2005-2006

Exercice 1

La figure 1 représente les premières valeurs de l'ordre < sur \mathbb{N}^2 reportées sur la grille.

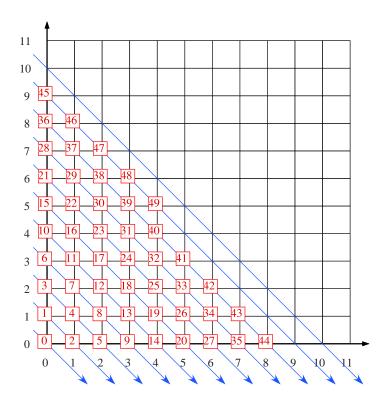


Fig. 1 – Bijection χ entre \mathbb{N} et \mathbb{N}^2 .

Pour tout élément (a,b) de \mathbb{N}^2 , il existe un nombre fini d'éléments de \mathbb{N}^2 qui lui sont inférieurs, notons $\chi(a,b)$ ce nombre. On observe que si $(a,b) \neq (c,d)$, alors $\chi(a,b) \neq \chi(c,d)$ par définition de < et que $\chi(0,0) = 0$. Alors χ est une bijection de \mathbb{N}^2 sur \mathbb{N} qui respecte évidemment l'ordre. Donnons nous alors un autre isomorphisme Ξ de \mathbb{N}^2 sur \mathbb{N} , alors le nombre d'éléments de \mathbb{N}^2 qui sont inférieurs à $\Xi^{-1}(n)$ est n et donc

$$\forall n \in \mathbb{N}, \quad \Xi^{-1}(n) = \chi^{-1}(n)$$

d'où l'égalité entre Ξ et χ .

On commence par calculer $\chi(a,b)$: le nombre d'éléments inférieurs à (a,b) est le nombre d'élément sur les diagonales x+y=i avec i < a+b et le nombre d'éléments sur la diagonale x+y=a+b inférieurs à a (soit a). On obtient

$$\chi(a,b)\sum_{i=0}^{i=a+b-1}i+1+a=\frac{(a+b+1)(a+b)}{2}+a=\frac{1}{2}(a^2+2ab+b^2+3a+b)$$

On a $\chi(a,b)=a+\frac{1}{2}(a^2+2ab+b^2+a+b)$ et donc $\Pi_1(x)\leq x$ (avec x=(a,b)). L'égalité se produit pour $a^2+2ab+b^2+a+b=0$ ce qui implique a=0 et b=0 et donc x=0.

On a $\chi(a,b)=ab+\frac{1}{2}(a^2+b^2+3a+b)$ et donc, si $a\neq 0$, $\Pi_2(x)\leq x$ (avec x=(a,b)); si a=0, on a $b<\frac{1}{2}(b^2+b)$ et donc $\Pi_2(x)\leq x$. Si a=0, l'égalité se produit pour b=0 et, donc, x=0. Si $a\neq 0$, l'égalité se produit pour $b=b+\frac{1}{2}(a^2+2ab+b^2+3a-b)$ soit $(a+b)^2=3a-b$ ce qui implique a=0 ou a=1. Il reste le cas a=1 qui implique b=0. Donc $\Pi_2(x)=x$ implique b=0 ou b=0.

Exercice 2

Il est facile de voir par récurrence que χ_p $(p \geq 2)$ est une bijection entre \mathbb{N}^p et \mathbb{N} et qu'elle s'exprime par un polynôme de degré 2^{p-1} . En effet, $\chi_2 = \chi$ s'exprime par un polynôme de degré 2 et si χ_p est de degré 2^{p-1} , alors $\chi_{p+1}(x_1,\ldots,x_p,x_{p+1}) = \chi\left(\chi_p(x_1,\ldots,x_p),x_{p+1}\right)$ est de degré 2 sur des monômes de degré 2^{p-1} et est donc de degré 2^p . On en déduit que σ est une bijection de Seq(\mathbb{N}) sur \mathbb{N} et qu'elle s'exprime par un polynôme de degré 2^p où p est le nombre d'éléments de la suite puisque χ_p s'exprime par un polynôme de degré 2^{p-1} .

Exercice 3

On montre que $N(p,S)=\binom{p-1}{S+p-1}$ par récurrence sur p. Si p=2, $N(2,S)=|\{x|x+S-x=S\}|=S+1=\binom{1}{S+1}$. Pour $p\geq 2$,

$$N(p+1,S) = \sum_{j=0}^{j=S} N(p,S-j) = \sum_{j=0}^{j=S} {p-1 \choose S-j+p-1}$$

Rappelons la formule « bien connue » :

$$\binom{p}{n} = \binom{p-1}{n-1} + \binom{p-1}{n-2} + \ldots + \binom{p-1}{p} + \binom{p-1}{p-1}$$

Il vient par cette formule $N(p+1,S)=\binom{p}{S+p}$, ce qui achève la récurrence. L'égalité $\sum_{i=0}^{S-1} N(p,i)=\binom{p}{S+p-1}$ est une conséquence directe de la formule rappelée.

Exercice 4

On raisonne comme dans le cas de l'exercice 1. On fixe p. On vérifie facilement que $<_p$ est une relation d'ordre. A tout p-uplet (x_1, \ldots, x_p) de \mathbb{N}^p , on fait correspondre le nombre d'éléments de \mathbb{N}^p qui sont strictement inférieurs pour $<_p$ à (x_1, \ldots, x_p) , noté $L_p(x_1, \ldots, x_p)$. De même que dans

Solutions 3 sur 4

l'exercice 1, L_p est une bijection de \mathbb{N}^p sur \mathbb{N} qui respecte l'ordre et c'est, en outre, l'unique isomorphisme entre $(\mathbb{N}^p,<_p)$ et $(\mathbb{N},<)$. Montrons que $L_p(x_1,\ldots,x_p)$ s'exprime par un polynôme de degré p par récurrence sur p:

Pour $p=2,\,L_2$ est l'isomorphisme χ de

$$L_p(x_1, \dots, x_p) = \sum_{i=0}^{x_1 + \dots + x_p - 1} N(p, i) + L_{p-1}(x_1, \dots, x_{p-1})$$

$$=\frac{(x_1,\ldots,x_p)(x_1,\ldots,x_p+1)\ldots(x_1,\ldots,x_p+p-1)}{p!}+L_{p-1}(x_1,\ldots,x_{p-1})$$

Donc, $L_p(x_1, \ldots, x_p)$ est la somme d'un polynome de degré p et de $L_{p-1}(x_1, \ldots, x_{p-1})$, polynôme de degré p-1 par hypothèse de récurrence et est, alors, un polynôme de degré p.

Exercice 5

Soit m un entier fixé et supposons que poue tout i de $\{1, \ldots, p\}$, $|x_i| \leq m$, alors

$$|P(x_1,\ldots,x_p)| \leq m^q A$$

où A est la somme des valeurs absolues des coefficients de P.

Donc P est une injection de $\{(x_1, \ldots, x_p) \mid \forall i, |x_i| \leq m\}$, ensemble à m^p éléments, dans un ensemble à Am^q éléments. Donc $Am^{q-p} \geq 1$. Lorsque m tend vers l'infini, Am^{q-p} ne tend pas vers 0 si et seulement si q > p. mbox

Exercice 6

La fonction $(i,j) \mapsto 2^i(2j+1)-1$ est une bijection de \mathbb{N}^2 sur \mathbb{N} car elle admet une inverse. Soit $x \in \mathbb{N}$, alors il existe un unique entier i tel que x+1 soit divisible par 2^i mais pas par 2^{i+1} ; donc i est déterminé de façon unique. Alors, x+1 s'écrit $2^i\alpha$ avec α impair, donc α s'écrit de manière unique 2j+1 et j est déterminé de façon unique.

L est une appliication de l'ensemble des suites finies d'entiers dans \mathbb{N} . L est surjectif car l'image de la suite vide est 0 et par ce qui précède lorsque p et $L_p(x_1,\ldots x_p)$ décrivent \mathbb{N}^2 , $L(< x_1\ldots x_p>)$ décrit $\mathbb{N}\setminus\{0\}$. Si $L(< x_1\ldots x_p>)=L(< y_1\ldots y_q>)=a$, alors p=q comme étant l'unique entier tel que 2^h divise a mais pas 2^{h+1} .; puis $L_p(x_1\ldots x_p)=L_p(y_1\ldots y_p)$ (comme unique quotient, et, finalement $(x_1\ldots x_p)=(y_1\ldots y_p)$ par bijectivité de L_p .

Puisque L_p s'exprime par un polynôme de degré p (exercice 4), $L_p(x_1 \dots x_p)$ s'exprime aussi par un polynôme de degré p. mbox

Exercice 7

Solutions

 $4 \, \mathrm{sur} \, 4$

Soient $x \in \mathbb{N}$, p et i, posons $a_i = \prod_{p,i}(x)$; alors $\forall a'_1, \ldots, a'_{i-1}, a'_{i+1}, \ldots, a'_p$,

Dans l'ordre $<_p$ de l'exercice 4, le nombre d'éléments plus petit que (x_1, \ldots, x_p) = $L_p^{-1}(x)$ est au moins égal à $\Sigma_{i=0}^{x_1+\cdots+x_p-1}N(p,i)$. Par conséquent, il est supérieur ou égal à $\Sigma_{i=0}^{a_i-1}N(p,i)$. On a donc

$$x \ge \frac{a_i(a_i+1)\dots(a_i+p-1)}{p!}$$

soit

$$x \ge \frac{a_i}{1} \frac{a_i + 1}{1 + 1} \dots \frac{a_i + p - 1}{1 + p - 1}.$$

Or pour $a_i \ge 1$ tous ces rapports sont supérieurs ou égal à 1, on a donc $x \geq \prod_{p,i}(x)$. En outre si $a_i > 1$, les rapports sont strictement supérieurs à 1 et on a $x > \Pi_{p,i}(x)$. Il reste à examiner le cas $\Pi_{p,i}(x) = 0$. On a alors évidemment $x \geq \Pi_{p,i}(x)$.

Par ce qui précède les cas d'égalité ne peuvent être obtenus que pour $\Pi_{p,i}(x) = 0$ ou $\Pi_{p,i}(x) = 1$. Si $\Pi_{p,i}(x) = 0$, on a égalité : $L_p(0,\ldots,0) = 0$. Si $\Pi_{p,i}(x) = 1$, l'égalité ne peut avoir lieu que pour x = 1. On vérifie que $\Pi_{p,1}(1) = 1,$