Local moves for links with common sublinks w

Jean-Baptiste Meilhan ${ }^{\text {a }}$, Eri Seida ${ }^{\text {b }}$, Akira Yasuhara ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institut Fourier, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 St Martin d'Hères, France
${ }^{\text {b }}$ Tokyo Gakugei University, Department of Mathematics, Koganeishi, Tokyo 184-8501, Japan

A R T I C L E I N F O

Article history:

Received 9 April 2012
Received in revised form 5 February 2013
Accepted 11 February 2013

MSC:

57M25
57M27
Keywords:
C_{k}-moves
Brunnian link
Claspers

Abstract

A C_{k}-move is a local move that involves $k+1$ strands of a link. A C_{k}-move is called a C_{k}^{d}-move if these $k+1$ strands belong to mutually distinct components of a link. Since a C_{k}^{d}-move preserves all k-component sublinks of a link, we consider the converse implication: are two links with common k-component sublinks related by a sequence of C_{k}^{d}-moves? We show that the answer is yes under certain assumptions, and provide explicit counter-examples for more general situations. In particular, we consider (n, k)-Brunnian links, i.e. n-component links whose k-component sublinks are all trivial. We show that such links can be deformed into a trivial link by C_{k}^{d}-moves, thus generalizing a result of Habiro and Miyazawa-Yasuhara, and deduce some results on finite type invariants of (n, k) Brunnian links.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Habiro [4] and Gusarov [3] introduced independently the notion of C_{k}-move, which is a local move that involves $k+1$ strands of a link as illustrated in Fig. 1.1. A C_{1}-move is just a crossing change. Alternatively, a C_{k}-move can be defined in terms of "insertion" of elements of the kth term of the lower central series of the pure braid group [15].

In particular, if all $k+1$ strands involved in a C_{k}-move belong to pairwise distinct components, we call it a C_{k}^{d}-move. The C_{k}-move (resp. C_{k}^{d}-move) generates an equivalence relation on links, called C_{k}-equivalence (resp. C_{k}^{d}-equivalence), which becomes finer as k increases. It is easy to see that if two links are C_{k}^{d}-equivalent, then they have common k-component sublinks. More precisely, if two ordered links $L=K_{1} \cup \cdots \cup K_{n}$ and $L^{\prime}=K_{1}^{\prime} \cup \cdots \cup K_{n}^{\prime}$ are C_{k}^{d}-equivalent, then for any subset $S \subset\{1, \ldots, n\}$ with k elements, $\bigcup_{i \in S} K_{i}$ and $\bigcup_{i \in S} K_{i}^{\prime}$ are ambient isotopic. It seems natural to ask whether the converse implication holds as well.

Question. If two links have common k-component sublinks, then are they C_{k}^{d}-equivalent?
Since any link is C_{1}^{d}-equivalent to a completely split link, the answer is obviously yes for $k=1$. Hence we may assume that $k \geqslant 2$.

The question can also be given a positive answer for a special class of links. For positive integers n and k with $k \leqslant n$, an (n, k)-Brunnian link is an n-component link whose k-component sublinks are trivial [12]. In particular, if $n=k+1$, then it is a Brunnian link in the usual sense.

[^0]

Fig. 1.1. A C_{k}-move involves $k+1$ strands of a link.

Fig. 2.1. Surgery along a C_{k}-tree.

Theorem 1.1. A link is (n, k)-Brunnian if and only if it is C_{k}^{d}-equivalent to the n-component trivial link.
Theorem 1.1 is thus a generalization of the fact that an $(n+1)$-component link is Brunnian if and only if it is C_{n}^{d}-equivalent to a trivial link [5,10]. This fact is the key ingredient in further works on finite type invariants of Brunnian links [5-7]. These results generalize in a straightforward way to (n, k)-Brunnian links, see Appendix A.

For $k=2$, we have a more general statement as follows.
Theorem 1.2. Two links with trivial components have common 2-component sublinks if and only if they are C_{2}^{d}-equivalent.
Although the hypotheses in Theorem 1.2, that $k=2$ and that each link component is trivial, may seem restrictive, they turn out to be both necessary to give a positive answer to our question. Indeed, we have the following.

Proposition 1.3.

(1) For $k \geqslant 3$, there exists a pair of links with trivial components, which have common k-component sublinks but are not C_{k}^{d}-equivalent.
(2) There exist two links with one nontrivial component, which have common 2-component sublinks and are not C_{2}^{d}-equivalent.

The rest of the paper is organized as follows. In Section 2, we review some elements of the theory of claspers. We prove Theorem 1.1, Theorem 1.2 and Proposition 1.3 in Sections 3, 4 and 5 respectively. The paper is concluded by several straightforward extensions of known results on Brunnian links to (n, k)-Brunnian links, see Appendix A.

2. Claspers

We now recall several notions from clasper theory for links [4]. In this paper, we only need the notion of tree claspers. For a general definition, we refer the reader to [4].

Let L be a link in S^{3}. An embedded disk F in S^{3} is called a tree clasper for L if it satisfies the following three conditions:
(1) F is decomposed into disks and bands, called edges, each of which connects two distinct disks.
(2) The disks have either 1 or 3 incident edges, called leaves or nodes respectively.
(3) L intersects F transversely and the intersections are contained in the union of the interior of the leaves.
(In [4], a tree clasper and a leaf are called a strict tree clasper and a disk-leaf respectively.)
A tree clasper is simple if each leaf intersects L at one point. In the following, we will implicitly assume that all tree claspers are simple.

The degree of a tree clasper is the number of the leaves minus 1 . A degree k tree clasper is called a C_{k}-tree (or a C_{k}-clasper).

Given a C_{k}-tree T for a link L, there is a procedure to construct a framed link $\gamma(T)$ in a regular neighborhood of T. Surgery along T means surgery along $\gamma(T)$. Since there exists an orientation-preserving homeomorphism, fixing the boundary, from the regular neighborhood $N(T)$ of T to the manifold $N(T)_{T}$ obtained from $N(T)$ by surgery along T, surgery along the C_{k}-tree T can be regarded as a local move on L. We say that the resulting link L_{T} is obtained from L by surgery along T. In particular, surgery along a C_{k}-tree illustrated in Fig. 2.1 is equivalent to band-summing a copy of the ($k+1$)-component Milnor link (see [9, Fig. 7]), and is equivalent to a C_{k}-move as defined in the introduction (Fig. 1.1). Similarly, for a disjoint union $T_{1} \cup \cdots \cup T_{m}$ of tree claspers for L, we can define $L_{T_{1} \cup \ldots \cup T_{m}}$ as the link obtained by surgery along $T_{1} \cup \ldots \cup T_{m}$.

Fig. 2.2. Sliding a leaf over another leaf.
It is known that the C_{k}-equivalence as defined in Section 1 coincides with the equivalence relation on links generated by surgery along C_{k}-trees and ambient isotopy [4, Thm. 3.17].

Let $L=K_{1} \cup \cdots \cup K_{n}$ be an n-component link. For a C_{k}-tree T for L, the set $\left\{i \mid T \cap K_{i} \neq \emptyset\right\}$ is called the index of T, and is denoted by index (T).

A C_{k}-tree T for L is a C_{k}^{d}-tree if it satisfies that $|\operatorname{index}(T)|=k+1$, that is, if $|\operatorname{index}(T)|$ is the number of leaves of T.
By arguments similar to those in the proof of [4, Thm. 3.17], we have that the C_{k}^{d}-equivalence defined in Section 1 coincides with the equivalence relation on links generated by surgery along C_{k}^{d}-trees and ambient isotopy.

Although the following three lemmas follow from results of [16], the main ideas of proofs are due to Habiro [4].
Lemma 2.1 (Leaf-sliding). ([16, Rem. 2.3]) Let T_{1} and T_{2} be disjoint C_{1}^{d}-trees for a link L. Suppose index $\left(T_{1}\right)=\{i, j\}$, index $\left(T_{2}\right)=\{i, k\}$ and $j \neq k$. Let T_{1}^{\prime} be obtained from T_{1} by sliding the leaf intersecting the ith component of L over the leaf of T_{2} intersecting the ith component, see Fig. 2.2. Then $L_{T_{1} \cup T_{2}}$ and $L_{T_{1}^{\prime} \cup T_{2}}$ are C_{2}^{d}-equivalent.

Lemma 2.2. ([16, Prop. 2.10], cf. [1, Prop. 1.3]) If an n-component link L^{\prime} is obtained from L by surgery along $a C_{k}$-tree T, then for any subset S of index (T) with $|S| \geqslant 2$, there exists a disjoint union of $C_{|S|-1}$-trees for L with index S, such that L^{\prime} is obtained from L by surgery.

Combining the latter with [16, Rem. 2.3], we have the following.
Lemma 2.3 (Crossing change). Let T be a C_{k}-tree for a link L, and let T^{\prime} (resp. $T^{\prime \prime}$) be obtained from T by changing a crossing of an edge of T and the ith component of L (resp. an edge of a C_{1}-tree G intersecting the ith component). Then L_{T} is C_{k+1}-equivalent to $L_{T^{\prime}}$ (resp. $L_{T \cup G}$ is C_{k+1}-equivalent to $L_{T \prime \prime}$), and the C_{k+1}-equivalence is realized by surgery along C_{k+1}-trees with index index $(T) \cup\{i\}$.

In the following, we will freely use the terms leaf-sliding and crossing change when performing the operations of Lemmas 2.1 and 2.3 respectively.

3. Proof of Theorem 1.1

As noted in the introduction, the 'if' part of the statement is obvious, so we only need to prove the 'only if part.
Let $L=K_{1} \cup \cdots \cup K_{n}$ be an n-component link with the same k-component sublinks as the trivial n-component link $0=O_{1} \cup \cdots \cup O_{n}$. Set $l=n-k$. We will show that L is C_{k}^{d}-equivalent to O by induction on l.

If $l=0$, then L is trivial and the result is obviously true.
Suppose that $l>0$. Let m be the maximum integer so that L is C_{m}^{d}-equivalent to O, i.e., so that there is a disjoint union F_{m} of C_{m}^{d}-trees for O such that the link $O_{F_{m}}$ is ambient isotopic to L. If $m=k$, then we have the result. Hence we assume that $m<k$ and show that this leads to a contradiction.

Observe that $O_{F_{m}}$ can be deformed into the split union of O_{1} and $L \backslash K_{1}$ by deleting all C_{m}^{d}-trees in F_{m} intersecting O_{1} and performing several crossing changes between O_{1} and edges of C_{m}^{d}-trees disjoint from O_{1}. By Lemma 2.3, these crossing changes are realized by surgery along C_{m+1}^{d}-trees intersecting O_{1}. Since $L \backslash K_{1}$ is an $(n-1, k)$-Brunnian link, by induction hypothesis, it is C_{k}^{d}-equivalent to a trivial link. It follows by Lemma 2.2 that L is obtained from 0 by surgery along a disjoint union F_{m}^{1} of C_{m}^{d}-trees intersecting O_{1} and C_{k}^{d}-trees.

Similarly, $O_{F_{m}^{1}}$ can be deformed into the split union of O_{2} and $L \backslash K_{2}$ by deleting all tree claspers in F_{m}^{1} intersecting O_{2} and performing several crossing changes between O_{2} and edges of tree claspers in F_{m}^{1} disjoint from O_{2}. Since $L \backslash K_{2}$ is an ($n-1, k$)-Brunnian link, by induction hypothesis, it is C_{k}^{d}-equivalent to a trivial link. It follows by Lemmas 2.3 and 2.2 that L is obtained from O by surgery along a disjoint union F_{m}^{2} of C_{m}^{d}-trees, each intersecting both O_{1} and O_{2}, and C_{k}^{d}-trees.

Repeating this argument inductively, we show that L is obtained from O by surgery along a disjoint union F_{m}^{m+1} of C_{m}^{d}-trees with index $\{1,2, \ldots, m+1\}$, and C_{k}^{d}-trees. Since $m \leqslant k-1 \leqslant n-2, L$ has an ($m+2$)th component, which is disjoint from the C_{m}^{d}-trees in F_{m}^{m+1}. We can deform $O_{F_{m}^{m+1}}$ into the split union of O_{m+2} and $L \backslash K_{m+2}$ by deleting all C_{k}^{d}-trees in F_{m}^{m+1} intersecting O_{m+2} and several crossing changes between O_{m+2} and edges of trees clasper in F_{m}^{m+1}. Since $L \backslash K_{m+2}$ is an $(n-1, k)$-Brunnian link, it is C_{k}^{d}-equivalent to a trivial link. Lemmas 2.3 and 2.2 then imply that there is disjoint union of C_{m+1}^{d}-trees F^{\prime} for O such that $O_{F^{\prime}}$ is ambient isotopic to L. This contradicts the definition of m, and thus proves that L is C_{k}^{d}-equivalent to 0 .

4. Proof of Theorem 1.2

The 'if' part of the statement is obvious, so we only need to prove the 'only if' part.
Let L be an n-component link with trivial components. By [8], there is a diagram of L in $\mathbb{R}^{2} \times\{0\}$ such that each component has no self crossing.

By a sequence of crossing changes, we can deform L into a trivial link $O=O_{1} \cup \cdots \cup O_{n}$ such that O_{i} lies in $\mathbb{R}^{2} \times\{i\}$ ($i=1, \ldots, n$) and the projections of L and O coincide. Hence, for each pair i, j of distinct integers in $\{1, \ldots, n\}$ such that $i<j$, there is a disjoint union $F_{i j}$, possibly $F_{i j}=\emptyset$, of C_{1}^{d}-trees for O with index $\{i, j\}$ such that L is ambient isotopic to $O_{\bigcup_{i<j} F_{i j}}$ (since each crossing in L where the j th component passes under the i th one is achieved by surgery on O along such a C_{1}^{d}-tree). Let D_{i} be the disk in $\mathbb{R}^{2} \times\{i\}$ with $\partial D_{i}=O_{i}$. For each pair $i, j(i<j)$, we choose an arc $\alpha_{i j}$ in $R^{2} \times[i, j]$ which connects a point in O_{i} and a point in O_{j}, such that $\alpha_{i j} \cap\left(R^{2} \times\{t\}\right)$ is a single point for each $t \in[i, j]$, and $\alpha_{i j}$ is disjoint from D_{k} for all $k \neq i, j$. Since the edge of each C_{1}^{d}-tree in $F_{i j}$ is contained in $\mathbb{R}^{2} \times(i, j)$, we have that $O_{i} \cup O_{j} \cup F_{i j}$ is ambient isotopic to $O_{i} \cup O_{j} \cup E_{i j}$, where $E_{i j}$ is a disjoint union of C_{1}^{d}-trees with index $\{i, j\}$ and contained in a regular neighborhood of $\alpha_{i j}$. Now, $O \cup\left(\bigcup_{i<j} F_{i j}\right)$ can be deformed into $O \cup\left(\bigcup_{i<j} E_{i j}\right)$ by a sequence of isotopies and the following three types of moves:
(i) leaf-sliding between two C_{1}^{d}-trees with distinct indices;
(ii) crossing change between edges of two C_{1}^{d}-trees with distinct indices;
(iii) crossing change between a component of O and the edge of a C_{1}^{d}-tree disjoint from this component.

It follows, by Lemmas 2.1, 2.2 and 2.3, that $O_{\bigcup_{i<j} F_{i j}}$ is C_{2}^{d}-equivalent to $O_{\bigcup_{i<j} E_{i j}}$.
Now, let L^{\prime} be an n-component link with trivial components and with the same 2 -component sublinks as L. As above, there exists disjoint unions $E_{i j}^{\prime}$ of C_{1}^{d}-trees with index $\{i, j\}$ for a trivial link O^{\prime}, contained in a regular neighborhood of an arc $\alpha_{i j}^{\prime}$ in $\mathbb{R}^{2} \times[i, j](1 \leqslant i<j \leqslant n)$, such that L^{\prime} is C_{2}^{d}-equivalent to $O_{\bigcup_{i<j}^{\prime} E_{i j}^{\prime}}^{\prime}$. Since O and O^{\prime} are both n-component trivial links, there is an ambient isotopy mapping O^{\prime} to O. (Note that this isotopy may be assumed to preserve each level $\mathbb{R}^{2} \times\{t\}$, for $t \in \mathbb{R}$.) The image of $\bigcup_{i<j} E_{i j}^{\prime}$ under this ambient isotopy can be deformed into a union of C_{1}^{d}-tree such that the union of C_{1}^{d}-trees with index $\{i, j\}$ is contained in a regular neighborhood of the arc $\alpha_{i j}$ by a sequence of isotopies and the moves (i) and (ii) above. Hence, by Lemmas 2.1, 2.2 and 2.3, the results of surgery on O along $\bigcup_{i<j} E_{i j}^{\prime}$ and along the image of $\bigcup_{i<j} E_{i j}^{\prime}$ under these deformations, are C_{2}^{d}-equivalent. Thus, for simplicity, we may assume in the following that $O=O^{\prime}$ and that $\alpha_{i j}=\alpha_{i j}^{\prime}(1 \leqslant i<j \leqslant n)$.

Suppose that there is a pair of integers s, t such that $E_{s t} \neq E_{s t}^{\prime}$. Since L and L^{\prime} have common 2-component sublinks, so do $O_{\bigcup_{i<j} E_{i j}}$ and $O_{\bigcup_{i<j} E_{i j}^{\prime}}$. In particular, $\left(O_{s} \cup O_{t}\right)_{E_{s t}^{\prime}}$ is ambient isotopic to $\left(O_{s} \cup O_{t}\right)_{E_{s t}}$. Since $E_{i j} \cap D_{k}=E_{i j}^{\prime} \cap D_{k}=\emptyset$ for any i, j, k with $k \notin\{i, j\}$, we have that $O_{E_{s t}^{\prime}}$ is ambient isotopic to $O_{E_{s t}}$. Moreover, this ambient isotopy can be performed in a regular neighborhood $N_{s t}$ of $D_{s} \cup D_{t} \cup \alpha_{s t}$. It follows that $O_{E_{s t}^{\prime}} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} E_{i j}^{\prime}\right)$ is ambient isotopic to $O_{E_{s t}} \cup$ $\left(\bigcup_{(i, j) \neq(s, t) ; i<j} \widetilde{E_{i j}^{\prime}}\right)$, where $\widetilde{E_{i j}^{\prime}}$ denotes the image of $E_{i j}^{\prime}$ under the above isotopy of $N_{s t}$. Note that $\widetilde{E_{k l}^{\prime}} \neq E_{k l}^{\prime}$ only if $\{k, l\} \cap$ $\{s, t\} \neq \emptyset$, since $E_{k l}^{\prime} \cap N_{s t}=\emptyset$ otherwise. Below we prove the following

Claim 4.1. $O_{E_{s t} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} \widetilde{E_{i j}^{\prime}}\right.}$ and $O_{E_{s t} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} E_{i j}^{\prime}\right)}$ are C_{2}^{d}-equivalent.
It follows that $O_{\bigcup_{i<j} E_{i j}^{\prime}}$ is C_{2}^{d}-equivalent to $O_{E_{s t} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} E_{i j}^{\prime}\right)}$. Since this argument holds for an arbitrary pair of integers s, t such that $s<t$, we eventually obtain that $O_{\bigcup_{i<j} E_{i j}^{\prime}}$ is C_{2}^{d}-equivalent to $O_{\bigcup_{i<j} E_{i j}}$. Hence L and L^{\prime} are C_{2}^{d}-equivalent.

Proof of Claim 4.1. Since surgery along $E_{s t}^{\prime}$ takes place in a regular neighborhood of $\alpha_{s t}$, we may consider the arcs $\alpha_{i j}$, where $(i, j) \neq(s, t)$ and $i<j$, is attached to the link $O_{E_{s t}^{\prime}}$. Up to isotopy, we may freely assume that $N_{s t}$ intersects the union of $O_{E_{s t}^{\prime}}$ and $\left(\bigcup_{i<j ;(i, j) \neq(s, t)} \alpha_{i j}\right)$ as shown in Fig. 4.1. In particular, for h being either s or t, we have that

$$
\alpha_{h}:=\left(\bigcup_{\substack{(i, j) ; i<j \\\{i, j\} \cap\{s, t\}=\{h\}}} \alpha_{i j}\right) \cap N_{s t}
$$

is a parallel family of arcs. Denote by $\widetilde{\alpha_{h}}$ the image of α_{h} under the isotopy of $N_{s t}$ that sends $O_{E_{s t}^{\prime}}$ to $O_{E_{s t}}$. Observe that, for each pair $i, j(i<j)$ with $\{i, j\} \cap\{s, t\}=\{h\}, \widetilde{E_{i j}^{\prime}} \cap N_{s t}$ is contained in a regular neighborhood of a certain arc in $\widetilde{\alpha_{h}}$.

Note that $\partial\left(\widetilde{\alpha_{s}} \cup \widetilde{\alpha_{t}}\right) \cap \partial N_{s t}=\partial\left(\alpha_{s} \cup \alpha_{t}\right) \cap \partial N_{s t}$, and that we may also freely assume that $\left(\tilde{\alpha_{s}} \cup \tilde{\alpha_{t}}\right) \cap\left(O_{s} \cup O_{t}\right)_{E_{s t}}=$ $\left(\alpha_{s} \cup \alpha_{t}\right) \cap\left(O_{s} \cup O_{t}\right)_{E_{s t}^{\prime}}$. It follows that $\widetilde{\alpha_{s}} \cup \widetilde{\alpha_{t}} \cup\left(O_{s} \cup O_{t}\right)_{E_{s t}}$ can be deformed into $\alpha_{s} \cup \alpha_{t} \cup\left(O_{s} \cup O_{t}\right)_{E_{s t}}$ by a sequence of isotopies and the following moves:

Fig. 4.1. The intersection of $N_{s t}$ and $O_{E_{s t}^{\prime}} \cup\left(\bigcup_{i<j ;(i, j) \neq(s, t)} \alpha_{i j}\right)$.

Fig. 4.2. The move takes place in a 3-ball of $N_{s t}$ that intersects a union of h th component of $O_{E_{s t}}$ and $\widetilde{E_{k l}^{\prime}}$ as shown, where $h \in\{s, t\},(k, l) \neq(s, t)$ and $\{k, l\} \cap\{s, t\} \neq \emptyset$.

Fig. 4.3. Here, the clasper may be replaced with a parallel family of claspers.

Fig. 4.4. Passing the h th component of $O_{E_{s t}}$ across edges of C_{1}^{d}-trees with index $\{j, l\}(l \neq h)$. Here j, l and h are mutually distinct.

- crossing change between an arc in $\tilde{\alpha_{s}} \cup \tilde{\alpha_{t}}$ and a component of $\left(O_{s} \cup O_{t}\right)_{E_{s t}}$;
- crossing change between two arcs in $\tilde{\alpha_{s}} \cup \tilde{\alpha_{t}}$.

Note that the second kind of move can be achieved by isotopy and moves of the first kind. We thus have that $\widetilde{\alpha_{s}} \cup \widetilde{\alpha_{t}} \cup$ $\left(O_{s} \cup O_{t}\right)_{E_{s t}}$ can be deformed into $\alpha_{s} \cup \alpha_{t} \cup\left(O_{s} \cup O_{t}\right)_{E_{s t}}$ by a sequence of isotopies and crossing changes between $\widetilde{\alpha_{s}} \cup \widetilde{\alpha_{t}}$ and $\left(O_{s} \cup O_{t}\right)_{E_{s t}}$. This deformation induces a deformation from $O_{E_{s t}} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} \widetilde{E_{i j}^{\prime}}\right)$ to $O_{E_{s t}} \cup\left(\bigcup_{(i, j) \neq(s, t) ; i<j} E_{i j}^{\prime}\right)$, which can be realized by a sequence of the move in Fig. 4.2. Note that, although insertion of a full-twist in some arc $\alpha_{k l}$ of $\alpha_{s} \cup \alpha_{t}$ can be achieved by an isotopy, this is no longer true for the induced insertion of a full-twist in $E_{k l}$. However, it is easily achieved by isotopy and the move in Fig. 4.2, as illustrated in Fig. 4.3.

It remains to check that such a move among claspers yields C_{2}^{d}-equivalent results of surgery.
In general, this move involves the h th component of $O_{E_{s t}}$ and the union of C_{1}^{d}-trees with index $\{i, j\}$, for some $i, h \in$ $\{s, t\}$ and some $j \notin\{s, t\}$. If $i \neq h$, the result follows directly from Lemma 2.3. Otherwise, Fig. 4.4 shows how the desired deformation can be achieved by passing the h th component of $O_{E_{s t}}$ across edges of C_{1}^{d}-trees with index $\{j, l\}$ with $l \neq h$. The result then follows from Lemma 2.3.

Remark 4.2. The following was suggested by the referee:
Conjecture. Two ($n, k-1$)-Brunnian links have common k-component sublinks if and only if they are C_{k}^{d}-equivalent.

Fig. 5.1. L_{n} and L_{n}^{\prime} are n-component links with trivial components and common k-component sublinks for $k \leqslant n-1$.
For $k=2$, the answer is positive by Theorem 1.2, and since C_{k}^{d}-equivalent links have common k-component sublinks, a positive answer to this question would be a generalization of this theorem. Unfortunately, the arguments in the above proof of Theorem 1.2 do not seem to be easily adapted to this more general settings. Nevertheless, the authors could not come up with any counter-example, and are therefore confident in stating the above as a conjecture.

5. Proof of Proposition 1.3

In this section, we show that each of the hypotheses imposed in Theorem 1.2 is necessary for the conclusion to hold.

5.1. The case $k \geqslant 3$: proof of Proposition 1.3 (1)

We first observe that Theorem 1.2 does not hold for $k \geqslant 3$.
Let L_{n} and L_{n}^{\prime} be two n-component links as illustrated in Fig. 5.1. Clearly, both links have trivial components, and have common k-component sublinks for $k \leqslant n-1$.

On the other hand, we notice that $\operatorname{Arf}\left(L_{n}\right)=0$ and $\operatorname{Arf}\left(L_{n}^{\prime}\right)=1$, where Arf denotes the Arf invariant [14]. Note that a C_{k}-move preserves the Arf invariant when $k \geqslant 3$, since it can be achieved by a pass-move, which preserves the Arf invariant [11]. This implies that L_{n} and L_{n}^{\prime} are not C_{k}-equivalent, and hence not C_{k}^{d}-equivalent.

5.2. An invariant of C_{k}^{d}-equivalence: proof of Proposition 1.3 (2)

We now consider the case $k=2$, but without the assumption that all components are trivial. For that purpose, we first introduce an invariant of C_{k}^{d}-equivalence derived from the linking number in the double branched cover of S^{3} branched over a knot.

Let $K \cup K_{1} \cup \cdots \cup K_{m}(m \geqslant 1)$ be an oriented ($m+1$)-component link in S^{3}. If the linking number $1 \mathrm{k}\left(K, K_{i}\right)$ is even for all $i(=1, \ldots, m)$, then there is a possibly nonorientable surface F bounded by K disjoint from $K_{1} \cup \ldots \cup K_{m}$. Let G_{α} be the Goeritz matrix [2] with respect to a basis $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ of $H_{1}(F)$, i.e., the (i, j)-entry of G_{α} is equal to $\operatorname{lk}\left(a_{i}, \tau a_{j}\right)$, where τa_{j} is a 1 -cycle in $S^{3}-F$ obtained by pushing off $2 a_{j}$ in both normal directions. Let $V_{\alpha}\left(K_{i}\right)=\left(\operatorname{lk}\left(K_{i}, a_{1}\right), \ldots, \operatorname{lk}\left(K_{i}, a_{n}\right)\right)$. In [13] J.H. Przytycki and the last author define, for $i, j(1 \leqslant i, j \leqslant m)$,

$$
\lambda_{F}\left(K_{i}, K_{j}\right)=V_{\alpha}\left(K_{i}\right) G_{\alpha}^{-1} V_{\alpha}\left(K_{j}\right)^{T}
$$

and $\lambda_{F}\left(K_{i}, K_{j}\right)=0$ when F is a 2-disk. It follows directly from [13, Thm. 2.3] that for the double branched cover M of S^{3} branched over K and for lifts \widetilde{K}_{i} and \widetilde{K}_{j} of K_{i} and K_{j} respectively, we have

$$
\mathrm{lk}_{M}\left(\widetilde{K}_{i}, \widetilde{K_{j}}\right) \equiv \pm \lambda_{F}\left(K_{i}, K_{j}\right) \bmod 1
$$

If two links $L=K \cup K_{1} \cup \cdots \cup K_{m}$ and $L^{\prime}=K^{\prime} \cup K_{1}^{\prime} \cup \cdots \cup K_{m}^{\prime}$ are C_{k}^{d}-equivalent for some $k(2 \leqslant k \leqslant m)$, then $K_{i} \cup K_{j}$ and $K_{i}^{\prime} \cup K_{j}^{\prime}$ are homotopic in the complement of K. This implies that there is a lift $\widetilde{K_{i}} \cup \widetilde{K_{j}}$ (resp. $\widetilde{K_{i}^{\prime}} \cup \widetilde{K_{j}^{\prime}}$) of $K_{i} \cup K_{j}$ (resp. $\left.K_{i}^{\prime} \cup K_{j}^{\prime}\right)$ such that

$$
\mathrm{lk}_{M}\left({\widetilde{K_{i}}}_{i},{\widetilde{K_{j}}}_{j}\right) \equiv \mathrm{lk}_{M}\left(\widetilde{K_{i}^{\prime}}, \widetilde{K_{j}^{\prime}}\right) \bmod 1
$$

It follows that we have the following proposition.
Proposition 5.1. For any $k \geqslant 2, \pm \lambda_{F}\left(K_{i}, K_{j}\right)(\bmod 1)$ is an invariant of C_{k}^{d}-equivalence.
We can now complete the proof of Proposition 1.3.
Proof of Proposition 1.3 (2). Let $L=K \cup K_{1} \cup K_{2}$ and $L^{\prime}=K \cup K_{1} \cup K_{2}^{\prime}$ be links as illustrated in Fig. 5.2. Note that L and L^{\prime} have common 2-component sublinks. Let F be a nonorientable surface, and let a_{1}, a_{2} be a basis of $H_{1}(F)$ as il-

Fig. 5.2. $L=K \cup K_{1} \cup K_{2}$ and $L^{\prime}=K \cup K_{1} \cup K_{2}^{\prime}$ are 3-component links with common 2-component sublinks.
lustrated in Fig. 5.2. Then we have $\lambda_{F}\left(K_{1}, K_{2}\right)=0$ and $\lambda_{F}\left(K_{1}, K_{2}^{\prime}\right)=-1 / 3$. Proposition 5.1 implies that L and L^{\prime} are not C_{2}^{d}-equivalent.

Acknowledgement

The authors would like to thank the referee for his/her thorough and constructive comments which helped to improve the quality of this article, and for pointing out a possible direction for extending our result, as mentioned in Remark 4.2.

Appendix A. Finite type invariants of (n, k)-Brunnian links

Theorem 1.1 states that a link is (n, k)-Brunnian if and only if it is C_{k}^{d}-equivalent to the n-component trivial link. As recalled in the introduction, the case $k=n-1$, i.e. the case of Brunnian links, was shown in [5,10], and is a key ingredient in proving several results and Brunnian links and their finite type invariants. Using Theorem 1.1, we can easily generalize these to (n, k)-Brunnian links. We only provide statements here, since the proofs are straightforward generalizations of [5, 10,6,7], and require no new idea.

In [5], Habiro shows that for $n \geqslant 3$, an n-component Brunnian links cannot be distinguished from the trivial link by any finite type invariant of order less than $2(n-1)$. (Note that for $n=2$, this does not hold since the Hopf link and the 2-component trivial link can be distinguished by the linking number, which is of order 1.) By the same arguments as those in [5, $\S 4$], we have that if a link is C_{k}^{d}-equivalent to a trivial link for $k \geqslant 2$, then these links cannot be distinguished by any finite type invariant of order less than $2 k$. Hence we obtain the following result.

Theorem A.1. For $n>k \geqslant 2$, $n, k)$-Brunnian links and the n-component trivial link cannot be distinguished by any finite type invariant of order less than $2 k$.

In [6,7], the study of finite type invariants of Brunnian links is continued, by expressing the restriction of an invariant of degree $2 n-1$ to n-component Brunnian links as a quadratic form on the Milnor link-homotopy invariants of length n, see [9]. The arguments used in [6] (and [7]) can be generalized in a straightforward way to (n, k)-Brunnian links to prove the following.

Theorem A.2. Let f be any finite type link invariant of degree $2 k+1$ taking values in an abelian group A. Then there are (non-unique) elements $f_{I}^{\sigma, \sigma^{\prime}} \in A$ for σ, σ^{\prime} in the symmetric group S_{k-1} on the set $\{1, \ldots, k-1\}$ and for any subsequence I of $12 \ldots$ of length $k+1$, such that, for any (n, k)-Brunnian link L, the difference $f(L)-f(0)$ is equal to

$$
\sum_{\substack{I=i_{1} i_{2} \ldots i_{k+1} \\ \text { subseq. of } 12 \ldots n}} \sum_{\sigma, \sigma^{\prime} \in S_{k-1}} f_{I}^{\sigma, \sigma^{\prime}} \bar{\mu}_{L}\left(i_{\sigma(1)} \ldots i_{\sigma(k-1)} i_{k} i_{k+1}\right) \bar{\mu}_{L}\left(i_{\sigma^{\prime}(1)} \ldots i_{\sigma^{\prime}(k-1)} i_{k} i_{k+1}\right) .
$$

Here O denotes the n-component trivial link and $\bar{\mu}_{L}$ denotes Milnor invariants of L.
In other words, the restriction of an invariant of degree $2 k+1$ to (n, k)-Brunnian links can be expressed as a quadratic form on the Milnor link-homotopy invariants of its $(k+1)$-component sublinks, and, in particular, is determined by the ($k+1$)-component sublinks.

Milnor invariants are useful not only for understanding finite type invariants of (n, k)-Brunnian links, but also for providing classification results. It is indeed known that n-component Brunnian links are classified up to C_{n}-equivalence by Milnor link-homotopy invariants [10,6]. Again, strictly similar arguments can be used to extend this classification result as follows.

Theorem A.3. Two (n, k)-Brunnian links are C_{k+1}-equivalent if and only if they cannot be distinguished by any Milnor link-homotopy invariant of length $k+1$.

References

[1] T. Fleming, A. Yasuhara, Milnor's invariants and self C_{k}-equivalence, Proc. Amer. Math. Soc. 137 (2009) 761-770.
[2] L. Goeritz, Knoten und quadratische Formen, Math. Z. 36 (1933) 647-654.
[3] M.N. Gusarov, Variations of knotted graphs. The geometric technique of n-equivalence, Algebra i Analiz 12 (2000) 79-125 (in Russian); translation in St. Petersburg Math. J. 12 (2001) 569-604.
[4] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1-83.
[5] K. Habiro, Brunnian links, claspers and Goussarov-Vassiliev finite type invariants, Math. Proc. Cambridge Philos. Soc. 142 (2007) 459-468.
[6] K. Habiro, J.B. Meilhan, Finite type invariants and Milnor invariants for Brunnian links, Int. J. Math. 19 (2008) 747-766.
[7] K. Habiro, J.B. Meilhan, On the Kontsevich integral of Brunnian links, Algebr. Geom. Topol. 6 (2006) 1399-1412.
[8] J.H. Lee, G.T. Jin, Link diagrams realizing prescribed subdiagram partitions, Kobe J. Math. 18 (2001) 199-202.
[9] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954) 177-195.
[10] H.A. Miyazawa, A. Yasuhara, Classification of n-component Brunnian links up to C_{n}-move, Topology Appl. 153 (2006) 1643-1650.
[11] H. Murakami, Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 283 (1989) 75-89.
[12] D.E. Penney, Generalized Brunnian links, Duke Math. J. 36 (1969) 31-32.
[13] J.H. Przytycki, A. Yasuhara, Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers, Trans. Amer. Math. Soc. 356 (2004) 3669-3685.
[14] R.A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965) 543-555.
[15] T. Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269-276.
[16] A. Yasuhara, Self delta-equivalence for links whose Milnor's isotopy invariants vanish, Trans. Amer. Math. Soc. 361 (2009) $4721-4749$.

[^0]: th The first author is supported by the French ANR research project ANR-11-JS01-00201. The third author is partially supported by a Grant-in-Aid for Scientific Research (C) (\#23540074) of the Japan Society for the Promotion of Science.

 * Corresponding author.

 E-mail addresses: jean-baptiste.meilhan@ujf-grenoble.fr (J.-B. Meilhan), yasuhara@u-gakugei.ac.jp (A. Yasuhara).

