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Summary

Lecture 1: Andreotti’s classical beautiful proof of the Torelli theorem for
curves (dating from 1958). The lecture ends with variational techniques due
to Carlson, Green, Griffiths and Harris (1980), the curve case serving as a
model case.
Lecture 2 and 3 : A proof of the Torelli theorem for projective K3–surfaces
modeled on the original proof of Piatečkii-Shapiro and Šafarevič (1971) but
using the approach in the Kähler case as given by Burns and Rapoport
(1975), with modifications and simplifications by Looijenga and Peters (1981).
If time allows for it I shall briefly point out some related developments. I
particularly want to say something about derived Torelli and also about
Verbitsky’s recent proof of Torelli for hyperkähler manifolds.
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Introduction

These Lectures are intended for (prospective) PhD-students with some back-
ground in complex algebraic geometry.

The first Lecture should be accessible to many since very little is as-
sumed. It mainly explains Andreotti’s classical beautiful proof [An] of the
Torelli theorem for curves (dating from 1958). It ends with a section mak-
ing the bridge to a more recent approach, namely the one using variational
techniques. The curve case serves as a model case for these techniques. This
approach is due to Carlson, Green, Griffiths and Harris [CaGGH] (1980).

The second Lecture is much more demanding but this is compensated by
giving ample references. I explain here a proof of the Torelli theorem for pro-
jective K3–surfaces modeled on the original proof of Piatečkii-Shapiro and
Šafarevič [Pi-S] (1971) but using the approach in the Kähler case as given
by Burns and Rapoport [B-R] (1975), with modifications and simplifications
by Looijenga and Peters [L-P] (1981).

The last Lecture is meant to complement the first two by briefly point-
ing out some recent (and less recent) developments. I particularly want to
mention the recent proof of Torelli for hyperkähler manifolds [V] due to
Verbitsky.
Acknowledgments I thank Hans Sterk whose remarks led to improvements
in the presentation.

1 Torelli for Curves

1.1 What You Should Know

Consult [G-H, Ch 2.7] and [A-C-G-H, Ch. 1]. The original result is [T].

By a curve we mean a smooth complex projective curve. Let C be a curve
of genus g ≥ 2 and let

φK : C → P(H0(KC)∗)

be the canonical map. Concretely, if {ω1, . . . , ωg} is a basis of H0(KC),

φK(x) = (ω1(x) : · · · : ωg(x)) ∈ Pg−1.

It is known that φK is biholomorphic onto its image for non-hyperelliptic C
while, if C is hyperelliptic, φK is 2 to 1 onto a rational normal curve in Pg−1

of degree g − 1. In that case φK is ramified in its 2g + 2 Weierstraß points.
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Let x1, . . . xd ∈ C and D = x1 + · · ·+ xd the corresponding divisor. Put

〈φKD〉 = proj. subspace spanned by φK(x1), . . . , φK(xd).

Since
h1(D) = h0(KC −D) = codim〈φKD〉,

Riemann-Roch implies

dim〈φKD〉 = deg(D)− h0(D) (geometric form of Riemann-Roch).

In particular, for generic points xj one has h0(D) = 1 and so the images
φK(xj) span a projective subspace of maximal dimension d− 1.

Integrating along a 1-cycle γ gives a function on H1,0(C) = H0(KC)
which only depends on the homology class [γ] ∈ H1(X,Z). This gives an in-
jective homomorphism ι : H1(C,Z) ↪→ H0(KC)∗; by definition the quotient

J(C) = H0(KC)∗/ι(H1(C,Z))

is the Jacobian J(C). It is a complex torus of dimension g since Im(ι)
can be shown to be a lattice in H0(KC). This torus admits a projective
embedding as we are now going to explain.

To start with, there is a canonical identification H1(J(C),Z) = H1(C,Z)
and so H2(J(C),Z) = Λ2H1(J(C),Z) = Λ2H1(C,Z) which implies that
the cup product form Q on H1(C,Z) can be viewed as an element q ∈
H2(J(C),Z). The cup product form obeys the (Riemann bilinear rela-
tions):

Q(ω, ω′) =

∫
X
ω ∧ ω′ = 0, i ·Q(ω, ω̄) > 0 for ω 6= 0. (1)

These can be reinterpreted in terms of the Hodge decomposition

H1(C,C) = H1,0(C)⊕H0,1(C)

by saying that H1,0(C) is Q-isotropic and that the Hodge metric h(x, y) :=
iω(x, ȳ) is a positive definite metric. The Hodge decomposition onH2(J(C),C)
reads

H2(J(C),C) = H2,0(J(C))⊕H1,1(J(C))⊕H0,2(J(C))

= Λ2H1,0(C)⊕H1,0(C)⊗H0,1(C)⊕ Λ2H0,1(C)

and then q ∈ H1,1(J(C)) ∩ H2(X,Z) and q > 0. Hence (by Lefschetz’
theorem on (1, 1)-classes and Kodaira’s ampleness criterion), q = c1(Θ),
where ΘC ⊂ J(C) is an ample divisor, the theta divisor. Such a class is
called a polarization. Since q is unimodular, this polarization is special: it
is a principal polarization.
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Fix a point o ∈ C. Recall the Abel-Jacobi map

u : C → J(C)

x 7→ u(x) = integration functional ω 7→
∫ x

o
ω.

It induces the morphisms

u(d) : Cd → J(C)

(x1, . . . , xd) = u(x1) + · · ·+ u(xd).

In what follows I need the Jacobi matrix of u(d) (with respect to a basis
{ω1, . . . , ωg} of H0(KC)) at the point x = (x1, · · · , xd) ∈ Cd:

J (u(d))x :=

ω1(x1) · · · ωg(x1)
. . .

. . .

ω1(xd) · · · ωg(xd)

 . (2)

The image of the Abel-Jacobi map is denoted classically as

Wd := Im(u(d)).

To simplify notation, I do not make a distinction between the point x and
the degree d divisor D = x1 + · · ·xd and then u(D) means ud(x) From (2)
one sees:

Tu(D)(Wd) = {subspace of (H0(KC)∗) spanned by the rows of J (u(d))x}.

By the geometric form of the Riemann-Roch theorem one deduces:

Lemma 1.1. Let Wd be the image of u(d). Then Wd is smooth at the point
u(D) if h0(D) = 1, and if this is the case, one has:

PTu(D)Wd = 〈φKD〉.

Finally, recall some classical theorems involving the Abel-Jacobi map:

Theorem 1.2. (1) u(D) = u(D′) if and only if D are D′ linearly equiva-
lent;

(2) Wd is smooth at u(D) if and only if h0(D) = 1;

(3) Wg−1, the image of u(g−1), is a translate of the theta-divisor.

4



1.2 Statements

Theorem 1.3 (Torelli). Let C,C ′ be two genus g curves such that (J(C),ΘC) '
(J(C ′),ΘC′), then C and C ′ are isomorphic.

Let us explain how this can be rephrased purely in terms of Hodge the-
ory. Giving the Jacobian J(C) is the same as giving H1,0(C) together with
the integral lattice ιH1(C,Z). The differentiable torus underlying J(C) is
just H1(C,R)/H1(C,Z). The Hodge structure on H1(C) defines the Weil-
operator W : H1(C,C) → H1(C,C) given by W |H1,0 = multiplication by
i while W |H0,1(C) is multiplication by −i. This operator is real; hence an
operator W : H1(C,R) → H1(C,R). Since W 2 = −1, this is a complex
structure. Hence J(C) is a complex torus. The cup product form Q on
H1(C,Z) satisfying the Riemann bilinear relations (1) is exactly what is
called a polarization for the Hodge structure on H1(C,Z). Summariz-
ing:

Corollary 1.4. A genus g curve is determined up to isomorphism by the
polarized Hodge structure (H1(C,Z), Q).

Torelli can also be reformulated in terms of the period map. Let Mg be
the coarse moduli space of genus g curves. It is a quasi-projective variety
of dimension 3g − 3 (provided g ≥ 2). A point of Mg represents a genus
g curve, or, rather, a class [C] of a curve up to isomorphism. The coarse
moduli space Ag of principally polarized abelian varieties of dimension g is
a quasi-projective variety of dimension 1

2g(g + 1). The map [C] 7→ [J(C)]
induces a morphism of algebraic varieties p : Mg → Ag, the period map,
and Torelli is the statement:

Corollary 1.5. The period map p : Mg → Ag is an injective morphism.

Remark. It does not follow that p is an immersion since Mg and Ag have
singularities. Nevertheless, this is true [O-S] and goes by the name local
Torelli theorem.

1.3 Andreotti’s Proof

Consult [G-H, p. 358–362], [A-C-G-H, Ch VI,§3]. The proof is in [An].
Let X ⊂ J(C) be a dimension d subvariety and let x ∈ X be a smooth

point of X. Let Lx : J(C) → J(C) be the addition map a 7→ a + x. Then
(L−x)∗TxX is a subspace of To(J(C)) = H1,0(C)∗ of dimension d. The map
x 7→ (L−x)∗TxX defines the rational Gauß map

γX : X 9999K G(d,H1,0(C)∗).

The normalization Γ̃X of the closure of its graph ΓX ⊂ X×G(d,H1,0(C)∗))
can be projected onto the second factor which gives a morphism

γ̃X : Γ̃X → G(d, V ), V := H1,0(C)∗,
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the Gauß morphism. Note that in case X is a hypersurface, d = g − 1
and then

γ̃X : Γ̃X → P(V ∗).

The case which is of interest to us is when this morphism is surjective and
generically finite of degree k ≥ 2. If this is the case, the ramification locus
R(γ̃X) ⊂ P(V ∗) is the complement of the set where the Gauss morphism is
unramified.

Andreotti’s proof uses the geometry of the ramification locus of the Gauß
morphism for ΘC ⊂ J(C) and starts with the following observations:

Lemma 1.6. Let C be a non-hyperelliptic curve. Then

(1) γ̃ΘC
: Γ̃ΘC

→ P(V ∗)) is finite;

(2) Let C∗ ⊂ P(V ∗) be the dual variety of φKC, i.e., the variety whose
points correspond to hyperplanes H ⊂ P(V ) that are tangent to φKC.
Then C∗ = R(γ̃ΘC

), the ramification locus of the Gauß morphism for
ΘC .

Proof : (1) A hyperplane H ⊂ P(V ) corresponds to a point [H] ∈ P(V ∗).
Suppose [H] = γ̃ΘC

(u(D)) with D = x1 + · · ·+ xg−1. For generic points xj
by Lemma 1.1 one has PTu(D)Θ = 〈φK(x1), · · ·φK(xg−1)〉. By the definition
of the Gauß map, we have PTu(D)Θ = H. A limit argument shows that this
remains true for all D ∈ Wd. The hyperplane H meets the canonical curve
φK(C) in 2g − 2 points (counted with multiplicity) and so the fiber of the
Gauß morphism consists of

δg :=

(
2g − 2

g − 1

)
points.
(2) Let E ⊂ P(V ∗) be the set of hyperplanes H ⊂ P(V ) such that H∩φK(C)
is a collection of points which are not in general position. If H ∈ P(V ) −
E is tangent to φK(C), the fiber of the Gauß morphism over H consists
of less than δg points and hence [H] ∈ R := R(γ̃X). It is not hard to
see that, conversely, if H is not tangent to the canonical curve φK(C),
the corresponding point [H] cannot be a ramification point of the Gauß
morphism. It follows that R ⊂ C∗ and that R− (E ∩C∗) = C∗ − (E ∩C∗).

Then one must have equality, R = C∗, since C∗ is an irreducible variety:
it is the image under projection of the incidence correspondence:

{(x,H) ∈ C × P(V ) | TxC ⊂ H} → P(V ).
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Remark 1.7. If C is hyperelliptic, φK(C) is 2 : 1 onto a rational normal
curve in P(V ) and there are 2g+ 2 ramification points x1, . . . , x2g+2. In this
situation the ramification locus R of the Gauß morphism is reducible:

R = C∗ ∪ x∗1 ∪ · · · ∪ x∗2g+2

where the x∗j ⊂ P(V ∗) are the hyperplanes in P(V ) that pass through xj ∈
P(V ) 1.

Concluding Step of the Proof. One uses bi-duality

(C∗)∗ = φK(C).

This suffices to reconstruct C, if C is not hyperelliptic. Otherwise, the
canonical image of C can be reconstructed as (C∗)∗ and the other com-
ponents of R give x1, · · · , x2g+2; together these give back the hyperelliptic
curve C.

1.4 A Variational Version

For this subsection consult [C-MS-P, Ch. 4 and 5], [A-C-G-H, Ch. III §3].

We have seen that the Torelli theorem can be rephrased as the injectivity
of the period map. Let us now look at the period map for an arbitrary
family f : C → S of genus g curves Cs = f−1s, s ∈ S over a smooth complex
manifold S. We have also seen that the data of the polarized Jacobian is
the same as the datum of the polarized Hodge structure on H1. So one can
equally consider the local system R1f∗Z on S whose stalk at s is H1(Cs,Z).
Let us for simplicity assume that this is a trivial local system, so that we
can identify H1(Cs,Z) with a fixed free lattice H. The Hodge decomposition
singles out a holomorphic subbundle of H⊗ZOS , namely the bundle F whose
fibre at s is H1,0(Cs). The two bilinear relations for the cup product form
Q translate into Q|Fs being totally isotropic plus the positivity condition
iQ(z, z̄) > 0 for z 6= 0. These positive isotropic g-dimensional subspaces of
H ⊗ C are parametrized by Siegel’s upper half space hg so that we get a
period map

p : S → hg, s 7→ Fs ⊂ HC.

The tangent space of hg at a point F turns out to be the set ofQ–endomorphisms
α : F = H1,0 → HC/F

1,0 = H0,1, i.e., for which Q(αx, y) + Q(x, αy) = 0
for all x, y ∈ HC. Identifying H0,1 with F ∗ via the polarization, we then see
that

TFhg = HomQ
C (F, F ∗) := {α ∈ HomC(F, F ∗) | α is a Q–endomorphism.}

1x∗j is indeed a hyperplane in P(V ∗)
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Fix a reference point o ∈ S and let C = C0. Recall that we have a Kuran-
ishi map κ : TS,o → H1(C, TC) and that there is a natural cup product
morphism

H1(C, TC)⊗H0(Ω1
C)︸ ︷︷ ︸

F

→ H1(OC)︸ ︷︷ ︸
F ∗

(3)

which intervenes when computing the tangent map.

Lemma 1.8. The tangent map (dp)o : TS,o → HomQ
C (F, F ∗) sends a tangent

vector ξ ∈ TS,o to the homomorphism

α(ξ) : F → F ∗

z 7→ κ(ξ) ∪ z

induced by (3).

The tangent map (dp)o is also called infinitesimal variation of Hodge
structure associated to the variation. We shall give two applications of
Lemma 1.8.

Corollary 1.9. Suppose that the Kuranishi map κ is injective. The period
map is an immersion at o if and only if the homomorphism ξ 7→ α(ξ) from
Lemma 1.8 is injective on the image of κ.

This can be applied to any Kuranishi family f : C → B (i.e., a locally
universal family) since for such a family κ is an isomorphism. One constructs
such a family as follows. Let U be a germ at o of the moduli space Mg and let
C be a curve corresponding to o. Then, as is well known, if G = Aut(C), we
can write U = B/G where B is smooth; then the germ (B, o) is the base of
a locally universal family. In particular TB,o = H1(C, TC). By Serre duality
H1(C, TC) = H0((Ω1

C)⊗2) and so the map α from Lemma 1.8 dualizes to
the cup product

H0(Ω1
C)⊗H0(Ω1

C)→ H0((Ω1
C)⊗2). (4)

It follows that the period map is an immersion if and only if this product is
surjective. This is known to hold if g = 2 and for higher genus if and only C
is not hyperelliptic. So we see that although Torelli is true for all curves, this
fails infinitesimally. As remarked before, it is still true that the period map
on the level of period spaces is injective. The reason is that the hyperelliptic
locus is singular which compensates for the failure of infinitesimal Torelli.

The second application is a variational Torelli theorem: the infinites-
imal variation for a Kuranishi family for C determines C up to isomorphism.
The crucial observation is that (4) can be viewed as part of the structure of
the so called canonical ring

RC :=
⊕
k≥0

H0(C,ω⊗kC ), ωC = Ω1
C .
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To explain this, recall the canonical map φK : C → P(V ). The coordinate
ring of P(V ) equals

R :=
⊕
k≥0

(H0(C,ωC))⊗k

since H0(P(V ),O(1)) = H0(C,ωC). So, there is an exact sequence

0→ IC → R→ RC → 0

where IC is the ideal of the canonical image. If C is not hyperelliptic, the
ideal IC permits to reconstruct C. What the infinitesimal variation gives
back is I2, the quadrics passing through the canonical curve. Indeed, this is
the kernel of the cup product map (4).

In many cases this suffices to reconstruct the canonical curve. Indeed,
an old result of Enriques, Babbage and Petri (for exact references, see the
bibliographical notes to [A-C-G-H, Ch.III]) shows that the intersection of all
quadrics in IC is exactly the canonical image provided C is not hyperelliptic,
a plane quintic, or a trigonal and hence:

Proposition 1.10. For a non-trigonal curve of genus g = 3, 4, 5, g > 6,
variational Torelli holds.

Let me finish this section by discussing the meaning of variational Torelli.
After passing to a finite cover of Mg we may assume that we have a universal
family over a smooth base B and that the period map p : B → Ag is an
immersion. In particular, the infinitesimal variations at s, s′ are equal (i.e.
dps = dps′) if and only if p(s) = p′(s). Variational Torelli for states that
the infinitesimal variations at s, s′ are equal (i.e. dps = dps′) if and only if
Cs ' Cs′ . Of course, this is a consequence of the Torelli theorem. The above
variational method allows to conclude this only for non-trigonal curves of
genus g 6= 2, 6, i.e., in this range of the genus, variational Torelli says that
the period map is generically injective.

The crucial remark here is that variational Torelli only uses part of the
geometry of the canonical image, while Torelli uses a much richer geometry:
Gauß maps, etc. The variational approach is therefore in principal applicable
in a wider range of settings as we shall see later in § 3.2.

2 Torelli for K3 Surfaces

Consult [B-P-H-V, Ch. VIII] and the references given at the end of this
chapter.

2.1 Topology

By definition a K3–surface S is a compact complex surface which is simply
connected and which has a nowhere vanishing holomorphic 2-form ωS . For
simplicity I shall restrict the entire discussion to projective K3-surfaces.

9



Examples 2.1. (1) A smooth hypersurface of degree 4 in P3 is a K3–surface;
(2) Let A be a complex 2–torus and let ι : A→ A be the standard involution,
i.e., ι(x) = −x. The quotient surface has 16 ordinary double points which
are the images of the 16 order 2 points on A. The minimal resolution Km(A)
is called a Kummer surface. If A is projective, also Km(A) is projective;
(3) A surface S admitting a double cover π : S → P2 branched along a
smooth sextic curve is a K3–surface.

The invariants of a K3–surface are as follows:

Lemma 2.2. (1) The Betti numbers of a K3–surface S are as follows:
b1(S) = 0, b2(S) = 22;

(2) The Hodge numbers are h2,0(S) = h0,2(S) = 1, h1,1(S) = 20;

(3) The cup product form on H2(S,Z) is even, unimodular of signature
(3, 19).

Proof : Since S is simply connected b1(S) = b3(S) = 0, and hence also
the irregularity q(S) = H1,0(S) = 0. The existence of ωS implies that
pg(S) = h2,0(S) = 1. Riemann-Roch reads

pg(S)− q(S) + 1 =
c2

1(S) + c2(S)

12

and hence 24 = c2(S) = 2 − 2b1(S) + b2(S) (since c1(S) = −KS = 0)
and so b2(S) = 22. This proves (1). Then (2) is immediate. Item (3)
can be seen as follows: Poincaré-duality implies the unimodularity of the
lattice H2(S,Z). That the pairing is even, is slightly more involved. See
e.g. [B-P-H-V, Lemma VIII 3.1]. The signature theorem directly implies
the assertion about the signature. See loc. cit.

Since, up to isometry there is only one even unimodular lattice of signa-
ture (3, 19) [Se, § 2.2–2.3] we fix one and call it the K3–lattice L.

The Hodge structure on H2(S,Z) gets polarized by the cup product
form Q which means that, as in the curve case, the two Riemann bilinear
relations hold. In the present setting these can be rephrased by saying that
H2,0(S) ⊂ LC := L ⊗Z C is a Q–isotropic line which is positive in the
sense that h(z) := Q(z, z̄) > 0. The collection of such lines forms the open
manifold

D := {[z] ∈ P(L⊗ C) | Q(z, z) = 0; h(z) > 0} ⊂ P(L⊗ C).

2.2 The Ample Cone

Consider the polarized Hodge structure L(S) = (H2(S,Z), Q). Simplifying
notation, I write c · d = Q(c, d) and c2 = c · c. The Hodge structure permits
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to locate divisor classes as the (1, 1) classes in L(S). They span the Néron-
Severi sublattice N(S) ⊂ L(S). The orthogonal complement T (S) =
N(S)⊥ is called the transcendental lattice. The cone {x ∈ NR(S) | x2 >
0} is a disjoint union of two half-cones. One of these contains the effective
divisors and is called the positive cone N+

R (S). The ample classes span a
subcone C(S) ⊂ N+

R (S), the ample cone.
Riemann-Roch implies that ±d ∈ N(S) is the class of an effective divisor

as soon as d2 ≥ −2. This holds in particular for roots r ∈ N(S), i.e., divisor
classes r with r2 = −2. An effective such class is called a nodal class. To
any root there is associated a corresponding reflection

sr : L(S)→ L(S)

x 7→ x+ (x · r)r.

Let W (S) ⊂ O(L(S)) be the group these generate. They preserve the posi-
tive cone. The complement of the reflection hyperplanes Hr := r⊥ ⊂ NR(S)
is a union of connected half-cones of N+

R (S) and one of these is the ample
cone. Its closure is a fundamental domain for the action of W (S) on the
positive cone. This has the following consequence:

Proposition 2.3 ([B-P-H-V, Prop. VIII, 3.11]). An isometry of L(S) pre-
serves classes of effective divisors if and only if it preserves the ample cone
C(S). After composing the isometry with an isometry in {±1}×W (S) these
equivalent conditions are satisfied.

Definition 2.4. An isometry of LS satisfying one of the above equivalent
properties is called an effective isometry.

Remark. Suppose that N(S) has rank 1 and hence is spanned by an ample
divisor. In this case the positive cone is the same as the ample cone. There
are no roots in N(S): every isometry is either effective or its negative is.

2.3 Infinitesimal Torelli

By Serre duality we have

dimH0(S, TS) = dimH2(Ω1
S) = 0,

dimH1(S, TS) = dimH1(Ω1
S) = h1,1(S) = 20,

dimH2(S, TS) = dimH0(Ω1
S) = 0.

By general deformation theory it follows from this that S = S0 has a locally
universal deformation f : S → B over a base of dimension 20. Assume for
a moment that this base is contractible so that R2f∗Z is a constant local
system with stalks H2(Ss,Z) isomorphic to L. The choice of a marking
LB

'−→ R2f∗Z defines the period map p : B → D.
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Proposition 2.5 (Infinitesimal Torelli). If (S, S) → (B, o), S = S0 is a
Kuranishi family of K3–surfaces, the period map p : B → D is an immersion
at o.

Proof : The complex tangent space at a point [ω] ∈ D is canonically
isomorphic to Hom(C · ω, ω⊥C /(C · ω)). If [ω] = p(S), this space is just
Hom(H2,0(S), H1,1(S). Hence (after a small computation similar to the
curve case (3)) the derivative of the period map at o ∈ B can be identified
as

ToB = H1(S, TS)→ Hom(H2,0(S), H1,1(S))

ξ 7→ {ω 7→ ω ∪ ξ}.

Making appropriate identifications, this map is the isomorphism

H1(Ω1
S)
'−→ Hom(H2,0(S), H1,1(S)).

2.4 Global Torelli: Statement

The Hodge structure on H2(S) then determines a point in D after choosing
an isometry ϕ : L

'−→ H2(X,Z). Such an isometry is called a marking and
the resulting point in D the period point of (S, ϕ).

In the projective setting S has an ample divisor2 which under the mark-
ing gives a primitive element ` ∈ L. All K3–surfaces S admitting such a
polarization define a period point p(s), s ∈ S such that ` corresponds to
a (1, 1)-class which means Q(`, p(s)) = 0: the period point belongs to the
hyperplane in P(LC) orthogonal to `. The corresponding marking is called
an `-marking and gives points in the 19–dimensional manifold

D(`) = D ∩ `⊥.

This manifold consists of two connected components. The orthogonal group
O(L) acts properly and discontinuously on D. Of course `′ = γ(`), γ ∈ O(L)
has the same (even) norm as `, say `2 = 2k > 0. If can be shown that
conversely, any `′ ∈ L with (`′)2 = 2k belongs to the O(L)–orbit of `. Divisor
classes that correspond to any element in this orbit is called a polarization
of type k. So, we may write

Mk := O(L)\D(`)

for the resulting quotient space, the moduli space of K3-surfaces with
a polarization of type k. Since O(L) contains elements interchanging the
two components, this quotient is connected. It can be shown that in fact Mk

is a quasi projective variety. I can now state the main result in this chapter.

2For technical reason one allows divisors for which a multiple gives an embedding up
to A-D-E singularities; these are the so called almost-ample divisors.
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Theorem 2.6 (Torelli Theorem for Projective K3–surfaces). Two K3-surfaces
admitting a polarization of type k are isomorphic if and only if they have
the same period point in Mk.

Remark. One can actually prove that all points of Mk occur as a period point
of a K3–surface admitting a polarization of type k. Here it is important to
allow almost-ample divisors: any point on a hypersurface in Mk orthogonal
to a root r in the lattice `⊥ corresponds to a K3 on which the divisor
corresponding to ` is not ample since Q(`, r) = 0 and ±r corresponds to an
effective divisor (by Riemann-Roch).

Variants and Complements

There are several variants of the Torelli Theorem.

• There is a more precise theorem (the refined Torelli theorem) which
states that whenever there is a polarized Hodge isomorphism ϕ :
L(S)

'−→ L(S′) (so it preserves the lattice structure) which is more-
over effective (see Definition 2.4), then there is a unique isomorphism

S′
f
−→ S with f∗ = ϕ. Applying this to S = S′ makes it possible to

describe the group of automorphisms as the group G(S) of effective
isometries inside L = L(S). It is the subgroup of O(L) preserving the
ample cone and one has O(L) = G(S)×{±1}nW (S). This description
is fundamental for many recent studies of the possible automorphism
groups of K3–surfaces.

Note that the statement of the refined Torelli theorem simplifies if
N(S) (and hence N(S′)) has rank 1 since in that case ±ϕ is effective
for any polarized Hodge isometry ϕ. The assumption for the Néron-
Severi group holds generically on the moduli space and so one has: a
polarized Hodge isometry ϕ : L(S)

'−→ L(S′) is up to sign induced by
a (unique) isomorphism S′ → S provided S, S′ are generic. This form
of the Torelli theorem holds also for hyperkähler manifolds (except for
the uniqueness statement). See § 3.2 below.

• There is a version for all Kähler K3–surfaces (this is no restriction: all
K3–surfaces are Kähler, see below). Of course one has to substitute
the proper notion for the ample cone: the so-called Kähler cone. The
proof I sketch below in § 2.5 applies in this setting with some more or
less obvious modifications. Also a refined Torelli holds in this case.

• Derived Torelli. Let X be any complex projective manifold. Then
Db(X) denotes the derived category of bounded complexes of co-
herent sheaves on X. Two varieties X and X ′ are called derived
equivalent if there exists an equivalence of triangulated categories
Db(X) ' Db(X ′).

13



Orlov shows that derived equivalence for K3-surfaces can be seen from
the transcendental part of the K3-lattice L(S),

T (S) := N(S)⊥ ⊂ L(S),

namely, one has:

Theorem ([O]). Two K3–surfaces S and S′ are derived equivalent if
and only if there exists a Hodge isometry T (S)

'−→ T (S′).

There are several variants of this result, for instance the variant which
uses the Mukai lattice instead of the transcendental lattice:

M(S) = H0(S)⊕H2(S)⊕H4(S),

qM(S)(x, y) = −x2 · y2 + x0 · y4 + x4 · y0,

= −L(S)⊕ U,

where x = (x0, x2, x4), y = (y0, y2, y4) and where U is the standard
hyperbolic lattice. In this setting, Hodge isometry only means that
under the isometry the class of [ωS ] is mapped to the class of [ωS′ ].
See [H1] for details.

Remark. (1) The proof that all K3–surfaces are Kähler is relatively
recent (1982/1983 Siu [Si], Todorov [To]). This proof at the same time
shows surjectivity of the period map: all points in D occur as period points.
See e.g. [Be, XII] and the references given there. This surjectivity proof has
been generalized by Verbitsky [V] in order to prove Torelli for hyperkähler
manifolds. See § 3.3.

Sixteen years later a completely different proof for the Kähler property
(by Buchdahl [Bu] and Lamari [La] both in 1999) has been found which
applies to all surfaces with even b1. See [B-P-H-V, Ch. IV.3].
(2) Extending the notion of a K3–surface S of polarization type ` ∈ L,
fixing M ⊂ L of signature (1, t), one says that S is of polarization type
M if there exists a marking ϕ : L(S)

'−→ L such that ϕ−1M belongs to the
Néron-Severi lattice N(S). The relevant period domain is

DM = D ∩M⊥,

a domain of dimension 19 − t having two connected components. Such
domains come up when studying special families of K3–surfaces. See for
example [B-P-H-V, Ch.VIII.22] where the relation with mirror symmetry is
explained, or [L-P-S] where a link with special Abelian varieties is pursued.

2.5 Global Torelli: Sketch of Proof

One has to compare the Hodge structures of two different K3–surfaces S
and S′ with the same period point. In particular, there is a Hodge isometry

14



ϕ : H2(S,Z)
∼−→ H2(S′,Z). Applying Prop. 2.3 I may assume that ϕ is

effective: it sends C(S) to C(S′) and it sends effective divisor classes on S
to similar such classes on S′. The proof proceeds in several steps.
Step 1. Torelli for Kummer surfaces, i.e. one shows that if S is a projective
Kummer surface, S′ any K3–surface such that their period points are the
same, then S and S′ are isomorphic.

Let me give a sketch of the proof. Let A be a projective 2–torus and
V ⊂ A the collection of 2–torsion points. This set has a natural structure
of an affine space of dimension 4 over the field F2. For every v ∈ V there is
a nodal class ev on S = Km(A). It is known (see [B-P-H-V, Ch. VIII.6] for
references) that

∑
v∈V ev = 2f ∈ L(S) and hence this also holds in L(S′) as

an equality between effective divisors (since ϕ is effective). But then (loc.
cit.) the surface S′ also is Kummer, say S′ = Km(A′) and ϕ sends the affine
space V to the corresponding affine space V ′ associated to the collection
of 2–torsion points on A′. A nice argument [B-P-H-V, Ch. VIII.5] using
detailed affine and projective geometry over the field F2 then shows that A
and A′ are isomorphic. A fortiori, S ' S′.
Step 2. The period points of projective Kummer surfaces forms a dense set
in D. This argument is lattice-theoretic and quite elementary. It is spelled
out in detail in [B-P-H-V, Ch. VIII. 8]. This step implies also that any two
K3–surfaces are diffeomorphic.
Step 3. Let me first change notation. Instead of S, S′ the surfaces are
now called So, S ′o since I want to put both of them in Kuranishi families
f : S → B, f ′ : S ′ → B′, respectively. Moreover, by the Infinitesimal Torelli
theorem I may replace B and B′ by their images in the period domain
D. We may further replace these images by a sufficiently small polydisk
∆ about 0 such that the isometry at 0 has been extended to an isometry
Φ : R2f∗Z

'−→ R2f ′∗Z.
By Steps 1 and 2 there is a sequence zn → 0 ∈ ∆ and there are isomor-

phisms fn : Szn
'−→ S ′zn between the fibers over zn of these families inducing

Φzn . A fairly general principle which is explained in [B-P-H-V, Ch. VIII.
10] then implies that, after passing to a subsequence, the isomorphisms fn
converge (in a suitable topology) to an isomorphism f0.

3 Other Torelli Theorems

3.1 Infinitesimal Torelli

For this section see [C-MS-P, Ch. 8].

Recall that infinitesimal Torelli (w.r.t. cohomology of rank w) means that
the period map for a Kuranishi family is an immersion. Griffiths found a
cohomological criterion for this which generalizes what happens for curves
and K3-surfaces:
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Proposition 3.1. Infinitesimal Torelli (w.r. to cohomology of rank w) holds
for a projective manifold X if the cup product map

H1(T (X))→
⊕

p+q=w

Hom(Hq(Ωp
X), Hq+1(Ωp−1

X ))

is injective.

Apart from curves and K3–surfaces, this criterion has been applied suc-
cessfully to hypersurfaces in projective space, to complete intersections and
several other cases. See [C-MS-P, Ch. 8.1].

3.2 Variational Torelli

The most widely applicable approach to Torelli theorems has been through
the use of the multilinear algebra information provided by the tangent of the
period map at any given point. The prototype of argument has been given
in Ch.1.4 and, as shown there, leads to generic Torelli theorems. The most
explicit results in this direction are for hypersurfaces in projective spaces:
except for some special degrees generic Torelli holds for such hypersurfaces.
See [C-MS-P, Ch. 8.3]. There are other, less explicit results stating that
for all sufficiently ample hypersurface sections of a given projective manifold
generic Torelli holds. See [G].

3.3 Torelli for Hyperkähler Manifolds

For this section where Verbitsky’s results are discussed, consult [V] and the
Bourbaki talk [H2].

Definition 3.2. A simply connected compact Kähler manifold X is said to
be hyperkähler if there exists an everywhere non-degenerate holomorphic
2–form σ such that C · σ = H0(X,Ω2

X).

Examples 3.3. (1) Any K3–surface;
(2) The Hilbert scheme of finite fixed length zero-dimensional subschemes
of a fixed K3–surface.

As for K3–surfaces it turns out that for X hyperkähler, there is an inte-
gral (in general not unimodular) form onH2(X,Z), the Beauville-Bogomolov
form qX . It has signature (3, b2(X) − 3). It polarizes the Hodge structure
on H2(X). One sets

Λ(X) = (H2(X,Z), qX).

As for K3–surfaces, for a model such lattice, say Λ with form q of signature
(3, b− 3), one introduces the period domain

DΛ = {x ∈ P(ΛC) | q(x) = 0, q(x, x̄) > 0}

16



which is a connected manifold of dimension b − 2. A marking is just an
isometry Λ(X)

'−→ Λ and one lets MΛ be the moduli space of Λ–marked
hyperkähler manifolds. In general it may have many components. Fix one
and continue to denote it MΛ. Clearly, there is a holomorphic period map

pΛ : MΛ → DΛ.

Theorem 3.4 ([V]). The period map pΛ is a local biholomorphic map which
is surjective and generically injective.

Remark. (1) It is known that pΛ is in general not injective although it is
in the bimeromorphic sense. However, Namikawa [N] has found two hy-
perkähler non-bimeromorphic projective 4-folds X,X ′ admitting an isome-
try H2(X) ' H2(X ′) of polarized Hodge structures. These must belong to
two different components of the moduli space.
(2) As a side remark, the proof of Verbitsky’s theorem gives an alterna-
tive approach to Torelli for K3–surfaces which is much more direct in that
it avoids using the geometry of special K3–surfaces like Kummer surfaces
which are dense in moduli.
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1040 arXiv:1106.5573
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