Pacific

Journal of

 MathematicsON $\boldsymbol{C}_{\boldsymbol{n}}$-MOVES FOR LINKS

Jean-Baptiste Meilhan and Akira Yasuhara

ON $\boldsymbol{C}_{\boldsymbol{n}}$-MOVES FOR LINKS

Jean-Baptiste Meilhan and Akira Yasuhara

Dedicated to the memory of Xiao-Song Lin

Abstract

A C_{n}-move is a local move on links defined by Habiro and Goussarov, which can be regarded as a 'higher order crossing change'. We use Milnor invariants with repeating indices to provide several classification results for links up to C_{n}-moves, under certain restrictions. Namely, we give a classification up to $\boldsymbol{C}_{\mathbf{4}}$-moves of $\mathbf{2}$-component links, 3-component Brunnian links and \boldsymbol{n} component C_{3}-trivial links. We also classify n-component link-homotopically trivial Brunnian links up to $\boldsymbol{C}_{\boldsymbol{n + 1}}$-moves.

1. Introduction

A C_{n}-move is a local move on links as illustrated below. It involves $n+1$ strands, labeled here by integers between 0 and n, and can be regarded as a kind of 'higher order crossing change' (in particular, a C_{1}-move is a crossing change). These local moves were introduced by Habiro [1994] and independently by Goussarov [2000].

The C_{n}-move generates an equivalence relation on links, called C_{n}-equivalence. This notion can also be defined by using the theory of claspers (see Section 2). The C_{n}-equivalence relation becomes finer as n increases, that is, C_{m}-equivalence implies C_{k}-equivalence for $m>k$. It is well known that C_{n}-equivalence approximates the topological information carried by Goussarov-Vassiliev invariants. Namely, two links cannot be distinguished by any Goussarov-Vassiliev invariant of order less than n if they are C_{n}-equivalent. See [Gusarov 2000; Habiro 2000].

[^0]Denote by $\mathscr{L}_{k}(n)$ the set of C_{k}-trivial n-component links, that is, links that are C_{k}-equivalent to the trivial link. We have a filtration

$$
\mathscr{L}_{1}(n) \supset \mathscr{L}_{2}(n) \supset \mathscr{L}_{3}(n) \supset \cdots .
$$

The quotient $\mathscr{L}_{k}(n) / C_{k+1}$ forms an abelian group under a certain geometric operation, with $\mathscr{L}_{k+1}(n)$ as unit element [Taniyama and Yasuhara 2003]. Note that $\mathscr{L}_{1}(n)$ is just the set of n-component links, and $\mathscr{L}_{2}(n)$ is the set of n-component algebraically split links [Murakami and Nakanishi 1989]. So the classifications of $\mathscr{L}_{1}(n) / C_{2}$ and $\mathscr{L}_{2}(n) / C_{3}$ are given by [Murakami and Nakanishi 1989] and [Taniyama and Yasuhara 2002], respectively. These classifications give us that the abelian group $\mathscr{L}_{1}(n) / C_{2}$ is free with rank $n(n-1) / 2$, and $\mathscr{L}_{2}(n) / C_{3}$ is isomorphic to a direct sum of $n+n(n-1)(n-2) / 6$ copies of \mathbb{Z} and $n(n-1) / 2$ copies of \mathbb{Z}_{2}. These classifications are given by using Milnor $\bar{\mu}$ invariants (of length ≤ 3) with distinct indices and the Conway polynomial. (For the definition of Milnor invariants, see Section 3.) In this paper, we use Milnor $\bar{\mu}$ invariants with (possibly) repeating indices to classify $\mathscr{L}_{3}(n) / C_{4}$. We obtain the following.

Theorem 1.1. Let L and L^{\prime} be n-component C_{3}-trivial links. Then L and L^{\prime} are C_{4}-equivalent if and only if they satisfy the properties that
(1) $\bar{\mu}_{L}(I)=\bar{\mu}_{L^{\prime}}(I)$ for all multiindices I with $|I|=4$, and
(2) no Vassiliev knot invariant of order 3 can distinguish the i-th component of L from the i-th component of L^{\prime}, for all $1 \leq i \leq n$.

Here, a multi-index I is a sequence of not necessarily distinct integers in $\{1, \ldots, n\}$, and $|I|$ denotes the number of entries in I.

Remark 1.2. The proof of Theorem 1.1 shows the following. The classification is given by $\mu(I)$ with $I=i i j j$ for $1 \leq i<j \leq n$, $i j k k$ for $1 \leq i<j \leq n$ for $1 \leq k \leq n, i j k l$ for $1 \leq i \neq j<k<l \leq n$ and an order 3 Vassiliev invariant of each component. The abelian group $\mathscr{L}_{3}(n) / C_{4}$ is thus free with rank $n(n-1) / 2+$ $n(n-1)(n-2) / 2+n(n-1)(n-2)(n-3) / 12+n$, which is the number of these invariants. Since these invariants are additive under the band sum, $\mathscr{L}_{3}(n) / C_{4}$ forms an abelian group under the band sum.

Note that Theorem 1.1, together with [Murakami and Nakanishi 1989] and [Taniyama and Yasuhara 2002], implies the following.

Corollary 1.3. An n-component link L is C_{4}-trivial if and only if $\bar{\mu}_{L}(I)=0$ for all multiindices I with $|I| \leq 4$, and any Vassiliev knot invariant of order ≤ 3 vanishes for each component.

For 2-component links, we obtain a refinement of a result of H. A. Miyazawa [2003, Theorem 1.5].

Proposition 1.4. Let L and L^{\prime} be 2-component links. Then L and L^{\prime} are $C_{4}{ }^{-}$ equivalent if and only if they are not distinguished by any Vassiliev invariant of order ≤ 3.

Remark 1.5. Two knots are C_{k}-equivalent if and only if they are not distinguished by any Vassiliev invariant of order $\leq k-1$ [Gusarov 2000; Habiro 2000]. For $k=2$, this equivalence is true for all links [Murakami and Nakanishi 1989]. In general, as we mentioned before, the 'only if' part holds for links. But the 'if' part does not hold in general, even for 2-component links. For example, the Whitehead link, whose Vassiliev invariants of order ≤ 2 vanish, is not C_{3}-trivial. Hence, for 2-component links, the 'if' part holds when $k=2$ and does not hold when $k=3$. Proposition 1.4 means that, unexpectedly, it holds when $k=4$.

On the other hand, we consider Brunnian links. Recall that a link L in the 3sphere S^{3} is Brunnian if every proper sublink of L is trivial. In particular, all trivial links are Brunnian. It is known that an n-component link is Brunnian if and only if it can be turned into the trivial link by a sequence of C_{n-1}-moves of a specific type, called C_{n-1}^{a}-moves, involving all the components [Habiro 2007; Miyazawa and Yasuhara 2006]. Denote by $B L(n)$ the set of n-component Brunnian links, and by $B_{k}(n)$ the set of n-component C_{k}-trivial Brunnian links. We have a descending filtration

$$
B L(n)=B_{n-1}(n) \supset B_{n}(n) \supset B_{n+1}(n) \supset \cdots
$$

As in the case of arbitrary links, the quotient $B_{k}(n) / C_{k+1}$ forms an abelian group with the unit element $B_{k+1}(n)$ [Taniyama and Yasuhara 2003]. The abelian group $B L(n) / C_{n}$ is well understood and coincides with the abelian group of n-component Brunnian links up to link-homotopy [Habiro 2007; Miyazawa and Yasuhara 2006]. Recall that two links are link-homotopic if they are related by a sequence of isotopies and self-crossing changes, that is, crossing changes involving two strands of the same component. Habiro and Meilhan [2008] showed that n-component Brunnian links are link-homotopic if and only if their Milnor invariants

$$
\bar{\mu}(\sigma(1), \ldots, \sigma(n-2), n-1, n)
$$

coincide for all σ in the symmetric group S_{n-2}.
Here, we consider the next stage, namely the quotient $B_{n}(n) / C_{n+1}$. Given any $k \in\{1, \ldots, n\}$ and a bijection τ from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n\} \backslash\{k\}$, set

$$
\mu_{\tau}(L):=\bar{\mu}_{L}(\tau(1), \ldots, \tau(n-1), k, k) .
$$

We obtain the following.
Theorem 1.6. Let $n \geq 3$. Let L and L^{\prime} be n-component link-homotopically trivial Brunnian links. Then, the following assertions are equivalent:
(1) L and L^{\prime} are C_{n+1}-equivalent.
(2) $\bar{\mu}_{L}(I)=\bar{\mu}_{L^{\prime}}(I)$ for any multi-index I with $|I|=n+1$.
(3) $\mu_{\tau}(L)=\mu_{\tau}\left(L^{\prime}\right)$ for all $k \in\{1, \ldots, n\}$ and $\tau \in \mathscr{B}(k)$, where $\mathscr{B}(k)$ denotes the set of all bijections τ from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n\} \backslash\{k\}$ such that $\tau(1)<\tau(n-1)$.
Remark 1.7. The abelian group $B L(n) / C_{n}$ is free with rank $\left|S_{n-1}\right|$; see [Habiro and Meilhan 2008]. In the proof of Theorem 1.6, it is shown that the abelian group $B_{n}(n) / C_{n+1}$ is free with rank $\left|\bigcup_{k=1}^{n} \mathscr{P}_{k}(k)\right|$. As in case of $\mathscr{L}_{3}(n) / C_{4}$, the quotient $B_{n}(n) / C_{n+1}$ forms an abelian group under the band sum.
Remark 1.8. Theorem 1.6 is not true for $n=2$. The Whitehead link, for example, is not C_{3}-trivial (by [Taniyama and Yasuhara 2002]), but all its Milnor invariants $\bar{\mu}(I)$ with $|I| \leq 3$ vanish. So the condition $n \geq 3$ is essential.

In the case of 3-component Brunnian links, we have the following improvement of Theorem 1.6.

Theorem 1.9. Let L and L^{\prime} be 3-component Brunnian links. Then the following assertions are equivalent:
(1) L and L^{\prime} are C_{4}-equivalent.
(2) $\bar{\mu}_{L}(I)=\bar{\mu}_{L^{\prime}}(I)$ for any multi-index I with $|I| \leq 4$.

$$
\begin{align*}
\bar{\mu}_{L}(123) & =\bar{\mu}_{L^{\prime}}(123), & & \bar{\mu}_{L}(1233)=\bar{\mu}_{L^{\prime}}(1233), \tag{3}\\
\bar{\mu}_{L}(1322) & =\bar{\mu}_{L^{\prime}}(1322), & & \bar{\mu}_{L}(2311)=\bar{\mu}_{L^{\prime}}(2311) .
\end{align*}
$$

Note that $\bar{\mu}_{L}(i j k k)$ denotes here the residue class of the integer $\mu_{L}(i j k k)$ (defined in Section 3) modulo $\bar{\mu}_{L}(i j k)$.
Remark 1.10. One may wonder if the equivalence of (1) and (2) remains true for Brunnian links with $m \neq 3$ components. First, observe that all m-component Brunnian links are C_{4}-equivalent (namely, C_{4}-trivial) for $m>4$ [Habiro 2007; Miyazawa and Yasuhara 2006]. For $m=4$ the answer is positive and follows from [Habiro and Meilhan 2008] and [Habiro 2000, Theorem 7.2] (as the C_{4}-equivalence coincides here with link-homotopy). The case $m=2$ seems to be still open.
Remark 1.11. Similarly, one may ask, for 3-component Brunnian links L and L^{\prime} and $k \neq 4$, whether C_{k}-equivalence of L and L^{\prime} is equivalent to the condition $\bar{\mu}_{L}(I)=\bar{\mu}_{L^{\prime}}(I)$ for any $|I| \leq k$. As we already saw, the case $k \neq 2$ is vacuous and the case $k=3$ holds true. But this is not true in general for $k>4$. Consider for example the Whitehead double L of the Borromean rings (see [Fleming and Yasuhara 2008, Figure 4] for a diagram of L). We have $\bar{\mu}_{L}(I)=0$ for all $|I| \leq 5$. However, L is not C_{5}-trivial. Indeed, L is distinguished from the trivial link by the fourth derivative of the Jones polynomial evaluated at 1 , which is a C_{5}-equivalence invariant.

The rest of the paper is organized as follows. In Section 2, we recall elementary notions of the theory of claspers. In Section 3, we recall the definition of Milnor invariants for (string) links and give some lemmas. Section 4 considers Brunnian string links; its main result is Proposition 4.5, which gives a set of generators for the abelian group of C_{n+1}-equivalence classes of n-component Brunnian string links. In Section 5, we use results of Section 4 to prove Theorems 1.6 and 1.9. In Section 6, we prove Theorem 1.1 and Proposition 1.4. In Section 7 we give proofs of Propositions 2.12 and 2.14; these proofs are independent from the rest of the paper.

2. Claspers and local moves on links

A brief review of clasper theory. Let us briefly recall from [Habiro 2000] the basic notions of clasper theory for (string) links. In this paper, we essentially only need the notion of C_{k}-tree. See [Habiro 2000] for a general definition of claspers.
Definition 2.1. Let L be a link in S^{3}. An embedded disk F in S^{3} is called a tree clasper for L if it satisfies these three properties:
(1) F is decomposed into disks and bands, called edges, each of which connects two distinct disks.
(2) The disks have either 1 or 3 incident edges, called leaves or nodes, respectively.
(3) L intersects F transversely, and the intersections are contained in the union of the interior of the leaves.

The degree of a tree clasper is one less than the number of leaves.
A degree k tree clasper is called a C_{k}-tree. A C_{k}-tree is simple if each leaf intersects L at one point.

We will make use of the drawing convention for claspers of [Habiro 2000, Figure 7], with the exception that a \oplus (respectively \ominus) on an edge represents a positive (respectively negative) half-twist. (This replaces the convention of a circled S (respectively S^{-1}) used in [Habiro 2000].)

Given a C_{k}-tree G for a link L in S^{3}, there is a procedure to construct, in a regular neighborhood of G, a framed link $\gamma(G)$. There is thus a notion of surgery along G, which is defined as surgery along $\gamma(G)$. There exists a canonical diffeomorphism between S^{3} and the manifold $S_{\gamma(G)}^{3}$: surgery along the C_{k}-tree G can thus be regarded as a local move on L in S^{3}. We say that the resulting link L_{G} in S^{3} is obtained by surgery on L along G. In particular, surgery along a simple C_{k}-tree, as illustrated in Figure 2.2, is equivalent to band-summing a copy of the $(k+1)$ component Milnor's link L_{k+1} (see [Milnor 1954, Figure 7]), and is equivalent to a C_{k}-move as defined on page 119. In Figure 2.2, a C_{k}-tree G having the shape

Figure 2.2. Surgery along a simple C_{5}-tree.
of the tree clasper is called linear, and the leftmost and rightmost leaves of G are called the ends of G.

The C_{k}-equivalence (as defined in the introduction) coincides with the equivalence relation on links generated by surgery along C_{k}-trees and isotopies. We use the notation $L \sim_{C_{k}} L^{\prime}$ for C_{k}-equivalent links L and L^{\prime}.

Some lemmas. This subsection gives some basic results of calculus of claspers, whose proofs can be found in [Habiro 2000] or [Meilhan 2003]. For convenience, we give the statements for string links. Recall that a string link is a pure tangle without closed components (see [Habegger and Lin 1990] for a precise definition). Denote by $S L(n)$ the set of n-component string links up to isotopy with respect to the boundary. The set $S L(n)$ has a monoid structure with composition given by the stacking product, denoted by \cdot, and with the trivial n-component string link $\mathbf{1}_{n}$ as unit element.
Lemma 2.3. Let T be a union of C_{k}-trees for a string link L, and let T^{\prime} be obtained from T by passing an edge across L or across another edge of T, or by sliding a leaf over a leaf of another component of T (see Figure 2.4). Then $L_{T} \sim_{C_{k+1}} L_{T^{\prime}}$.

Lemma 2.5. Let T be a C_{k}-tree for $\mathbf{1}_{n}$, and let \bar{T} be a C_{k}-tree obtained from T by adding a half-twist on an edge. Then $\left(\mathbf{1}_{n}\right)_{T} \cdot\left(\mathbf{1}_{n}\right)_{\bar{T}} \sim_{C_{k+1}} \mathbf{1}_{n}$.
Lemma 2.6. Consider some C_{k}-trees T and T^{\prime} (respectively T_{I}, T_{H} and T_{X}) for $\mathbf{1}_{n}$ that differ only in a small ball as depicted in Figure 2.7. Then $\left(\mathbf{1}_{n}\right)_{T} \cdot\left(\mathbf{1}_{n}\right)_{T^{\prime}} \sim_{C_{k+1}} \mathbf{1}_{n}$ (respectively $\left.\left(\mathbf{1}_{n}\right)_{T_{I}} \sim_{C_{k+1}}\left(\mathbf{1}_{n}\right)_{T_{H}} \cdot\left(\mathbf{1}_{n}\right)_{T_{X}}\right)$.

Lemma 2.8. Let G be a C_{k}-tree for $\mathbf{1}_{n}$. Let f_{1} and f_{2} be two disks obtained by splitting a leaf f of G along an arc α as shown in Figure 2.9 (that is, $f=f_{1} \cup f_{2}$

Figure 2.4. Sliding a leaf over another leaf.

Figure 2.7. The AS and IHX relations for C_{k}-trees.

Figure 2.9. The C_{k}-trees G, G_{1} and G_{2} are identical outside a small ball, where they are as depicted.
and $\left.f_{1} \cap f_{2}=\alpha\right)$. Then, $\left(\mathbf{1}_{n}\right)_{G} \sim_{C_{k+1}}\left(\mathbf{1}_{n}\right)_{G_{1}} \cdot\left(\mathbf{1}_{n}\right)_{G_{2}}$, where G_{i} denotes the C_{k}-tree for $\mathbf{1}_{n}$ obtained from G by replacing f by f_{i} for $i=1,2$.

C_{k}^{a}-trees and C_{k}^{a}-equivalence.

Definition 2.10. Let L be an m-component link in a 3-manifold M. For $k \geq m-1$, a (simple) C_{k}-tree T for L in M is a (simple) C_{k}^{a}-tree if it satisfies the following:
(1) $f \cap L$ is contained in a single component of L for each leaf f of T.
(2) T intersects all the components of L.

The C_{k}^{a}-equivalence is an equivalence relation on links generated by surgeries along C_{k}^{a}-trees and isotopies. The next result shows the relevance of this notion in the study of Brunnian (string) links.

Theorem 2.11 [Habiro 2007; Miyazawa and Yasuhara 2006]. Suppose L is an ncomponent link in S^{3}. Then L is Brunnian if and only if it is C_{n-1}^{a}-equivalent to the n-component trivial link.

Further, it is known from [Miyazawa and Yasuhara 2006] that for n-component Brunnian links, C_{n}-equivalence coincides with C_{n}^{a}-equivalence (and with linkhomotopy). See also [Habiro and Meilhan 2008]. We observe the following.

Proposition 2.12. Let $k \geq n-1$. An n-component Brunnian (string) link is $C_{k^{-}}$ trivial if and only if it is C_{k}^{a}-equivalent to the trivial (string) link.

Remark 2.13. It seems that Proposition 2.12 can be generalized: for $k \geq n-1$, n-component Brunnian (string) links are C_{k}-equivalent if and only if they are $C_{k}^{a}-$ equivalent. The string link case holds (see the proposition below), but the link case is still open.

Proposition 2.14. Let $k \geq n-1$. Then two n-component Brunnian string links are C_{k}-equivalent if and only if they are C_{k}^{a}-equivalent.

We prove Propositions 2.12 and 2.14 in Section 7.

3. On Milnor invariants

A short definition. J. Milnor [1954] defined a family of invariants of oriented, ordered links in S^{3}, known as Milnor's $\bar{\mu}$-invariants.

Given an n-component link L in S^{3}, denote by π the fundamental group of $S^{3} \backslash L$, and by π_{q} the q-th subgroup of the lower central series of π. We have a presentation of π / π_{q} with n generators, given by a meridian m_{i} of the i-th component of L. So for $1 \leq i \leq n$, the longitude l_{i} of the i-th component of L is expressed modulo π_{q} as a word in the m_{i}. (Abusing notation, we still denote this word by l_{i}.)

The Magnus expansion $E\left(l_{i}\right)$ of l_{i} is the formal power series in noncommuting variables X_{1}, \ldots, X_{n} obtained by replacing m_{j} by $1+X_{j}$ and replacing m_{j}^{-1} by $1-X_{j}+X_{j}^{2}-X_{j}^{3}+\cdots$ for $1 \leq j \leq n$. We use the notation $E_{k}\left(l_{i}\right)$ to denote the degree k part of $E\left(l_{i}\right)$, where the degree of a monomial in the X_{j} is simply defined by the sum of the powers.

Let $I=i_{1} i_{2} \ldots i_{k-1} j$ be a multi-index (that is, a sequence of possibly repeating indices) among $\{1, \ldots, n\}$. Denote by $\mu_{L}(I)$ the coefficient of $X_{i_{1}} \ldots X_{i_{k-1}}$ in the Magnus expansion $E\left(l_{j}\right)$. The Milnor invariant $\bar{\mu}_{L}(I)$ is the residue class of $\mu_{L}(I)$ modulo the greatest common divisor of all Milnor invariants $\mu_{L}(J)$ such that J is obtained from I by removing at least one index and permuting the remaining indices cyclically. We call $|I|=k$ the length of Milnor invariant $\bar{\mu}_{L}(I)$.

The indeterminacy comes from the choice of the meridians m_{i}. Equivalently, it comes from the indeterminacy of representing the link as the closure of a string link [Habegger and Lin 1990]. Indeed, $\mu(I)$ is a well-defined invariant for string links. Furthermore, $\mu(I)$ is known to be a Goussarov-Vassiliev invariant of degree $|I|-1$ for string links [Bar-Natan 1995; Lin 1997].

Some lemmas. Let us first recall a result due to Habiro.
Lemma 3.1 [Habiro 2000]. Milnor invariants of length k for (string) links are invariants of C_{k}-equivalence.

Next we state a simple lemma, which will be used in the following.
Lemma 3.2. Let L be an n-component string link obtained from $\mathbf{1}_{n}$ by surgery along a union F of C_{k}-trees that is disjoint from the j-th component of $\mathbf{1}_{n}$. Then $\mu_{L}(I)=0$ for all multiindices I containing j and satisfying $|I| \leq k+1$.

Proof. Consider a diagram of $\mathbf{1}_{n}$ together with F. The diagram contains several crossings between an edge of F and the j-th component of $\mathbf{1}_{n}$. Denote by F_{o}
(respectively F_{u}) the union of C_{k}-trees obtained from F by performing crossing changes so that the j-th component of $\mathbf{1}_{n}$ overpasses (respectively underpasses) all edges. By Lemma 2.3, we have $L \sim_{C_{k+1}} U_{F_{o}} \sim_{C_{k+1}} U_{F_{u}}$. The result then follows from Lemma 3.1 and the following observation.

Consider the diagram D of a string link K. If the i-th component of K overpasses all the other components in D, it follows from the definition of Milnor invariants that $\mu_{K}(I)=0$ for any multi-index I with last index i. Similarly, if the i-th component of K underpasses all the other components in D, then $\mu_{K}(I)=0$ for any multi-index I containing i and with last index not equal to i.

We have the following simple additivity property.
Lemma 3.3. Let L and L^{\prime} be n-component string links such that all Milnor invariants of L (respectively L^{\prime}) of length $\leq m$ (respectively $\leq m^{\prime}$) vanish. Then $\mu_{L \cdot L^{\prime}}(I)=\mu_{L}(I)+\mu_{L^{\prime}}(I)$ for all I of length $\leq m+m^{\prime}$.

Proof. The Milnor invariant of $L \cdot L^{\prime}$ is computed by taking the Magnus expansion of the k-th longitude L_{k} of $L \cdot L^{\prime}$. Denote respectively by l_{i} and m_{i} (respectively l_{i}^{\prime} and m_{i}^{\prime}) the i-th meridian and longitude of L (respectively L^{\prime}), where $1 \leq i \leq n$. We have $L_{k}=l_{k} \cdot \tilde{l}_{k}^{\prime}$, where \tilde{l}_{k}^{\prime} is obtained from l_{k}^{\prime} by replacing m_{i}^{\prime} with $M_{i}=$ $l_{i}^{-1} m_{i} l_{i}$ for each $\underset{\sim}{i}$. So $E\left(L_{k}\right)=E\left(l_{k}\right) \cdot E\left(\tilde{l}_{\underset{k}{\prime}}^{\prime}\right)$, where $E\left(\tilde{l}_{k}^{\prime}\right)$ is obtained from $E\left(l_{k}^{\prime}\right)$ by substituting \widetilde{X}_{i} for X_{i} in $E\left(l_{k}^{\prime}\right)$, where $\widetilde{X}_{i}:=E\left(M_{i}\right)-1$.

The Magnus expansion of l_{i} is the form $E\left(l_{i}\right)=1+($ terms of degree $\geq m$), so

$$
\begin{aligned}
E\left(M_{i}\right) & =E\left(l_{i}^{-1}\right) E\left(m_{i}\right) E\left(l_{i}\right) \\
& =E\left(l_{i}^{-1}\right) E\left(l_{i}\right)+E\left(l_{i}^{-1}\right) X_{i} E\left(l_{i}\right) \\
& =1+X_{i}+(\text { terms of degree } \geq m+1)
\end{aligned}
$$

So $E\left(\tilde{l}_{k}^{\prime}\right)$ is obtained from $E\left(l_{k}^{\prime}\right)=1+\sum_{j \geq m^{\prime}} E_{j}\left(l_{k}^{\prime}\right)$ by replacing each X_{i} by $X_{i}+$ (terms of degree $\geq m+1$) for all i. It follows that

$$
E\left(\tilde{l}_{k}^{\prime}\right)=1+\sum_{m+m^{\prime}-1 \geq j \geq m^{\prime}} E_{j}\left(l_{k}^{\prime}\right)+\left(\text { terms of degree } \geq\left(m+m^{\prime}\right)\right)
$$

It follows that $E\left(L_{k}\right)=E\left(l_{k}\right) E\left(\tilde{l}_{k}^{\prime}\right)$ has the form

$$
1+\sum_{m+m^{\prime}-1 \geq j \geq m} E_{j}\left(l_{k}\right)+\sum_{m+m^{\prime}-1 \geq j \geq m^{\prime}} E_{j}\left(l_{k}^{\prime}\right)+\left(\text { terms of degree } \geq\left(m+m^{\prime}\right)\right)
$$

which implies that all Milnor invariants of length $\leq m+m^{\prime}$ of $L \cdot L^{\prime}$ are additive.

4. $\boldsymbol{C}_{\boldsymbol{n}+\boldsymbol{1}}$-moves for \boldsymbol{n}-component Brunnian string links

An n-component string link L is Brunnian if every proper substring link of L is the trivial string link. In particular, any trivial string link is Brunnian. The set
of n-component Brunnian string links form a submonoid of $\operatorname{SL}(n)$, denoted by $B S L(n)$.

Recall that, given $L \in S L(n)$, the closure $\operatorname{cl}(L)$ of L is an n-component link in S^{3} [Habegger and Lin 1990]. By [Habiro 2007], an n-component link is Brunnian if and only if it is the closure of a certain Brunnian string link.
n-component Brunnian string links up to $\boldsymbol{C}_{\boldsymbol{n}}$-equivalence. Let $B S L(n) / C_{n}$ denote the abelian group of C_{n}-equivalence classes of n-component Brunnian string links. Habiro and Meilhan [2008] gave a basis for $B S L(n) / C_{n}$ as follows.

Let σ be an element in the symmetric group S_{n-2}. Let L_{σ} be the n-component string link obtained from $\mathbf{1}_{n}$ by surgery along the C_{n-1}^{a}-tree T_{σ} shown in Figure 4.1. Likewise, denote by $\left(L_{\sigma}\right)^{-1}$ the n-component string link obtained from the $C_{n-1^{-}}^{a}$ tree \bar{T}_{σ}, which is obtained from T_{σ} by adding a positive half-twist in the edge e (see Figure 4.1).

Let $\mu_{\sigma}(L)$ denote the Milnor invariant $\mu_{L}(\sigma(1), \ldots, \sigma(n-2), n-1, n)$ for any element $\sigma \in S_{n-2}$.

Proposition 4.2 [Habiro and Meilhan 2008]. Let L be an n-component Brunnian string link. Then

$$
L \sim_{C_{n}} \prod_{\sigma \in S_{n-2}}\left(L_{\sigma}\right)^{\mu_{\sigma}(L)}
$$

Remark 4.3. Recall from [Habiro and Meilhan 2008; Miyazawa and Yasuhara 2006] that C_{n}-equivalence, link-homotopy, and C_{n}^{a}-equivalence all coincide on $B S L(n)$.
n-component Brunnian string links up to $\boldsymbol{C}_{\boldsymbol{n + 1}}$ equivalence. In this section, we study the quotient $B S L(n) / C_{n+1}$. Note that $B S L(n) / C_{n+1}$ is a finitely generated abelian group (this is shown by using the same arguments as in the proof of [Habiro 2000, Lemma 5.5]).

Figure 4.1. The simple C_{n}^{a}-tree T_{σ}. Here, the numbering of the edges just indicates how $\sigma \in S_{n-1}$ acts on the edges of T_{σ} (a similar notation is used in Figure 4.4).

Figure 4.4. The simple C_{n}^{a}-tree G_{τ}.
For $k \in\{1, \ldots, n\}$, consider a bijection τ from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n\} \backslash\{k\}$. Denote by V_{τ} the n-component string link obtained from $\mathbf{1}_{n}$ by surgery along the C_{n}^{a}-tree G_{τ} shown in Figure 4.4. Denote by \bar{G}_{τ} the C_{n}^{a}-tree for $\mathbf{1}_{n}$ obtained from G_{τ} by adding a positive half-twist in the edge e (see Figure 4.1). Let $\left(V_{\tau}\right)^{-1}$ be the n-component string link obtained from $\mathbf{1}_{n}$ by surgery along \bar{G}_{τ}.

Set $\mu_{\tau}(L):=\mu_{L}(\tau(1), \ldots, \tau(n-1), k, k)$. Denote by $\mathscr{B}(k)$ the set of all bijections τ from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n\} \backslash\{k\}$ such that $\tau(1)<\tau(n-1)$, and denote by ρ a bijection from $\{1, \ldots, n-1\}$ to itself defined by $\rho(i)=n-i$. We have the following.

Proposition 4.5. Let L be an n-component Brunnian string link. Then

$$
\begin{equation*}
L \sim_{C_{n+1}}\left(\prod_{\sigma \in S_{n-2}}\left(L_{\sigma}\right)^{\mu_{\sigma}(L)}\right) \cdot L_{1} \cdots L_{n} \tag{4-1}
\end{equation*}
$$

where, for each k in $1 \leq k \leq n$, the factor L_{k} is the n-component Brunnian string link

$$
\prod_{\tau \in \mathscr{B}(k)}\left(V_{\tau}\right)^{n_{\tau}(L)} \cdot\left(V_{\tau \rho}\right)^{n_{\tau}^{\prime}(L)}
$$

such that, for any $\tau \in \mathscr{B}(k)$ for $k=1, \ldots, n$, the exponents $n_{\tau}(L)$ and $n_{\tau}^{\prime}(L)$ are two integers satisfying

$$
\begin{equation*}
n_{\tau}(L)+(-1)^{n-1} n_{\tau}^{\prime}(L)=\mu_{\tau}\left(L_{1} \cdots L_{n}\right) . \tag{4-2}
\end{equation*}
$$

Proof. By Proposition 4.2 and Remark 4.3, L is obtained from the n-component string link

$$
L_{0}:=\prod_{\sigma \in S_{n-2}}\left(L_{\sigma}\right)^{\mu_{\sigma}(L)}
$$

by surgery along a disjoint union F of simple C_{n}^{a}-trees. By Lemma 2.3, we have $L \sim_{C_{n+1}} L_{0} \cdot\left(\mathbf{1}_{n}\right)_{G_{1}} \cdots \cdots\left(\mathbf{1}_{n}\right)_{G_{p}}$, where G_{j} for $1 \leq j \leq p$ are simple C_{n}^{a}-trees for $\mathbf{1}_{n}$. Denote by k_{j} the (unique) element of $\{1, \ldots, n\}$ such that G_{j} intersects twice the
k_{j}-th component of $\mathbf{1}_{n}$ for $1 \leq j \leq p$. We can use the AS and IHX relations for tree claspers to replace, up to C_{n+1}-equivalence, each of these C_{n}^{a}-trees with a union of linear C_{n}^{a}-trees whose ends intersect the k_{j}-th component. More precisely, by Lemmas 2.6, 2.5 and 2.3 we have for each $1 \leq j \leq p$ that

$$
\left(\mathbf{1}_{n}\right)_{G_{j}} \sim_{C_{n+1}} \prod_{i=1}^{m_{j}}\left(V_{v_{i j}}\right)^{\varepsilon_{i j}},
$$

where $\varepsilon_{i j} \in \mathbf{Z}$ and where $v_{i j}$ is a bijection from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n\} \backslash\left\{k_{j}\right\}$. Since there exists, for each such $\nu_{i j}$, a unique element τ of $\mathscr{B}\left(k_{j}\right)$ such that $\nu_{i j}$ is equal to either τ or $\tau \rho$, it follows that L is C_{n+1}-equivalent to an n-component string link of the form given in (4-1). It remains to prove (4-2).

First, let us compute $\mu_{\tau}\left(V_{\eta}\right)$ for all $\tau \in \mathscr{B}(k)$ and $\eta \in \mathscr{B}(l)$, where $k, l=1, \ldots, n$. By [Milnor 1957, Theorem 7], we have $\mu_{\tau}\left(V_{\eta}\right)=\mu_{\tau, n+1}\left(W_{\eta}\right)$, where $\mu_{\tau, n+1}$ is Milnor invariant $\mu(\tau(1), \ldots, \tau(n-1), k, n+1)$ and where W_{η} denotes the $(n+1)$ component string link obtained from V_{η} by taking, as the $(n+1)$-st component, a parallel copy of the k-th component (so that the k-th and the ($n+1$)-st components of W_{η} have linking number zero). Now recall that $V_{\eta} \cong\left(\mathbf{1}_{n}\right)_{G_{\eta}}$, where G_{η} is a $C_{n}^{a}-$ tree as shown in Figure 4.4. So $W_{\eta} \cong\left(\mathbf{1}_{n+1}\right) \widetilde{G}_{\eta}$, where \widetilde{G}_{η} is a C_{n}^{a}-tree obtained from G_{η} by replacing each leaf intersecting the k-th component of $\mathbf{1}_{n}$ with a leaf intersecting components k and $n+1$, as depicted in Figures 4.6 and 4.7.

If $k \neq l$, then \widetilde{G}_{η} contains exactly one leaf f intersecting both the k-th and the ($n+1$)-st components of $\mathbf{1}_{n+1}$. By Lemma 2.8, we have

$$
\left(\mathbf{1}_{n+1}\right)_{\widetilde{G}_{\eta}} \sim_{C_{n+1}}\left(\mathbf{1}_{n+1}\right)_{G_{n}^{1}} \cdot\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{2}},
$$

where G_{η}^{i} denotes the simple C_{n}-tree for $\mathbf{1}_{n+1}$ obtained from \widetilde{G}_{η} by replacing f by f_{i} for $i=1,2$ as shown in Figure 4.6. By Lemmas 3.1 and $3.3, \mu_{\tau}\left(V_{\eta}\right)$ is thus equal to $\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{1}}\right)+\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{2}}\right)$. It follows from Lemma 3.2 that $\mu_{\tau}\left(V_{\eta}\right)=0$.

Figure 4.6. Here and subsequently we fix, for simplicity, $n=4$, $k=1$, and $l=4$. We let η be the permutation (23) $\in S_{3}$.

Figure 4.7

Now suppose that $k=l$. Then \widetilde{G}_{η} contains two leaves intersecting both the k-th and the $(n+1)$-st components of $\mathbf{1}_{n+1}$. By Lemma 2.8, we obtain

$$
\left(\mathbf{1}_{n+1}\right)_{\widetilde{G}_{\eta}} \sim_{C_{n+1}}\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{1}} \cdot\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{2}} \cdot\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{3}} \cdot\left(\mathbf{1}_{n+1}\right)_{G_{n}^{4}},
$$

where, for $1 \leq i \leq 4, G_{\eta}^{i}$ is a simple C_{n}-tree for $\mathbf{1}_{n+1}$ as depicted in Figure 4.7. By Lemmas 3.1, 3.2 and 3.3, it follows that

$$
\mu_{\tau}\left(V_{\eta}\right)=\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{3}}\right)+\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{4}}\right) .
$$

Observe that the closure of each of these two string links is a copy of Milnor's link [Milnor 1954, Figure 7]. By a formula of Milnor [1954, page 190], we obtain $\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{3}}\right)=\delta_{\tau, \eta}$ and $\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{\eta}^{4}}\right)=0$, where δ denotes Kronecker's symbol. So we obtain that $\mu_{\tau}\left(V_{\eta}\right)=\delta_{\tau, \eta}$. Moreover, it follows from Lemmas 3.3 and 2.5 that $\mu_{\tau}\left(\left(V_{\eta}\right)^{-1}\right)=-\delta_{\tau, \eta}$.

Now consider the string link $V_{\eta \rho}$. By the same arguments as above, we have $\mu_{\tau}\left(V_{\eta \rho}\right)=\mu_{\tau}\left(\left(V_{\eta \rho}\right)^{-1}\right)=0$ if $k \neq l$. If $k=l$, it follows from the same arguments as above that

$$
\mu_{\tau}\left(V_{n \rho}\right)=\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{n \rho}^{1}}\right)+\mu_{\tau, n+1}\left(\left(\mathbf{1}_{n+1}\right)_{G_{n \rho}^{2}}\right),
$$

where $G_{\eta \rho}^{1}$ and $G_{\eta \rho}^{2}$ are two simple C_{n}^{a}-trees for $\mathbf{1}_{n+1}$ as depicted in Figure 4.8. By Lemma 2.3 and isotopy, $\left(\mathbf{1}_{n+1}\right)_{G_{n o}^{i}}$ is C_{k+1}-equivalent to $\left(\mathbf{1}_{n+1}\right)_{T_{\eta}^{i}}$, where T_{η}^{i} is as shown in Figure 4.8 for $i=1$, 2. By Lemma 2.5, we thus obtain

$$
\mu_{\tau}\left(V_{\eta \rho}\right)=(-1)^{n-1} \delta_{\tau, \eta} .
$$

We conclude that

$$
\mu_{\tau}\left(L_{1} \cdots L_{n}\right)=\sum_{1 \leq i \leq n} \mu_{\tau}\left(L_{i}\right)=n_{\tau}(L)+(-1)^{n-1} n_{\tau}^{\prime}(L) .
$$

Figure 4.8

Figure 4.10. The link B_{τ}.
Remark 4.9. Observe that we obtain the following as a byproduct of the proof of Proposition 4.5. Consider the n-component Brunnian link B_{τ} represented in Figure 4.10, for some $\tau \in \mathscr{B}(k) . B_{\tau}$ is the closure of the n-component string link V_{τ} considered above. We showed that, for $1 \leq l \leq n$ and $\eta \in \mathscr{B}(l)$,

$$
\bar{\mu}_{\eta}\left(B_{\tau}\right)=\mu_{\eta}\left(B_{\tau}\right)=\delta_{\eta, \tau} .
$$

We conclude this section by showing that the string links V_{τ} and $V_{\tau \rho}$ are linearly independent in $\operatorname{BSL}(n) / C_{n+1}$.
Proposition 4.11. For any integer k in $\{1, \ldots, n\}$ with $n \geq 3$ and any $\tau \in \mathscr{B}(k)$, we have $V_{\tau}{\nsim C_{n+1}} V_{\tau \rho}$ and $V_{\tau}{\nsim C_{n+1}}\left(V_{\tau \rho}\right)^{-1}$.

Remark 4.12. In contrast to the lemma above, we will see while proving Proposition 5.1 that either $\operatorname{cl}\left(V_{\tau}\right) \sim_{C_{n+1}} \operatorname{cl}\left(V_{\tau \rho}\right)$ or $\operatorname{cl}\left(V_{\tau}\right) \sim_{C_{n+1}} \operatorname{cl}\left(\left(V_{\tau \rho}\right)^{-1}\right)$.
Proof. Consider a diagram of an n-component string link L. The string link L lives in a copy of $D^{2} \times I$ standardly embedded in S^{3}. The origin (respectively terminal) of the i-th component of L is the starting point (respectively ending point) of the component, according to the orientation of L. We can construct a knot $K_{\tau}(L)$ in S^{3} as follows.

Connect the terminals of the k-th and the $\tau(1)$-st components by an arc a_{1} in $S^{3} \backslash\left(D^{2} \times I\right)$. Next, connect the origins of the $\tau(1)$-st and the $\tau(2)$-nd components

Figure 4.13. The knot $K_{\tau}(L)$.
by an arc a_{2} in $S^{3} \backslash\left(D^{2} \times I\right)$ disjoint from a_{1}, then the terminals of the $\tau(2)$-nd and the $\tau(3)$-rd components by an arc a_{3} in $S^{3} \backslash\left(D^{2} \times I\right)$ disjoint from $a_{1} \cup a_{2}$. Repeat this construction until reaching the last component, the $\tau(n-1)$-st component, and connect the terminal or the origin (depending on whether n is even or odd) to the origin of the k-th component by an arc a_{n} in $S^{3} \backslash\left(D^{2} \times I\right)$ disjoint from $\bigcup_{1 \leq i \leq n-1} a_{i}$. The arcs are chosen so that, if a_{i} and a_{j} (with $i<j$) meet in the diagram of L, then a_{i} overpasses a_{j}. The orientation of K_{τ} is the one induced from the k-th component. An example is given in Figure 4.13 for the case $n=4, k=4$ and $\tau=(231) \in S_{3}$.

It follows immediately from the above construction and [Horiuchi 2007, Theorem 1.4] that
$P_{0}^{(n)}\left(K_{\tau}\left(V_{\tau}\right) ; 1\right)= \pm n!2^{n} \quad$ and $\quad P_{0}^{(n)}\left(K_{\tau}\left(V_{\tau \rho}\right) ; 1\right)=P_{0}^{(n)}\left(K_{\tau}\left(\left(V_{\tau \rho}\right)^{-1}\right) ; 1\right)=0$,
where $P_{l}^{(k)}(K ; 1)$ denotes the k-th derivative of the coefficient polynomial $P_{k}(K ; t)$ of z^{k} in the HOMFLY polynomial $P(K ; t, z)$ of a link K, evaluated in 1 . The result then follows from [Habiro 2000, Corollary 6.8] and the fact that $P_{0}^{(n)}(K ; 1)$ is a Goussarov-Vassiliev invariant of degree $\leq n$ [Kanenobu and Miyazawa 1998].

5. $\boldsymbol{C}_{\boldsymbol{n}+\boldsymbol{1}}$-moves for \boldsymbol{n}-component Brunnian links

In this section, we prove Theorems 1.6 and 1.9. Let us begin with stating the following link version of Proposition 4.5.

Proposition 5.1. Let L be an n-component Brunnian link. Then

$$
L \sim_{C_{n+1}} \mathrm{cl}\left(\prod_{\sigma \in S_{n-2}}\left(L_{\sigma}\right)^{\mu_{\sigma}(L)} \cdot \prod_{1 \leq k \leq n} L_{k}^{\prime}\right),
$$

where, for each k with $1 \leq k \leq n$,

$$
L_{k}^{\prime}:=\prod_{\tau \in \mathscr{B}(k)}\left(V_{\tau}\right)^{\mu_{\tau}\left(L_{1}^{\prime} \cdots \cdots L_{n}^{\prime}\right)} .
$$

Figure 5.2

Proof. By Proposition 4.5, L is C_{n+1}-equivalent to the closure of the string link

$$
\begin{equation*}
l=\prod_{\sigma \in S_{n-2}}\left(\left(\mathbf{1}_{n}\right)_{T_{\sigma}}\right)^{\mu_{\sigma}(L)} \cdot \prod_{1 \leq k \leq n} \prod_{\tau \in \mathscr{B}(k)}\left(\left(\mathbf{1}_{n}\right)_{G_{\tau}}\right)^{n_{\tau}(L)} \cdot\left(\left(\mathbf{1}_{n}\right)_{G_{\tau \rho}}\right)^{n_{\tau}^{\prime}(L)}, \tag{5-1}
\end{equation*}
$$

where $n_{\tau}(L)$ and $n_{\tau}^{\prime}(L)$ are two integers satisfying (4-2). Denote by F the union of all the tree claspers involved in (5-1), that is, $l=\left(\mathbf{1}_{n}\right)_{F}$.

For some $k \in\{1, \ldots, n\}$ and $\tau \in \mathscr{B}(k)$, let G be a copy of the simple C_{n}-tree $G_{\tau \rho}$ in F. Let f be a leaf of G that intersects the k-th component of $\mathbf{1}_{n}$ (see Figure 5.2). When we close the k-th component of $\mathbf{1}_{n}$, we can slide f over leaves of the components of $F \backslash G$ until we obtain the C_{n}-tree G^{\prime} of Figure 5.2. Denote by F^{\prime} the union of tree claspers obtained from F by this operation. By Lemma 2.3, we have $\operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{F}\right) \sim_{C_{n+1}} \operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{F^{\prime}}\right)$. By Lemma 2.3 and isotopy, $\left(\mathbf{1}_{n}\right)_{G^{\prime}}$ is C_{n+1}-equivalent to $\left(\mathbf{1}_{n}\right)_{G^{\prime \prime}}$, where $G^{\prime \prime}$ is the C_{n}-tree depicted in Figure 5.2. $G^{\prime \prime}$ differs from a copy of G_{τ} by $(n+3)$ half-twists on its edges. It thus follows from Lemma 2.5 that

$$
\operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{G_{\tau}} \cdot\left(\mathbf{1}_{n}\right)_{G_{\tau \rho}}\right) \sim_{C_{n+1}} \begin{cases}\operatorname{cl}\left(\mathbf{1}_{n}\right) & \text { if } n \text { is even }, \\ \left.\operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{G_{\tau}}\right)^{2}\right) & \text { if } n \text { is odd } .\end{cases}
$$

L is thus C_{n+1}-equivalent to the closure of the string link

$$
\prod_{\sigma \in S_{n-2}}\left(\left(\mathbf{1}_{n}\right)_{T_{\sigma}}\right)^{\mu_{\sigma}(L)} \cdot \prod_{1 \leq k \leq n} \prod_{\tau \in \mathscr{O}_{B}(k)}\left(\left(\mathbf{1}_{n}\right)_{G_{\tau}}\right)^{n_{\tau}(L)+(-1)^{n-1} n_{\tau}^{\prime}(L)} .
$$

The result follows from (4-2).

The link-homotopically trivial links case: Proof of Theorem 1.6.
Proof of Theorem 1.6. That (1) implies (2) follows immediately from Lemma 3.1, and (2) implies (3) is clear. So it remains to show that (3) implies (1).

By Proposition 4.2, if an n-component Brunnian link B is link-homotopically trivial, then $\mu_{\sigma}(B)=0$ for all $\sigma \in S_{n-2}$. For all $\tau \in \mathscr{B}(k)$ with $k=1, \ldots, n$, $\mu_{\tau}(B)$ is thus a well-defined integer, which satisfies $\mu_{\tau}(B)=\mu_{\tau}(L(B))$ for any

Figure 5.3. Here B^{-1} (respectively V_{p}^{-1} for $1 \leq p \leq 3$) is defined as obtained from B (respectively V_{p} for $1 \leq p \leq 3$) by a positive half-twist on the edge marked by a \star.
string link $L(B)$ whose closure is B. By Proposition 5.1, we have

$$
B \sim_{C_{n+1}} \mathrm{cl}\left(\prod_{1 \leq k \leq n} \prod_{\tau \in \mathscr{B}(k)}\left(V_{\tau}\right)^{\mu_{\tau}(B)}\right) .
$$

The result follows immediately.

5.1. The 3-component links case: Proof of Theorem 1.9.

Proof of Theorem 1.9. As in the proof of Theorem 1.6, we only have to show (3) implies (1). Let L be a 3 -component Brunnian link. By Proposition 5.1, we have

$$
L \sim_{C_{4}} \operatorname{cl}\left(L_{0} \cdot L_{1} \cdot L_{2} \cdot L_{3}\right), \quad \text { with } L_{p}= \begin{cases}B^{\mu_{L}(123)} & \text { if } p=0, \tag{5-2}\\ V_{p}^{n_{p}} & \text { if } p=1,2,3,\end{cases}
$$

where B and V_{p} for $p=1,2,3$ are 3 -component string links obtained from $\mathbf{1}_{3}$ by surgery along a C_{2}-tree and along C_{3}-trees, respectively, as shown in Figure 5.3, and where $n_{k}=\mu_{L_{1} \cdot L_{2} \cdot L_{3}}(i j k k)$ with $\{i, j, k\}=\{1,2,3\}$ and $i<j$. Note that $\mu_{L}(123)=\bar{\mu}_{L}(123)$ since L is Brunnian.

We now make an observation. Consider a union Y of u parallel copies of a simple C_{2}^{a}-tree for the 3-component trivial link $U=U_{1} \cup U_{2} \cup U_{3}$, and perform an isotopy as illustrated in Figure 5.4. Denote by Y^{\prime} the resulting union of $C_{2}{ }^{-}$ trees. Then by [Habiro 2000, Proposition 4.5], Y^{\prime} can be deformed into Y by a sequence of $u C_{3}$-moves, corresponding to u parallel copies of a simple C_{3}-tree intersecting twice U_{i} and once U_{j} and U_{k}. So by Lemma 2.5, U_{Y} is C_{4}-equivalent to $\operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{Y} \cdot\left(\mathbf{1}_{n}\right)_{V_{i}}^{ \pm u}\right)$. (Here, abusing notations, we still denote by Y a union of u simple C_{2}-trees for $\mathbf{1}_{3}$ such that $\operatorname{cl}\left(\left(\mathbf{1}_{3}\right)_{Y}\right) \cong U_{Y}$.) Note that for any union F of C_{3}-trees, $U_{Y \cup F} \sim_{C_{4}} \mathrm{cl}\left(\left(\mathbf{1}_{n}\right)_{Y \cup F} \cdot\left(\mathbf{1}_{n}\right)_{V_{i}}^{ \pm u}\right)$.

This observation implies that the n_{p} for $p=1,2,3$ in (5-2) are changeable up to $\left|\mu_{L}(123)\right|$. So we can suppose that n_{p} for all $p=1,2,3$ satisfies

$$
\begin{equation*}
0 \leq n_{p}<\left|\mu_{L}(123)\right| . \tag{5-3}
\end{equation*}
$$

Now by [Krushkal 1998] we have, for all $\{i, j, k\}=\{1,2,3\}$,

$$
\mu_{L}(i j k k) \equiv \mu_{\mathrm{cl}\left(L_{0}\right)}(i j k k)+\mu_{\mathrm{cl}\left(L_{1} \cdot L_{2} \cdot L_{3}\right)}(i j k k) \quad \bmod \mu_{L}(123) .
$$

Figure 5.4
By Lemma 3.3, we have $\mu_{\mathrm{cl}\left(L_{0}\right)}(i j k k) \equiv 0 \bmod \mu_{L}(123)$ and

$$
\mu_{\mathrm{cl}\left(L_{1} \cdot L_{2} \cdot L_{3}\right)}(i j k k) \equiv \sum_{1 \leq p \leq 3} n_{p} \mu_{\operatorname{cl}\left(V_{p}\right)}(i j k k) \bmod \mu_{L}(123)
$$

As seen in Remark 4.9, we have $\mu_{\operatorname{cl}\left(V_{p}\right)}(i j k k)=\delta_{p, k}$. It follows that

$$
\begin{equation*}
\mu_{L}(i j k k) \equiv n_{k} \bmod \mu_{L}(123) \tag{5-4}
\end{equation*}
$$

Consider 3-component Brunnian links L and L^{\prime} such that $\bar{\mu}_{L}(123)=\bar{\mu}_{L^{\prime}}(123)$ and $\bar{\mu}_{L}(i j k k)=\bar{\mu}_{L^{\prime}}(i j k k)$ for $(i, j, k)=(1,2,3),(1,3,2)$ and (2,3,1). It follows from (5-2), (5-4) and (5-3) that $L \sim_{C_{4}} L^{\prime}$. This completes the proof.

Minimal string link. Let L be an n-component Brunnian link in S^{3}. Denote by $\mathscr{L}(L)$ the set of all n-component string links l such that $\operatorname{cl}(l)=L$.

By Proposition 4.5, for each $l \in \mathscr{L}(L)$ there exists an $l^{\prime} \in S L(n)$ such that l is C_{n+1}-equivalent to a string link of the form $\prod_{\sigma \in S_{n-2}}\left(L_{\sigma}\right)^{\mu_{\sigma}(l)} \cdot l^{\prime}$.

Put any total order on the set $\mathscr{B}:=\bigcup_{1 \leq k \leq n} \mathscr{B}(k)$ and fix it. We denote by τ_{i} for $i=1, \ldots, m$ the elements of \mathscr{B} according to this total order. For all $l \in \mathscr{L}(L)$, $\tau \in \mathscr{B}$, set $\alpha_{\tau}(l):=\mu_{\tau}\left(l^{\prime}\right)$. For each element $l \in \mathscr{L}(L)$, we can thus define a vector
$v_{l}:=\left(\left|\alpha_{\tau_{1}}(l)\right|, \ldots,\left|\alpha_{\tau_{k}}(l)\right|, \ldots,\left|\alpha_{\tau_{m}}(l)\right|,-\alpha_{\tau_{1}}(l), \ldots,-\alpha_{\tau_{k}}(l), \ldots,-\alpha_{\tau_{m}}(l)\right)$.
Set $\mathscr{V}_{L}=\left\{v_{l} \mid l \in \mathscr{L}(L)\right\}$. We have the following.
Proposition 5.5. Two n-component Brunnian links L and L^{\prime} are C_{n+1}-equivalent if and only if $\bar{\mu}_{\sigma}(L)=\bar{\mu}_{\sigma}\left(L^{\prime}\right)$ for all $\sigma \in S_{n-1}$ and $\min \mathscr{V}_{L}=\min \mathscr{V}_{L^{\prime}}$.

In Section 5.1, if we take $-\left|\mu_{L}(123)\right| / 2<n_{k}<\left(\left|\mu_{L}(123)\right|-1\right) / 2$ instead of inequality (5-3), then we have an explicit form of $\min \mathscr{V}_{L}$ for a 3-component Brunnian link L. In general, it is a problem to determine $\min \mathscr{V}_{L}$ from L.

6. C_{4}-equivalence for links

In this section we prove Theorem 1.1 and Proposition 1.4. The first subsection provides a lemma, which is the main new ingredient for the proofs of these results.

Figure 6.3. The STU relation for C_{k}-graphs.
6.1. The index lemma. Let T be a simple C_{k}-tree for an n-component link L. The index of T is the collection of all integers i such that T intersects the i-th component of L, counted with multiplicities. For example, a simple C_{3}-tree of index $\left\{2,3^{(2)}, 5\right\}$ for L intersects component 3 twice and components 2 and 5 once (and is disjoint from all other components of L).

Lemma 6.1. Suppose T is a simple C_{k}-tree with $k \geq 3$ of index $\left\{i, j^{(k)}\right\}$ for an n-component link L with $1 \leq i \neq j \leq n$. Then $L_{T} \sim_{C_{k+1}} L$.

In order to prove this lemma, we need the notion of graph clasper introduced in [Habiro 2000, Section 8.2]. A graph clasper is defined as an embedded connected surface that is decomposed into leaves, nodes and bands as in Definition 2.1, but that is not necessarily a disk. A graph clasper may contain loops. The degree of a graph clasper G is defined as half of the number of nodes and leaves (which coincides with the usual degree if G is a tree clasper). We call a degree k graph clasper a C_{k}-graph. Two links related by surgery along a C_{k}-graph are C_{k}-equivalent; see [Habiro 2005]. A C_{k}-graph for a link L is simple if each of its leaves intersects L at one point.

Recall from [Habiro 2000, Section 8.2] that the STU relation holds for graph claspers.

Lemma 6.2. Let G_{S}, G_{T} and G_{U} be three C_{k}-graphs for $\mathbf{1}_{n}$ that differ only in a small ball as depicted in Figure 6.3. Then $\left(\mathbf{1}_{n}\right)_{G_{S}} \sim_{C_{k+1}}\left(\mathbf{1}_{n}\right)_{G_{T}} \cdot\left(\mathbf{1}_{n}\right)_{G_{U}}$.

It should be noted that, in contrast to the diagram case, this STU relation only holds among connected claspers. Note also that it differs by a sign from the STU relation for unitrivalent diagrams.

Lemma 6.4. Let C be a simple C_{k}-graph for an n-component link L in S^{3}, which intersects a certain component of L exactly once. If C contains a loop (that is, if C is not a C_{k}-tree), then $L_{C} \sim_{C_{k+1}} L$.

Proof. Suppose that C intersect the i-th component of L exactly once. By [Habiro 2000] and Lemma 2.3, there exists a union F of tree claspers for $\mathbf{1}_{n}$ and a simple C_{k}-tree G for $\mathbf{1}_{n}$ containing a loop and intersecting the i-th component once, such that $L \cong \operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{F}\right)$ and $L_{C} \sim_{C_{k+1}} \operatorname{cl}\left(\left(\mathbf{1}_{n}\right)_{F} \cdot\left(\mathbf{1}_{n}\right)_{G}\right)$.

Figure 6.5

Consider the unique leaf f of G intersecting the i-th component. This leaf f is connected to a loop γ of G by a path P of edges and nodes. We proceed by induction on the number n of nodes in P.

If $n=0$, that is, if f is connected to γ by a single edge, apply Lemma 6.2 at this edge. The result then follows from Lemmas 2.3 and 2.5 by arguments similar to those in the proof of Proposition 5.1.

For an arbitrary $n \geq 1$, apply the IHX relation at the edge of P incident to γ. By Lemma 2.6, ${ }^{1}$ we obtain $\left(\mathbf{1}_{n}\right)_{G} \sim_{C_{k+1}}\left(\mathbf{1}_{n}\right)_{G^{\prime}} \cdot\left(\mathbf{1}_{n}\right)_{G^{\prime \prime}}$, where G^{\prime} and $G^{\prime \prime}$ are $C_{k^{-}}$ graphs, each of which has a unique leaf intersecting the i-th component connected to a loop by a path with $(n-1)$ nodes. By the induction hypothesis, we thus have $\left(\mathbf{1}_{n}\right)_{G^{\prime}} \sim_{C_{k+1}} \mathbf{1}_{n} \sim_{C_{k+1}}\left(\mathbf{1}_{n}\right)_{G^{\prime \prime}}$.
Proof of Lemma 6.1. Let T be a simple C_{k}-tree of index $\left\{i, j^{(k)}\right\}$ for an n-component link L with $1 \leq i \neq j \leq n$. By several applications of Lemmas 6.2, 6.4, 2.3 and 2.5, one can easily verify that $L_{T} \sim_{C_{k+1}} L_{T^{\prime}}$, where T^{\prime} is a simple C_{k}-tree of index $\left\{i, j^{(k)}\right\}$ for L that contains two leaves as depicted in Figure 6.5. By applying the IHX and STU relations, we have $L_{T^{\prime}} \sim_{C_{k+1}} L_{T^{\prime \prime}}$, where $T^{\prime \prime}$ is a C_{k}-graph for L as illustrated in Figure 6.5. $T^{\prime \prime}$ clearly satisfies the hypothesis of Lemma 6.4. We thus have $L_{T} \sim_{C_{k+1}} L_{T^{\prime \prime}} \sim_{C_{k+1}} L$.

Proof of Theorem 1.1. We only need to prove the 'if' part of the statement. Let L be a C_{3}-trivial n-component link. Consider an n-component string link l such that its closure is L and such that $l \sim_{C_{3}} \mathbf{1}_{n}$. By Lemmas 2.3, 2.5 and 2.6 and the arguments used in the proof of Proposition 5.1, we have

$$
l \sim_{C_{4}} l_{0} \cdot l_{1} \cdot l_{2} \cdot l_{3} \cdot l_{4},
$$

where the l_{i} are defined as follows:

- $l_{0}=\prod_{i}\left(\mathbf{1}_{n}\right)_{U_{i}}$, where U_{i} is union of simple C_{3}-trees of index $\left\{i^{(4)}\right\}$ contained in a regular neighborhood of the i-th component of $\mathbf{1}_{n}$, and $1 \leq i \leq n$.

[^1]

Figure 6.6. Here $X_{i j}^{-1}$ (respectively $Y_{i j k}^{-1}, Z_{i j k l}^{-1}$) is defined as obtained from $X_{i j}$ (respectively $Y_{i j k}, Z_{i j k l}$) by a positive half-twist on the edge marked by a \star.

- $l_{1}=\prod_{i<j}\left(\left(\mathbf{1}_{n}\right)_{X_{i j}}\right)^{x_{i j}}$, where $X_{i j}$ is the simple C_{3}-tree of index $\left\{i^{(2)}, j^{(2)}\right\}$ represented in Figure 6.6, and where $x_{i j} \in \mathbb{Z}$.
- $l_{2}=\prod_{i<j ; k}\left(\left(\mathbf{1}_{n}\right)_{Y_{i j k}}\right)^{y_{i j k}}$, where $Y_{i j k}$ is the simple C_{3}-tree of index $\left\{i, j, k^{(2)}\right\}$ represented in Figure 6.6.
- $l_{3}=\prod_{i \neq j<k<l}\left(\left(\mathbf{1}_{n}\right)_{i j k l}\right)^{z_{i j k l}}$, where $Z_{i j k l}$ is the simple C_{3}-tree whose index is $\{i, j, k, l\}$ and which is represented in Figure 6.6.
- l_{4} is obtained from $\mathbf{1}_{n}$ by surgery along simple C_{3}-trees with index of the form $\left\{i, j^{(3)}\right\}$ for $1 \leq i \neq j \leq n$.

As an immediate consequence of Lemma 6.1, we thus have

$$
L=\operatorname{cl}(l) \sim_{C_{4}} \operatorname{cl}\left(l_{0} \cdot l_{1} \cdot l_{2} \cdot l_{3}\right) .
$$

It follows from standard computations (see preceding sections) that

$$
\begin{array}{cl}
\bar{\mu}_{L}(i i j j)=\mu_{l_{1}}(i i j j)=2 x_{i j} & \text { for all } 1 \leq i<j \leq n, \\
\bar{\mu}_{L}(i j k k)=\mu_{l_{2}}(i j k k)=y_{i j k} & \text { for all } 1 \leq i<j \leq n \text { and } 1 \leq k \leq n, \\
\bar{\mu}_{L}(i j k l)=\mu_{l_{3}}(i j k l)=z_{i j k l} & \text { for all } 1 \leq i \neq j<k<l \leq n .
\end{array}
$$

Now, consider another C_{3}-trivial n-component link L^{\prime}, such that L and L^{\prime} satisfy assertions (1) and (2) of Theorem 1.1. By the same construction as above and Theorem 1.1(1), we have

$$
L^{\prime} \sim_{C_{4}} \mathrm{cl}\left(l_{0}^{\prime} \cdot l_{1} \cdot l_{2} \cdot l_{3}\right) .
$$

Here $l_{0}^{\prime}=\prod_{i}\left(\mathbf{1}_{n}\right)_{U_{i}^{\prime}}$, where U_{i}^{\prime} is union of simple C_{3}-trees of index $\left\{i^{(4)}\right\}$ contained in a regular neighborhood of the i-th component of $\mathbf{1}_{n}$ for $1 \leq i \leq n$. Denote respectively by $\left(l_{0}\right)_{i}$ and $\left(l_{0}^{\prime}\right)_{i}$ the i-th components of l_{0} and l_{0}^{\prime}. By Theorem 1.1(2) and [Habiro 2000, Theorem 6.18], we have $\left(l_{0}\right)_{i} \sim_{C_{4}}\left(l_{0}^{\prime}\right)_{i}$ for all i in $\{1, \ldots, n\}$. We thus have $l_{0} \sim_{C_{4}} l_{0}^{\prime}$, which implies the result.

Figure 7.2

Proof of Proposition 1.4. It suffices to show that 2-component links L and L^{\prime} that are not distinguished by Vassiliev invariants of order ≤ 3 are C_{4}-equivalent (the converse is well known).

By [Miyazawa 2003, Theorem 1.5], L^{\prime} can be obtained from L by a sequence of surgeries along
(1) C_{4}-trees and
(2) simple C_{3}-trees with index $\left\{i, j^{(3)}\right\}$, $\{i, j\}=\{1,2\}$.

By Lemma 6.1, each surgery of type (2) can be achieved by surgery along C_{4}-trees. It follows that $L \sim_{C_{4}} L^{\prime}$.

7. C_{k} and $C_{\boldsymbol{k}}^{\boldsymbol{a}}$-triviality for Brunnian links

In this section we prove Propositions 2.12 and 2.14. We will need the following ' C_{k}^{a}-version' of [Habiro 2000, Proposition 3.7].
Lemma 7.1. If $n-1 \leq k \leq l$, the C_{l}^{a}-equivalence implies the C_{k}^{a}-equivalence for n-component (string) links.

Proof. It suffices to show the case $l=k+1$. Let G be a C_{k+1}^{a}-tree for an n component (string) link L. By [Habiro 2007, Lemma 6], we may assume that G is simple. There exists $j \in\{1, \ldots, n\}$ such that at least two leaves of G intersect the j-th component of L. Denote by f one of these leaves, and consider the node of G connected to f by an edge (see Figure 7.2). By applying [Meilhan 2006, Lemma 2.4] at this node, followed by [Habiro 2000, Proposition 2.7] and a zip construction, G is equivalent to the union $G^{\prime} \cup G^{\prime \prime}$ of two C_{k}^{a}-trees as represented in Figure 7.2, where $G^{\prime \prime}$ lives in a regular neighborhood of G^{\prime} (here, we use the zip construction from the point of view of [Conant and Teichner 2004]). This proves $L_{G} \sim_{C_{k}^{a}} L$.

Note that similar arguments appear in the proof of [Fleming and Yasuhara 2008, Proposition 3.1].

Proof of Proposition 2.12. First, observe that it suffices to show the result for links. For string links, the lemma can be shown by similar arguments.

Denote by $O_{n}=U_{1} \cup \cdots \cup U_{n}$ the n-component trivial link. The 'if' part of the statement is obvious. Here we consider a link L that is C_{k}-equivalent to O_{n}, and we prove that $L \sim_{C_{k}^{a}} O_{n}$.

For any tree clasper T for O_{n}, set

$$
\mathrm{D}(T):=\left\{i \in\{1, \ldots, n\} \mid T \cap U_{i} \neq \varnothing\right\} .
$$

Note that $D(T)$ differs from the index of T introduced in Section 6.1 (here we consider elements of $\{1, \ldots, n\}$ without multiplicity). By assumption, $L \cong\left(O_{n}\right)_{G}$, where $G=G_{1} \cup \cdots \cup G_{p}$ is a union of simple tree claspers of degree $\geq k$. Set

$$
\mathrm{D}(G):=\bigcap_{i=1}^{p} \mathrm{D}\left(G_{i}\right) .
$$

Consider $j \in\{1, \ldots, n\} \backslash \mathrm{D}(G)$. Denote by $G(j)$ the union of all tree claspers of G that are disjoint from U_{j}. As L is Brunnian, we have $\left(O_{n} \backslash U_{j}\right)_{G(j)} \cong O_{n-1}$. By a sequence of crossing changes between edges of $G(j)$ and U_{j}, we can move U_{j} into the exterior of a 3-ball containing ($O_{n} \backslash U_{j}$) $\cup G(j)$. By the proof of [Habiro 2000, Proposition 4.5], each such crossing change is realized by surgery along one $C_{\operatorname{deg}\left(G_{i}\right)+1}$-tree T such that $\mathrm{D}(T)=\mathrm{D}\left(G_{i}\right) \cup\{j\}$, where $G_{i} \subset G(j)$ contains the edge involved in the crossing change. So there exists a union $F(j)$ of tree claspers $T_{1} \cup \cdots \cup T_{m}$ of degree $>k$ with $\mathrm{D}(F(j)) \supset \mathrm{D}(G(j)) \cup\{j\}$ such that $L \cong\left(O_{n-1} \sqcup U_{j}\right)_{G \cup F(j)}$, where \sqcup denotes the split union. So we have

$$
L \cong\left(\left(O_{n-1}\right)_{G(j)} \sqcup U_{j}\right)_{(G \backslash G(j)) \cup F(j)} \cong\left(O_{n-1} \sqcup U_{j}\right)_{(G \backslash G(j)) \cup F(j)} .
$$

Set $G^{\prime}:=(G \backslash G(j)) \cup F(j)$. We have $L \cong\left(O_{n}\right)_{G^{\prime}}$, and clearly $\mathrm{D}\left(G^{\prime}\right) \supset \mathrm{D}(G) \cup\{j\}$.
So by repeating this procedure, we obtain a union $G^{\prime \prime}$ of tree claspers for O_{n} such that $L \cong\left(O_{n}\right)_{G^{\prime \prime}}$. This union satisfies $\mathrm{D}\left(G^{\prime \prime}\right)=\{1, \ldots, n\}$, that is, each component of $G^{\prime \prime}$ is a C_{p}^{a}-tree for some $p \geq k$. The result then follows from Lemma 7.1.
Proof of Proposition 2.14. Consider n-component Brunnian string links L and L^{\prime} such that $L \sim_{C_{k}} L^{\prime}$ for some $k \geq n-1$. Then $L \cong\left(\mathbf{1}_{n}\right)_{F \cup G}$, where F is a union of C_{n-1}^{a}-trees such that $\left(\mathbf{1}_{n}\right)_{F} \cong L^{\prime}$, and G is a union of tree claspers of degree $\geq k$. Let $F^{\prime} \cup G^{\prime}$ be obtained from $F \cup G$ by passing an edge of G across an edge of F or sliding a leaf of G over a leaf of F (see Figure 2.4). By examining the proofs of [Habiro 2000, Propositions 4.6 and 4.4], one easily sees that $\left(\mathbf{1}_{n}\right)_{F \cup G} \sim_{C_{p}^{a}}\left(\mathbf{1}_{n}\right)_{F^{\prime} \cup G^{\prime}}$ for $p \geq n+k-1$. So by Lemma 7.1 we obtain

$$
L \sim_{C_{k}^{a}}\left(\mathbf{1}_{n}\right)_{F} \cdot\left(\mathbf{1}_{n}\right)_{G},
$$

where G is a union of tree clasper of degree $\geq k$. Since L is Brunnian, $\left(\mathbf{1}_{n}\right)_{F} \cdot\left(\mathbf{1}_{n}\right)_{G}$ is also Brunnian. This and the fact that F is a union of C_{n-1}^{a}-trees imply that $\left(\mathbf{1}_{n}\right)_{G} \cong L^{\prime \prime}$ is Brunnian. Now, $\left(\mathbf{1}_{n}\right)_{F} \cong L^{\prime}$, and $\left(\mathbf{1}_{n}\right)_{G} \cong L^{\prime \prime}$ is a Brunnian string link
that is C_{k}-equivalent to the trivial string link. So by Proposition 2.12, $L^{\prime \prime} \sim_{C_{k}^{a}} \mathbf{1}_{n}$. It follows that $L \sim_{C_{k}^{a}} L^{\prime}$.

Acknowledgments

The authors wish to thank Kazuo Habiro for helpful comments and conversations.

References

[Bar-Natan 1995] D. Bar-Natan, "Vassiliev homotopy string link invariants", J. Knot Theory Ramifications 4:1 (1995), 13-32. MR 96b:57004 Zbl 0878.57003
[Conant and Teichner 2004] J. Conant and P. Teichner, "Grope cobordism of classical knots", Topology 43:1 (2004), 119-156. MR 2004k:57006 Zbl 1041.57003
[Fleming and Yasuhara 2008] T. Fleming and A. Yasuhara, "Milnor's invariants and self C_{k}-equivalence", Proc. A. M. S. (2008). To appear.
[Gusarov 2000] M. N. Gusarov, "Variations of knotted graphs: The geometric technique of n equivalence", Algebra i Analiz 12:4 (2000), 79-125. In Russian, translated in St. Petersburg Math. J. 12:4 (2001), 569-604. MR 2002g:57027 Zbl 0981.57006
[Habegger and Lin 1990] N. Habegger and X.-S. Lin, "The classification of links up to link-homotopy", J. Amer. Math. Soc. 3:2 (1990), 389-419. MR 91e:57015 Zbl 0704.57016
[Habiro 1994] K. Habiro, Aru karamime no kyokusyo sousa no zoku ni tuite, Master's thesis, University of Tokyo, 1994.
[Habiro 2000] K. Habiro, "Claspers and finite type invariants of links", Geom. Topol. 4 (2000), 1-83. MR 2001g:57020 Zbl 0941.57015
[Habiro 2005] K. Habiro, "Replacing a graph clasper by tree claspers", preprint, 2005. arXiv math.GT/0510459v1
[Habiro 2007] K. Habiro, "Brunnian links, claspers and Goussarov-Vassiliev finite type invariants", Math. Proc. Cambridge Philos. Soc. 142:3 (2007), 459-468. MR 2008c:57022 Zbl 1120.57005
[Habiro and Meilhan 2008] K. Habiro and J.-B. Meilhan, "Finite type invariants and Milnor invariants for Brunnian links", Int. J. Math. 19:6 (2008), 747-766.
[Horiuchi 2007] S. Horiuchi, "The Jacobi diagram for a C_{n}-move and the HOMFLY polynomial", J. Knot Theory Ramifications 16:2 (2007), 227-242. MR 2306216 Zbl 1138.57016
[Kanenobu and Miyazawa 1998] T. Kanenobu and Y. Miyazawa, "HOMFLY polynomials as Vassiliev link invariants", pp. 165-185 in Knot theory (Warsaw, 1995), edited by V. F. R. Jones et al., Banach Center Publ. 42, Polish Acad. Sci., Warsaw, 1998. MR 99c:57024 Zbl 0901.57017
[Krushkal 1998] V. S. Krushkal, "Additivity properties of Milnor's $\bar{\mu}$-invariants", J. Knot Theory Ramifications 7:5 (1998), 625-637. MR 2000a:57011 Zbl 0931.57005
[Lin 1997] X.-S. Lin, "Power series expansions and invariants of links", pp. 184-202 in Geometric topology, I (Athens, GA, 1993), edited by W. H. Kazez, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI, 1997. MR 98i:57014 Zbl 0897.57006
[Meilhan 2003] J.-B. Meilhan, Invariants de type fini des cylindres d'homologie et des string links, Thèse de Doctorat, Université de Nantes, 2003.
[Meilhan 2006] J.-B. Meilhan, "On surgery along Brunnian links in 3-manifolds", Algebr. Geom. Topol. 6 (2006), 2417-2453. MR 2008h:57034 Zbl 1128.57021
[Milnor 1954] J. Milnor, "Link groups", Ann. of Math. (2) $\mathbf{5 9}$ (1954), 177-195. MR 17,70e Zbl 0055.16901
[Milnor 1957] J. Milnor, "Isotopy of links: Algebraic geometry and topology", pp. 280-306 in A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957. MR 19,1070c Zbl 0080.16901
[Miyazawa 2003] H. A. Miyazawa, " C_{n}-moves and V_{n}-equivalence for links", preprint, Tsuda College, 2003.
[Miyazawa and Yasuhara 2006] H. A. Miyazawa and A. Yasuhara, "Classification of n-component Brunnian links up to C_{n}-move", Topology Appl. 153:11 (2006), 1643-1650. MR 2007b:57013 Zbl 1105.57005
[Murakami and Nakanishi 1989] H. Murakami and Y. Nakanishi, "On a certain move generating link-homology", Math. Ann. 284:1 (1989), 75-89. MR 90f:57007 Zbl 0646.57005
[Taniyama and Yasuhara 2002] K. Taniyama and A. Yasuhara, "Clasp-pass moves on knots, links and spatial graphs", Topology Appl. 122:3 (2002), 501-529. MR 2003g:57012 Zbl 1001.57011
[Taniyama and Yasuhara 2003] K. Taniyama and A. Yasuhara, "Local moves on spatial graphs and finite type invariants", Pacific J. Math. 211:1 (2003), 183-200. MR 2004j:57002 Zbl 1078.57005

Received November 2, 2007.
Jean-Baptiste Meilhan
Institut for Matematiske Fag
Ny Munkegade, bygning 1530
8000 Århus C
Denmark
meilhan@imf.au.dk
http://home.imf.au.dk/meilhan/index.html
Akira Yasuhara
Tokyo Gakugei University
Department of Mathematics
Koganeishi
TOKyo 184-8501
JAPAN
yasuhara@u-gakugei.ac.jp
http://www.u-gakugei.ac.jp/~yasuhara/

[^0]: MSC2000: 57M27, 57M25.
 Keywords: C_{n}-moves, Milnor invariants, string links, Brunnian links, claspers.
 Meilhan was supported by a postdoctoral fellowship and a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science. Yasuhara is partially supported by a Grant-in-Aid for Scientific Research (C) (\#18540071) of the Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$ Strictly speaking, we cannot apply Lemma 2.6 here, as G is not a C_{k}-tree. However, similar relations hold among C_{k}-graphs [Habiro 2000, Section 8.2].

