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ABSTRACT

We show that the Casson knot invariant, linking number and Milnor’s triple linking
number, together with a certain 2-string link invariant V2, are necessary and sufficient to
express any string link Vassiliev invariant of order two. Explicit combinatorial formulas
are given for these invariants. This result is applied to the theory of claspers for string
links.
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1. Introduction

1.1. History and motivations

Knot theory experienced a major developement in the early 90’s through the work of
Vassiliev [22], restated in simple and combinatorial terms by Birman and Lin [4, 5].
At low degree, Vassiliev invariants are well-understood for links: Murakami proved
that any Vassiliev invariant v of order two is a linear combination of linking numbers
and their products and Casson invariants of the components, the coefficients being
given by the initial data of v [15]. When considering the case of string links, which
are links with boundary [9], more invariants exist at order two: Milnor’s triple
linking numbers are indeed known to be of finite type for string links [2, 12]. It is
therefore a natural question to ask how many (and which) additional invariants are
needed to state a Murakami-type result in the string link case.

Such a result will allow us to give various combinatorial formulas for Vassiliev
invariants of order two, in particular for Milnor’s triple linking numbers. It is also
applied to the study of a conjecture of Habiro relating Vassiliev invariants to the
theory of claspers [8].
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1.2. Preliminaries

Let D2 be the standard two-dimensional disk, and x1, . . . , xn be n marked points
in the interior of D2. Let us recall from [9] the definition of an n-string link.

Definition 1.1. An n-component string link (or n-string link) is a proper, smooth
embedding

σ :
n⊔

i=1

Ii → D2 × I

of n disjoint copies Ii of the unit interval such that, for each i, the image σi of Ii

runs from (xi, 0) to (xi, 1). σi is called the ith string of σ.

Note that each string of an n-string link is equipped with an (upward) orientation
induced by the natural orientation of I.

The set SL(n) of all n-string links (up to isotopy with respect to the boundary)
has a monoid structure, with composition given by the stacking product and with
the trivial n-string link 1n as unit element.

For the study of Vassiliev invariants for string links, we have to consider sin-
gular n-string links, which are immersions

⊔
i Ii → D2 × I whose singularities are

transversal double points (in finite number). A singular n-string link σ with k dou-
ble points can be thought of as an element of ZSL(n), the free Z-module on SL(n),
by the following well-known skein formula

= − . (1.1)

Definition 1.2. Let A be an Abelian group. An n-string link invariant f :
SL(n) → A is a Vassiliev invariant of order k if its natural extension to ZSL(n)
vanishes on every n-string-link with (at least) k + 1 double points.

A chord diagram of order k is a disjoint union
⊔n

i=1 Ii of n oriented and ordered
copies of the unit interval, with k chords on it. We denote by Dn

k the set of chord
diagrams of order k (up to order and orientation preserving diffeomorphisms of the
copies of I). In this paper, the copies of I (called the strands of the diagram) will
be represented by bold lines, and the chords will be drawn with thin lines (dashed
lines are also often used in the literature).

Let σ be a singular n-string link with k double points. The preimages of the
double points of σ form a subset of

⊔n
i=1 Ii which consists in k pairs of points. The

chord diagram D of order k associated to σ is the element of Dn
k obtained by joining

each of these k pairs by a chord (σ is said to respect the chord diagram D).

For example, the singular 2-string link ����
��
��
��
��

respects the chord diagram .
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Definition 1.3. Let A be an Abelian group. An A-valued weight system of order
k is a map Wn

k : Dn
k → A satisfying the (1T ) and (4T ) relations:

(1T ) : Wn
k

( )
= 0

(4T ) : Wn
k (N) − Wn

k (S) = Wn
k (W ) − Wn

k (E)

where is any chord diagram with an isolated chord (i.e. disjoint from the other

chords) and diagrams N , S, W and E are those of Fig. 1.a

Note that, for n = 2 and 3, the (4T) relation gives:

Let v be a Vassiliev invariant of order k for n-string links. For a chord diagram
D of order k, v(D) denotes the value of v on any singular string link respecting D.
It is known (see [4]) that a Vassiliev invariant satisfies the (1T ) and (4T ) relations
of Definition 1.3.

Definition 1.4. The initial data of v consists in the following:


v(D) for every D ∈ Dn
k .

v(σ) for every chord diagram in Dn
l , l < k,

where σ is a fixed singular n-string link respecting it.

As outlined in [15], two vassiliev invariants of order k with the same initial data
coincide.

For more information about Vassiliev invariants, the reader is refered to [1].

N S W E

Fig. 1. The chord diagrams N , S, W and E.

aThey are identical outside of a small ball, inside of which they are as depicted.
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2. Vassiliev Invariants of Order Two for n-String Links

2.1. Invariants of order two for 2-string link

Recall that the Casson invariant ϕ(K) of a knot K is the coefficient of z2 in the
Conway polynomial of K: it vanishes on the unknot and equals 1 for the trefoil.
Likewise, if σ is a 1-string link, we define its Casson invariant by ϕ(σ) := ϕ(σ̂). Let
us denote by ϕi the Casson knot invariant of the ith component of a link, and by
µij the linking number of its ith and jth components.

In the case of 2-component links, it is known [15] that any Vassiliev invariant v

of order two can be written as a linear combination

v = α + β · µ12 + γ · ϕ1 + δ · ϕ2 + ω · µ2
12, (2.2)

where α, β, γ, δ and ω are constants. When considering the case of string links, it
turns out that more invariants are needed:

Let V2 : SL(2) → Z be the map defined by

V2(σ) := ϕ(p(σ)) − ϕ(σ1) − ϕ(σ2), (2.3)

where p(σ) denotes the plat-closure of σ: it is the knot obtained by identifying the
origin (respectively, the end) of σ1 with the origin (respectively, the end) of σ2, with
orientation induced by the orientation of σ1. An example is given in Fig. 2.

As an immediate consequence of the definition of V2, we have:

Proposition 2.1. V2 is a Z-valued Vassiliev invariant of order two for 2-
string links.

Let us compute this invariant for the string link version W of the Whitehead link,
depicted below.

The plat-closure of W being the trefoil, and each component being trivial, we have

V2(W ) = 1.

��
��
��
��

������

Fig. 2. The plat-closure of a 2-string link.
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It follows that V2 can not be expressed as a linear combination of type (2.2), as
both the linking number and the Casson invariants of the components vanish on W .

Remark 2.2. Computations (see [3, Sec. 2.3.3]) actually show that there are 4
linearly independent Z-valued Vassiliev invariants of order 2 for 2-string links. This
number is equal to the number of admissible (i.e. without isolated chord) chord
diagrams of order 2 modulo the (4T ) relation:

The first two correspond to ϕ1 and ϕ2, and the third corresponds to µ2
12. The last

diagram does not exist in the link case (as it vanishes by (1T ) when the endpoints of
the strands are identified): we will see in the next section that it actually corresponds
to the invariant V2.

Remark 2.3. Let SL0(2) be the submonoid of all 2-string links with vanishing
linking number. We can prove [14] that the modulo 2 reduction of V2 coincides on
SL0(2) with the modulo 2 reduction of the Sato–Levine invariant β (defined by
taking the closure σ̂ of a 2-string link σ ∈ SL0(2)). However, V2 differs from the
Sato–Levine invariant. For example, the 2-string link σ depicted below is mapped
to 0 by V2, whereas β(σ) = 2.

σ

2.2. Main result

In [15, Theorem 3.3], it is shown that any Vassiliev invariant v2 of order two for
links is of the form

v2 = a +
n∑

i=1

bi · ϕi +
∑
i<j

(
cij · µij + dij · µ2

ij

)
+
∑

i
j<k

eijk · µijµik +
∑
i<j
k<l
i<k

fijkl · µijµkl,

where the constants a, bi, cij , dij , eijk and fijkl are explicitly given in terms of the
initial data of v2. Here, we state a similar result for the string link case.

Let us denote by��
��
��
��

����i j
the singular n-string link representing

i j
depicted

below.

��
��
��
��

n1 i j
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Theorem 2.4. Let v be a Vassiliev invariant of order two for n-string links. For
any σ ∈ SL(n), v(σ) is given by the following formula

v(σ) = v(1n) +
n∑

i=1

v

(
i

)
ϕi(σ)

+
∑
i<j

(
v

(
��
��
��
��

����i j

)
− 1

2
v

(
i j

))
µij(σ)

+
1
2
v

(
i j

)
· µ2

ij(σ) − v

(
i j

)
· (V2)ij(σ)

+
∑

i<j<k

v

(
ki j

)
· µijµik(σ) + v

(
kji

)
· µikµjk(σ)

+ v

(
ki j

)
· µijµjk(σ) +

(
v

(
ki j

)
− v

(
ki j

))
· µijk(σ)

+
∑
i < j

k < l; i < k

v

(
i lj k

)
· µijµkl(σ),

where µijk(σ) denotes Milnor’s triple linking number, and (V2)ij(σ) denotes the
invariant V2 of the 2-string link σi ∪ σj.

Proof. Clearly, for arbitrary constants A, Bi, Cij , Dij , Eij , Fijk, Gijk, Hijk, Pijk ,
Qijkl, Rijkl and Sijkl,

w = A +
n∑

i=1

Bi · ϕi +
∑
i<j

(
Cij · µij + Dij · µ2

ij + Eij · (V2)ij

)
+
∑

i<j<k

(Fijk · µijµik + Gijk · µikµjk + Hijk · µijµjk + Pijk · µijk)

+
∑

i<j<k<l

(Qijkl · µijµkl + Rijkl · µikµjl + Sijkl · µilµjk)

is a Vassiliev invariant of order two. Indeed, recall from [2, 12] that the Milnor µ

invariants of lenght k are Vassiliev invariants of order k − 1. Following the proof of
[15, Theorem 3.3], we now choose these constants so that v and w coincide.

The following computations give us the initial data of w: for all 1 ≤ i < j <

k < l ≤ n,

w(1n) = A, w

(
��
��
��
��

����i j

)
= Cij + Dij ,

w

(
i

)
= Bi, w

(
i j

)
= 2Dij, w

(
i j

)
= −Eij ,
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w

(
ki j

)
= Fijk, w

(
kji

)
= Gijk, w

(
ki j

)
= Hijk,

w

(
ki j

)
= Hijk − Pijk,

w

(
i lj k

)
= Qijkl, w

(
i j k l

)
= Rijkl, w

(
li j k

)
= Sijkl .

Though these computations will not be detailed here, let us develop one of them as
an illustration of the general process. For example, we consider the chord diagram

i j
: a singular string ling σs respecting it is given below.

... ...... ...

-
... ...... ... ... ...... ...ji jiji

=

By (1.1), σs = σ1 − σ2 where σ1 and σ2 are the n-string links shown in the figure.
We have w(σ1) = A+Cij +Dij and w(σ2) = A+Cij +Dij +Eij , as the plat-closure
of σ1 (respectively, σ2) is the unknot (respectively, the trefoil — see Fig. 2). The
result follows.

2.3. Milnor’s triple linking number

In the case of links, the triple linking number µijk is only defined modulo the
linking numbers of the components. We set µ̄ijk ≡ µijk mod gcd(µij , µik, µjk). µ̄ijk

is known to be invariant under cyclic permutations of the indices, and to change
its sign under exchange of two indices.

As a consequence of Theorem 2.4, we have the following formulas for such oper-
ations on µijk, with i < j < k:

Indices Exchange µijk =−µjik + µikµjk

=−µikj + µijµik − µik

=−µkji + µikµjk + µijµik − µijµjk

Cyclic Permutation µijk =µjki − µijµjk + µikµjk

=µkij − µijµjk + µijµik − µik

Indeed, the singular string link σs =��
��
��
��

2 31
satisfies µ312(σs) = 1, µ132(σs) = −1

and µ123(σs) = µ213(σs) = µ321(σs) = µ231(σs) = 0.
Moreover, we can give a formula for the triple linking numbers in terms of the

invariant V2.
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Definition 2.5. Let σ ∈ SL(3) be a 3-string link. By stacking above σ a negative
crossing between the first and third strings (such that both strings pass over the
second one), and then identifying the endpoints x1 × {0} and x1 × {1}, we obtain
a 2-string link denoted by σ̃ (an example is given below).

We denote by V− the Vassiliev invariant of order two V− :SL(3) → Z defined by

V−(σ) := V2(σ̃).

Proposition 2.6. The following formula holds for Milnor’s triple linking number
of σ ∈ SL(3):

µ123(σ) = −V−(σ) + V2(σ12) + V2(σ23) − V2(σ13), (2.4)

where σij denotes the 2-string link σi ∪ σj (1 ≤ i < j ≤ 3).

Proof. Using Theorem 2.4, it suffices to compute the initial data of the invariant
V−. For all 1 ≤ i < j ≤ 3,

V−(13) = 0, V−

(
i

)
= 0, V−

(
��
��
��
��

����i j

)
= 0, V−

(
i j

)
= 0.

Moreover,

V−

(
21

)
= −1, V−

(
31

)
= −1, V−

(
2 3

)
= +1,

and

Remark 2.7. One may ask how revelant is the choice of a negative or positive
crossing in the definition of σ̃. The answer is given in the following formula, which
involves the values of V− and V+ (the 3-string link Vassiliev invariant of order two
constructed in a similar way, but with a positive crossing):

V−(σ) = V+(σ) − µ12(σ). (2.5)

Indeed, V+ and V− have the same initial data, except for the singular link��
��
��
��

����i j
,

with i = 1 and j = 2, on which V− vanishes, whereas V+ equals −1.
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3. Combinatorial Formulas

In this section, we give explicit formulas for the invariants of order 2 studied in
the previous section, and thus for any Vassiliev invariant of order 2 for string links.
These formulas are derived from a formula of Lannes for the Casson knot invariant,
given in terms of chord diagrams and weight system.

3.1. Lannes formula for the Casson knot invariant

In [11], a combinatorial formula is given for the Vassiliev knot invariant of order 2,
the Casson knot invariant. This formula is restated in [21] in very explicit terms.
Let us briefly recall this formula. Let σ be a 1-string link (abusing notation, we
actually denote by σ a fixed diagram of the string link). To each crossing x of σ,
we assign two values εx ∈ {−1; +1} and δx ∈ {0; 1} as follows:

• εx is the sign of the crossing:

εx = +1 if x = , and εx = −1 if x = ,

• δx = 0 if the first branch in x (with respect to the orientation) passes over the
second one, and δx = 1 otherwise.

Let W 1
2 :D1

2 → Z be the weight system given by W 1
2

( )
= 1.

Let P2(σ) be the set of all (non ordered) pairs of crossings of σ: to each element
{x, y} of P2(σ), we assign an element Dx,y ∈ D1

2 by replacing x and y by double
points and looking at the chord diagram of order two associated to this singular
string link.

We have the following formula for the Casson invariant ϕ of a 1-string link σ:

ϕ(σ) =
1
2

∑
{x,y}∈P2(σ)

W 1
2 (Dx,y)εxεy|δx − δy|.

Example 3.1. Consider a string link version of the trefoil.

ε1 = ε2 = ε3 = −1,
3

1

2

δ1 = δ3 = 0 and δ2 = 1.

So we have ϕ(σ) = 1/2
(
W 1

2 (D1,2) + W 1
2 (D2,3)

)
. Now, D1,2 = D2,3 = . It follows

that ϕ(σ) = 1.
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3.2. Lannes type formula for Vassiliev invariants of order 2

In order to compute the Vassiliev invariants of order 2 listed in Theorem 2.4, we
will consider string links with k components, 1 ≤ k ≤ 4. In the case k = 3,
we have several special types of crossings: a crossing between strings σi and σj

(1 ≤ i ≤ j ≤ 3) is said of type 1 if i = 1 and j = 3, and it is said of type 2 if

i = 2 and j = 3. Moreover, denote by σs the singular 3-string link��
��
��
��

2 31
. Given a

3-string link Vassiliev invariant of order two v, we define δv ∈ {0; 1} as follows

δv =
{

0, if v(σs) is 0,
1, otherwise.

Now, given an n-string link, we can define its curling, which is a 1-string link:

Definition 3.2. The curling of σ ∈ SL(n), denoted by Cσ, is the element of SL(1)
obtained by attaching, for i ∈ {1, . . . , n− 1}, the end of the ith string to the origin
of the (i + 1)th, such that the “curls” of Cσ successively pass over the first string
(producing n − 1 additionnal positive crossings).

Let σ be a string link diagram, and x be a crossing of σ. Denote by x̃ the
corresponding crossing of the 1-string link Cσ, and consider the two values εx̃ ∈
{−1; +1} and δx̃ ∈ {0; 1} associated to x̃, as in Sec. 3.1.

Proposition 3.3. Any order two Vassiliev invariant v for string links is given by
a Lannes type formula

v(σ) =
1
2

∑
{x,y}∈P2(σ)

εxεy|δx − δy| · Wv(Dxy),

where Wv is a weight system of order two. Here εx is the sign of the crossing x and

δx =




δv, if x is of type 1,

1 − δx̃, if x is of type 2,

δx̃, otherwise .

Tables 1–3 below list the values of the weight system for classical Vassiliev invariants
of order 2 for n-string links (1 ≤ i < j < k < l ≤ n).

Fig. 3. The curling of a 4-string link.
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Table 1.

v
i i j ji i j

ϕi 1 0 0 0

µ2
ij 0 2 2 0

(V2)ij 0 0 1 −1

Table 2.

v
i j k kji ki j ki j ki j ki j

µijµik 0 0 0 0 1 1
µijµjk 0 0 1 1 0 0
µikµjk 1 1 0 0 0 0
µijk 1 0 0 −1 1 0
µjik 0 1 0 1 −1 0
µkij 1 0 1 0 0 −1
µikj −1 0 0 1 0 1
µjki 0 −1 1 0 1 0
µkji 0 1 −1 0 0 1

Table 3.

v
i lj k i j k l li j k

µijµkl 1 0 0
µikµjl 0 1 0
µikµjl 0 0 1

Note that in particular, if σ is not a 3-string link, δx = δx̃ for all crossing x of σ.

Proof. The fact that such a Lannes type formula gives rise to a string link invariant
essentially follows from the fact that a weight system satisfies the (1T ) and (4T )
relations (Definition 1.3). Let us now show that such an invariant

v(σ) =
1
2

∑
{x,y}∈P2(σ)

εxεy|δx − δy| · Wv(Dxy),

is a Vassiliev invariant of order two.
For a pair {x, y} of crossings of σ, we set λ(x, y) := εxεy|δx − δy| · Wv(Dxy).
Let σ0 be an n-string link with a single double point x0: by (1.1), σ0 = σ+−σ−,

where σ+ (respectively, σ−) is obtained by replacing x0 by a positive crossing x+
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(respectively, a negative crossing x−). To each crossing y �= x0 of σ0 corresponds a
crossing y �= x+ of σ+ and a crossing y �= x− of σ−, such that

v(σ±) =
1
2

∑
y �=x±

λ(x±, y) +
1
2

∑
y,z �=x±

λ(y, z),

where the notation y, z �= x± stands for a pair of crossings of σ± such that neither
y nor z is x±. Now there are two cases. First, if x± is not of type 1, we have

λ(x+, y) = εx+εy|δx+ − δy| · Wv(Dx+y) = −εx−εy|(1 − δx−) − δy| · Wv(Dx−y).

It follows that λ(x+, y) − λ(x−, y) = Wv(Dx0,y) · εy, for all y �= x0, and thus

v(σ0) =
1
2

∑
y �=x0

εy · Wv(Dx0,y). (3.1)

Second, if x± is of type 1, then

λ(x+, y) − λ(x−, y) = εy|δv − δy| · Wv(Dx+y) − (−1)εy|δv − δy| · Wv(Dx−y).

So in this case

v(σ0) =
∑
y �=x0

εy|δv − δy| · Wv(Dx0,y). (3.2)

Similarly, consider a singular string link σ12 with two double points x1 and x2.
Suppose first that neither of the two is of type 1. Then, by applying (1.1) to, say,
x2, we obtain by (3.1):

v(σ12) =
1
2
Wv(Dx1,x2) +

1
2

∑
y �=x1,x2

εy · Wv(Dx1,y)

− 1
2
Wv(Dx1,x2) · (−1) − 1

2

∑
y �=x1,x2

εy · Wv(Dx1,y).

So the value of v on σ12 only depends on its two double points: v(σ12) = Wv(Dx1,x2).
Now suppose that (say) x2 is of type 1 and x1 is not. By applying (1.1) to x2 we
likewise obtain v(σ12) = Wv(Dx1,x2).

Finally, suppose that both x1 and x2 are of type 1. Then following (3.2)
we have:

v(σ12) =
∑

y �=x1,x2

εy|δv − δy| · Wv(Dx1,y) + |δv − δv| · Wv(Dx1,x2)

−
∑

y �=x1,x2

εy|δv − δy| · Wv(Dx1,y) − (−1) · |δv − δv| · Wv(Dx1,x2),

so in this case, v(σ12) = 0.
It follows that, in every cases, v vanishes on any string link with 3 double points.
The remaining part of the proof is completed by computing the initial data of

such an invariant v for each weight system of Tables 1–3, and applying Theorem 2.4.
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These computations are easily performed using the above expressions of v(σ12), for
σ12 a singular string link with two double points.

Example 3.4. Let W 2
2 :D2

2 → Z be the weight system of order two given by

W 2
2 0 0 0 1 −1 −1

The 2-string link invariant V2 is given by the following formula:

V2(σ) =
1
2

∑
{x,y}∈P2(σ)

W 2
2 (Dx,y)εxεy|δx − δy|.

In other words, V2 is given by

V2(σ) =
1
2

∑
{x, y} ∈ P2(σ)

Dx,y =

εxεy|δx − δy| − 1
2

∑
{x, y} ∈ P2(σ)

Dx,y = or

εxεy|δx − δy|. (3.3)

Likewise, we obtain an explicit formula for the triple linking number µ123:

µ123(σ) =
1
2

∑
{x, y} ∈ P2(σ)

Dx,y = or

εxεy|δx − δy| − 1
2

∑
{x, y}∈ P2(σ)

Dx,y =

εxεy|δx − δy|. (3.4)

Remark 3.5. These Lannes-type formulas are very similar to Gauss diagram for-
mulas developped by Fiedler [6] and Polyak and Viro [19]. In particular, formula
(3.4) is to be compared with [17, Proposition 4.1]. Likewise, one has the following
Gauss diagram formula for the invariant V2, due to Polyak [18]:

Let GD be a Gauss diagram of a 2-string link σ. Then

V2(σ) =

〈
− − , GD

〉
. (3.5)

4. Ck-Equivalence for String Links

4.1. A brief review of clasper theory for string links

Habiro’s claspers give a nice reformulation of Vassiliev theory. Let us briefly recall
from [8] the basic notions of clasper theory for string links.
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Definition 4.1. A clasper G for an n-string link σ in D2 × I is the embedding

G : F → D2 × I

of a surface F which is the planar thickening of a uni-trivalent tree.b

The (thickened) univalent vertices are called the leaves of G, the trivalent ones
are the nodes of G and we still call edges of G the thickened edges of the tree.

The string link σ is disjoint from G, except at the level of each leaf, that it
intersects at one point (transversally, in the interior).

The degree of a clasper G is the number of nodes plus 1.

A degree k clasper for a string link σ is the instruction for a modification on σ,
called a Ck-move:

σ �→Ck
σG ∈ SL(n),

which is a surgery move along a framed link defined by G. More precisely, surgery
along the framed link associated to G maps (D2 × I) to a diffeomorphic 3-manifold
(D2 × I)G. We actually denote by σG ⊂ (D2 × I) the preimage of σG ⊂ (D2 × I)G

by this diffeomorphism. Figure 4 shows how a Ck-move looks like for k = 1 or 2.
Similarly, a Ck-move (k ≥ 3) is realized by a connected sum with a (k + 1)-

component iterated Bing double of the Hopf link. Note that a C1-move is equivalent
to a crossing change, and that a C2-move is equivalent to a ∆-move [13, 16].

Definition 4.2. Let k ≥ 1 be an integer. The Ck-equivalence, denoted by ∼Ck
, is

the equivalence relation on string links generated by the Ck-moves and isotopies
with respect to the endpoints.

It can be shown that, if 1 ≤ k ≤ n, the Cn-equivalence relation implies the Ck-
equivalence.

As said at the begining of the section, clasper theory allows us to reformulate
the notion of Vassiliev invariants:

G

Gσ
Gσ

;
G

σ
σ

Fig. 4. A C1-move and a C2-move on a string link σ.

bA uni-trivalent tree is a simply connected graph having only univalent and trivalent vertices.
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Definition 1.2bis. An n-string link invariant f :SL(n) → A is a Vassiliev invariant
of order k if, for all n-string link σ and all familly F = {G1, . . . , Gn} of n disjoints
claspers for σ such that

∑
i deg(Gi) = k + 1, the following equality holds:∑

F ′⊆F

(−1)F ′
f (σF ′) = 0.

We conclude this section with some few basic results of calculus of claspers,
whose proof can be found in [8].

Proposition 4.3. Let G be a degree k clasper for a string link σ. Then,

(1) the Ck+1-equivalence class of σG is not modified when an edge of G passes
across σ or across another edge of G, or is full-twisted;

(2) the Ck+1-equivalence class of MG is inverted when an edge of G is half-twisted.

Remark 4.4. Every clasper considered here is what is called in [8] a simple strict
clasper. Note that the definitions and properties given here are also valid for knots
and links in S3.

4.2. On a conjecture of Habiro on string links

String links are extensively studied in [8, Secs. 5 and 6]. The following conjecture
is proposed (see [8, Conjecture 6.13]).

Conjecture (Habiro). Two n-string links in D2 × I are Ck+1-equivalent if and
only if they are not distinguished by any invariant of degree k.

Remark 4.5. Note that the only if part of the statement is true. More precisely,
the only if part is a general fact that also holds for knot and links in S3. The
converse statement happens to be true in the knot case [8, Theorem 6.18] (see
also [7]), and it is known to fail in the link case [8, Proposition 7.4]. In this section,
we state the if part for k = 1 and 2.

Let us denote by SLk(n) ⊆ SL(n) the submonoid of (isotopy classes of) n-string
links which are Ck-equivalent to the trivial one. Note that, as a C1-move is just a
crossing change, SL1(n) = SL(n). We have the following descending filtration of
monoids

SL(n) = SL1(n) ⊃ SL2(n) ⊃ · · ·
It is shown in [8] that

SLk(n) := SLk(n)/Ck+1

is an Abelian group, for all k ≥ 1.
The first of these groups is easily computable: the next theorem claims that it

is isomorphic to a space of struts (graphs made of a single edge) whose vertices
are colored by elements of {1, . . . , n}. More precisely, let us denote by Ii,j the strut
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whose endpoints are colored by two integers i and j: A1(n) denotes the free Abelian
group generated by struts Ii,j , i, j ∈ {1, . . . , n}, modulo the relation Ii,i = 0.

Theorem 4.6. There exists a surgery map ψ1 : A1(n) → SL1(n) such that ψ1 is
an isomorphim of Abelian groups, with inverse given by the linking numbers.

The proof of this theorem, together with the definitions of ψ1, is given in Sec. 4.3.
This result gives a characterization of C2-equivalence for string links: two string
links are C2-equivalent if and only if they have same linking numbers (the Vassiliev
invariants of order 1). As a corollary, by considering the closure of string links, it
recovers a theorem of Murakami and Nakanishi characterizing link-homology for
links in terms of ∆-moves [6, Theorem 1.1].

We now state the main result of this section, which characterize the
C3-equivalence relation for string links in a similar way as above: namely, we identify
the Abelian group SL2(n) with a certain space of diagrams by means of invariants
of order two. For that purpose, we define in Sec. 4.4 the set A2(n) generated by
Y-shaped diagrams whose univalent vertices are colored by elements of {1, . . . , n}
and are equipped with a partial order, modulo some relations. In Sec. 4.4, an iso-
morphism

η : A2(n) → Λ3H ⊕ S2H

is defined, where H is the first homology group of D2\{x1, . . . , xn}, Λ3H is the
degree three part of the exterior algebra on H and S2H is the degree two part of
the symetric algebra. Moreover, A2(n) produces a combinatorial upper bound for
SL2(n), as we define a surjective surgery map

A2(n) ψ2−→→ SL2(n).

Finally, we will define a homomorphism (µ3, V2, ϕ) :SL2(n) → Λ3H ⊕ S2H , which
is a linear combination of the Casson knot invariant, the invariant V2 defined in
Sec. 2.1 and the triple linking numbers (and thus is an invariant of order 2), such
that the following result holds.

Theorem 4.7. The following diagram commutes

with all maps being isomorphisms.

We easily deduce from this theorem that two elements of SL2(n) (two n-string
links with vanishing linking numbers) are C3-equivalent if and only if they are not

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

5.
14

:6
65

-6
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
O

K
Y

O
 o

n 
09

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 5, 2005 8:56 WSPC/134-JKTR 00399

On Vassiliev Invariants of Order Two for String Links 681

distinguished by Vassiliev invariants of order 2 (or equivalently, by Theorem 2.4,
they are not distinguished by the Casson knot invariant, nor the invariant V2 and
Milnor’s triple linking number). This is to be compared with [20, Theorem 1.4] (a
clasp-pass move is indeed equivalent to a C3-move).

4.3. Characterization of C2-equivalence: Proof of Theorem 4.6

4.3.1. Combinatorial upper bound for SL1(n)

Let us recall that A1(n) is the Abelian group generated by struts Ii,j , 1 ≤ i �= j ≤ n.
We define here a surgery map

ψ1 : A1(n) → SL1(n)

as follows. Let 1n be the trivial n-string link in (D2 × I). For each generator Ii,j
of A1(n), consider in (D2 × {1}) ⊂ ∂(D2 × I) the two disks Di and Dj , which
are neighbourhoods of the standard points xi and xj . Their boundary is equipped
with a natural orientation. Now, push these disks down inside (D2 × I) along the
appropriate strands of 1n (which they always intersect transversally at their center),
and connect them with a band in a way which is compatible with the orientations.
The surface we obtain is a strict and simple basic clasper for 1n, that we denote by
φ(Ii,j): it follows from Proposition 4.3(1) (which essentially implies that the edge of
the clasper can be arbitrarily embedded) that the C2-equivalence class of (1n)φ(Ii,j)

does not depend on the choice of φ. We set

ψ1(Iij) := (1n)φ(Ii,j)

to be (the C2-equivalence class of) the n-string link obtained for 1n by surgery
along φ(Ii,j). The following result follows from the above observation:

Proposition 4.8. ψ1 : A1(n) → SL1(n) is a well-defined, surjective map.

Note that the surjectivity is just a consequence of the fact that SL1(n) is generated
by elements of type (1n)C , where C is a connected basic clasper. Moreover, ψ1

obviously satisfies the relation Ii,i = 0, thanks to Proposition 4.3(1).

4.3.2. Proof of Theorem 4.6

Let us consider the homomorphism of Abelian groups µ2 : SL1(n) → A1(n)
defined by

µ2(σ) = −
∑

1≤i<j≤n

µij(σ)Ii,j ,

where µij(σ) stands for the linking number of σi and σj .
Given a generator Ii,j of A1(n), we have just seen that ψ1(Ii,j) is given by the

basic clasper depicted in the left part of Fig. 5.
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... ......

j1 ni

...

n1 i

isotopy

j

... ... ...... ...

j n1 i

......

Fig. 5.

By a small isotopy on the ith strand, we can use Fig. 4 to conclude that ψ1(Ii,j)
is the C2-equivalence class of the string link depicted in the right part of Fig. 5.
So we have µmn(ψ1(Ii,j)) = −1 for (m, n) = (i, j), and 0 otherwise: µ2 ◦ ψ1 is the
identity. µ2 being surjective, it follows that ψ1 is an isomorphism.

4.4. Characterization of C3-equivalence: Proof of Theorem 4.7

Let A2(n) be the free Abelian group generated by Y-shaped diagrams, whose triva-
lent vertex is equipped with a cyclic ordering on the incident edges and whose
univalent vertices are colored by elements of {1, . . . , n}, with a total order on ver-
tices with the same color, and subject to some relations. The notation

Y[n1; n2; n3]

will stand for the Y -shaped graph whose univalent vertices are colored by n1, n2

and n3 ∈ {1, . . . , n} in accordance with the cyclic order, (so that our notation is
invariant under cyclic permutation of the ni’s). The total order on vertices having
the same color is given by a second coloring on these vertices, by distinct integers in
{1; 2; 3}. For example, Y[(i, 1); (i, 2); j] and Y[(i, 2); (i, 1); j] are two diagrams which
only differ by the order on the i-colored vertices (i �= j ∈ {1, . . . , n}). The relations
are the following ones:

(AS) : Y[i; j; k] = −Y[j; i; k],
(AS2) : Y[(i, m); (i, n);−] = −Y[(i, n); (i, m);−],

(W ) : Y[(i, m); (i, n); j] = Y[(j, m); (j, n); i]

where i �= j �= k ∈ {1, . . . , n} and m �= n ∈ {1; 2; 3}.

Remark 4.9. Gregor Masbaum pointed out the fact that the Abelian group A2(n)
actually coincides with the space B2(n) which consists in Y-shaped and Φ-shaped
(2-leg wheels) diagrams modulo the usual AS and IHX relations. Indeed, the Y part
of B2(n) corresponds to the diagrams of A2(n) without repeating colors, and the
diagram Φij with univalent vertices colored by i and j corresponds to twice the dia-
gram Y[(i, m); (i, n); j]; m < n (thanks to the Poincaré–Birkhoff–Witt isomorphism
χ and the STU relation [1]). Note that the later justifies relation (W ).
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4.4.1. The surgery map ψ2

Let

Yi,j,k := Y[(i, m); (j, n); (k, l)]

be a generator of A2(n), where i, j, and k are eventually distinct. As in Sec. 4.3,
consider in (D2 ×{1}) ⊂ ∂(D2 × I) the disks Di, Dj and Dk, which are neighbour-
hoods of the standard points, and push them inside of (D2×I) along the strands of
1n, in the order prescribed by the second color. For example, if i = j and m > n, the
disk Dj is under Di in (D2 × I). Next, pick an embedded 2-disk D in the interior
of (D2 × I), disjoint from the Di’s and from 1n, orient it in an arbitrary way, and
connect it to the Di’s with some bands ei in (D2 × I)\1n. These band sums are
required to be compatible with the orientations, and to be coherent with the cyclic
ordering (1, 2, 3). The surface we obtain is a degree 2 clasper for 1n: denote it by
φ(Yi,j,k). We denote by

ψ2

(
Yi,j,k

)
:= (1n)φ(Yi,j,k)

the n-string link obtained from 1n by surgery along the clasper φ
(
Yi,j,k

)
.

Proposition 4.10. The C3-equivalence class of (1n)φ(Yi,j,k) does not depend on
the choice of φ. Thus, we have a surjective map:

A2(n) ψ2−→→ SL2(n).

Proof. The independence on the choice of the disk D, its orientation and the edges
ei is a concequence of Proposition 4.3.

We now show that ψ2 satisfies the relations (AS), (AS2) and (W) of A2(n).
The (AS) and (AS2) relations are proved in SL2(n) from Proposition 4.3(2)
and an isotopy of the clasper. For relation (W), note that a representative for
ψ2(Y[(j, m); (j, n); i]) is the string link wij shown in the left part of Fig. 6, whose
ith and jth strings form a Whitehead-type link. As for the link case, this string link
version of the Whitehead link happens to be symetric (i.e. there is an isotopy which
exchanges the role of its components): wij is isotopic to the string link wji shown in
the right part of the figure, and which is a representative for ψ2(Y[(i, m); (i, n); j]).

ji j i i ji 

isotopy

j

Fig. 6. The two isotopic string links wij and wji.
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The fact that ψ2 is surjective follows from the fact that the Abelian group
SL2(n) is generated by the n-string links (1n)G where G is a connected degree 2
clasper.

4.4.2. The isomorphism η

Let A2,k(n) ⊂ A2(n) be the subgroup generated by all diagrams whose set of uni-
valent vertices is colored with k distinct elements of {1, . . . , n}. Note in particular
that, as diagrams in A2,3(n) are colored by three distinct elements, there is no
second color on their vertices. The relations in A2(n) are graded, so we have

A2(n) = A2,3(n) ⊕ A2,2(n) ⊕ A2,1(n). (4.1)

Given two distinct integers m and n, we denote by εmn ∈ {−1; +1} the sign of
(n − m). Moreover, given 1 ≤ m �= n �= l ≤ 3, we denote by εmnl the signature of
the permutation

h 1 2 3

m n l

i
.

Consider in D2\{x1, . . . , xn} the n oriented curves defined by a collar of the n

boundary components created by the removal of the n standard points in D2. We
denote by {e1, . . . , en} the associated basis of H = H1(D2\{x1, . . . , xn};Z).

Let η : A2(n) → Λ3H ⊕ S2H be defined byc

η(Y[i; j; k]) = ei ∧ ej ∧ ek on A2,3(n),

η(Y[(i, m); (i, n); j]) = εmn.(ei ⊗ ej) on A2,2(n),

η(Y[(i, 1); (i, 2); (i, 3)]) = εmnl.(ei ⊗ ei) on A2,1(n).

Lemma 4.11. η is an isomorphism of Abelian groups.

Proof. It follows from relations (AS), (AS2) and (W) that η is well-defined, and
thus surjective. Moreover,

• By relation (AS), a basis for A2,3(n) is given by the set of diagrams of type
Y[i; j; k] with i < j < k. It is therefore a free Z-module of rank Cn

3 , mapped
by η onto Λ3H : η (retricted to A2,3(n)) defines an epimorphism between two
Z-modules of rank Cn

3 , and then is an isomorphism.
• Relations (AS2) and (W) imply that A2,2(n) (respectively, A2,1(n)) has basis

given by the Y[(i, m); (i, n); j]’s, with i < j and n < m (respectively, the
Y[(i, 1); (i, 2); (i, 3)]’s). Thus A2,2(n)⊕A2,1(n) is a free Z-module of rank Cn

2 +n =
n(n−1)

2 + n = n2+n
2 = rg(S2H), mapped onto S2H by η. It follows that

A2,2(n) ⊕ A2,1(n) � S2H via η.

cNote that, in this paper, the symetric algebra SH is seen as a quotient of the tensor algebra.
Therefore, in the following, e1⊗e2 ∈ S2H denotes the class of the tensor product in this quotient.
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4.4.3. Proof of Theorem 4.7

Let

(µ3, V2, ϕ) : SL2(n) → Λ3H ⊕ S2H

be the map defined, for all σ ∈ SL2(n), by

(µ3, V2, ϕ)(σ) :=
∑

1≤i<j<k≤n

µijk(σ) · ei ∧ ej ∧ ek

−
∑

1≤i<j≤n

V2(σi ∪ σj) · ei ⊗ ej +
∑

1≤i≤n

ϕi(σ) · ei ⊗ ei.

It is a well-defined map which, by Remark 4.5, factors to a homomorphism of
Abelian groups

(µ3, V2, ϕ) :SL2(n) → Λ3H ⊕ S2H.

The following lemma is the last step in proving Theorem 4.7: it indeed implies that
ψ2 and (µ3, V2, ϕ) are isomorphisms.

Lemma 4.12. The following diagram commutes.

Proof. Let Y be a generator of A2(n): there are three types of Y (in the sense
of (4.11)). We prove that, in these three cases, (µ3, V2, ϕ) ◦ ψ2(Y) = η(Y).

• If Y is of type Y[i; j; k], with i < j < k, we have to show that (µ3, V2, ϕ) ◦
ψ2(Y) = ei ∧ ej ∧ ek ∈ Λ3H .

A representative for ψ2(Y) ∈ SL2(n) is the string link σijk obtained from 1n by
performing a connected sum on strings σi, σj and σk with the three components of
a Borromean ring (see Sec. 4.1). It follows that µabc(σijk) = 1 for (a, b, c) = (i, j, k),
and 0 otherwise. Moreover, as every pair of strings of σijk forms the trivial 2-string
link, V2 is always zero; the same holds for ϕ. This proves that (µ3, V2, ϕ) ◦ψ2(Y) =
ei ∧ ej ∧ ek.

• Suppose Y is of type Y[(i, m); (i, n); j], with i < j and m < n. As seen in
the proof of Proposition 4.10, a representative for ψ2(Y) is wji, whose ith and jth
strings form a Whitehead-type link (see Fig. 6). Now, V2(σi ∪ σj) equals −1 (as
the plat-closure of wji is the Figure 8 knot), and it vanishes for any other pair of
strings. All the Milnor’s triple linking numbers are zero (as we always are in the
case of a 3-string link with at least one isolated string), as well as the Casson knot
invariants. It follows that (µ3, V2, ϕ) ◦ ψ2(Y) = ei ⊗ ej = η(Y) ∈ S2H .
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• Finally, let Y be a generator of type Y[(i, 1); (i, 2); (i, 3)]. A representative for
its image under ψ2 is Ti, which only differ from 1n by a copy of the trefoil on the
ith string (see the figure below).

All the triple linking numbers and V2 invariants clearly vanish on Ti, but the
Casson invariant of the ith string equals 1 (and 0 for any other string).

So we obtain: (µ3, V2, ϕ) ◦ ψ2(Y) = ei ⊗ ei = η(Y) ∈ S2H .
This completes the proof of Lemma 4.12, and thus the proof of Theorem 4.7.
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Thèse de Doctorat, Université de Nantes (2003).
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