Prparation à l'agrégation interne de mathématiques

Aide à la résolution pour la séance du 6 octobre 2004

Jean-Marie Monier

Problème 1

- a) Pour $x \in \mathbb{R}$ fixé, l'application $x \longmapsto \operatorname{Arctan}(\tan x)$ est continue sur $\left[0; \frac{\pi}{2}\right[$ et admet une limite finie en $\frac{\pi}{2}$; en déduire qu'elle est intégrable sur $\left[0; \frac{\pi}{2}\right[$.
- ullet L'imparité de f est facile.
- b) Appliquer le théorème de continuité sous le signe \int_I , avec hypothèse de domination, pour montrer que f est continue sur \mathbb{R} .
- Appliquer le théorème de dérivation sous le signe \int_I , avec hypothèse de domination locale, pour montrer que f est de classe C^1 sur $I\!\!R^*$ et exprimer sa dérivée :

$$\forall x \in \mathbb{R}^*, \ f'(x) = \int_0^{\frac{\pi}{2}} \frac{\tan t}{1 + x^2 \tan^2 t} dt.$$

- \bullet En déduire le sens de variation de f.
- Calculer l'intégrale donnant f'(x), par exemple en faisant intervenir $\sin 2t$ et $\cos 2t$ et en utilisant le changement de variable défini par u=2t. On obtient :

$$\forall x \in]0; +\infty[, f'(x)] = \begin{cases} -\frac{\ln x}{1-x^2} & \text{si } x \neq 1\\ \frac{1}{2} & \text{si } x = 1. \end{cases}$$

- En déduire que $f'(x) \xrightarrow[x \to 0^+]{} +\infty$, et répondre à la question de la dérivabilité de f en 0.
- On trouve: f(0) = 0, $f(1) = \frac{\pi}{4}$, $f'(1) = \frac{1}{2}$.
- Appliquer le théorème de dérivation sous le signe \int_I une deuxième fois, avec hypothèse de domination locale, pour déduire que f est de classe C^2 sur \mathbb{R}^* et exprimer f''(x). On obtient :

$$\forall x \in \mathbb{R}^*, \ f''(x) = -\int_0^{\frac{\pi}{2}} \frac{2x \tan^3 t}{(1 + x^2 \tan^2 t)^2} \, \mathrm{d}t.$$

On pourrait aussi dériver l'expression obtenue plus haut pour f'(x) (sans symbole intégrale), mais il faudrait alors étudier le raccord en 1.

1

• En déduire le signe de f''(x) et le sens de la concavité de la courbe représentative de f.

d) On peut conjecturer que la limite (si elle existe) de f(x) lorsque x tend vers $+\infty$ est obtenue en remplaant directement x par $+\infty$ dans l'intégrale, donc est égale à $\frac{\pi^2}{4}$.

Former donc la différence entre f(x) et cette limite présumée, ce qui donne, en utilisant une formule bien connue sur les Arctan :

$$\left| f(x) - \frac{\pi^2}{4} \right| = \int_0^{\frac{\pi}{2}} \operatorname{Arctan}\left(\frac{1}{x} \frac{1}{\tan t}\right) dt.$$

Montrer que cette dernière expression tend vers 0 lorsque x tend vers $+\infty$ en considérant la fonction obtenue par le changement de variable $y=\frac{1}{x}$ et en appliquant le théorème de continuité sous le sugne \int_I .

e) C'est le bilan des résultats précédents.

Problème 2

- a) Remarquer: $\forall n \in \mathbb{N}^*, S_n \geq n$. Conclure: $S_n \xrightarrow[n\infty]{} +\infty$.
- b) 1) Former le développement limité en 0 à l'ordre 2 de $x \longmapsto e^x (1+x)$, en déduire $\frac{e^x (1+x)}{x^2} \xrightarrow[x \to 0]{1} \frac{1}{2}$, et en déduire l'existence de α et de C.
- 2) Déduire:

$$\forall n \in \mathbb{N}^*, \ \forall k \in \{1, ..., n\}, \ \left| \exp\left(\frac{1}{n+k}\right) - \left(1 + \frac{1}{n+k}\right) \right| \le \frac{C}{n^2},$$

puis sommer pour obtenir:

$$\forall n \in \mathbb{N}^*, \left| S_n - \left(n + \sum_{k=1}^n \frac{1}{n+k} \right) \right| \le \frac{C}{n}.$$

D'autre part, montrer :

$$\sum_{k=1}^{n} \frac{1}{n+k} \underset{n \infty}{\longrightarrow} \ln 2,$$

par exemple en utilisant une somme de Riemann.

Conclure clairement au développement asymptotique demandé.

c) 1) Calculer, pour tout $n \ge 2$, $v_n - v_{n-1}$:

$$v_n - v_{n-1} = e^{\frac{1}{2n}} + e^{\frac{1}{2n-1}} - e^{\frac{1}{n}} - 1,$$

et en former un développement asymptotique à la précision $\frac{1}{n^3}$.

On obtient, après quelques lignes de calcul:

$$v_n - v_{n-1} = \frac{1}{8n^3} + o\left(\frac{1}{n^3}\right).$$

2) Appliquer un théorème de sommation des relations de comparaison, pour déduire :

$$\sum_{k=n+1}^{+\infty} (v_n - v_{n-1}) \sim \sum_{k=n+1}^{+\infty} \frac{1}{8k^3}.$$

Montrer, en utilisant une comparaison série/intégrale :

$$\sum_{k=n+1}^{+\infty} \frac{1}{n^3} \underset{n \infty}{\sim} \frac{1}{2n^2}.$$

En déduire :

$$v_n \underset{n\infty}{\sim} -\frac{1}{16n^2}.$$

c) On obtient:

$$S_n = n + \ln 2 - \frac{1}{16n^2} + o\left(\frac{1}{n^2}\right).$$

Problème 3

a) S'assurer d'abord de la convergence de la série proposée, pour x fixé.

Pour $x\in]0\,;+\infty[$ fixé, l'application $\varphi:\ t\in [1\,;+\infty[\ \longmapsto \frac{1}{t(t+x)}]$ est continue, décroissante et intégrable sur $[1\,;+\infty[;$ appliquer une comparaison série/intégrale et calculer $\int_1^{+\infty} \varphi(t)\,\mathrm{d}t$ pour déduire :

$$\forall x \in]0; +\infty[, \frac{\ln(x+1)}{x} \le \sum_{n=1}^{+\infty} \frac{1}{n(n+x)} \le \frac{1}{1+x} + \frac{\ln(x+1)}{x}.$$

En déduire le résultat demandé.

Problème 4

a) Intégrer I_n par parties, en remarquant que nx^{n-1} est la dérivée de x^n par rapport à x. On obtient :

$$\forall n \in I\!N^*, \quad nI_n = \frac{\pi}{4} - J_n.$$

b) Changement de variable $y = x^n$.

On obtient:
$$\forall n, J_n = \frac{1}{n}K_n$$
, o on a noté $K_n = \int_0^1 y^{\frac{1}{n}} \frac{\operatorname{Arctan} y}{y} \, \mathrm{d}y$.

c) Appliquer le théorème de convergence dominée à la suite de fonctions définie par

$$f_n(y) = y^{\frac{1}{n}} \frac{\operatorname{Arctan} y}{y}.$$

d) Conslure des résultats précédents :

$$I_n = \frac{\pi}{4} - \frac{K}{n} + o\left(\frac{1}{n}\right).$$

3

Problème 5

a) Montrer : $\forall n \in \mathbb{N}^*$, $||f_n||_{\infty} \leq \frac{\pi}{2n(n+1)}$, et en déduire que la série $\sum_{n \in \mathbb{N}^*} f_n$ converge normalement (donc uniformément et simplement) sur $[0; +\infty[$.

- b) Appliquer le théorème sur continuité et convergence uniforme pour déduire que S est continue sur $[0; +\infty[$.
- Montrer que les f_n sont de classe C^2 sur $[0; +\infty[$ et calculer $f'_n(x)$ et $f''_n(x)$, pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$.

Comme $||f_n'||_{\infty} = \frac{1}{n+1}$ et que l'on ne parvient pas à majorer $|f_n''(x)|$ indépendamment de x, s'orienter vers des majorations locales. Montrer que, pour tout $(a,b) \in]0; +\infty[^2$ tel que $a \leq b$, les séries de fonctions $\sum_{n \in \mathbb{N}^*} f_n'$ et $\sum_{n \in \mathbb{N}^*} f_n''$ sont normalement (donc uniformément) convergentes

sur [a;b]. Appliquer alors le théorème de dérivation sous le signe \sum_n avec convergence uniforme locale, pour montrer que S est de classe C^2 sur $]0;+\infty[$ et exprimer S'(x) et S''(x) comme sommes de séries :

$$S'(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+1)(1+n^2x^2)}, \qquad S''(x) = \sum_{n=1}^{+\infty} \frac{-2n^2x}{(1+n^2x^2)^2}.$$

En déduire les signes de S'(x) et de S''(x), le sens de variation de S et le sens de la concavité de la courbe représentative de S.

ullet Pour l'étude de S en $+\infty$, appliquer le théorème sur convergence uniforme et limite.

On obtient : S(x)

$$S(x) \xrightarrow[x \to +\infty]{} \frac{\pi}{2}.$$

- S(0) = 0 est évident.
- On a, pour chaque $n \in \mathbb{N}^*$ fixé :

$$\frac{1}{(n+1)(1+n^2x^2)} \xrightarrow[x \to 0]{} \frac{1}{n+1}.$$

Comme la série $\sum_{n} \frac{1}{n+1}$ diverge et est à termes positifs, on peut conjecturer : S'x) $\underset{x \longrightarrow 0}{\longrightarrow} +\infty$.

Soit A > 0 fixé. Expliquer pourquoi il existe $N \in \mathbb{N}^*$ tel que :

$$\forall n \ge N, \quad \sum_{n=1}^{N} \frac{1}{n+1} \ge 2A,$$

puis pourquoi il existe $\eta > 0$ tel que :

$$\forall x \in]0; \eta[, \left| \sum_{n=1}^{N} \frac{1}{(n+1)(1+n^2x^2)} - \sum_{n=1}^{N} \frac{1}{n+1} \right| \le A,$$

et déduire :

$$\forall A > 0, \ \exists \, \eta > 0, \ \forall x \in]0; \eta[, \ S'(x) \ge A.$$

Conclure:

$$S'(x) \underset{x \longrightarrow 0}{\longrightarrow} +\infty.$$

Tracer la courbe représentative de S en utilisant les réultats précédents.

d) Comme $S(x) \xrightarrow[x \to +\infty]{} \frac{\pi}{2}$, former $S(x) - \frac{\pi}{2}$ en utilisant une formule bien connue sur les Arctan. Considérer alors la série d'applications $\sum_{n \in I\!\!N^*} g_n$ o :

$$g_n: [1; +\infty[\longrightarrow \mathbb{R}, x \longmapsto g_n(x) = \frac{x \operatorname{Arctan}\left(\frac{1}{nx}\right)}{n(n+1)}.$$

Montrer que cette série converge normalement (donc uniformément) sur $[1; +\infty[$ et appliquer le théorème du Cours sur convergence uniforme et limite pour déduire :

$$\sum_{n=1}^{+\infty} g_n(x) \xrightarrow[x \to +\infty]{} \sum_{n=1}^{+\infty} \frac{1}{n^2(n+1)}.$$

Calculer cette dernière somme de série en utilisant une décomposition en élements simples, un télescopage et la valeur connue $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.$

On obtient finalement:

$$S(x) = \frac{\pi}{2} - \left(\frac{\pi^2}{6} - 1\right)\frac{1}{x} + \underset{x \to +\infty}{o} \left(\frac{1}{x}\right).$$

Problème 6

a) 1) Par hypothèse, il existe $M \in \mathbb{R}_+$ tel que : $\forall n \in \mathbb{N}, |a_n| \leq M$.

Faire intervenir une série géométrique et le théorème de majoration pour conclure que la série de terme général $a_n x^n$ est absolument convergente, donc convergente.

- 2) On a, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$: $\forall n \in \mathbb{N}$, $\left|\frac{a_n}{n!}\right| \leq \frac{M}{n!}$, terme général d'une série convergente.
- b) Pour $x\in]1\,;+\infty[$ fixé, considérer la série d'applications $\sum_{n\in I\!\!N}g_n$ définie par :

$$g_n: t \in [0; +\infty[\longrightarrow g_n(t) = e^{-xt} \frac{a_n}{n!} t^n.$$

Montrer qu'on peut appliquer le théorème sur séries de fonctions et intégrales sur un intervalle quelconque. À cet effet, on établira :

$$\int_0^{+\infty} |g_n| \le \frac{M}{x^{n+1}},$$

en utilisant un changement de variable u = xt dans l'intégrale.

Conclure à l'égalité demandée.