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The purpose of this paper is twofold. On one hand, we introduce a modification 
of the dual canonical basis for invariant tensors of the 3-dimensional irreducible 
representation of Uq(sl2), given in terms of Jacobi diagrams, a central tool in 
quantum topology. On the other hand, we use this modified basis to study the 
so-called homotopy sl2 weight system, which is its restriction to the space of 
Jacobi diagrams labeled by distinct integers. Noting that the sl2 weight system is 
completely determined by its values on trees, we compute the image of the homotopy 
part on connected trees in all degrees; the kernel of this map is also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The sl2 weight system W is a Q-algebra homomorphism from the space B(n) of Jacobi diagrams labeled by 
{1, . . . , n} to the algebra Inv (S(sl2)⊗n) of invariant tensors of the symmetric algebra S(sl2). The relevance of 
this construction lies in low dimensional topology. Jacobi diagrams form the target space for the Kontsevich 
integral Z, which is universal among finite type and quantum invariants of knotted objects: in particular, 
by postcomposing Z with the sl2 weight system and specializing each factor at some finite-dimensional 
representation of quantum group Uq(sl2), one recovers the colored Jones polynomial. Hence, while the 
results of this paper are purely algebraic, we will see that they are motivated by, and have applications to, 
quantum topology – see Remark 1.4 at the end of this introduction.

An easy preliminary observation on the sl2 weight system is the following.

Lemma 1.1. The sl2 weight system is determined by its values on connected trees, i.e. connected and simply 
connected Jacobi diagrams.

(Although this result might be well-known, a proof is given in Section 2.4.)
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Table 1
The dimensions of Cn, Inv(sl⊗n

2 ) and KerWh
n .

n 2 3 4 5 6 7 8 9 k

dim Cn 1 1 2 6 24 120 720 5040 (k − 2)!
dim Inv(sl⊗n

2 ) 1 1 3 6 15 36 91 232 Rk

dim KerWh
n 0 0 0 0 10 84 630 4808 (k − 2)! − Rk + 1+(−1)k

2

In this paper, we focus on the homotopy part Bh(n) of B(n), which is generated by diagrams labeled 
by distinct elements in {1, . . . , n}. Here, the terminology alludes to the link-homotopy relation on (string) 
links, which is generated by self crossing changes. It was shown by Habegger and Masbaum [4] that the 
restriction of the Kontsevich integral to Bh(n) is a link-homotopy invariant, and is deeply related to Milnor 
link-homotopy invariants, which are classical invariants generalizing the linking number.

Let us state our main results on the homotopy sl2 weight system, that is, the restriction of the sl2 weight 
system to Bh(n). Owing to Lemma 1.1, we can fully understand this map by studying the restrictions

Wh
n : Cn → Inv(sl⊗n

2 )

of the sl2 weight system to the space Cn of connected trees with n univalent vertices labeled by distinct 
elements in {1, . . . , n}. Here, the target space Inv(sl⊗n

2 ) is the invariant part of the n-fold tensor power of 
the adjoint representation (the 3-dimensional irreducible representation) of sl2. Recall that the dimension 
of Cn is given by (n −2)!, while the dimension of Inv(sl⊗n

2 ) is known to be the so-called [1] Riordan numbers 
Rn which can be defined by R2 = R3 = 1 and Rn = (n − 1)(2Rn−1 + 3Rn−2)/(n + 1). These numbers are 
also found under the name of Motzkin sums, or ring numbers in the literature.

We have:

Theorem 1.2.

(i) The weight system map Wh
n is injective if and only if n ≤ 5.

(ii) For n odd and n = 2, the weight system map Wh
n is surjective.

(iii) For n ≥ 4 even, Wh
n has a 1-dimensional cokernel, spanned by c⊗

n
2 , where c = 1

2h ⊗h + e ⊗f +f ⊗ e ∈
Inv(sl⊗2

2 ).

The dimensions of Cn, Inv(sl⊗n
2 ) and KerWh

n are given in Table 1.
Let Sn be the symmetric group in n elements. The spaces Cn and Inv(sl⊗n

2 ) have Sn-module structures, 
such that Sn acts on Cn by permuting the labels, and acts on Inv(sl⊗n

2 ) by permuting the factors. The sl2
weight system is a Sn-module homomorphism, and the characters χCn

and χInv(sl⊗n
2 ) are already known 

(see Lemma 3.7 and Proposition 3.8). Thus, by Theorem 1.2, we can determine the characters χker(Wh
n ) and 

χIm(Wh
n ) of the kernel and the image of Wh

n , respectively, as follows.

Corollary 1.3. (i) For n = 2 or n > 2 odd, we have

χker(Wh
n ) = χCn

− χInv(sl⊗n
2 ) and χIm(Wh

n ) = χInv(sl⊗n
2 ).

(ii) For n ≥ 4 even, we have

χker(Wh
n ) = χCn

− χInv(sl⊗n
2 ) + χU and χIm(Wh

n ) = χInv(sl⊗n
2 ) − χU ,

where U is the trivial representation.
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Although the proof of Theorem 1.2 is mainly combinatorial, it heavily relies on the following algebraic 
result.

Theorem (Theorem 3.2). The set

In := {W (T ); T is a Riordan tree of order n}

forms a basis for Inv(sl⊗n
2 ).

Here, Riordan trees of order n are a special class of elements of Bh(n); roughly speaking, a Riordan tree 
is a disjoint union of linear tree diagrams (i.e. of the shape of Fig. 2), whose label sets comprise a Riordan 
partition of {1, . . . , n} – see Definition 3.1.

Theorem 3.2 is proved using the work of Frenkel and Khovanov [3], who studied graphical calculus 
for the dual canonical basis of tensor products of finite-dimensional irreducible representations of Uq(sl2). 
More precisely, we define a new basis for InvUq

(V ⊗n
2 ), the space of Uq(sl2)-invariants of tensor products 

of the 3-dimensional irreducible representation V2, by inserting copies of the Jones–Wenzl projector in the 
dual canonical basis studied in [3]. This basis is actually unitriangular to the Frenkel–Khovanov basis, see 
Theorem 4.3. The result is a graphical description of invariant tensors in terms of Jacobi diagrams; see e.g. 
[7,9,11] for related graphical approaches to invariant tensors. We expect that this result and its possible 
generalizations could also be interesting from an algebraic point of view.

Remark 1.4. Consider the projection Zh of the Kontsevich integral Z onto the space Bt,h(n) of tree Jacobi 
diagrams labeled by distinct elements of {1, . . . , n}. In Proposition 10.6 of [4], Habegger and Masbaum 
show that, for string links, the leading term of Zh determines (and is determined by) the first non-vanishing 
Milnor link-homotopy invariants. The non-injectivity of the map Wh

n for n ≥ 5 tells us that, expectedly, this 
is in general no longer the case for quantum invariant W ◦Z – yet, it is remarkable that it still determines the 
first non-vanishing Milnor link-homotopy invariants of length up to 5. On the other hand, since Z extends 
to a graded isomorphism on the free abelian group generated by string links, surjectivity of the map Wh

n

readily implies surjectivity of the linear extension of Wh
n ◦ Z (see also Remark 3.3). By Theorem 1.2, the 

surjectivity defect is given by c⊗n; it is not hard to check that, for a 2n-component string link, the coefficient 
of c⊗n in W ◦ Z is given by a product of linking numbers (this follows from a similar result at the level of 
the Kontsevich integral Z), and is in particular zero for string links with vanishing linking numbers.

Similar observations can be made for the universal sl2 invariant, using Theorem 5.5 of [8].

The rest of this paper is organized in three sections. In Section 2 we recall the definitions of Jacobi 
diagrams and the sl2 weight system, and give a result which in particular implies Lemma 1.1. Section 3
introduces Riordan trees and the tree basis of Inv(sl⊗n

2 ), which are used to prove Theorem 1.2. Finally, in 
Section 4 we recall a few elements from the graphical calculus developed by Frenkel and Khovanov, and use 
it to prove Theorem 3.2.

2. Jacobi diagrams and the sl2 weight system

In this section we give the definitions of the sl2 weight system W and proof of Lemma 1.1.

2.1. The Lie algebra sl2 and its symmetric algebra

Recall that the Lie algebra sl2 is the 3-dimensional Lie algebra over Q generated by h, e, and f with Lie 
bracket

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (1)
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Fig. 1. The AS and IHX relations.

Fig. 2. A linear tree Jacobi diagram.

Let S = S(sl2) be the symmetric algebra of sl2. The adjoint action, acting as a derivation, endows S, and 
more generally S⊗n for any n ≥ 1, with a structure of sl2-modules. Note that sl⊗n

2 , the n-fold tensor power 
of sl2, is isomorphic to the subspace of S⊗n having degree one in each factor.

We denote by Inv(S⊗n) and Inv(sl⊗n
2 ) the set of invariant tensors of S⊗n and sl⊗n

2 , respectively (that is, 
elements that are mapped to zero when acted on by h, e, and f).

2.2. Jacobi diagrams

A Jacobi diagram is a finite unitrivalent graph, such that each trivalent vertex is equipped with a cyclic 
ordering of its three incident half-edges. Each connected component is required to have at least one univalent 
vertex. An internal edge of a Jacobi diagram is an edge connecting two trivalent vertices. The degree of a 
Jacobi diagram is half its number of vertices.

In this paper we call a simply connected (not necessarily connected) Jacobi diagram a tree. A tree 
consisting of a single edge is called a strut.

Let B(n) be the completed Q-space spanned by Jacobi diagrams whose univalent vertices are labeled by 
elements of {1, ..., n}, subject to the AS and IHX relations shown in Fig. 1. Here completion is given by the 
degree. Note that B(n) has an algebra structure with multiplication given by disjoint union.

Let Bh(n) ⊂ B(n) denote the subspace generated by Jacobi diagrams labeled by distinct1 elements in 
{1, . . . , n}. Note that Bh(n) is the polynomial algebra on the space Ch(n) of connected diagrams labeled by 
distinct elements in {1, . . . , n}.

As is customary, for each of the spaces defined above we use a subscript k to denote the corresponding 
subspaces spanned by degree k elements.

We denote by Cn the space of connected trees where each of the labels 1, . . . , n appears exactly once. 
It is a well-known fact, easily checked using the AS and IHX relations, that a basis for Cn is given by 
linear trees, i.e. connected trees of the form shown in Fig. 2, where the labels i1 and in are two arbitrarily 
chosen elements of {1, . . . , n}, and where i2, . . . , in−1 are running over all (pairwise distinct) elements of 
{1, . . . , n} \ {i1, in}. This shows that dim Cn = (n − 2)!, as recalled in the introduction.

2.3. The sl2 weight system

We now define the sl2 weight system, which is a Q-algebra homomorphism

W : B(n) → Inv(S⊗n).

1 The superscript h stands for ‘homotopy’ since, as noted in the introduction, Bh(n) is the relevant space for link-homotopy 
invariants of (string) links.
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Recalling that B(n) is (the completion of) the commutative polynomial algebra on the space of connected 
diagrams, it is enough to define it on the latter. We closely follow [8, §4.3].

We will use the non-degenerate symmetric bilinear form

κ: sl2 ⊗ sl2 → Q

given by

κ(h, h) = 2, κ(e, f) = 1, κ(h, e) = κ(h, f) = κ(e, e) = κ(f, f) = 0.

The bilinear form κ identifies sl2 with the dual Lie algebra sl∗2. Note that, under this identification, κ ∈
(sl⊗2

2 )∗ 	 sl∗2 ⊗ sl∗2 itself corresponds to the quadratic Casimir tensor

c = 1
2h⊗ h + f ⊗ e + e⊗ f ∈ Inv(sl⊗2

2 ), (2)

while the Lie bracket [−, −] ∈ sl∗2 ⊗ sl∗2 ⊗ sl2 corresponds to the invariant tensor

b =
∑
σ∈S3

(−1)|σ|σ(h⊗ e⊗ f) (3)

= h⊗ e⊗ f + e⊗ f ⊗ h + f ⊗ h⊗ e− h⊗ f ⊗ e− f ⊗ e⊗ h− e⊗ h⊗ f, (4)

where σ acts by permutation of the factors.
Let Dij be a strut with vertices labeled by 1 ≤ i, j ≤ n. Rewriting formally (2) as c =

∑
c1 ⊗ c2, we set

W (Dij) =
∑

1 ⊗ · · · ⊗ c1 ⊗ · · · ⊗ c2 ⊗ · · · ⊗ 1 ∈ Inv(S⊗n),

where c1 and c2 are at the ith and jth position, respectively.
Now, let m ≥ 2. For a connected diagram D ∈ Bm(n), attach a copy of b ∈ Inv(sl⊗3

2 ) to each trivalent 
vertex of D, a copy of sl2 being associated to each of the 3 half-edges at the trivalent vertex following the 
cyclic ordering. Each internal edge of D is divided into two half-edges, and we contract the two corresponding 
copies of sl2 by κ. Fixing an arbitrary total order on the set of univalent vertices of D, we get in this way an 
element xD =

∑
x1 ⊗ · · · ⊗ xm+1 of Inv(sl⊗m+1

2 ), the ith factor corresponding to the ith univalent vertex 
of D. We then define W (D) ∈ Inv(S⊗n) by

W (D) =
∑

y1 ⊗ · · · ⊗ yn, (5)

where yj is the product of all xi ∈ sl2 such that the ith vertex is labeled by j.
It is known that W is well-defined, i.e. is invariant under the AS and IHX relations. The next lemma, 

due to Chmutov and Varchenko [2], gives another relation satisfied by the sl2 weight system.

Lemma 2.1. The sl2 weight system W factors through the CV relation below

Note that the CV relation is not degree-preserving. Note also that this relation might involve diagrams 
with a circular component: the value of W on such component is set to W (©) = 3 = dim sl2.
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Remark 2.2. It is worth noting here that the restriction of the sl2 weight system to Cn takes values 
in Inv(sl⊗n

2 ). Likewise, the homotopy sl2 weight system, i.e. its restriction to Bh(n), takes values in 
Inv(〈sl2〉⊗n), where 〈sl2〉⊗n = (Q ⊕ sl2)⊗n ⊂ S(sl2)⊗n is the subspace of tensors having degree at most one
in each factor.

2.4. The space Bsl2(n) of sl2-Jacobi diagrams

In view of Lemma 2.1, it is natural to consider the following space.

Definition 2.3. The space of sl2-Jacobi diagrams is the quotient space

Bsl2(n) = B(n)/CV,©3

of B(n) by the ideal generated by the CV relation and the relation ©3 that maps a circular component to 
a factor 3.

Note that the algebra structure on B(n) descends to Bsl2(n). This is however no longer a graded algebra 
(although one could impose such a structure by considering the number of univalent vertices).

Since the sl2 weight system factors through Bsl2(n), it is useful for our study to get some insight in this 
space.

Proposition 2.4. As an algebra, Bsl2(n) is generated by (connected) trees.

This in particular implies Lemma 1.1 stated in the introduction.

Proof. It suffices to prove that any connected Jacobi diagram in Bsl2(n) can be expressed as a combination 
of trees. The proof is by a double induction, on the number of cycles in the diagrams and on the minimal 
length of the cycles (the length of a cycle is the number of internal edges contained in it).

Consider a connected diagram C with k cycles, and pick a cycle of minimal length l. If the cycle has 
length l = 0, then the diagram C is a loop, which can be replaced by a coefficient 3 by the ©3 relation. If 
l = 1, then it follows from the AS relation that C is zero. Now, if l ≥ 2, we can apply the CV relation at 
some internal edge of the cycle, which gives

, (6)

where the rightmost term is a diagram with n − 1 cycles, and where the middle term has a cycle of length 
l− 2. We can thus apply (6) recursively to reduce the length of this cycle, until we obtain a cycle of length 
either 1 or 0, as above. Then C writes as a combination of diagrams with less than k cycles. This concludes 
the proof. �
3. Invariant tensors and the homotopy sl2 weight system

In this section we give a basis for Inv(sl⊗n
2 ) in terms of Riordan trees, and use this basis to prove 

Theorem 1.2. The kernel of the homotopy sl2 weight system is briefly discussed at the end of the section.



J.-B. Meilhan, S. Suzuki / Journal of Pure and Applied Algebra 221 (2017) 691–706 697
Fig. 3. The Riordan tree associated to the Riordan partition {{1, 4, 5, 9, 10}, {2, 3}, {6, 7, 8}}.

3.1. Tree basis of Inv(sl⊗n
2 )

We now construct a basis for Inv(sl⊗n
2 ), as the image by the sl2 weight system of a certain class of 

connected tree Jacobi diagrams. For this, we need a couple extra definitions.
On one hand, we call a linear tree ordered if, in the notation of Fig. 2, its labels i1, . . . , in satisfy 

i1 < i2 < . . . < in.
On the other hand, a Riordan partition is a partition of {1, . . . , n} into parts that contains at 

least two elements, and whose convex hulls are disjoint when the points are arranged on a cir-
cle. For example, {{1, 4, 5, 9, 10}, {2, 3}, {6, 7, 8}} is a Riordan partition, as illustrated in Fig. 3, while 
{{1, 4, 6}, {2, 3}, {5, 7, 8}} is not.2 The number of Riordan partitions of {1, . . . , n} is given by the Riordan 
number Rn – see [1, §3.2].

This leads to the following

Definition 3.1. A Riordan tree of order n is an element of Bh(n) such that

• each connected component is an ordered linear tree,
• the partition of {1, . . . , n} induced by its connected components is a Riordan partition.

See the right-hand side of Fig. 3 for an example. Note that a Riordan partition uniquely determines a 
Riordan tree; the number of Riordan trees of order n is thus given by Rn.

Theorem 3.2. The set

In := {W (T ); T is a Riordan tree of order n}

forms a basis for Inv(sl⊗n
2 ).

We call this basis the tree-basis of Inv(sl⊗n
2 ). The proof of Theorem 3.2 is postponed to Section 4, and is 

somewhat indirect. It uses the graphical calculus for the dual canonical basis for Inv(V ⊗n
2 ) given by Frenkel 

and Khovanov in [3]. Although a more direct proof may exist, we hope that the one given in this paper 
could be interesting from the representation theory point of view.

Remark 3.3. Theorem 3.2 implies immediately that the homotopy sl2 weight system W : Bh(n) →
Inv(〈sl2〉⊗n) is surjective, and Theorem 1.2 can be regarded as a refinement of this observation. (Recall 
that 〈sl2〉⊗n was defined in Remark 2.2.)

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 (i) is straightforward using Theorem 3.2: pick a basis for Cn in terms of linear 
trees, as outlined at the end of Section 2.2, and write each basis element, using the CV relation, as a linear 

2 A partition satisfying only the second condition is often called non-crossing.
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Fig. 4. Relation in Bsl2 (n), given by applying the CV relation at each of the ∗-marked edges on the right-hand side.

combination of Riordan trees of order n. It then suffices to check that, for n ≤ 5, the matrix obtained in 
this transformation has rank (n − 2)!. Non-injectivity for n ≥ 6 is obvious since the dimension of the target 
space Inv(sl⊗n

2 ) is smaller than that of the domain Cn.
We now turn to the surjectivity results (ii) and (iii). Let Bh

Y (n) ⊂ Bh(n) be the subspace of Jacobi 
diagrams with at least one trivalent vertex, and let Bh

U(n) ⊂ Bh(n) be the subspace of Jacobi diagrams 
containing only struts. Set

IYn := {W (T ); T is a Riordan tree in Bh
Y (n)}, (7)

IUn := {W (T ); T is a Riordan tree in Bh
U (n)}. (8)

Note that In = IYn for n odd, while In = IYn ∪ IUn for n even.
Based on Theorem 3.2 and this observation, points (ii) and (iii) of Theorem 1.2 follow from the following 

two lemmas.

Lemma 3.4. If T ∈ Bh
Y (n), then W (T ) ∈ W (Cn). In particular, IYn ⊂ W (Cn).

For n ≥ 2 even, let ∪⊗n =
∐n/2

i=1 D2i−1,2i denote the tree diagram made of n struts labeled by i and i + 1
(1 ≤ i ≤ n/2). Note that W (∪⊗n) = c⊗n ∈ IUn .

Lemma 3.5.

(i) We have W (∪⊗n) �≡ 0 modulo W (Cn).
(ii) If T ∈ Bh

U (n) with n ≥ 4 even, then W (T ) ≡ W (∪⊗n) modulo W (Cn).

Proof of Lemma 3.4. Let T ∈ Bh
Y (n) be a Jacobi diagram, and let k denote the number of connected 

components of T . If k > 1, the equality depicted in Fig. 4 shows how T can be expressed as a combination 
of tree diagrams with k − 1 components in Bh

sl2
(n). Since each of these trees contains at least one trivalent 

vertex, the proof follows by an easy induction on k. �
Remark 3.6. Note that the proof applies more generally to the whole space Bsl2(n). More precisely, any 
Jacobi diagram with at least one trivalent vertex decomposes as a combination of connected diagrams in 
Bsl2(n). Combining this with Proposition 2.4, we have that Bsl2(2k + 1) is generated, as a vector space, by 
connected tree Jacobi diagrams and that Bsl2(2k) is generated by connected trees and the disjoint union of 
n struts �k

i=1D2i−1,2i.

Proof of Lemma 3.5. To show (ii), note that any T ∈ Bh
U (n) is obtained from ∪⊗n by exchanging some 

labels, which implies that W (T ) −W (∪⊗n) ∈ W
(
Bh
Y (n)

)
by Lemma 2.1. Combining this with Lemma 3.4, 

we have the assertion.
We now prove (i). Consider the C-linear map φ: Inv(sl⊗n

2 ) → C defined (using Theorem 3.2) by

φ(t) =
{

0 for t ∈ IYn ,

1 for t ∈ I∪.
n
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We prove that W (Cn) ⊂ Ker(φ), which implies the assertion. It suffices to prove that W (T ) ∈ Ker(φ) for 
a connected tree diagram T ∈ Cn; actually, as observed at the end of Section 2.2, we may further assume 
that T is linear.3 Notice that the number vT of trivalent vertices of T is its degree minus 1, and that applying 
the CV relation yields diagrams with (vT − 2) trivalent vertices. If the degree of T is odd, then by applying 
the CV relation repeatedly we obtain

T = 2vT /2
2vT /2∑
i=1

(−1)iUi,

where Ui ∈ Bh
U (n). Although this expression is not unique, this always yields φ(T ) = 0. Now, in the case 

where T has even degree, successive applications of the CV relation give

T = 2(vT−1)/2
2(vT −1)/2∑

i=1
(−1)iYi,

where Yi has a single trivalent vertex (and vT−1
2 = n

2 − 1 struts). We thus obtain φ(T ) = 0, as desired. �
3.3. Sn-module structure

For a partition λ of n, let Vλ denote the irreducible representation of Sn associated to λ. Note that the 
adjoint representation of sl2 corresponds to the vector representation V of SO(3), and the invariant part of 
sl⊗n

2 corresponds to the invariant part of V ⊗n. The tensor powers of the vector representation of GL(3) and 
its restriction to SO(3) are well-studied classically, using e.g. Schur–Weyl duality or Peter–Weyl Theorem. 
In particular, we have the following.

Lemma 3.7. As Sn-modules, we have

Inv(sl⊗n
2 ) 	

⊕
Vλ,

where the summation is over partitions λ = (λ1, λ2, λ3) of n such that each λi is odd or each λi is even, 
i.e., such that λ1 − λ2, λ2 − λ3 ∈ 2Z.

Corollary 1.3 follows from Theorem 1.2 and Lemma 3.7 as follows.

Proof of Corollary 1.3. The fact that χker(Wh
n ) = χCn

− χInv(sl⊗n
2 ) and χIm(Wh

n ) = χInv(sl⊗n
2 ) for n = 2

or n > 2 odd immediately follows from Theorem 1.2. By Lemma 3.7, the one dimensional representation 
appearing in the irreducible decomposition of Inv(sl⊗n

2 ) is the trivial representation U . Thus we have that 
χker(Wh

n ) = χCn
− χInv(sl⊗n

2 ) + χU and χIm(Wh
n ) = χInv(sl⊗n

2 ) − χU for n ≥ 4 even. �
The character χCn

is known as follows.

Proposition 3.8 (Kontsevich [6, Theorem 3.2]). As a Sn-module, the character of Cn is

χCn
(1n) = (n− 2)!, χCn

(11ab) = (b− 1)!ab−1μ(a), χCn
(ab) = −(b− 1)!ab−1μ(a), (9)

and χCn
(∗) = 0 for other conjugacy classes. Here, μ is the Möbius function.

3 This extra assumption is not necessary for the proof, but makes the arguments simpler to verify.
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Fig. 5. Irreducible decompositions of Cn, 2 ≤ n ≤ 8, as Sn-modules. The red components are in the kernel of Wh
n . (For interpretation 

of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The diagrams L1, L2, R1, R2 and O; here m,n ≥ 0 are such that k = (m + n + 2)/2.

Thus by Corollary 1.3 we can calculate the character χker(Wh
n ) explicitly. See Fig. 5 for the low degree 

cases.

3.4. Generating the kernel

It follows from Theorem 1.2 that the dimension of the kernel of the weight system map Wh
k is given by 

(k − 2)! − Rk + 1+(−1)k
2 . In this short section, we investigate some typical elements of this kernel. More 

precisely, we consider 1-loop relators of degree k, which are linear combinations of elements of Ck+1 of the 
form

L1 − L2 −R1 + R2,

where L1, L2, R1, R2 are degree k tree Jacobi diagrams as shown in Fig. 6.
Let us explain why these are indeed mapped to zero by Wh

k . Denote by O the element of Bh
k+1(k + 1)

represented in Fig. 6. We call such an element a 2-forked wheel. Now, by applying the CV relation at the 
internal edge l of O (see the figure), we have that

Wh
k (O) = 2Wh

k (L1) − 2Wh
k (L2),
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while applying CV at internal edge r yields

Wh
k (O) = 2Wh

k (R1) − 2Wh
k (R2),

thus showing that L1 − L2 −R1 + R2 is in the kernel of Wh
k .

Notice that, in degree ≤ 5, all 1-loop relators are trivial, which agrees with the fact that the weight 
system map is injective. Computations performed using a code in Scilab allowed us to check that, up to 
degree k = 8, the kernel of the weight system map Wh

k is generated by 1-loop relators of degree k.4 It 
would be interesting to see up to what degree this statement still holds, and what are the additional kernel 
elements when it doesn’t.

4. The dual canonical basis and the sl2 weight system

In this section, we review the graphical calculus used by Frenkel and Khovanov in [3] to describe tensor 
products of finite-dimensional irreducible representations of quantum group Uq(sl2). This graphical calculus 
for invariant tensors appeared originally in the work of Rumer, Teller and Weyl [10], and was later adapted 
to the quantum setting in [3].

More precisely, we first recall in Section 4.1 some basic facts on Uq(sl2) and its representations, in 
Section 4.2 we recall the graphical calculus for the dual canonical basis for invariant tensors of 3-dimensional 
irreducible representations of sl2, and in Section 4.3 we show that a simple modification of this basis is 
well-behaved with respect to the universal sl2 weight system.

4.1. Quantum group Uq(sl2) and finite-dimensional irreducible representations

Let Uq = Uq(sl2) be the algebra over C(q) with generators K, K−1, E, F and relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FE = K −K−1

q − q−1 ,

for q a non-zero complex indeterminate.
For n ≥ 0, denote by Vn the fundamental (n +1)-dimensional irreducible representation of Uq, with basis

{vi; −n ≤ i ≤ n, i = n (mod 2)}

such that the action of Uq is given by

Evi =
[
n + i + 2

2

]
vi+2, Fvi =

[
n− i + 2

2

]
vi−2, K±1vi = q±ivi

where [m] = (qm − q−m)/(q − q−1) and vn+2 = v−n−2 = 0.
Let 〈 , 〉: Vn ⊗ Vn → C(q) be the symmetric bilinear pairing defined by

〈vn−2k, vn−2l〉 = [n]!
[k]![n− k]!δk,l; 0 ≤ k, l ≤ n,

where [k]! :=
∏

i≤k[i], and let {vi; −n ≤ i ≤ n, i = n (mod 2)} be the dual basis with respect to this 
pairing. In particular, for n = 1, the dual basis is simply given by vi = vi (i = ±1), while for n = 2, we 
have v2 = v2, v0 = 1

[2]v0 and v−2 = v−2.

4 The authors are indebted to Raphaël Rossignol for writing this code.
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Fig. 7. Diagrams representing the dual canonical basis of InvUq
(V ⊗2

1 ).

We also define the bilinear pairing 〈 , 〉 of Vn1 ⊗ . . .⊗ Vnm
and (Vn1 ⊗ . . .⊗ Vnm

)∗ = Vnm
⊗ . . .⊗ Vn1 by5

〈vk1 ⊗ . . .⊗ vkm
, vk

′
m ⊗ . . .⊗ vk

′
1〉 =

m∏
i=1

δki,k′
i
.

We refer the reader to Chapters 2 and 3 of the book [5] for a much more detailed treatment of this 
subject.

4.2. Graphical representations of the dual canonical basis for invariant tensor products

In what follows, we will only deal with 1 and 2-dimensional representations, which is sufficient for the 
purpose of this paper. We thus only give a very partial overview of the work in [3], where we refer the reader 
for further reading. We will mostly follow the notation of [3].

Let δ1: C → V1 ⊗ V1 denote the map defined by

δ1(1) = v1 ⊗ v−1 − q−1v−1 ⊗ v1.

In [3, Thm. 1.9], Frenkel and Khovanov showed that the intersection of the dual canonical basis of V ⊗2m
1

and the space InvUq
(V ⊗2m

1 ) of invariant tensors forms a basis of InvUq
(V ⊗2m

1 ):

{(δ1)2(m−1)
im−1

(δ1)2(m−2)
im−2

· · · (δ1)2i1(δ1).1; 0 ≤ ij ≤ j for each index 1 ≤ j ≤ m− 1},

where (δ1)kl : V ⊗k
1 → V ⊗k+2

1 is defined by (δ1)kl = 1⊗l ⊗ δ1 ⊗ 1⊗(k−l) (0 ≤ l ≤ k).
Graphically, V ⊗2m

1 is represented by 2m fixed points on the x-axis of the real plane, and an element of 
the dual canonical basis of InvUq

(V ⊗2m
1 ) is represented by a union of m non-intersecting arcs embedded 

in the lower half-plane and connecting these points, each arc corresponding to a copy of the map δ1. For 
example, the dual canonical basis of InvUq

(V ⊗4
1 ) consists of two elements (δ1)20.(δ1).1 and (δ1)21.(δ1).1, which 

are represented by the two diagrams D1 and D2 in Fig. 7, respectively.
Now, it follows from [3, Thm. 1.11] that these basis elements induce a basis B0

m for InvUq
(V ⊗m

2 ), by 
taking their image under π⊗m

2 , where π2: V1 ⊗ V1 → V2 is defined by

π2(v1 ⊗ v1) = v2, π2(v−1 ⊗ v−1) = v−2, (10)

π2(v1 ⊗ v−1) = q−1v0, π2(v−1 ⊗ v1) = v0. (11)

The map π2 is graphically represented by a box with two incident points (corresponding to the two copies 
of V1) on its lower horizontal edge, see Fig. 8.

Since π2 ◦ δ1 = 0, a diagram containing a box whose incident points are connected by an arc is equal to 
zero. If there is no such box, then this defines a non-trivial element of InvUq

(V ⊗m
2 ).

In summary, an element of the dual canonical basis B0
m of InvUq

(V ⊗m
2 ) is graphically incarnated by m

horizontally aligned boxes, whose incident edges are connected by m non-intersecting arcs, such that each 
arc is incident to two distinct boxes.

5 The action of Uq on tensor powers of irreducible representations is defined via the comultiplication map Δ in the Hopf algebra 
structure of Uq; the dual action with respect to 〈 , 〉 is likewise given by u(x ⊗ y) = Δ̄(u)(x ⊗ y), where Δ̄(u) = (σ ⊗ σ)Δ(σ(u))
with the bar involution σ: Uq → Uq. See e.g. [5, Chap. 3] or [3, § 1] for the details.
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Fig. 8. Diagrams representing the dual canonical bases for InvUq
(V ⊗2

2 ) and InvUq
(V ⊗3

2 ).

Remark 4.1. Arranging the n boxes on a circle, these diagrams representing elements of B0
m naturally appear 

to be in one-to-one correspondence with (convex hulls of) Riordan partitions of {1, . . . , n}. This agrees with 
the fact that the dimension of Inv(V ⊗m

2 ) is given by the Riordan number Rm.

Example 4.2. We conclude with a couple of examples. For m = 2, InvUq
(V ⊗2

2 ) is spanned by Dc in Fig. 8, 
which represents the element

c̃ : = (π2 ⊗ π2)(δ1)21.(δ1).1

= (π2 ⊗ π2)
(
v1 ⊗ v1 ⊗ v−1 ⊗ v−1 − q−1v−1 ⊗ v1 ⊗ v−1 ⊗ v1

− q−1v1 ⊗ v−1 ⊗ v1 ⊗ v−1 + q−2v−1 ⊗ v−1 ⊗ v1 ⊗ v1)
= v2 ⊗ v−2 − (q−1 + q−3)v0 ⊗ v0 + q−2v−2 ⊗ v2.

Similarly, InvUq
(V ⊗3

2 ) has dimension 1 with basis given by the diagram Db represented in Fig. 8. We 
leave it to the reader to verify that this diagram represents the element

b̃ := v2 ⊗ v0 ⊗ v−2 + q−2v0 ⊗ v−2 ⊗ v2 + q−2v−2 ⊗ v2 ⊗ v0 + q−5v0 ⊗ v0 ⊗ v0

− q−2v2 ⊗ v−2 ⊗ v0 − q−2v0 ⊗ v2 ⊗ v−2 − q−2v−2 ⊗ v0 ⊗ v2 − q−1v0 ⊗ v0 ⊗ v0.

In the rest of this paper, we will use the term FK diagrams to refer to this graphical calculus of Frenkel 
and Khovanov, and we will consider such diagrams up to planar isotopy (fixing only the m boundary boxes 
corresponding to the m copies of V2 in Inv(V ⊗m

2 )). We will also often blur the distinction between an 
invariant tensor and the FK diagram representing it.

4.3. The tree basis of InvUq
(V ⊗n

2 )

In this section, we modify the dual canonical basis B0
m of InvUq

(V ⊗n
2 ) recalled above and prove that, at 

q = 1, this new basis corresponds to the tree basis of Inv(sl⊗n
2 ) defined in Section 3.1.

The only new ingredient is the Jones–Wenzl projector

p2: V1 ⊗ V1 → V1 ⊗ V1

defined by

p2(v1 ⊗ v1) = v1 ⊗ v1, p2(v1 ⊗ v−1) = 1
[2]

(
q−1v1 ⊗ v−1 + v−1 ⊗ v1) , (12)

p2(v−1 ⊗ v−1) = v−1 ⊗ v−1, p2(v−1 ⊗ v1) = 1
[2]

(
v1 ⊗ v−1 + qv−1 ⊗ v1) . (13)

See Fig. 9 for a graphical definition. There, a vertical strand represents the identity of End(V1), while an 
arc connecting two lower boundary points represents the map ε1: V1 ⊗ V1 → V0 defined by

ε1(v1 ⊗ v−1) = −q ; ε1(v−1 ⊗ v1) = 1 ; ε1(v1 ⊗ v1) = ε1(v−1 ⊗ v−1) = 0.
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Fig. 9. The Jones–Wenzl projector p2 ∈ End(V ⊗2
1 ).

Fig. 10. The embedding i(T ) for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.

Fig. 11. The FK diagrams for f0(T ) and f(T ), for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.

Let T be a Riordan tree of order n. We now define two elements f0(T ) and f(T ) of InvUq
(V ⊗n

2 ) using 
the graphical calculus introduced in the previous section. Consider a proper embedding i(T ) of T in the 
lower-half plane, such that the j-labeled vertex is sent to the point (j; 0) and such that the cyclic ordering 
at each trivalent vertex agrees with the orientation of the plane. An example is given in Fig. 10. Note that 
the Riordan property ensures that such an embedding exists.

We first describe the diagram defining f0(T ) ∈ InvUq
(V ⊗n

2 ). First, replace each point (j; 0) by a box 
representing a copy of V2 (1 ≤ j ≤ n). Next, consider an annular neighborhood of i(T ) in the lower-half 
plane; the boundary of this neighborhood is a collection of disjoint arcs connecting the n boxes, thus 
providing an FK diagram for f0(T ). See Fig. 11. Note that we have the following reformulation for the dual 
canonical basis of Frenkel–Khovanov:

B0
n := {f0(T ); f is a Riordan tree of order n}.

Now, to obtain the diagram defining f(T ) we simply insert a copy of the Jones–Wenzl projector p2 in the 
pairs of arcs of f0(T ) induced by each internal edge of T in the above procedure – see the example of Fig. 11.

We have

Theorem 4.3. The set

BJW
n := {f(T ); f is a Riordan tree of order n}

forms a basis for InvUq
(V ⊗n

2 ).

Proof. Since there is a natural one-to-one correspondence between the set BJW
n and the basis B0

n, it is 
enough to prove the independency of the elements in BJW

n .
So suppose that

∑
T∈Rion

αT f(T ) = 0,

where the sum runs over the set Rion of Riordan trees of order n, and where αT ∈ C. Using the formula 
for the Jones–Wenzl projector p2 given by Fig. 9, one can express each f(T ) as a linear combination

f(T ) = f0(T ) +
∑ 1

[2]iT−iT ′
f0(T ′),
T ′⊂T
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Fig. 12. Graphical definition of the contraction map ε2.

where the sum runs over all subtrees T ′ obtained from T by deleting internal edges, and where it denotes the 
number of internal edges of a Riordan tree t ∈ Rion. By substituting this identity in 

∑
T∈Rion

αT f(T ) = 0, 
we have that there exists complex numbers α′

T ∈ C such that 
∑

f∈Rion
α′
T f

0(T ) = 0, and a lower triangular 
matrix A whose diagonal entries are all 1 such that (α′

T1
, . . . , α′

Tl
)t = A(αT1 , . . . , αTl

)t for a suitably chosen 
order {T1, . . . , Tl} on Rion. Since B0

n is a basis of InvUq
(V ⊗n

2 ), we have (α′
f1
, . . . , α′

fl
) = 0, which implies 

that αT = 0 for all T ∈ Rion. This concludes the proof. �
It turns out that this simple modification of the dual canonical basis of InvUq

(V ⊗n
2 ) is directly related to 

the tree basis introduced in Section 3.1, as we now explain.
Let ρ: InvUq

(V ⊗n
2 ) → Inv(sl⊗n

2 ) be the C-linear map such that

ρ(q) = 1, ρ(v0) = 1
2h, ρ(v2) = −e, ρ(v−2) = f.

Proposition 4.4. Let T be a Riordan tree. If deg(T ) and tri(T ) denote the degree and number of trivalent 
vertices of T respectively, then we have

ρ (f(T )) = (−1)deg(T )

2tri(T ) W (T ).

It follows immediately that the tree basis of Section 3.1 indeed is a basis for Inv(sl⊗n
2 ), as claimed in 

Theorem 3.2.

Proof. The assertion follows essentially from the definitions. To see this, let us slightly reformulate the 
definition of f(T ), still in terms of FK diagrams but in a spirit that is closer to that of W (T ). For each 
strut component of i(T ), pick a copy of the diagram Dc of Fig. 8, and take a copy of the diagram Db

for each trivalent vertex so that a copy of V2 is associated to each of the incident half-edges following the 
cyclic ordering. For each internal edge of i(T ), we contract the two corresponding copies of V2 by the map 
ε2: V2 ⊗ V2 → C defined by

ε2(v2 ⊗ v−2) = q2, ε2(v0 ⊗ v0) = − 1
q−1 + q−3 , (14)

ε2(v−2 ⊗ v2) = 1, ε2(vi ⊗ vj) = 0, if i + j �= 0. (15)

As observed in [3], we have the identity

ε2 ◦ (π2 ⊗ π2) = ε1 ◦ (1 ⊗ ε1 ⊗ 1) ◦ (p2 ⊗ p2).

This formula, as illustrated in Fig. 12 above, simply means that the map ε2 is the insertion of a copy of p2
at each internal edge. (Recall that p2 is a projector, i.e. p2 ◦ p2 = p2.)

So applying ε2 in this way yields precisely the FK diagram for f(T ), where the box corresponding to the 
i-labeled vertex represents the ith copy of V2. This is illustrated on an example in Fig. 13.

Now, it remains to observe that the elements c̃ and b̃, defined in Example 4.2 and represented by the 
diagrams Dc and Db respectively, correspond to the elements c and b of Equations (2) and (3) via the map
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Fig. 13. Reformulating f(T ), for the Riordan partition {{1, 2, 6, 7, 8}; {3, 4, 5}}.

ρ as follows:

ρ(c̃) = −c (16)

and

ρ(b̃) = 1
2b, (17)

and that the contraction maps κ and ε2, used in the definitions of W (T ) and f(T ) respectively, are related 
by

(ε2)|q=1 = −κ ◦ ρ. (18)

Notice in particular that the 1
2tri(T ) coefficient in the statement comes from the application of (17) at each 

trivalent vertex, while the sign (−1)deg(T ) is given by applying (16) at each strut component (which has 
degree 1), and (18) at each internal edge (since the degree of a linear tree is the number of internal edges 
plus 2). This concludes the proof. �
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