
Topology and its Applications 160 (2013) 836–843
Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Local moves for links with common sublinks ✩

Jean-Baptiste Meilhan a, Eri Seida b, Akira Yasuhara b,∗
a Institut Fourier, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 St Martin d’Hères, France
b Tokyo Gakugei University, Department of Mathematics, Koganeishi, Tokyo 184-8501, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 April 2012
Received in revised form 5 February 2013
Accepted 11 February 2013

MSC:
57M25
57M27

Keywords:
Ck-moves
Brunnian link
Claspers

A Ck-move is a local move that involves k + 1 strands of a link. A Ck-move is called
a Cd

k -move if these k + 1 strands belong to mutually distinct components of a link. Since

a Cd
k -move preserves all k-component sublinks of a link, we consider the converse im-

plication: are two links with common k-component sublinks related by a sequence of
Cd

k -moves? We show that the answer is yes under certain assumptions, and provide explicit
counter-examples for more general situations. In particular, we consider (n,k)-Brunnian
links, i.e. n-component links whose k-component sublinks are all trivial. We show that
such links can be deformed into a trivial link by Cd

k -moves, thus generalizing a result of
Habiro and Miyazawa–Yasuhara, and deduce some results on finite type invariants of (n,k)-
Brunnian links.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Habiro [4] and Gusarov [3] introduced independently the notion of Ck-move, which is a local move that involves k + 1
strands of a link as illustrated in Fig. 1.1. A C1-move is just a crossing change. Alternatively, a Ck-move can be defined in
terms of “insertion” of elements of the kth term of the lower central series of the pure braid group [15].

In particular, if all k + 1 strands involved in a Ck-move belong to pairwise distinct components, we call it a Cd
k -move.

The Ck-move (resp. Cd
k -move) generates an equivalence relation on links, called Ck-equivalence (resp. Cd

k -equivalence), which
becomes finer as k increases. It is easy to see that if two links are Cd

k -equivalent, then they have common k-component

sublinks. More precisely, if two ordered links L = K1 ∪ · · · ∪ Kn and L′ = K ′
1 ∪ · · · ∪ K ′

n are Cd
k -equivalent, then for any subset

S ⊂ {1, . . . ,n} with k elements,
⋃

i∈S Ki and
⋃

i∈S K ′
i are ambient isotopic. It seems natural to ask whether the converse

implication holds as well.

Question. If two links have common k-component sublinks, then are they Cd
k -equivalent?

Since any link is Cd
1-equivalent to a completely split link, the answer is obviously yes for k = 1. Hence we may assume

that k � 2.
The question can also be given a positive answer for a special class of links. For positive integers n and k with k � n,

an (n,k)-Brunnian link is an n-component link whose k-component sublinks are trivial [12]. In particular, if n = k + 1, then
it is a Brunnian link in the usual sense.
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Fig. 1.1. A Ck-move involves k + 1 strands of a link.

Fig. 2.1. Surgery along a Ck-tree.

Theorem 1.1. A link is (n,k)-Brunnian if and only if it is Cd
k -equivalent to the n-component trivial link.

Theorem 1.1 is thus a generalization of the fact that an (n + 1)-component link is Brunnian if and only if it is
Cd

n -equivalent to a trivial link [5,10]. This fact is the key ingredient in further works on finite type invariants of Brunnian
links [5–7]. These results generalize in a straightforward way to (n,k)-Brunnian links, see Appendix A.

For k = 2, we have a more general statement as follows.

Theorem 1.2. Two links with trivial components have common 2-component sublinks if and only if they are Cd
2-equivalent.

Although the hypotheses in Theorem 1.2, that k = 2 and that each link component is trivial, may seem restrictive, they
turn out to be both necessary to give a positive answer to our question. Indeed, we have the following.

Proposition 1.3.

(1) For k � 3, there exists a pair of links with trivial components, which have common k-component sublinks but are not
Cd

k -equivalent.

(2) There exist two links with one nontrivial component, which have common 2-component sublinks and are not Cd
2-equivalent.

The rest of the paper is organized as follows. In Section 2, we review some elements of the theory of claspers. We
prove Theorem 1.1, Theorem 1.2 and Proposition 1.3 in Sections 3, 4 and 5 respectively. The paper is concluded by several
straightforward extensions of known results on Brunnian links to (n,k)-Brunnian links, see Appendix A.

2. Claspers

We now recall several notions from clasper theory for links [4]. In this paper, we only need the notion of tree claspers.
For a general definition, we refer the reader to [4].

Let L be a link in S3. An embedded disk F in S3 is called a tree clasper for L if it satisfies the following three conditions:

(1) F is decomposed into disks and bands, called edges, each of which connects two distinct disks.
(2) The disks have either 1 or 3 incident edges, called leaves or nodes respectively.
(3) L intersects F transversely and the intersections are contained in the union of the interior of the leaves.

(In [4], a tree clasper and a leaf are called a strict tree clasper and a disk-leaf respectively.)
A tree clasper is simple if each leaf intersects L at one point. In the following, we will implicitly assume that all tree claspers

are simple.
The degree of a tree clasper is the number of the leaves minus 1. A degree k tree clasper is called a Ck-tree (or a

Ck-clasper).
Given a Ck-tree T for a link L, there is a procedure to construct a framed link γ (T ) in a regular neighborhood of T .

Surgery along T means surgery along γ (T ). Since there exists an orientation-preserving homeomorphism, fixing the bound-
ary, from the regular neighborhood N(T ) of T to the manifold N(T )T obtained from N(T ) by surgery along T , surgery along
the Ck-tree T can be regarded as a local move on L. We say that the resulting link LT is obtained from L by surgery along T .
In particular, surgery along a Ck-tree illustrated in Fig. 2.1 is equivalent to band-summing a copy of the (k + 1)-component
Milnor link (see [9, Fig. 7]), and is equivalent to a Ck-move as defined in the introduction (Fig. 1.1). Similarly, for a disjoint
union T1 ∪ · · · ∪ Tm of tree claspers for L, we can define LT1∪···∪Tm as the link obtained by surgery along T1 ∪ · · · ∪ Tm .
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Fig. 2.2. Sliding a leaf over another leaf.

It is known that the Ck-equivalence as defined in Section 1 coincides with the equivalence relation on links generated
by surgery along Ck-trees and ambient isotopy [4, Thm. 3.17].

Let L = K1 ∪ · · · ∪ Kn be an n-component link. For a Ck-tree T for L, the set {i | T ∩ Ki �= ∅} is called the index of T , and
is denoted by index(T ).

A Ck-tree T for L is a Cd
k -tree if it satisfies that |index(T )| = k + 1, that is, if |index(T )| is the number of leaves of T .

By arguments similar to those in the proof of [4, Thm. 3.17], we have that the Cd
k -equivalence defined in Section 1

coincides with the equivalence relation on links generated by surgery along Cd
k -trees and ambient isotopy.

Although the following three lemmas follow from results of [16], the main ideas of proofs are due to Habiro [4].

Lemma 2.1 (Leaf-sliding). ([16, Rem. 2.3]) Let T1 and T2 be disjoint Cd
1-trees for a link L. Suppose index(T1) = {i, j}, index(T2) = {i,k}

and j �= k. Let T ′
1 be obtained from T1 by sliding the leaf intersecting the ith component of L over the leaf of T2 intersecting the ith

component, see Fig. 2.2. Then LT1∪T2 and LT ′
1∪T2

are Cd
2-equivalent.

Lemma 2.2. ([16, Prop. 2.10], cf. [1, Prop. 1.3]) If an n-component link L′ is obtained from L by surgery along a Ck-tree T , then for any
subset S of index(T ) with |S| � 2, there exists a disjoint union of C|S|−1-trees for L with index S, such that L′ is obtained from L by
surgery.

Combining the latter with [16, Rem. 2.3], we have the following.

Lemma 2.3 (Crossing change). Let T be a Ck-tree for a link L, and let T ′ (resp. T ′′) be obtained from T by changing a crossing of an
edge of T and the ith component of L (resp. an edge of a C1-tree G intersecting the ith component). Then LT is Ck+1-equivalent to LT ′
(resp. LT ∪G is Ck+1-equivalent to LT ′′∪G ), and the Ck+1-equivalence is realized by surgery along Ck+1-trees with index index(T )∪ {i}.

In the following, we will freely use the terms leaf-sliding and crossing change when performing the operations of Lem-
mas 2.1 and 2.3 respectively.

3. Proof of Theorem 1.1

As noted in the introduction, the ‘if ’ part of the statement is obvious, so we only need to prove the ‘only if ’ part.
Let L = K1 ∪ · · · ∪ Kn be an n-component link with the same k-component sublinks as the trivial n-component link

O = O 1 ∪ · · · ∪ O n . Set l = n − k. We will show that L is Cd
k -equivalent to O by induction on l.

If l = 0, then L is trivial and the result is obviously true.
Suppose that l > 0. Let m be the maximum integer so that L is Cd

m-equivalent to O , i.e., so that there is a disjoint
union Fm of Cd

m-trees for O such that the link O Fm is ambient isotopic to L. If m = k, then we have the result. Hence we
assume that m < k and show that this leads to a contradiction.

Observe that O Fm can be deformed into the split union of O 1 and L \ K1 by deleting all Cd
m-trees in Fm intersecting O 1

and performing several crossing changes between O 1 and edges of Cd
m-trees disjoint from O 1. By Lemma 2.3, these crossing

changes are realized by surgery along Cd
m+1-trees intersecting O 1. Since L \ K1 is an (n − 1,k)-Brunnian link, by induction

hypothesis, it is Cd
k -equivalent to a trivial link. It follows by Lemma 2.2 that L is obtained from O by surgery along a disjoint

union F 1
m of Cd

m-trees intersecting O 1 and Cd
k -trees.

Similarly, O F 1
m

can be deformed into the split union of O 2 and L \ K2 by deleting all tree claspers in F 1
m intersecting O 2

and performing several crossing changes between O 2 and edges of tree claspers in F 1
m disjoint from O 2. Since L \ K2 is an

(n − 1,k)-Brunnian link, by induction hypothesis, it is Cd
k -equivalent to a trivial link. It follows by Lemmas 2.3 and 2.2 that

L is obtained from O by surgery along a disjoint union F 2
m of Cd

m-trees, each intersecting both O 1 and O 2, and Cd
k -trees.

Repeating this argument inductively, we show that L is obtained from O by surgery along a disjoint union F m+1
m of

Cd
m-trees with index {1,2, . . . ,m + 1}, and Cd

k -trees. Since m � k − 1 � n − 2, L has an (m + 2)th component, which is
disjoint from the Cd

m-trees in F m+1
m . We can deform O F m+1

m
into the split union of O m+2 and L \ Km+2 by deleting all

Cd
k -trees in F m+1

m intersecting O m+2 and several crossing changes between O m+2 and edges of trees clasper in F m+1
m . Since

L \ Km+2 is an (n − 1,k)-Brunnian link, it is Cd
k -equivalent to a trivial link. Lemmas 2.3 and 2.2 then imply that there is

disjoint union of Cd
m+1-trees F ′ for O such that O F ′ is ambient isotopic to L. This contradicts the definition of m, and thus

proves that L is Cd-equivalent to O .
k
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4. Proof of Theorem 1.2

The ‘if ’ part of the statement is obvious, so we only need to prove the ‘only if ’ part.
Let L be an n-component link with trivial components. By [8], there is a diagram of L in R

2 × {0} such that each
component has no self crossing.

By a sequence of crossing changes, we can deform L into a trivial link O = O 1 ∪ · · · ∪ O n such that O i lies in R
2 × {i}

(i = 1, . . . ,n) and the projections of L and O coincide. Hence, for each pair i, j of distinct integers in {1, . . . ,n} such that
i < j, there is a disjoint union Fij , possibly Fij = ∅, of Cd

1-trees for O with index {i, j} such that L is ambient isotopic to
O ⋃

i< j F i j
(since each crossing in L where the jth component passes under the ith one is achieved by surgery on O along

such a Cd
1-tree). Let Di be the disk in R

2 × {i} with ∂ Di = O i . For each pair i, j (i < j), we choose an arc αi j in R2 × [i, j]
which connects a point in O i and a point in O j , such that αi j ∩ (R2 × {t}) is a single point for each t ∈ [i, j], and αi j is
disjoint from Dk for all k �= i, j. Since the edge of each Cd

1-tree in Fij is contained in R
2 × (i, j), we have that O i ∪ O j ∪ Fij

is ambient isotopic to O i ∪ O j ∪ Eij , where Eij is a disjoint union of Cd
1-trees with index {i, j} and contained in a regular

neighborhood of αi j . Now, O ∪ (
⋃

i< j F i j) can be deformed into O ∪ (
⋃

i< j Ei j) by a sequence of isotopies and the following
three types of moves:

(i) leaf-sliding between two Cd
1-trees with distinct indices;

(ii) crossing change between edges of two Cd
1-trees with distinct indices;

(iii) crossing change between a component of O and the edge of a Cd
1-tree disjoint from this component.

It follows, by Lemmas 2.1, 2.2 and 2.3, that O ⋃
i< j F i j

is Cd
2-equivalent to O ⋃

i< j Ei j
.

Now, let L′ be an n-component link with trivial components and with the same 2-component sublinks as L. As above,
there exists disjoint unions E ′

i j of Cd
1-trees with index {i, j} for a trivial link O ′ , contained in a regular neighborhood of

an arc α′
i j in R

2 × [i, j] (1 � i < j � n), such that L′ is Cd
2-equivalent to O ′⋃

i< j E ′
i j

. Since O and O ′ are both n-component

trivial links, there is an ambient isotopy mapping O ′ to O . (Note that this isotopy may be assumed to preserve each level
R

2 × {t}, for t ∈ R.) The image of
⋃

i< j E ′
i j under this ambient isotopy can be deformed into a union of Cd

1-tree such that

the union of Cd
1-trees with index {i, j} is contained in a regular neighborhood of the arc αi j by a sequence of isotopies and

the moves (i) and (ii) above. Hence, by Lemmas 2.1, 2.2 and 2.3, the results of surgery on O along
⋃

i< j E ′
i j and along the

image of
⋃

i< j E ′
i j under these deformations, are Cd

2-equivalent. Thus, for simplicity, we may assume in the following that
O = O ′ and that αi j = α′

i j (1 � i < j � n).
Suppose that there is a pair of integers s, t such that Est �= E ′

st . Since L and L′ have common 2-component sublinks, so
do O ⋃

i< j Ei j
and O ⋃

i< j E ′
i j

. In particular, (O s ∪ O t)E ′
st

is ambient isotopic to (O s ∪ O t)Est . Since Eij ∩ Dk = E ′
i j ∩ Dk = ∅ for

any i, j, k with k /∈ {i, j}, we have that O E ′
st

is ambient isotopic to O Est . Moreover, this ambient isotopy can be performed
in a regular neighborhood Nst of Ds ∪ Dt ∪ αst . It follows that O E ′

st
∪ (

⋃
(i, j)�=(s,t); i< j E ′

i j) is ambient isotopic to O Est ∪
(
⋃

(i, j)�=(s,t); i< j Ẽ ′
i j), where Ẽ ′

i j denotes the image of E ′
i j under the above isotopy of Nst . Note that Ẽ ′

kl �= E ′
kl only if {k, l} ∩

{s, t} �= ∅, since E ′
kl ∩ Nst = ∅ otherwise. Below we prove the following

Claim 4.1. O Est∪(
⋃

(i, j)�=(s,t); i< j Ẽ ′
i j)

and O Est∪(
⋃

(i, j)�=(s,t); i< j E ′
i j)

are Cd
2-equivalent.

It follows that O ⋃
i< j E ′

i j
is Cd

2-equivalent to O Est∪(
⋃

(i, j)�=(s,t); i< j E ′
i j)

. Since this argument holds for an arbitrary pair of inte-

gers s, t such that s < t , we eventually obtain that O ⋃
i< j E ′

i j
is Cd

2-equivalent to O ⋃
i< j Ei j

. Hence L and L′ are Cd
2-equivalent.

Proof of Claim 4.1. Since surgery along E ′
st takes place in a regular neighborhood of αst , we may consider the arcs αi j ,

where (i, j) �= (s, t) and i < j, is attached to the link O E ′
st

. Up to isotopy, we may freely assume that Nst intersects the union
of O E ′

st
and (

⋃
i< j; (i, j)�=(s,t) αi j) as shown in Fig. 4.1. In particular, for h being either s or t , we have that

αh :=
( ⋃

(i, j); i< j
{i, j}∩{s,t}={h}

αi j

)
∩ Nst

is a parallel family of arcs. Denote by α̃h the image of αh under the isotopy of Nst that sends O E ′
st

to O Est . Observe that,

for each pair i, j (i < j) with {i, j} ∩ {s, t} = {h}, Ẽ ′
i j ∩ Nst is contained in a regular neighborhood of a certain arc in α̃h .

Note that ∂(α̃s ∪ α̃t) ∩ ∂Nst = ∂(αs ∪ αt) ∩ ∂Nst , and that we may also freely assume that (α̃s ∪ α̃t) ∩ (O s ∪ O t)Est =
(αs ∪ αt) ∩ (O s ∪ O t)E ′

st
. It follows that α̃s ∪ α̃t ∪ (O s ∪ O t)Est can be deformed into αs ∪ αt ∪ (O s ∪ O t)Est by a sequence of

isotopies and the following moves:
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Fig. 4.1. The intersection of Nst and O E ′
st

∪ (
⋃

i< j; (i, j)�=(s,t) αi j).

Fig. 4.2. The move takes place in a 3-ball of Nst that intersects a union of hth component of O Est and Ẽ ′
kl as shown, where h ∈ {s, t}, (k, l) �= (s, t) and

{k, l} ∩ {s, t} �= ∅.

Fig. 4.3. Here, the clasper may be replaced with a parallel family of claspers.

Fig. 4.4. Passing the hth component of O Est across edges of Cd
1 -trees with index { j, l} (l �= h). Here j, l and h are mutually distinct.

• crossing change between an arc in α̃s ∪ α̃t and a component of (O s ∪ O t)Est ;
• crossing change between two arcs in α̃s ∪ α̃t .

Note that the second kind of move can be achieved by isotopy and moves of the first kind. We thus have that α̃s ∪ α̃t ∪
(O s ∪ O t)Est can be deformed into αs ∪αt ∪(O s ∪ O t)Est by a sequence of isotopies and crossing changes between α̃s ∪ α̃t and
(O s ∪ O t)Est . This deformation induces a deformation from O Est ∪ (

⋃
(i, j)�=(s,t); i< j Ẽ ′

i j) to O Est ∪ (
⋃

(i, j)�=(s,t); i< j E ′
i j), which

can be realized by a sequence of the move in Fig. 4.2. Note that, although insertion of a full-twist in some arc αkl of αs ∪αt
can be achieved by an isotopy, this is no longer true for the induced insertion of a full-twist in Ekl . However, it is easily
achieved by isotopy and the move in Fig. 4.2, as illustrated in Fig. 4.3.

It remains to check that such a move among claspers yields Cd
2-equivalent results of surgery.

In general, this move involves the hth component of O Est and the union of Cd
1-trees with index {i, j}, for some i,h ∈

{s, t} and some j /∈ {s, t}. If i �= h, the result follows directly from Lemma 2.3. Otherwise, Fig. 4.4 shows how the desired
deformation can be achieved by passing the hth component of O Est across edges of Cd

1-trees with index { j, l} with l �= h.
The result then follows from Lemma 2.3. �
Remark 4.2. The following was suggested by the referee:

Conjecture. Two (n,k − 1)-Brunnian links have common k-component sublinks if and only if they are Cd-equivalent.
k
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Fig. 5.1. Ln and L′
n are n-component links with trivial components and common k-component sublinks for k � n − 1.

For k = 2, the answer is positive by Theorem 1.2, and since Cd
k -equivalent links have common k-component sublinks, a pos-

itive answer to this question would be a generalization of this theorem. Unfortunately, the arguments in the above proof of
Theorem 1.2 do not seem to be easily adapted to this more general settings. Nevertheless, the authors could not come up
with any counter-example, and are therefore confident in stating the above as a conjecture.

5. Proof of Proposition 1.3

In this section, we show that each of the hypotheses imposed in Theorem 1.2 is necessary for the conclusion to hold.

5.1. The case k � 3: proof of Proposition 1.3 (1)

We first observe that Theorem 1.2 does not hold for k � 3.
Let Ln and L′

n be two n-component links as illustrated in Fig. 5.1. Clearly, both links have trivial components, and have
common k-component sublinks for k � n − 1.

On the other hand, we notice that Arf(Ln) = 0 and Arf(L′
n) = 1, where Arf denotes the Arf invariant [14]. Note that

a Ck-move preserves the Arf invariant when k � 3, since it can be achieved by a pass-move, which preserves the Arf
invariant [11]. This implies that Ln and L′

n are not Ck-equivalent, and hence not Cd
k -equivalent.

5.2. An invariant of Cd
k -equivalence: proof of Proposition 1.3 (2)

We now consider the case k = 2, but without the assumption that all components are trivial. For that purpose, we first
introduce an invariant of Cd

k -equivalence derived from the linking number in the double branched cover of S3 branched
over a knot.

Let K ∪ K1 ∪ · · · ∪ Km (m � 1) be an oriented (m + 1)-component link in S3. If the linking number lk(K , Ki) is even for
all i (= 1, . . . ,m), then there is a possibly nonorientable surface F bounded by K disjoint from K1 ∪ · · · ∪ Km . Let Gα be the
Goeritz matrix [2] with respect to a basis α = (a1, . . . ,an) of H1(F ), i.e., the (i, j)-entry of Gα is equal to lk(ai, τa j), where
τa j is a 1-cycle in S3 − F obtained by pushing off 2a j in both normal directions. Let Vα(Ki) = (lk(Ki,a1), . . . , lk(Ki,an)).
In [13] J.H. Przytycki and the last author define, for i, j (1 � i, j � m),

λF (Ki, K j) = Vα(Ki)G−1
α Vα(K j)

T ,

and λF (Ki, K j) = 0 when F is a 2-disk. It follows directly from [13, Thm. 2.3] that for the double branched cover M of S3

branched over K and for lifts K̃ i and K̃ j of Ki and K j respectively, we have

lkM(K̃ i, K̃ j) ≡ ±λF (Ki, K j) mod 1.

If two links L = K ∪ K1 ∪ · · · ∪ Km and L′ = K ′ ∪ K ′
1 ∪ · · · ∪ K ′

m are Cd
k -equivalent for some k (2 � k � m), then Ki ∪ K j and

K ′
i ∪ K ′

j are homotopic in the complement of K . This implies that there is a lift K̃ i ∪ K̃ j (resp. K̃ ′
i ∪ K̃ ′

j ) of Ki ∪ K j (resp.
K ′

i ∪ K ′
j ) such that

lkM(K̃ i, K̃ j) ≡ lkM
(

K̃ ′
i , K̃ ′

j

)
mod 1.

It follows that we have the following proposition.

Proposition 5.1. For any k � 2, ±λF (Ki, K j) (mod 1) is an invariant of Cd
k -equivalence.

We can now complete the proof of Proposition 1.3.

Proof of Proposition 1.3 (2). Let L = K ∪ K1 ∪ K2 and L′ = K ∪ K1 ∪ K ′
2 be links as illustrated in Fig. 5.2. Note that L

and L′ have common 2-component sublinks. Let F be a nonorientable surface, and let a1,a2 be a basis of H1(F ) as il-
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Fig. 5.2. L = K ∪ K1 ∪ K2 and L′ = K ∪ K1 ∪ K ′
2 are 3-component links with common 2-component sublinks.

lustrated in Fig. 5.2. Then we have λF (K1, K2) = 0 and λF (K1, K ′
2) = −1/3. Proposition 5.1 implies that L and L′ are not

Cd
2-equivalent. �
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Appendix A. Finite type invariants of (n,k)-Brunnian links

Theorem 1.1 states that a link is (n,k)-Brunnian if and only if it is Cd
k -equivalent to the n-component trivial link. As

recalled in the introduction, the case k = n − 1, i.e. the case of Brunnian links, was shown in [5,10], and is a key ingredient
in proving several results and Brunnian links and their finite type invariants. Using Theorem 1.1, we can easily generalize
these to (n,k)-Brunnian links. We only provide statements here, since the proofs are straightforward generalizations of [5,
10,6,7], and require no new idea.

In [5], Habiro shows that for n � 3, an n-component Brunnian links cannot be distinguished from the trivial link by
any finite type invariant of order less than 2(n − 1). (Note that for n = 2, this does not hold since the Hopf link and the
2-component trivial link can be distinguished by the linking number, which is of order 1.) By the same arguments as those
in [5, §4], we have that if a link is Cd

k -equivalent to a trivial link for k � 2, then these links cannot be distinguished by any
finite type invariant of order less than 2k. Hence we obtain the following result.

Theorem A.1. For n > k � 2, (n,k)-Brunnian links and the n-component trivial link cannot be distinguished by any finite type invariant
of order less than 2k.

In [6,7], the study of finite type invariants of Brunnian links is continued, by expressing the restriction of an invariant
of degree 2n − 1 to n-component Brunnian links as a quadratic form on the Milnor link-homotopy invariants of length n,
see [9]. The arguments used in [6] (and [7]) can be generalized in a straightforward way to (n,k)-Brunnian links to prove
the following.

Theorem A.2. Let f be any finite type link invariant of degree 2k + 1 taking values in an abelian group A. Then there are (non-unique)
elements f σ ,σ ′

I ∈ A for σ , σ ′ in the symmetric group Sk−1 on the set {1, . . . ,k − 1} and for any subsequence I of 12 . . .n of length
k + 1, such that, for any (n,k)-Brunnian link L, the difference f (L) − f (O ) is equal to∑

I=i1i2...ik+1
subseq. of 12...n

∑
σ ,σ ′∈Sk−1

f σ ,σ ′
I μ̄L(iσ (1) . . . iσ (k−1)ikik+1)μ̄L(iσ ′(1) . . . iσ ′(k−1)ikik+1).

Here O denotes the n-component trivial link and μ̄L denotes Milnor invariants of L.

In other words, the restriction of an invariant of degree 2k + 1 to (n,k)-Brunnian links can be expressed as a quadratic
form on the Milnor link-homotopy invariants of its (k + 1)-component sublinks, and, in particular, is determined by the
(k + 1)-component sublinks.

Milnor invariants are useful not only for understanding finite type invariants of (n,k)-Brunnian links, but also for provid-
ing classification results. It is indeed known that n-component Brunnian links are classified up to Cn-equivalence by Milnor
link-homotopy invariants [10,6]. Again, strictly similar arguments can be used to extend this classification result as follows.

Theorem A.3. Two (n,k)-Brunnian links are Ck+1-equivalent if and only if they cannot be distinguished by any Milnor link-homotopy
invariant of length k + 1.
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