assumed tacitly and
corresponds to introducing an extra variable, say v and an extra equation yv = 1
which ensures y 6= 0. If we redo the calculations, assuming the lex-order with
x > y > p > q > v we now get

J := (yq − px, yp+ xq − 2xy, 1− yv),
G′ := {g1 = −yp− xq + 2xy, g′2 = 2px− p2 − q2, g′3 = vxq − 2x+ p,

g′4 = −q2 + 2yq − p2, g′5 = −1 + yv, g′6 = −2q + vq2 + vp2} (5.1)

and this time T ∈ I ′ since division by G′ gives zero remainder.

Chapter 6

A polynomial factorization
algorithm

6.1 Berlekamp’s algorithm

6.1.1 Preliminaries

The problem is to factor a polynomial f over a finite field k = Fq, q = ps where
p is a prime number. The Berlekamp algorithm is an efficient way to achieve
this. It uses the structure of the following set of polynomials

B(f) := {v ∈ Fq[x] | vq ≡ v mod f}.

To explain this, first note that xq − x =
∏
a∈Fq

(x − a) so that vq − v =∏
a∈Fq

(v − a) where the factors are relatively prime. The basic observation is
this:

f = GCD(f, vq−v) = GCD(f,
∏
a∈Fq

GCD(f, v−a)) =
∏
a∈Fq

GCD(f, v−a). (6.1)

If we are lucky a suitable polynomial v from B(f) gives the full factorization at
once by testing the common factors of f and v + a, a ∈ Fq.

Example 6.1.1. Let f = x4 − 1 ∈ F5[x] and v = x. Then x ∈ B(f). For the
five elements 0,±1,±2 we have GCD(f, x± 1) = x± 1, GCD(f, x± 2) = (x± 2)
so we get the full factorization.

In general, one could systematically try various polynomials v which shows
that we should study B(f) systematically.

To do this, let me recall the Chinese remainder theorem for polynomials:

Theorem 6.1.2 (Chinese Remainder Theorem). Let k be any field and f =
fe11 · · · fer

r a factorization into irreducible polynomials fj, j = 1, . . . , r. The
map

Φ : k[x] → k[x]/(fe11)× · · · × k[x]/(fer
r)

f 7→ (f mod fe11 , . . . , f mod fer
r) (6.2)

33

34 CHAPTER 6. A POLYNOMIAL FACTORIZATION ALGORITHM

induces an isomorphism of rings

k[x]/(f) ∼−→ k[x]/(fe11)× · · · × k[x]/(fer
r)

Proof : Clearly, the map Φ is a homomorphism with kernel (f) and so by the
isomorphism theorem for ring homomorphisms we only need to se that Φ is
onto. We give an explicit inverse. Set gi = fei

i and write f = gi · hi so that gi
and hi are co-prime. So, one may write

aigi + bihi = 1, ai, bi ∈ k[x].

Define
ψ(v1, . . . , vr) :=

∑
vi(bihi).

Then ψ induces a well-defined homomorphism Ψ : k[x]/(fe11)×· · ·×k[x]/(fer
r)→

k[x]/(f) which is an inverse to Φ since bihi ≡ 0 mod fej

j for j 6= i while bihi ≡
1 mod fei

i .

6.1.2 The algorithm

Clearly, in view of (6.1), the set B(f) has to be found first. This is just a
linear algebra problem: Suppose deg(f) = n and use the basis {1, x, . . . , xn−1}
for Fq[x]/(f). The matrix Q for the map v 7→ vq can be found by computing
x(i−1)q modulo f and writing this in the i-th column, i = 1, . . . , n. Then B(f)
is the kernel of Q − I. Now we need some way of finding the factors, starting
from the set of polynomials g+a where g ∈ B(f) and a ∈ Fq. This will be done
by the Berlekamp algorithm. It is based on the following remark:

Proposition 6.1.3. Via the map Φ above (6.2) the set B(f) is isomorphic to
the subring Frq of Fq[x]/(fe11)×· · ·×Fq[x]/(fer

r); in particular, it is an Fq-vector
space of dimension r.

Proof : Recall (6.1)
f =

∏
a∈Fq

GCD(f, v − a).

Now any factor fj of f divides exactly one of the factors in the right hand side,
say v − a. But then fj divides also (v − a)q − (v − a) = vq − v. But, since
v ∈ B(f) and so f |vq − v one deduces that fej

j divides v − a. So the class of
v modulo fej

j corresponds to the constant a. If we have constants (a1, . . . , ar)
with v ≡ ai mod fei

i , then vq − v ≡ 0 mod f =
∏
i f

ei
i , i.e. v ∈ B(f).

We explain now the Berlekamp algorithm which uses the set B(f) to deduce
a factorization of f into powers of irreducibles, the so-called primary factors.
By the previous Proposition 6.1.3 B(f) has dimension r. Let B := {v1 =
1, v2, . . . , vr} be a basis. For any polynomial g and a ∈ Fq we let g(a, j) :=
GCD(g, vj − a), B(g, j) := {a ∈ Fq | g(a, j) 6= 1} those a which give rise to the
non-trivial factors D(g, j) := {g(a, j) | a ∈ B(g, j)}.

If r = 1 we must have B = {f}. If r > 1 start with v2. If B(f, 2) is not
empty, set B′ := B(f, 2). Otherwise, set B′ = {f}. Continue this process with
each of the polynomials in the new B′ and each of the basis-elements vj ∈ B,
j ≥ 2 replacing h ∈ B′ by the polynomials in the set B(h, j) in case B(h, j) 6= ∅.
Consider what happens with B′. By construction, at each moment B′ consists

6.1. BERLEKAMP’S ALGORITHM 35

of polynomials each of which is a product of one or more primary factors of f
and each of these factors only appears once in a polynomial of B′. If B′ changes,
one or more of these polynomials are further broken up in the same way. Clearly
the process terminates when in this way we can no longer further break up the
factors. We must see that we then have found all of them. Since at the end of
the construction no new gcd’s are found, for every factor h we found, and for
every j there must be some constant sj ∈ Fq such that vj ≡ sj mod h. Since
B is a basis of B(f), for every v ∈ B(f) there is thus a constant sv ∈ Fq with
v ≡ sv mod h. If h would contain two distinct primary factors, say fei

i , i = 1, 2,
we would have sv ≡ v mod fei

i and then the homomorphism Φ in Prop. 6.1.3
would not map B(f) surjectively onto Frq. This contradiction shows that we
really found all primary factors, once the algorithm terminates.

Example 6.1.4. 1. f = x3 + 3x2 + 6x + 4 in F7[x]. One finds that the
remainders of x7, x14 upon division by f are x, x2 respectively. SoQ−I = 0
and the kernel is everything, i.e. B(f) = F7 ⊕ F7x ⊕ F7x

2 and one finds
f = (x + 1)(x + 3)(x + 6). Now consider the same polynomial in F49.
We get the same answer since in the subfield F7 the polynomial is already
fully factored.

2. f = x12 − 1 in F5[x]. One finds

Q− I =



0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1


and B(f) has {1, x3, x6, x9, x+ x5, x2 + x10, x4 + x8, x7 + x11} as a basis.
The vector v2 = x3 gives the factors B′ = {x3 + 4, x3 + 3, x3 + 2, x3 + 1}.
This set stays the same when we apply the Berlekamp algorithm with x6

and x9 but with x2 +x10 each of the factors in B′ breaks up in two factors:

x3 + 4 → {x2 + x+ 1, x+ 4}, x3 + 3 → {x2 + 3x+ 4, x+ 2},
x3 + 2 → {x2 + 2x+ 4, x+ 3}, x3 + 1 → {x2 + 4x+ 1, x+ 1}

Since this yields 8 factors and dimB(f) = 8 we are done:

x12 − 1 = (x+ 1) · (x+ 2) · (x+ 3) · (x+ 4) ·
(x2 + x+ 1) · (x2 + 3x+ 4) · (x2 + 2x+ 4) · (x2 + 4x+ 1)

What is still left to do is to find the prime factors h from the primary ones he.
This is easy if e is not divisible by the characteristic p since then h = 1

eh
e/(he)′.

If e = fp` with f coprime to p we rewrite he(x) = kf (xp
`

) = [kf (x)]p
`

and then
compute k(x)/k′(x) to find h.

36 CHAPTER 6. A POLYNOMIAL FACTORIZATION ALGORITHM

Example 6.1.5. q = 2 and h12 = x24 +x20 +x12 +x4 +1 so that e = 12 = 3 ·4.
Rewrite h12 = (x4)6 + (x4)5 + (x4)3 + x4 + 1 = (x6 + x5 + x3 + x + 1)4 and
k = x6 + x5 + x3 + x + 1. Then k/k′ = h = x2 + x + 1. Indeed h12 =
x24 + x20 + x12 + x4 + 1.

6.2 Polynomials with integer coefficients

For any field k the polynomial ring k[x] in variable is a unique factorization
domain: every polynomial factors as f = cpn1

1 · · · pnr
r where the pj are irreducible

and monic, nj ∈ Z>0, c ∈ k and the irreducible factors and there exponents are
unique. In particular this holds for k = Q. So, if we have f ∈ Z[x], there is a
unique factorization with Q-coefficients. However, one can choose the irreducible
factors in Z[x] as well thanks to the following result:

Proposition 6.2.1. If f ∈ Z[x] and f = gh is a factorization in Q[x], then for
some a, b ∈ Q we have ag, bh ∈ Z[x] and f = (ag · (bg).

Proof : Let c(f), the content of f be the GCD of the coefficients of f . Content
1 means that reducing modulo any prime the polynomial never becomes the
zero polynomial. In particular, since Fp[x] is an integral domain, products of
two polynomials with content 1 must have content 1.

Note that f = c(f)f̃ with c(f̃) = 1. So, if f = gh, we have c(f)f̃ = c(g)c(h)h̃
where f̃ , g̃ and h̃ all have content 1. Clearly, f̃ is some multiple of g̃h̃ and since
g̃h̃ has content 1 we must have f̃ = ±g̃h̃ so that

c(gh) = c(g)c(h).

To prove the proposition one may assume that c(f) = 1. Next, multiply g and
h by rational numbers a, b so that ag, bh ∈ Z[x] and both have content 1. So
abf = (ag)(bh) has content 1 so that ab = ±1. Replacing a by −a if necessarily
we thus have abf = f = (ag)(fh) as stated.

The link with the Berlekamp algorithm is via reducing modulo p: every
integer polynomial f can be considered modulo a prime and a factorization for
f induces one modulo p. So, since one has an algorithm for factoring polynomials
in Fp one should use this to find a factorization of f . Now this can be done, but
one should realize that a factorization of f yield much more than a factorization
modulo each prime p. In fact, one gets factorizations modulo each prime power
pm. Beware: this is not the same as a factorization in the field Fpm !

If we fix p and let m vary, the factorizations should be compatible in some
precise sense.1 Start with a factorization f = gh where g and h are co-prime;
if f ≡ hg mod pm and f ≡ h̃g̃ mod pm+1 one should have g̃ ≡ g mod pm and
likewise for h and h̃. Conversely, given g, h modulo pm one can constructs such
lifts:

Lemma 6.2.2 (Hensel). Let p be prime and f, g, h ∈ Z[x] monic (and not
constant) such that f ≡ gh mod pm where the factors g, h are co-prime modulo
p. Then there exist g̃, h̃ ∈ Z[x] such that g̃ ≡ g mod pm, h̃ ≡ h mod pm such
that f ≡ g̃h̃ mod pm+1. These lifts g̃, h̃ are unique modulo pm+1.

1For those who know: assembling all lifts for m = 1, 2, 3, . . . one gets a factorization in
Qp[x] where Qp is the field of the p-adic numbers.

6.3. FACTORING INTEGER POLYNOMIALS 37

Proof : Write

g̃ = g + pmu, h̃ = h+ pmv, deg(u) < deg(g), deg(v) < deg(h),

and substitute in f − g̃h̃ = (f − gh) + pm[(uh + vg) + pmuv]. We know that
f − gh = pmr for some explicitly known r and we want that r + (uh + vg) is
divisible by p. This is possible as stated because g and h are co-prime in Fp[x].
Unicity modulo p follows because of the degree restrictions.

Example 6.2.3. Let us come back to Exemple 6.1.4 1), i.e. f = x3+3x2+6x+4
in F7[x] with factorization f = (x+1)(x+3)(x+6). Consider f = (x+3)(x2−1)
and try to lift this particular factorization modulo 72. We find r = x+1 and we
want u = u0 to be a constant and v = v0 + v1x linear with coefficients u0, v0,1
to be determined so that

(x+1)+u(x2−1)+(v0+v1x)(x+1) = (u+v1)x2+(v1+v0+1)x+(−u+1+v0v1)

is divisible by 7. This yields u ≡ 2, v0 ≡ −2, v1 ≡ −2 modulo 7 and the lifted
factorization is

f ≡ [(x+ 1) + 7 · 2] · [x2 − 1 + 7 · (−2− 2x)].

6.3 Factoring integer polynomials

6.3.1 Discriminant

We first make some general remarks about polynomials in one variable. Recall
that the discriminant of a (real or complex) monic polynomial f is the product
of the squares of all its complex roots. For non-monic polynomials one has to
multiply with a certain power of the leading coefficient:

discr(f) := a2n−2
∏
i<j

(αi − αj)2, f = a
∏
i

(x− αi).

This discriminant vanishes if there is a repeated root.
There is a formula for the discriminant in terms of the coefficients of f . This

works in any field k using a factorization of f in a suitable extension field. We
refer to the algebra course where it is shown that such extensions always exist.

To give the formula for the discriminant, it we need to introduce the resultant
of two polynomials, say

f(x) := anx
n + · · ·+ a0, g(x) = bmx

m + · · ·+ b0, f, g ∈ k[x].

Then we define R(f, g) ∈ k to be the following determinant of size (n + m) ×
(n+m):

R(f, g := det



an an−1 · · · a0 0 · · · 0
0 an · · · a1 a0 0 0
...

. . . · · ·
.

...
0 · · · an · · · a1 a0

bm bm−1 · · · b0 0 · · · 0
0 bm · · · b1 b0 0 0
...

. . . · · ·
.

...
0 · · · bm · · · b1 b0


,

38 CHAPTER 6. A POLYNOMIAL FACTORIZATION ALGORITHM

where the first m rows repeat the coefficients of f each time shifted one entry to
the right and the last n rows do the same with the coefficients of g. The formula
which relates the discriminant to the resultant will be given without proof:

discr(f) = (−1)
1
2n(n−1) 1

an
R(f, f ′). (6.3)

However, the essential point is that R(f, f ′) = 0 as soon as f has a multiple
zero which follows from the following Lemma whose (easy) proof we give. We
can therefore take formula (6.3) as a definition of the discriminant. Indeed, this
is how it will be used in what follows.

Lemma 6.3.1. R(f, g) = 0 if f and g have a non-trival common factor.

Proof : First, note that if f and g have h as a common factor, then (f/h)g +
(−g/h)g = 0 furnishes an expression

Af +Bg = 0, deg(A) < deg(g), deg(A) < deg(f).

The converse is also true: Suppose that it were false. Then (f, g) = 1 and
hence, by the euclidean algorithm, uf + vg = 1 and hence ufB + vgB = B =
ufB −Afv = (uB − vA)f contradicting deg(B) < deg(f).

Now the existence of A and B is a linear algebra problem in the finite
dimensional vector space generated by 1, x, . . . , xn+m−1 which when written out
yields a system of equations whose coefficients are given by the above matrix.

Example 6.3.2. Let f = ax2 + bx+ c. Then f ′ = 2ax+ b and

discr(f) = −1
a

det

 a b c
2a b 0
0 2a b

 = b2 − 4ac.

6.3.2 An algorithm

We now come to the main topic: factorization of integer polynomials. The
crucial remark here is that an integer polynomial f can be factored by a finite
algorithm basically since the coefficients of any factor of f can be bounded in
terms of those of f . The reason is that once we have such a bound, we can now
pick a suitable prime power pm which is so big that any potential factor has
a unique representative modulo pm with coefficients in the interval [−c, c] with
c < 1

2p
m. This makes it possible to find these factors in a unique way if we

know them already modulo pm. We saw how to do this in previous sections.
Let us now explain the algorithm. So assume

for every coefficient c of every divisor of f we have |c| ≤ C = C(f) ∈ R.

We can make some preliminary simplifications:

1. We may suppose that f has content 1;

2. Reduce the computation to square free polynomials: if f = h2g with g
square-free, GCD(f, f ′) = h can be found from f and one can separately
factor g and h. Note that h itself need not be square-free so one has to
repeat the process of extracting a square-free factor from h;

6.3. FACTORING INTEGER POLYNOMIALS 39

3. We may ensure that f remains square-free upon reducing modulo p. For
this it is sufficient that discriminant of f is not divisible by p;

4. Assure that p is chosen so as not to divide a so that the degree does not
drop when we reduce modulo pm.

We pick p satisfying the last two conditions and make m so big that pm > 2C ·a
where axn = LT(f).

Next, write f = af̂ in Fp[x] which f̂ monic and use Berlekamp’s algorithm
to find directly2 a factorization modulo p for f̂ and then Hensel’s Lemma to
successively lift it to p2, . . . , pm. So we may assume that we have a factorization

f ≡ ag1 · · · gr mod pm

with pairwise distinct monic polynomials gj . By construction only those partial
products h = a

∏
j∈S gj with the property that all coefficients of h have absolute

values≤ C·a need to be considered. Moreover one may assume that deg h ≤ n/2.
Test whether such h divides a · f and assemble the divisors h obtained in this
fashion.

In practice we do the calculation making use of the following sharp bound:

Theorem (Landau-Mignotte). If g = g0+g1x+ · · ·+gmxm is a degree m factor
of the polynomial f , then

|gi| ≤
(
m

i

)
‖f‖

where ‖f‖ is the `2-norm of f .

For an easy but clever proof of this theorem we refer to [C-C-S].

Example 6.3.3. f = x3 + 3x2 + 6x + 4 has ‖f‖ =
√

62 and since the true
divisors have degree 1 or 2, the above bound is at most C = 2

√
62 = 15.748016.

One has c(f) = 1, and f ′ = 3x2 + 6x + 6 is coprime to f . The discriminant
is 108 = 22 · 33 and so we may choose p = 7 and m = 2. We have seen in
example 6.1.4 1) that f already factors fully in F7 as

f ≡ (x− 1)(x+ 1)(x+ 3) mod 7.

Only linear factors need to be considered and it turns out that only (x + 1)
divides f over the integers so that

f = (x+ 1) · (x2 + 2x+ 4).

Exercises

1. Using GAP verify the examples of § 1.

2. Using GAP verify that the discriminant of f = x3 + 3x2 + 6x + 4 equals
−108 and that f factors as stated in F7[x].

2by our assumptions f̂remains square free in Fp[x] and so a primary factor really is an
irreducible factor and not a power of it.

40 CHAPTER 6. A POLYNOMIAL FACTORIZATION ALGORITHM

3. Find the factorization in Z[x] of the polynomial g = x3− x2− x− 2 using
the Berlekamp algorithm as in the case of f . (Calculate the discriminant.
Show that f is square free and that we can work modulo 52. Perform
Berlekamps algorithm for p = 5 and test whether this already gives the full
factorization. Next show that there are 3 factors in F3[x] and determine
these. Is f square free in F3[x]? Test whether the factors already give
some linear factor of g. If not use Hensel’s method to lift modulo 9.)

Verify the steps with GAP.

Appendix A

Symbolic Computation:
Lessons in GAP and
REDUCE

A.1 GAP Lesson 11

Make a special directory where you save your files. Change to that di-
rectory and start up GAP. Pause for discussion at the spaces between
command groupings.
Arithmetic Operations: You learn: +− ∗/, terminating input with ;, last. Fac-
tors, mod, Int, Gcd, Lcm, Factorial.

Try the following. Press the return key at the end of each line.

gap> LogTo("GAPlesson1");
This writes your work to the file GAPlesson1
gap> 5+7;
gap> 12/17;
gap> 2/3 + 3/4;
gap> 2^3*3^3;
gap> 3.14159;
What happens here?
gap> Factors(1111111);
Factorization of integers
gap> Factors(11111111111);
gap> Factors(2^32 + 1);
gap> Factors(216);
gap> last;
What happens here?

gap> Collected(last);
There are also variables last2 and last3. Guess what their values are.

Exercise: Find the first number of the form 111..1 which is prime.

1Most GAP- lessons have been adapted slightly from the ones found on Peter Webb’s
homepage http://www.math.umn.edu/ webb/

41

42 APPENDIX A. GAP AND REDUCE LESSONS

Note that such a number must have a prime number of digits.
As well as Factors, another useful function is IsPrime.

gap> -5 mod 11;
gap> 6 mod -5;
gap> 6 mod 0;
gap> Int(295/7);
gap> Gcd(216,930);
gap> Lcm(216,930);
gap> Factorial(6);

Permutations
You learn: permutations are enclosed in (), operations have the same form as
for integers. Conjugation is built in.

gap> (1,2,3)*(1,2);
gap> (1,2,3)^-1;
gap> (1,2,3)^(2,5);
This is conjugation - which one?
gap> 1^(1,2,3);
What does this mean?

Help
You learn: lines are not terminated with ; How to call up and browse sections
of the manual.

gap> ?
gap> ?Help
gap> ?Factor
gap> ?A f s
gap> ?>
gap> ???

True and False; Assignment of Variables
You learn: The difference between = and :=, how to store things in memory.

gap> 216=2^3*3^3;
gap> 216=2^3;
gap> g=17;
gap> g;
gap> g:=17;
gap> g;
gap> g=17;
gap> g=21;
gap> g^2;
gap> 3<=2;
gap> 3>=2;

Exercise: What response do you expect from?

gap> true and false;
gap> true or false;

A.2. GAP LESSON 2 43

Permutation groups; groups from the library; operations on groups
You learn: how to input a group generated by permutations. The operations
Size, Center, DerivedSubgroup, in, Elements, SymmetricGroup, Alternating-
Group, DihedralGroup.

gap> a:=Group((2,3,5)(6,7,8),(1,2,4,7)(3,6,8,5));
gap> Size(a);
gap> Center(a);
gap> Size(last);
gap> g:=SymmetricGroup(6);
gap> Size(g);
gap> h:=DerivedSubgroup(g);
gap> Size(h);
gap> (1,2) in h;
gap> (1,2,3) in h;
gap> d:=DihedralGroup(8);
gap> Size(d);

A.2 GAP Lesson 2

Change to the directory where you store your GAP files, and then start up
GAP. In the session which follows, pause for discussion at the spaces between
command groupings.
Lists
You learn: notation for lists, how to access terms in a list, how lists are stored
and duplicated, Sort, Add, Append, Length, Position, Flat, vector operations,
List, ranges.

gap> LogTo("GAPlesson2");
gap> Primes;
gap> Primes[5];
gap> 15 in Primes;
gap> Position(Primes,31);
gap> Length(Primes);

gap> things:=["apple",true,,17];
gap> things[1];
gap> things[3];
gap> things[4]:=9;
gap> things[6]:=[1,2,3];
gap> things;

gap> newthings[1]:=72;
gap> newthings;
gap> newthings:=[];
gap> newthings;
gap> newthings[1]:=72;
gap> newthings;

gap> newthings:=things;

44 APPENDIX A. GAP AND REDUCE LESSONS

gap> newthings[1]:=23;
gap> newthings;
gap> things;
gap> things[1]:=14;
gap> things;
gap> newthings;

gap> newthings:=ShallowCopy(things);
gap> newthings[1]:=23;
gap> newthings;
gap> things;
gap> Add(things,16);
gap> things;
gap> Add(things,newthings);
gap> things;
gap> Append(things,newthings);
gap> things;
gap> Flat(things);
gap> ?Lists
gap> ?Flat

gap> r:=[1,2,3];
gap> s:=[3,1,4];
gap> r+s;
gap> 2*r;
gap> Sort(s);
gap> s;

gap> Append(r,s);
gap> r;
gap> List(r,x->x^2);
gap> List([1..10],IsPrime);
gap> [1..10];
gap> List([1..10],x->x);

gap> g:=Group((1,2,3),(1,2));
gap> els:=Elements(g);
gap> List(els,x->Order(x));

gap> els[3]:=14;
gap> els:=ShallowCopy(els);
gap> els[3]:=14;
gap> els;

Programming
You learn: do loops, how to initialize a list.

gap> g:=Group((1,2,3),(1,2));
gap> els:=Elements(g);

Discuss what would happen if you were to do the following

A.3. GAP LESSON 3 45

(don’t try it unless you want to):

gap> for i in els do
> Order(i);
> od;

Instead, do this:

gap> orders:=[];
gap> for i in els do
> Add(orders,Order(i));
> od;
gap> orders;

The following is perhaps a less elegant way to program a list of orders
of the elements of g because the enumeration is done
over [1..Length(els)] instead of els itself.
However, sometimes we have to do this kind of inelegant thing.

gap> orders:=[];
gap> for i in [1..Length(els)] do
> orders[i]:=Order(els[i]);
> od;
gap> orders;
[1, 2, 2, 3, 3, 2]

At this point we note that there are other forms of do loop, namely
while ... do ... od;
and
repeat... until...;

Note the following:

gap> for i in [1..10] do
> Print(i);
> od;

gap> for i in [1..10] do
> Print(i,"\n");
> od;

A.3 GAP Lesson 3

Change to the directory where you store your GAP files, and then start up
GAP. In the session which follows, pause for discussion at the spaces between
command groupings.
Reading a file of code into GAP and using it.

On http://www.math.umn.edu/ webb there is a file called Conway. Create
a copy of this file in your GAP file directory. Its contents are:

46 APPENDIX A. GAP AND REDUCE LESSONS

Conway:=function(seq)
local i, r, newseq;
newseq:=[];
i:=1;
while i<=Length(seq) do
r:=0;
repeat r:=r+1;
until i+r>Length(seq) or not seq[i]=seq[i+r];
Append(newseq,[r,seq[i]]);
i:=i+r;
od;
return(newseq);
end;

To read and make a print out of this file do:

gap> Read("Conway");
gap> Print(Conway);

gap> Conway([2]);
gap> Conway([1,2]);
gap> Conway(last);
gap> Conway(last);
gap> Conway(last);

Some manipulation with permutation groups.
You learn: Orbits, Action, Tuples, UnorderedTuples, Arrangements, Combina-
tions. In an earlier version of GAP4 and also in GAP3 the command Action
was Operation. It may be that in the implementation you use you need to type
Operation.

gap> At:=KnownAttributesOfObject;
There is also KnownPropertiesOfObject.

gap> c:=Group((1,2,3,4,5,6,7),(2,3)(4,7));
gap> At(c);
gap> Size(c);
gap> GeneratorsOfGroup(c);
gap> c.1;
gap> c.2;
gap> At(c);
gap> s:=SylowSubgroup(c,2);
gap> At(c);
gap> At(s);
gap> Orbits(s,[1..7]);
gap> news:=Action(s,last[3]);
gap> Size(news);

How would it be different if you had done instead
gap> news:=Action(s,last[2]);
gap> Size(news);

A.4. REDUCE LESSON 1 47

What do you think would happen if you were to do
gap> Orbits(s,[1..8]);
or
gap> Orbits(s,[2..7]);
or
gap> Orbits(s,[3..7]);
?

gap> Tuples([1..3],2);
gap> UnorderedTuples([1..3],2);
gap> Arrangements([1..3],2);
gap> Combinations([1..3],2);

Exercise: Find out what GAP command returns a list of all partitions
of [1,2,3].

gap> newers:=Action(news,Tuples([1..4],2),OnTuples);
gap> Orbits(newers);

Other possibilities in Action instead of OnTuples: OnPairs, OnTuples,
OnSets, OnRight, OnLeft. Investigate by doing ?Basic Actions.

gap> Action(c,RightCosets(c,s)

A.4 Reduce Lesson 1

Change to the directory where you store your REDUCE files, and then start up
REDUCE.
Polynomial factoring
You learn: factorize polyomials of one variable, computing the GCD for 2 or
more polynomials, membership test.

1: factorize(x^63-1);
2: f:=x^63-1;
3: g:=x^4-x^2-2x-1;
4: h:=x^4+x^2+1;
5: gcd:=GCD(f,g);
6: gcd;
7: gcd:=GCD(gcd,h);

With the switch FACTOR on, the polynomials are automatically
factored.

8: on factor; f;

in order to calculate a gcd of more than 2 polynomials REDUCE
has to work with expanded polynomials. Try for instance to calculate
gcd(f,g,h) with f= x^3-1 and g=x^6-1 and h=x-1.
What do you get?

48 APPENDIX A. GAP AND REDUCE LESSONS

In order to remedy the situation on needs to put the switch EXP
on or the switch FACTOR off.

10: on EXP;
11: GCD(GCD(x^3-1,x^6-1),x-1);

How to find remainders

10: remainder(gcd, x^2-3); remainder(f,2*x^2+2*x+2);

what happens?
WARNING: reduce works with integers, one has to TELL that it has to
work with a field, for instance with the rationals:

12: on rational; remainder(x^63-1,2*x^2+2*x+2);

13: gcd:=GCD(x^4+x^2+1,x^4-x^2-2x-1); GCD(gcd,x^3-1);
15: gcd:=GCD(x^3+2x^2-x-2,x^3-2x^2-x+2); newgcd:=GCD(gcd,x^3-x^2-4x+4);
17: remainder(x^2-4,newgcd);

How to calculate in fields of finite characteristic

18: setmod 7; on modular;
20: f;

put the switch off if you want to go on
21: off modular;

A.5. REDUCE LESSON 2 49

Filehandling
You learn: how to work with files. This is highly system dependent. Here I sup-
pose that you are working in a window which has a menu with an option to save
a log-file at any moment. For other systems file handing is more cumbersome.

The first step is to tell reduce to produce output that can be read normally:

1: off nat$

If you now save to a file for example redlesson1 the file redlesson1.log is
created. Now suppose you want to use the file later as a reduce file. Then some
further care has to be taken:

1: off echo$
2: off nat$

and just before you save, type:

12: write ";end"$

If you then want to read in the file redlesson1.log you can either read it in
from the menu, or using the command

1: in redlesson1.log;

A.5 Reduce Lesson 2

Change to the directory where you store your REDUCE files, and then start up
REDUCE.
You learn: how to define monomial orders, S-polynomials, remainders on divi-
sion and to compute Groebner bases.

1: load groebner;

the monomial order is automatically set to LEX.
In REDUCE it is called TORDER
other orders known: GRADLEX=grlex and
REVGRADLEX=grevlex to change it.

2: torder gradlex;

Note: this prints the PREVIOUS monomial order!

REDUCE needs to know how the variables are ordered.
The orders lex and grlex use
the alphabetical order and so a>b>c...>x>y>z
if you need something else, e.g. x>y>z>t, say

3: torder {{x,y,z,t}, lex};

you can check this by the command gsort

4: gsort(t+x+y+z);

50 APPENDIX A. GAP AND REDUCE LESSONS

to find leading term of a polynomial and the rest:

5: gsplit(t+x+y+z):

one gives lists of polynomials as follows:

6: gb:={x^2+y,x+2x*y};

this gives a list of polynomials. Note the syntax!
To calculate the remainder upon division we use

7: preduce(x^3+3y^2+x*y,gb);

to find the quotients one can modify things as follows

8: gb:={g1=x^2+y,g2=x+2x*y}; preducet(q=x^3+3y^2+x*y,gb);

Note that this expresses the remainder r=a1*g1+b1*g2+q
in terms of the quotients

10: f:=x^3+3y^2+x*y; g:=x*y+x+y;

to calculate the S-polynomial of g and f;

12: gspoly(f,g);

Problems.

1. Use the above to compute S-polynomials and remainders and then test if
you get a Groebner bases;

(a) x3 − y, x3 − z grlex order.

(b) x2 − y, x3 − z grevlex order.

(c) xy2 − xz + y, xy − z2, x− yz4 lex order.

2. Produce a Groebner basis, then a minimal basis and next a reduced bases
in the following cases:

(a) x3 − y, x3 − z grlex order.

(b) x2 − y, x3 − z grevlex order.

(c) y − x2, z − x3 lexorder with x > y > z.

You can verify your results using the command

groebner(list of polynomials);

A.6. REDUCE LESSON 3 51

A.6 Reduce Lesson 3

Change to the directory where you store your REDUCE files, and then start up
REDUCE.

1. Check example 5.2.1 for I = (3x− 6y − 2z, 2x− 4y + 4w, x− 2y − z −w)
with lex-order x > y > z > w by testing that {x− 2y− z−w, z+ 3w} is a
Gröbner basis and that {x− 2y+ 2w, z+ 3w} is a reduced Gröbner basis.

2. Check the example of the beginning of 5.3 for I := (t2 − x, t3 − y) with
lex-order t > x > y by applying the Buchberger algorithm.

3. Check example 5.3.3. Here I = (xy−1, xz−1). Show that {xz−1, y− z}
is a Gröbner basis.

4. Check example 5.3.4. Here I = (x2 − y, x2 − z). Give a Gröbner basis.

5. Solve example 5.4.2 analytically. Here I = (yq − pxy, p+ xq − 2xy).

(a) Show that {g1 := −yp−xq+2xy, g2 := −yq+px, g3 := −yq2−yp2 +
2y2q} is a Gröbner basis for I and test whether T = p2−x·p+q2−y ·q
belongs to I.

(b) Now J = (yq − px, yp + xq − 2xy, 1 − yv); verify that G′ (see (5.1))
is a Gröbner basis and test whether T belongs to J .

The solutions count for your note. Please join a print-out of the REDUCE
calculations.

A.7 GAP Lesson 4

Change to the directory where you store your GAP files, and then start up
GAP.
Calculating with polynomials in GAP

You first have to tell GAP that you work with Q[x] before defining polyno-
mials:

gap> x:=Indeterminate(Rationals);
gap> f:=x^4+3*x^2-17*x+1;g:=x^3-2*x+9;

Then GAP has to be reminded that it works with x as the first variable which
it calls x1.

gap> Resultant(f,g,1);
gap> Discriminant(g,1);

If one wants to work with finite fields one uses the notation GF(q). One can do
division with remainder in these fields either by saying f mod g or
EuclideanRemainder(f, g).

The elements of a finite field are denoted in a special way. If q is a prime the
group of invertible elements of the field is cyclic and these elements are denoted
as Z(q)k where Z(q) is the generator. For instance if q = 5 we can take Z(5) = 2
with successive powers Z(5)2 = 4, Z(5)3 = 3, 1 = Z(5)0.

52 APPENDIX A. GAP AND REDUCE LESSONS

gap> x:=Indeterminate(GF(8),1);
gap> h:=x^2+1;
gap> Factors(h);
gap> k:=2*x-1;
gap> h mod k;
gap> EuclideanRemainder(x^12,h);

Calculating with matrices in GAP
A matrix is just a list of lists, every list being the elements of a row of the

matrix. There are special command to calculate the kernel and the solution-
spaces over the rationals or over the integers. There is a way to denote the
identity matrix.

gap> M:=[[0, 1, 2],[2 ,3, 4],[2,4,6]];
[[0, 1, 2], [2, 3, 4], [2, 4, 6]]
gap> NullspaceIntMat(M);
[[1, 1, -1]]
gap> m:=IdentityMat(3); M-m;
gap> NullspaceIntMat(M-m);
gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
gap> SolutionMat(mat,[95,115,182]);
[47/4, -17/2, 67/4, 0, 0]
gap> SolutionIntMat(mat,[95,115,182]);
[2285, -5854, 4888, -1299, 0]

Bibliography

[C-C-S] Cohen, A., H. Cuypers and H. Sterk:Some tapas of computer alge-
bra, Algorithms and Comp. in Math. 4, Springer-Verlag, New York,
Berlin etc. (1999)

[C-L-O’S] Cox, D., J. Little and D. O’Shea: Ideals, varieties and algorithms,
Undergrad. Texts in Math. Springer-Verlag, New York, Berlin etc.
(1992)

53

	Computational group Theory
	Permutation Groups
	Computations: orbits and stabilizers

	Euclid's algorithm
	Division with remainder
	Euclid's algorithm
	Extension to several polynomials

	Multi-variable division
	Introduction
	The Hilbert Basis Theorem
	Monomial orderings
	A division algorithm

	Gröbner Basis; Buchbergers algorithm
	Monomial ideals and Gröbner bases
	S-polynomials
	Buchbergers's algorithm
	Reduced Bases

	Applications of Gröbner bases
	Ideal membership and equality of ideals
	Elimination: the case of linear equations
	Elimination: the general case
	Geometry theorem proving

	A polynomial factorization algorithm
	Berlekamp's algorithm
	Preliminaries
	The algorithm

	Polynomials with integer coefficients
	Factoring integer polynomials
	Discriminant
	An algorithm

	GAP and REDUCE lessons
	GAP Lesson 11
	GAP Lesson 2
	GAP Lesson 3
	Reduce Lesson 1
	Reduce Lesson 2
	Reduce Lesson 3
	GAP Lesson 4

