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Abstract

We give a complete set of finite type string link invariants of degree < 5. In addition to
Milnor invariants, these include several string link invariants constructed by evaluating knot
invariants on certain closures of (cabled) string links. We show that finite type invariants
classify string links up to Ck-moves for k � 5, which proves, at low degree, a conjecture
due to Goussarov and Habiro. We also give a similar classification of string links up to
Ck-moves and concordance for k � 6.

Dedicated to Professor Akio Kawauchi on his 60th birthday

1. Introduction

The notion of Goussarov–Vassiliev finite type link invariants provides a unifying view-
point on the various quantum link invariants [1, 9, 10, 35]. Denote by ZL(m) the free abelian
group generated by the set L(m) of isotopy classes of m–component oriented, ordered links
in S3. An abelian group-valued link invariant is a finite type invariant of degree at most k if
its linear extension to ZL(m) vanishes on the (k + 1)th term of the descending filtration

ZL(m) = J0(m) ⊃ J1(m) ⊃ · · · (1·1)

where each Jn(m) is generated by certain linear combinations of links associated with sin-
gular links with n double points. See Subsection 2·1·2 for a definition.

It is a natural question to ask for a topological characterization of finite type invariants.
Habiro [14] and Goussarov [11] introduced independently the notion of Ck-move to address
this question. A C1-move is just a crossing change, and for any integer k � 2, a Ck-move is
a local move on (string) links as illustrated in Figure 1, which can be regarded as a kind of
‘higher order crossing change’.

† Supported by a grant from the Heiwa Nakajima Foundation.
‡ Partially supported by a Grant-in-Aid for Scientific Research (C) (#20540065) of the Japan Society for

the Promotion of Science.



440 J.B. MEILHAN AND A. YASUHARA

Fig. 1. A Ck -move involves k + 1 strands of a link, labelled here by integers between 0 and k.

The Ck-move generates an equivalence relation on links, called Ck-equivalence, which
becomes finer as k increases. This notion can also be defined in terms of ‘insertion’ of
an element of the kth lower central series subgroup of some pure braid group [34], or al-
ternatively by using the theory of claspers (see Section 3). Goussarov and Habiro showed
independently the following.

THEOREM 1·1 ([11, 14]). Two knots cannot be distinguished by any finite type invariant
of order less than k if and only if they are Ck-equivalent.

The ‘if’ part of the statement is easy to check. Actually, it is known to hold for links as
well, but explicit examples show that the ‘only if’ part of Theorem 1·1 does not hold for
links in general, see [14, section 7·2].

However, Theorem 1·1 may generalize to string links. Recall that a string link is a proper
tangle without any closed components (see Subsection 2·1·1 for a precise definition).

CONJECTURE (Goussarov–Habiro [11, 14]). Two string links of the same number of
components share all finite type invariants of order less than k if and only if they are Ck-
equivalent.

One nice property of string links, which suggests some analogy with knots, is that they
admit a natural composition. Indeed the stacking product · endows the set SL(n) of n-string
links up to isotopy fixing the endpoints with the structure of a monoid. In particular, string
links with 1 component are exactly equivalent to knots, and their stacking product is equi-
valent to the connected sum � of knots. The Goussarov–Habiro Conjecture is also supported
by the fact that there are many more finite type invariants for string links than for links. For
example, Milnor invariants [27, 28] are defined for both links and string links, but (except
for the linking number) they are of finite type only for string links. See Subsection 2·1·4.

As in the link case, it is easy to check that the ‘if’ part of the conjecture is always true.
The ‘only if’ part is also true for k = 1 (in which case the statement is vacuous) and k = 2;
the only finite type string link invariant of degree 1 is the linking number, which is known to
classify string links up to C2-equivalence [29]. (Note that this actually also applies to links.)
The Goussarov–Habiro conjecture was then (essentially) proved for k = 3 by the first author
in [25]. Massuyeau gave a proof for k = 4, but it is mostly based on algebraic arguments and
thus does not provide any information about the corresponding finite type invariants [24].

In this paper, we classify n-string links up to Ck-equivalence for k � 5, by explicitly
giving a complete set of low degree finite type invariants. In addition to Milnor invariants,
these include several ‘new’ string link invariants constructed by evaluating knot invariants
on certain closure of the (potentially cabled) string link. See Section 2 for the statements of
these main results. As a consequence, we prove the Goussarov–Habiro Conjecture for k � 5.

We also consider the case of finite type concordance invariants. It is known that, over
the rationals, these are all given by Milnor invariants [13]. We introduce the notion of
Ck-concordance, which is the equivalence relation on (string) links generated by Ck-moves
and concordance. We classify string links up to Ck-concordance for k � 6 by Milnor invari-
ants and Arf invariant.
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Finally, we apply some of the techniques developed in this paper to previous works by
the authors [26, 36]. We first give a classification of 2-string links up to self C3-moves and
concordance, where a self Ck-move is a Ck-move with all k + 1 strands in a single com-
ponent. Next we consider Brunnian string links. Recall that a (string) link is Brunnian if it
becomes trivial after removing any positive number of components. We give a classification
of Brunnian n-string links up to Cn+1-equivalence, thus improving a previous result of the
authors [26].

The rest of the paper is organized as follows. In Section 2, we recall the definitions of the
main notions of this paper, and state our main results characterizing finite type string link
invariants of degree < 5. In Section 3, we review the main tool used in the proofs, namely the
theory of claspers, and provide several key lemmas. The main results are proved in Section 4.
In Section 5, we give a classification of string links up to Ck-moves and concordance for
k � 6. Finally, in Section 6 we give the classification of 2-string links up to self C3-moves
and concordance, and Section 7 contains our (improved) result on Brunnian string links.

2. Statements of the main results

In this section, we state our main results, which provide a complete set of finite type
string link invariants of degree < 5 and validate the Goussarov–Habiro conjecture up to this
degree.

2·1. Preliminaries

In this subsection we recall the definitions and properties of finite type string link invari-
ants, and review several examples that will be used in our main results.

2·1·1. String links

Let n � 1, and let D2 be the standard two-dimensional disk equipped with n marked
points x1, . . . , xn in its interior. Let I denote the unit interval. An n-string link, or n-
component string link, is a proper embedding

σ :
n⊔

i=1

Ii −→ D2 × I,

of the disjoint union �n
i=1 Ii of n copies of I in D2 × I , such that for each i , the image σi

of Ii runs from (xi , 0) to (xi , 1). Abusing notation, we will also denote by σ ⊂ D2 × I the
image of the map σ , and σi is called the i th string of σ . Note that each string of an n-string
link is equipped with an (upward) orientation induced by the natural orientation of I .

The set SL(n) of isotopy classes of n-string links fixing the endpoints has a monoidal
structure, with composition given by the stacking product and with the trivial n-string link
1n as unit element. We shall sometimes denote the trivial string link by 1 when the number
of component is irrelevant.

There is a surjective map ˆ : SL(n) → L(n) which sends an n-string link σ to its closure
σ̂ (in the usual sense). For n = 1, this map is a monoid isomorphism.

We have a descending filtration

SL(n) = SL1(n) ⊃ SL2(n) ⊃ SL3(n) ⊃ · · ·
where SLk(n) denotes the set of Ck-trivial n-string links, i.e., string links which are
Ck-equivalent to 1n . For 1 � k � l, let SLk(n)/Cl denote the set of Cl-equivalence classes
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of Ck-trivial n-string links. This is known to be a finitely generated nilpotent group [14,
theorem 5·4] (see also [10]). Furthermore, if l � 2k, this group is abelian [14, theorem 5·4].

2·1·2. Finite type invariants of string links

A singular n-string link is a proper immersion �n
i=1 Ii → D2 × I such that the image of Ii

runs from (xi , 0) to (xi , 1) (1 � i � n), and whose singularities are transverse double points
(in finite number).

Denote by ZSL(n) the free abelian group generated by SL(n). A singular n-string link σ

with k double points gives an element of ZSL(n) using the following skein formula.

= − . (2·1)

Let A be an abelian group. An n-string link invariant f : SL(n) → A is a finite type
invariant of degree � k if its linear extension to ZSL(n) vanishes on every n-string link
with (at least) k + 1 double points. If f is of degree � k but not of degree k − 1, then f is
called a finite type invariant of degree k.

We recall several classical examples of such invariants in the next two subsections.
The Kontsevich integral [21]

Z : SL(n) −→ A(�n I )

is universal among rational-valued finite type string link invariants. The target space A(�n I )
of Z is the space of Jacobi diagrams on �n

i=1 Ii , that is, the vector space over Q generated
by vertex-oriented unitrivalent diagrams whose univalent vertices are identified with distinct
points on �n

i=1 Ii , modulo the FI (framing independence), AS, IHX and STU relations [1, 2].
Recall that A(�n I ) is graded by the degree of Jacobi diagrams, which is defined as half the
number of vertices.

2·1·3. Finite type knot invariants

In this subsection we recall a few classical results on finite type knot invariants.
The Conway polynomial ∇ of oriented links is a polynomial in the variable z defined by

the following two properties:

(i) ∇U (z) = 1;

(ii) ∇L+(z) − ∇L−(z) = z∇L0(z),

where U denotes the unknot and where L+, L− and L0 are three links that are identical
except in a 3-ball where they look as follows:

L+ = ; L− = ; L0 = .

Recall that the Conway polynomial of a knot K has the form

∇K (z) = 1 +
∑
k�1

a2k(K )z2k .

It is not hard to show that the z2k-coefficient a2k in the Conway polynomial is a finite type
invariant of degree 2k [1].

The HOMFLYPT polynomial P(L; t, z) ∈ Z[t±1, z±1] of an oriented link L is defined by
the following formulas (using the same notation as above):
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(i) P(U ; t, z) = 1;

(ii) t−1 P(L+; t, z) − t P(L−; t, z) = z P(L0; t, z).

Recall that the Conway polynomial ∇L(z) of L is given from its HOFMLYPT polynomial
by ∇L(z) = P(L; 1, z). Recall also that the HOMFLYPT polynomial of a knot K is of the
form

P(K ; t, z) =
N∑

k=0

P2k(K ; t)z2k,

where P2k(K ; t) ∈ Z[t±1] is called the 2kth coefficient polynomial of K . Denote by P (l)
2k (K )

the lth derivative of P2k(K ; t) evaluated at t = 1. It was proved by Kanenobu and Miyazawa
that P (l)

2k is a finite type invariant of degree 2k + l [19].
Note that both the Conway and HOMFLYPT polynomials of knots are invariant under

orientation reversal, and that both are multiplicative under the connected sum [22].
In the rest of this paper, we will freely evaluate these invariants on components of an

n-string link, via the closure isomorphism SL(1) 	 L(1). For example, a2(σi) denotes the
invariant a2 of the closure σ̂i .

2·1·4. Milnor invariants

Given an n-component oriented, ordered link L in S3, Milnor invariants μL(I ) of L are
defined for each multi-index I = i1i2 . . . im (i.e., any sequence of possibly repeating indices)
among {1, . . . , n} [27, 28]. The number m is called the length of Milnor invariant μ(I ), and
is denoted by |I |. Unfortunately, the definition of these μ(I ) contains a rather intricate self-
recurrent indeterminacy.

Habegger and Lin showed that Milnor invariants are actually well defined integer-valued
invariants of string links [12], and that the indeterminacy in Milnor invariants of a link
is equivalent to the indeterminacy in regarding it as the closure of a string link. We refer
the reader to [12] or [36] for a precise definition of Milnor invariants μ(I ) of string links.
The smallest length Milnor invariants μσ (i j) of a string link σ coincide with the linking
numbers lk(σ̂i , σ̂ j ). Milnor invariants are thus sometimes referred to as ‘higher order linking
numbers’.

It is known that μ(I ) is a finite type invariant of degree |I | − 1 for string links [2, 23].

Convention 2·1. As stated above, each Milnor invariant μ(I ) for n-string links is indexed
by a sequence I of possibly repeating integers in {1, . . . , n}. In the following, when denoting
indices of Milnor invariants, we will always let distinct letters denote distinct integers, unless
otherwise specified. For example, μ(i i jk) (1 � i, j, k � n) stands for all Milnor invariants
μ(i i jk) with i, j, k ∈ {1, . . . , n} pairwise distinct.

2·2. Invariants of degree � 2 for string links

We start by recalling the classification of n-string links up to C3-equivalence due to the
first author.1

It turns out that, in addition to the z2–coeficient a2 in the Conway polynomial (which
is essentially the only finite type knot invariant of degree � 2) and Milnor invariants of
length � 3, this classification requires an additional finite type invariant of degree 2 for

1 Actually, the present statement is stronger than the one appearing in [25]. However, the proof given in
Subsection 4·1 is essentially contained in [25].
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Fig. 2. The five closures cli σ (i = 0, . . . , 4) of a 3-string link σ .

2-string links

f2 : SL(2) −→ Z,

defined by f2(σ ) = a2(σ ). Here σ denotes the plat closure of σ , which is the knot obtained
by identifying the two upper (resp. lower) endpoints of σ . More precisely, we have the
following.

THEOREM 2·2 ([25]). Let σ, σ ′ ∈ SL(n). Then the following assertions are equivalent:
(i) σ and σ ′ are C3-equivalent;

(ii) σ and σ ′ share all finite type invariants of degree � 2;
(iii) σ and σ ′ have same Kontsevich integral up to degree 2;
(iv) σ and σ ′ share all invariants a2 and f2, and all Milnor invariants μ(i j) (1 � i <

j � n) and μ(i jk) (1 � i < j < k � n).

Convention 2·3. In (iv), by σ and σ ′ share all invariants a2 and f2, we mean that σ =
�n

i=1σi and σ ′ = �n
i=1σ

′
i satisfy a2(σi) = a2(σ

′
i ) and f2(σi � σ j ) = f2(σ

′
i � σ ′

j ) for all
1 � i < j � n. We shall make use of a similar abuse of notation in subsequent statements.

2·3. Invariants of degree 3 for string links

Recall that there is essentially only one finite type knot invariant of degree 3, namely P (3)

0 .
Let

f3 : SL(2) −→ Z

be defined by f3(σ ) := P (3)

0 (σ ), where σ is the plat-closure of σ , and let

V3 : SL(3) −→ Z

be defined by V3(σ ) := P (3)

0 (cl3σ), where cl3σ is the closure operation illustrated in
Figure 2.

Clearly, f3 and V3 are both finite type invariants of degree at most 3.

THEOREM 2·4. Let σ , σ ′ ∈ SL(n). Then the following assertions are equivalent:
(i) σ and σ ′ are C4-equivalent;

(ii) σ and σ ′ share all finite type invariants of degree � 3;
(iii) σ and σ ′ have same Kontsevich integral up to degree 3;
(iv) σ and σ ′ share all invariants a2, P (3)

0 , f2, f3 and V3, and all Milnor invariants μ(i j),
μ(i i j j) (1 � i < j � n), μ(i jk) (1 � i < j < k � n), μ(i jkl) (1 � i, j < k < l �
n) and μ(i jkk) (1 � i, j, k � n ; i < j).

2·4. Invariants of degree 4 for string links

There are essentially two linearly independent finite type knot invariants of degree 4,
namely a4 and P (4)

0 . We will use these two knot invariants to define a number of finite type
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Fig. 3. The three closures Ki (σ ) (i = 1, 2, 3) of a 4-string link σ .

string links invariants of degree 4 by using some cabling and closure operations. We start by
setting up some notation.

Given a 3-string link σ , denote by cliσ , i = 0, . . . , 4, the five knots obtained from σ by
taking the closures illustrated in Figure 2.

Also, given a 4-string link σ , denote by Ki (σ ), i = 1, 2, 3, the knot obtained by the
closure operations represented in Figure 3.

Finally, for a 2-string link σ , denote by �iσ (i = 1, 2) the 3-string link obtained by taking
a 0-framed parallel copy of the i th component σi of σ .

We now define five invariants of 2-string links as follows. For 1 � i � 5, let

f i
4 : SL(2) −→ Z

be defined by the following

f 1
4 (σ ) := a4 (σ ) , f 2

4 (σ ) := P (4)

0 (σ ),

f 3
4 (σ ) := a4 (cl0(�1σ)) , f 4

4 (σ ) := P (4)

0 (cl0(�1σ)),

and f 5
4 (σ ) := P (4)

0 (cl1(�2σ)).

We have that f i
4 is a finite type invariant of degree � 4 for i = 1, . . . , 5. (It is immediate for

i = 1, 2, and easy to check for i = 3, 4, 5.)
Next we define seven invariants of 3-string links. For 1 � i � 7, let

V i
4 : SL(3) −→ Z

be defined by the following

V 1
4 (σ ) := a4 (cl1σ) , V 4

4 (σ ) := P (4)

0 (cl1σ),

V 2
4 (σ ) := a4 (cl2σ) , V 5

4 (σ ) := P (4)

0 (cl2σ),

V 3
4 (σ ) := a4 (cl3σ) , V 6

4 (σ ) := P (4)

0 (cl3σ),

and V 7
4 (σ ) := P (4)

0 (cl4σ).

Clearly, each V i
4 is a finite type invariant of degree � 4, i = 1, . . . , 7.

Finally, we define three finite type invariants of degree � 4 of 4-string links

W i
4 : SL(4) −→ Z

by setting W i
4(σ ) := P (4)

0 (Ki (σ )), 1 � i � 3.
These various invariants, together with Milnor invariants of length � 5, give the following

classification of n-string links up to C5-equivalence.

THEOREM 2·5. Let σ , σ ′ ∈ SL(n). Then the following assertions are equivalent:
(i) σ and σ ′ are C5-equivalent;

(ii) σ and σ ′ share all finite type invariants of degree � 4;
(iii) σ and σ ′ have same Kontsevich integral up to degree 4;
(iv) σ and σ ′ share all knots invariants of degree � 4, all invariants f2, f3, V3, f i

4 , V i
4

and W i
4 , and all Milnor invariants of length � 5,
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where, in (iv), σ and σ ′ share all Milnor invariants of length � 5 if and only if they share
all μ(i j), μ(i i j j) (1 � i < j � n), μ(i jk) (1 � i < j < k � n), μ(i jkl) (1 � i, j < k <

l � n), μ(i jkk) (1 � i, j, k � n ; i < j), μ(i jklm) (1 � i, j, k < l < m � n), μ(i i i jk),
μ(i j jkk) and μ( j ikll) (1 � i, j, k, l � n ; j < k).

Remark 2·6. A complete set of finite type link invariants of degree � 3 has been com-
puted in [20] using weight systems and chord diagrams. For 2-component links, this has
been done for degree � 4 invariants in [18]. All invariants are given by coefficients of the
Conway and HOMFLYPT polynomials of sublinks.

3. Claspers and local moves on links

The primary tool in the proofs of our main results is the theory of claspers. We recall here
the main definitions and properties of this theory, and state a couple of additional lemmas
that will be useful in later sections.

3·1. A brief review of clasper theory

For convenience, we give all definitions and statements in the context of string links. For
a general definition of claspers, we refer the reader to [14].

Definition 3·1. Let σ be a string link. An embedded surface G is called a graph clasper
for σ if it satisfies the following three conditions:

(i) G is decomposed into disks and bands, called edges, each of which connects two
distinct disks;

(ii) the disks have either 1 or 3 incident edges, and are called leaves or nodes respectively;
(iii) G intersects σ transversely, and the intersections are contained in the union of the

interiors of the leaves.
In particular, if a connected graph clasper G is simply connected, we call it a tree clasper.

A graph clasper for a string link σ is simple if each of its leaves intersects σ at one point.
The degree of a connected graph clasper G is defined as half of the number of nodes and

leaves. We call a degree k connected graph clasper a Ck-graph. A tree clasper of degree k is
called a Ck-tree. A Ck-graph with loop is a Ck-graph which is not a Ck-tree.

Convention 3·1. Throughout this paper, we make use of the following graphical conven-
tion. The drawing convention for claspers are those of [14, figure 7], except for the following:
a ⊕ (resp. �) on an edge represents a positive (resp. negative) half-twist. (This replaces the
convention of a circled S (resp. S−1) used in [14].) When representing a clasper c with an
edge marked by a �, we implicitly also define the clasper c−1 which is obtained from c by in-
serting a positive half twist in the �-marked edge. Likewise, when introducing the string link
σ obtained from 1 by surgery along a clasper c with a �-marked edge, we implicitly also in-
troduce the string link σ−1 obtained from 1 by surgery along c−1. (This convention/notation
is motivated by Lemma 3·2(2).) We will also make use of this convention for knots in S3.

Given a graph clasper G for a string link σ , there is a procedure to construct, in a regular
neighbourhood of G, a framed link γ (G). There is thus a notion of surgery along G, which
is defined as surgery along γ (G). There exists a canonical diffeomorphism between D2 × I
and the manifold (D2 × I )γ (G), and surgery along the Ck-graph G can be regarded as an
operation on σ in the (fixed) ambient space D2 × I . We say that the resulting string link
σG in D2 × I is obtained from σ by surgery along G. In particular, surgery along a simple



Finite type string link invariants of degree < 5 447

Fig. 4. Surgery along a simple C5-tree.

Fig. 5. The 3 claspers are identical outside a small ball, where they are as depicted.

Ck-tree is a local move as illustrated in Figure 4, which is equivalent to a Ck-move as defined
in the introduction (Figure 1).

For k � 3, a Ck-tree G having the shape of the tree clasper in Figure 4 is called linear,
and the left-most and right-most leaves of G in Figure 4 are called the ends of G. Note that
there is no ambiguity in the notion of ends of a linear tree as defined here, by referring to the
standard situation of Figure 4. Recall indeed that a clasper is an embedded surface: given
a linear tree T there is a unique pair ( f, f ′) of leaves joined by the longest path (of edges
and nodes) in T such that we can run along the boundary of this underlying surface from
∂ f to ∂ f ′ without meeting any other leaf. Note, however, that this notion is ambiguous for
C2-trees.

The Ck-equivalence (as defined in the introduction) coincides with the equivalence rela-
tion on string links generated by surgeries along Ck-graphs and isotopies. In particular, it
is known that two links are Ck-equivalent if and only if they are related by surgery along
simple Ck-trees [14, theorem 3·17].

3·2. Calculus of Claspers

In this subsection, we summarize several properties of claspers, whose proofs can be
found in [14].

LEMMA 3·2 (Calculus of Claspers). (1) Let T be a union of tree claspers for a string link
σ , and let C be a component of T which is a Ck-tree. Let T ′ be obtained from T by passing
an edge of C across σ or across another edge of T , or by sliding a leaf of C over a leaf of

another component of T .2 Then σT
Ck+1∼ σT ′ .

(2) Let T be a Ck-tree for 1n and let T be a Ck-tree obtained from T by adding a half-twist

on an edge. Then (1n)T · (1n)T
Ck+1∼ 1n.

(3) Let T be a Ck-tree for 1n. Let f1 and f2 be two disks obtained by splitting a leaf f of

T along an arc α as shown in Figure 5. Then, (1n)T
Ck+1∼ (1n)T1 · (1n)T2 , where Ti denotes the

Ck-tree for 1n obtained from T by replacing f by fi (i = 1, 2), see Figure 5.

In our proofs, we shall use combinations of these relations in many places, and will always
refer to them as Calculus of Claspers.

Claspers also satisfy relations analogous to the AS, IHX and STU relations for Jacobi
diagrams [1].

2 For example, the clasper GU of Figure 6 is obtained from GT by sliding a leaf over another one.
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Fig. 6. The AS, IHX and STU relations.

Fig. 7. The Ck -trees Tα(l) and Tα(l).

LEMMA 3·3.
(AS) Let T and T ′ be two Ck-graphs for 1n which differ only in a small ball as depicted

in Figure 6. Then (1n)T · (1n)T ′
Ck+1∼ 1n.

(IHX) Let TI , TH and TX be three Ck-graphs for 1n which differ only in a small ball as

depicted in Figure 6. Then (1n)TI

Ck+1∼ (1n)TH · (1n)TX .
(STU) Let GS, GT and GU be three Ck-graphs for 1n which differ only in a small ball as

depicted in Figure 6. Then (1n)GS · (1n)GT

Ck+1∼ (1n)GU .

In the rest of the paper, we will simply refer to Lemma 3·3 as the AS, IHX and STU
relations. In some cases, it will be convenient to also use the following terminology. If e
denotes the edge of a graph clasper GS (resp. if f and f ′ denote the leaves of GT or GU ) as
in Figure 6, we will sometimes say that we apply the STU relation at the edge e (resp. at the
leaves f and f ′) when applying Lemma 3·3(STU).

Note that the STU relation stated above differs by a sign from the STU relation for Jacobi
diagrams.

We conclude this subsection with an additional lemma which will be used later. We first
need some extra notation.

Let k > 2 and l ∈ {1, . . . , k} be integers. Denote by Bk(l) the set of all bijections α :
{1, . . . , k − 1} −→ {1, . . . , k} \ {l} such that α(1) < α(k − 1). We denote by id ∈ Bk(l) the
element which maps i to itself if 1 � i < l, and to i + 1 otherwise. For each α ∈ Bk(l), let
Tα(l) and Tα(l) denote the Ck-trees for 1k represented in Figure 7. Denote respectively by
Bα(l) and Bα(l) the k-string links obtained from 1k by surgery along Tα(l) and Tα(l).

LEMMA 3·4. Let k > 2 and l ∈ {1, . . . , k} be integers. For any α ∈ Bk(l) and any integer

l ′ (1 � l ′ � k, l ′ � l), there is a bijection β ∈ Bk(l ′) such that Bα(l) · (
Bα(l)

)−1 Ck+1∼
Bβ(l ′) · (

Bβ(l ′)
)−1

.

Proof. Observe that Tα(l) and Tα(l) are identical except in a 3-ball where they look ex-

actly like GT and GU in Figure 6. So by the STU relation we have Bα(l) · (Bα(l)
)−1 Ck+1∼ 1G ,

where G is a Ck-graph intersecting each component of 1k once. Note that G has one loop,
and that each leaf of G is connected to the loop by a single edge. So for each 1 � l ′ � k we
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can apply the STU relation at the edge of G which is attached to the leaf intersecting the l ′th
component of 1k . This gives the desired formula.

3·3. k-additivity

We now introduce the notion of k-additivity of a string link invariant.

Definition 3·2. Let k, n � 1 be integers. We say that an invariant v: SL(n) → Z is k-
additive if for every σ ∈ SL(n) and every σ ′ ∈ SLk(n), we have v(σ · σ ′) = v(σ ) + v(σ ′).

Note that a string link invariant is additive if and only if it is 1-additive. Note also that for
k > l, the l-additivity implies the k-additivity. We now show that all the invariants involved
in our classification results are k-additive for some k.

First, Milnor invariants μ(I ) of length |I | = k are (k − 1)-additive. This follows from
Milnor invariants’ additivity property [26, lemma 3·3] and the fact that Milnor invariants of
length k are Ck-equivalence invariants [14, theorem 7·2].

Now, observe that the plat closure of the product of two 2-string links σ · σ ′ is just the
connected sum of their plat closures. So it follows, by the multiplicativity of the Conway
and HOMFLYPT polynomial (see Subsection 2·1·3), that f2 is 2-additive, f3 is 3-additive,
and f 1

4 and f 2
4 are both 4-additive.

Alternatively, the above can be shown using the following observation, which was pointed
out to us by the referee.

Claim 3·5. Let v be a finite type invariant of n-string links of degree � k. If v(1n) = 0,
then v is k-additive.

Proof of Claim 3·5 Let σ ∈ SL(n) and σ ′ ∈ SLk(n). There exists a disjoint union G =
G1 � . . . � Gr (r � 1) of C1-trees for 1n such that σ = (1n)G , and a disjoint union H =
H1 � . . .� Hs (s � 1) of Ck-trees for 1n such that σ ′ = (1n)H . One can check that in ZSL(n)

we have
r−1∑
i=0

s−1∑
j=0

((σi)Gi+1 ·(σ ′
j )Hj+1 −(σi)Gi+1 ·(σ ′

j )−(σi) ·(σ ′
j )Hj+1 +(σi) ·(σ ′

j )) = σ ·σ ′ −σ −σ ′ +1n,

where σi = (1n)G1�...�Gi
(i � 0), σ ′

j = (1n)H1�...�Hj
( j � 0), and σ0 = σ ′

0 = 1n . Now, since
v is a finite type invariant of degree � k, by [14, theorem 6·7 (1)] we have

v((σi)Gi+1 · (σ ′
j )Hj+1 − (σi)Gi+1 · (σ ′

j ) − (σi) · (σ ′
j )Hj+1 + (σi) · (σ ′

j )) = 0

for any pair i, j . This implies the desired statement.

It follows that V3 is 3-additive and that each invariant V i
4 (i = 1, . . . , 7), W i

4 (i = 1, 2, 3)
and f j

4 ( j = 3, 4, 5) are 4-additive invariants.

3·4. The clasper index

Let G be a simple Ck-graph for an n-string link σ . We call a leaf of G an i-leaf if it
intersects the i th component of σ . The index of G is the collection of all integers i such that
G contains an i-leaf, counted with multiplicities. For example, a simple C3-tree of index
{2, 3(2), 5} for σ intersects component 3 twice and components 2 and 5 once (and is disjoint
from all other components of σ ).

We will need the following lemma.



450 J.B. MEILHAN AND A. YASUHARA

Fig. 8.

LEMMA 3·6. For k � 3, let T be a simple Ck-tree of index {i, j (k)} for an n-string link
σ , 1 � i, j � n. Then σT is Ck+1-equivalent to a string link σ ′ which is obtained from σ by
surgery along Ck-trees with index {i (2), j (k−1)}.

Proof. For simplicity we prove the lemma for σ = 1n . For an arbitrary σ , the proof is
strictly similar (using the fact that there exists a tree clasper C such that σ = (1n)C ). Pick a
node of T which is connected to two j-leaves f and f ′. Travelling along the j th component
of 1n from f to f ′, we meet in order m j-leaves f1, . . . , fm . The proof is by induction on
the number m of leaves separating f and f ′.

If m = 0, then using Calculus of Claspers we may assume that there exists a 3-ball
which intersects T as on the left-hand side of Figure 8. By the IHX and STU relations, we
have 1T

Ck+1∼ 1G , where G is a simple Ck-graph with one loop and with index {i, j (k−1)} as
illustrated in Figure 8. We now prove that any simple Ck-graph C for 1n with one loop and
with index {i, j (k−1)} satisfies

(1n)C
Ck+1∼ (1n)F , (3·1)

where F is a disjoint union of simple Ck-trees for 1n with index {i (2), j (k−1)}. In order to
prove (3·1), observe that the unique i-leaf l of C is connected to the loop γ of C by a path P
of edges and nodes. We proceed by induction on the number n of nodes in P . For n = 0, ap-
plying the STU relation at the edge connecting l to γ proves the claim. For an arbitrary n �
1, applying the IHX relation at the edge of P which is incident to γ gives 1C

Ck+1∼ 1C ′ · 1C ′′ ,
where C ′ and C ′′ are two simple Ck-graphs with a unique i-leaf connected to a loop by a
path with (n − 1) nodes. Equation (3·1) then follows from the induction hypothesis.

Now suppose that f and f ′ are separated by m j-leaves f1, . . . , fm (m � 1). We can
apply the STU relation at the leaves fm and f ′ to obtain that 1T

Ck+1∼ 1T ′ · 1G , where T ′ is the
Ck-tree obtained by sliding fm over f ′ (so that the j-leaves f and f ′ of T ′ are separated by
m − 1 leaves)3, and where G is a simple Ck-graph with one loop and with index {i, j (k−1)}.
The result thus follows from (3·1) and the induction hypothesis.

4. Proofs of the main results

In this section we give the proofs of Theorems 2·2, 2·4 and 2·5. The plan of proof is
always the same and is as follows. That (1) ⇒ (2) ⇒ (4) is clear, so the core of the proof
consists in showing that (4) ⇒ (1). This is done by giving an explicit representative for the
Ck-equivalence class (k = 3, 4, 5) of an arbitrary n-string link, in terms of the invariants
listed in (4). That (3) ⇔ (2) follows from the fact that the group SL(n)/Ck is torsion-free
for k = 3, 4, 5, which comes as a consequence of the fact that no torsion element appears in
our representatives.

Before proceeding to the proofs, we summarize in Figure 9, for the reader’s convenience,
the various knots that will be used throughout the rest of this section. (We implicitly define

3 Abusing notation, we still call f and f ′ the corresponding j-leaves of T ′.
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Fig. 9. The knots T , H , X , A, B and C .

Fig. 10. The C1-tree li j and the C2-trees ti , wi j and bi jk .

the knots in Figure 9 as the results of surgery along the represented tree claspers for the
unknot U .) We will sometimes identify these knots with their images by the monoid iso-
morphism L(1) 	 SL(1). Also, for each knot K in Figure 9 and for any 1 � i � n, we will
denote by Ki the n-string link obtained from 1n by connected sum of a copy of K on the i th
component.

4·1. Proof of Theorem 2·2
Let σ ∈ SL(n). By Murakami–Nakanishi’s characterization of C2-equivalence [29], we

have that σ is C2-equivalent to

σ(1) :=
∏

1�i< j�n

Lμσ (i j)
i j , (4·1)

where Li j ∈ SL(n) is obtained by surgery along the C1-tree li j represented in Figure 10.4

Here, the product is taken using the lexicographic order. (We shall make implicitely use of
this convention in the rest of this paper.) So σ is obtained from σ(1) by surgery along Ck-trees
(k � 2). By Calculus of Claspers, this implies that σ

C3∼ σ(1) · σ(2), where

σ(2) :=
∏

1�i�n

T αi
i ·

∏
1�i< j�n

W
βi j

i j ·
∏

1�i< j<k�n

B
γi jk

i jk , (4·2)

for some integers αi , βi j and γi jk , where Ti , Wi j and Bi jk are n-string links obtained from
1n by surgery along the C2-trees ti , wi j and bi jk represented in Figure 10 respectively. Note
that the closure of Ti , Wi j and Bi jk are the trefoil, Whitehead link and Borromean rings
respectively. Note also that Wi j = W ji (see for example [25, figure 6]). For γ ∈ SL(n),
set (a2)i(γ ) = a2(γi) (1 � i � n) and ( f2)i j (γ ) = f2(γi � γ j ) (1 � i, j � n). We
have (a2)i(Tj ) = δi, j , ( f2)i j (Tk) = δi,k + δ j,k , ( f2)i j (Wkl) = δ(i, j),(k,l) and μBabc(i jk) =
δ(i, j,k),(a,b,c), where δ denotes the Kronecker delta. Using the fact that a2, f2 and μ(i jk) are
all 2-additive, it follows that in (4·2) we have

αi = (a2)i(σ(2)) = (a2)i(σ ),
βi j = ( f2)i j (σ(2)) − (a2) j (σ(2)) − (a2)i(σ(2)) = ( f2)i j (σ ) − (a2) j (σ ) − (a2)i(σ ),

and γi jk = μσ(2)
(i jk) = μσ (i jk) − μσ(1)

(i jk).

This concludes the proof.

4 Recall from Convention 3·1 that this also implicitely defines the n-string link L−1
i j obtained by surgery

along the C1-tree l−1
i j that differs from li j by a positive half twist on its edge.
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Fig. 11. The C3-trees hi , hi j , xi j , hi jk , xi jk and hi jkl .

4·2. Proof of Theorem 2·4
Let σ ∈ SL(n). From the proof of Theorem 2·2, we have that σ

C3∼ σ(1) · σ(2) where σ(1)

and σ(2) are given by (4·1) and (4·2) respectively, and the exponents αi , βi j and γi jk in (4·2)
are uniquely determined by the invariants a2, f2 and μ(i jk) of σ and σ(1).

It follows, by Calculus of Claspers, that σ
C4∼ σ(1) · σ(2) · σ(3) with

σ(3) := (1n)G1 · (1n)G2 · . . . · (1n)G N ,

where, for each k, Gk is a simple C3-tree for 1n . Set G = �k Gk . By Lemma 3·6,
we may assume that each Gk in G has index {i (4)}, {i (2), j (2)}, {i, j, k(2)} or {i, j, k, l},
for some indices i, j, k, l ∈ {1, . . . , n}. Let us consider each of these four cases successively.

Index {i (4)}: let Fi ⊂ G denote the union of C3-trees with index {i (4)}, for each i . By
Calculus of Claspers we may assume that Fi is contained in a tubular neighbourhood of the
i th strand of 1n . Let Hi denote the n-string link obtained from 1n by surgery along the C3-tree
hi represented in Figure 11. The knot obtained by closing the i th strand of Hi is the knot H of
Figure 9. By [17] we know that h := P (3)

0 (H) is nonzero. It thus follows from Theorem 1·1,
and the fact that P (3)

0 is the only degree 3 knot invariant, that (1n)Fi

C4∼ (Hi)
P (3)

0 ((σ(3))i )/h.
Index {i (2), j (2)}: Fix i < j ∈ {1, . . . , n}, and let Fi j ⊂ G denote the union of C3-trees

with index {i (2), j (2)}. By the AS and IHX relations we may assume that both ends of each
C3-tree in Fi j are j-leaves. Hence we have

(1n)Fi j

C4∼ H
ai j

i j · X
bi j

i j (4·3)

for some integers ai j and bi j , where Hi j and Xi j denote the n-string links obtained from 1n

by surgery along the C3-trees hi j and xi j shown in Figure 11 respectively.
A direct computation shows that μHi j (i i j j) = μXi j (i i j j) = 2, and clearly we have

μ(1n)G p
(i i j j) = 0 for any G p ⊂ G with index � {i (2), j (2)}. Now, for γ ∈ SL(n) and

1 � k < l � n, set ( f3)k,l(γ ) := f3(γk � γl) = P (3)

0 (γk � γl). By [17], we have

( f3)k,l(Hi j ) = δ(i, j),(k,l) · h and ( f3)k,l(Xi j ) = 0.

Also, we have ( f3)k,l(Hi ) = (δi,k + δi,l) · h, and ( f3)k,l((1n)G p) = 0 for any G p ⊂ G with
index other than {k(4)}, {l(4)} or {k(2), l(2)}. It follows that the integers ai j and bi j in (4·3) are
uniquely determined by the invariants P (3)

0 , f3 and μ(i i j j) of σ(3).

Index {i, j, k(2)}: Fix i, j, k ∈ {1, . . . , n} with i < j , and let Fi jk ⊂ G denote the union of
C3-trees with index {i, j, k(2)}. By the AS and IHX relation we may assume that

(1n)Fi jk

C4∼ H
αi jk

i jk · X
βi jk

i jk

for some integers αi jk and βi jk , where Hi jk and Xi jk denote the n-string links obtained
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Table 1.

σ cli jk
3 (σ )/C4 (V3)i jk(σ )/h

Ha H δa,i · H δa, j · H δa,k δa,i + δa, j + δa,k

Hab (a < b) H δ(a,b),(i, j) · H δ(a,b),( j,k) · Xδ(a,b),(i,k) δ(a,b),(i, j) + δ(a,b),( j,k)

Xab (a < b) H δ(a,b),(i,k) · Xδ(a,b),(i, j) · Xδ(a,b),( j,k) δ(a,b),(i,k)

Habc (a < b < c) Xδ(a,b,c),(i, j,k) 0

Xabc (a < b) H δ(a,b,c),(i, j,k) δ(a,b,c),(i, j,k)

respectively from 1n by surgery along the C3-trees hi jk and xi jk represented in Figure 11.
Note that Hi jk and Xi jk correspond to the string links Bid(k) and Bid(k) defined for Lemma
3·4 respectively (using Lemma 3·2 (2) for the second one). Thus by Lemma 3·4, the union
F(3) := �i, j,k Fi jk of all C3-trees in G intersecting 3 strands of 1n satisfies

(1n)F(3)

C4∼
∏

1�i< j<k�n

(Hjki)
ai jk · (Hik j )

bi jk · (Hi jk)
ci jk · (Xi jk)

di jk (4·4)

for some integers ai jk , bi jk , ci jk and di jk .
We have μHi jk (i jkk) = μXi jk (i jkk) = 1 for all 1 � i, j, k � n with i < j , and

μ(1n)G p
(i jkk) = 0 for any G p ⊂ G with index� {i, j, k(2)}.

For L ∈ SL(n) and 1 � i < j < k � n, set cli jk
3 (L) := cl3(Li � L j � Lk) and

(V3)i jk(L) := P (0)

3 (cli jk
3 (L)). We have

cli jk
3 (Xi jk)

C5∼ H and cli jk
3 (Hik j )

C5∼ cli jk
3 (Hjki)

C5∼ cli jk
3 (Hi jk)

C5∼ X ,

where H and X are the two knots represented in Figure 9. Note that by the IHX relation
we have X

C4∼ U . More generally, we compute the closures cli jk
3 and invariants (V3)i jk of the

relevant n-string links in Table 1.
It follows that all exponents in (4·4) are uniquely determined by the invariants P (3)

0 , f3,
V3 and μ(i jkk) (1 � i, j, k � n ; i < j) of σ(3).

Index {i, j, k, l}: by the IHX and AS relations, we may assume that the k-leaf and l-leaf of
any C3-tree C ⊂ G with index {i, j, k, l} (i < j < k < l) are its two ends. More precisely,
the union F(4) ⊂ G of all C3-trees intersecting 4 distinct components of 1n satisfies

(1n)F(4)

C4∼
∏

1�i< j<k<l�n

(Hi jkl)
μσ(3)

(i jkl) · (Hjikl)
μσ(3)

( j ikl)
,

where Hi jkl denotes the n-string link obtained from 1n by surgery along the C3-trees hi jkl

represented in Figure 11. This follows from the fact that μHi jkl (i
′ j ′k ′l ′) = δ(i, j,k,l),(i ′, j ′,k ′,l ′)

[27, 16]. So we have shown that σ(3) is C4-equivalent to∏
i

(Hi)
ai ·

∏
i< j

(Hi j )
ai j · (Xi j )

bi j ·
∏

i< j
k

(Hi jk)
ai jk ·

∏
i< j<k

(Xi jk)
bi jk ·

∏
i, j

k<l

(Hi jkl)
ai jkl , (4·5)

where the exponents are integers determined uniquely by the invariants P (3)

0 , f3 and V3, and
Milnor invariants μ(i i j j) (1 � i < j � n), μ(i jkk) (1 � i, j, k � n ; i < j) and μ(i jkl)
(1 � i, j < k < l � n) of σ(3). The result follows from the fact that all the above-listed
invariants are 3-additive.
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Fig. 12. The C4-trees kα , s1
α and s2

α ; α ∈ S3.

Remark 4·1. From the proof of Theorem 2·4 (for the case of index {i, j, k(2)} trees), it
appears that the statement of Theorem 2·4 can be modified to replace the invariants V3 of σ

with only the invariants (V3)i jk with 1 � i < j < k � n, as these are the only values used
to determine the exponents in (4·4).

4·3. Proof of Theorem 2·5
Before proving Theorem 2·5 we investigate individually the case of n-string links for

n = 1, 2, 3 and 4. We start by reviewing briefly the case n = 1, that is, the knot case.

4·3·1. The knot case

It is well known that there exist essentially two linearly independent finite type knots
invariants of degree 4, namely a4 and P (4)

0 .
For an element α of the symmetric group S3, denote by Kα the knot obtained from the

unknot U by surgery along the C4-tree kα represented in Figure 12. Note that Kid , K(13) and
K(12) are the three knots A, B and C illustrated in Figure 9.5 By the AS and IHX relations,
the abelian group SL4(1)/C5 is generated by these six elements Kα, α ∈ S3. Further, by
using the IHX and STU relations we observe that

K(12)

C5∼ K(23)

C5∼ U and K(13)

C5∼ K(123)

C5∼ K(132). (4·6)

(In particular, we have that the knot C of Figure 9 satisfies C
C5∼ U .) This shows that

SL4(1)/C5 is generated by the two knots A = Kid and B = K(13) of Figure 9. By using [31]
and [17], we have that

a4(A) = 0 and a4(B) = ±2,

P (4)

0 (A) = ±4!24 and P (4)

0 (B) = 0.

Set a := P (4)

0 (A) and b := a4(B). The C5-equivalence class of a knot K is thus determined
by its degree � 4 invariants as follows

K
C5∼ K(1) · K(2) · K(3),

where K(1) = T a2(K ), K(2) = H (P (3)
0 (K )−P (3)

0 (K(1)))/h and K(3) = A(P (4)
0 (K )−P (4)

0 (K(1)·K(2)))/a ·
B(a4(K )−a4(K(1)·K(2)))/b, where T and H are given in Figure 9.

4·3·2. The 2-component case

We aim to prove the following particular case of Theorem 2·5.

LEMMA 4·2. Let σ , σ ′ ∈ SL4(2). Then σ and σ ′ are C5-equivalent if and only if they
share all knots invariants of degree 4 and the five invariants f i

4 (i = 1, . . . , 5).

Note that there is no nontrivial Milnor invariant of length 5 for 2-string links [28].

5 Here, and in the rest of the paper, we denote by id the identity element of the symmetric group.
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Fig. 13. The C4-graphs gi ; i = 0, 1, 2, 3.

Proof of Lemma 4·2 Let σ ∈ SL4(2). By Calculus of claspers and Subsection 4·3·1,

σ
C5∼

2∏
i=1

(
(Ai )

P (4)
0 (σi )/a · (Bi)

a4(σi )/b
)

· (12)F

where F is a disjoint union of simple C4-trees for 12 with at least one 1-leaf and one 2-leaf,
and where Ai (resp. Bi ) is the n-string link obtained from 1n by connected sum of a copy
of the knot A (resp. B) of Figure 9 on the i th component. Note that by Lemma 3·6, we
may assume that each C4-tree in F has index {1(2), 2(3)} or {1(3), 22)}. It follows, by the IHX
relation, that the abelian group SL4(2)/C5 is generated by Ai , Bi (i = 1, 2) and the 2-string
links σ 1

α and σ 2
α obtained from 12 by surgery along the C4-trees s1

α and s2
α represented in

Figure 12 (α ∈ S3).
We can use the AS and STU relations to prove the following relations (i = 1, 2):

σ i
(12)

C5∼ σ i
id · (12)g0, σ i

(23)

C5∼ σ i
id · (12)g1,

σ i
(123)

C5∼ σ i
(23) · (12)g2, σ i

(132)

C5∼ σ i
(12) · (12)g2,

σ i
(13)

C5∼ σ i
(123) · (12)g3,

where gk (k = 0, 1, 2, 3) is the C4-graph represented in Figure 13. By applying the STU
relation at an edge of gk that connects its loop to a 2-leaf, we can express (12)gk as a product
of s1

α’s. So the relations above imply that for any α ∈ S3 \ {id}, the string link s2
α is gen-

erated in SL4(2)/C5 by s2
id and the s1

α’s. Further, one can easily check using the IHX re-
lation that (12)g0

C5∼ (12)g1 . This implies that σ 1
(12)

C5∼ σ 1
(23), and thus (by the above relations)

that σ 1
(123)

C5∼ σ 1
(132).

So SL4(2)/C5 is generated by the five elements σ 1
id , σ 1

(12), σ 1
(123), σ 1

(13) and σ 2
id .

In Subsection 2·3 we introduced three different ways of closing a 2-string link σ into
a knot, namely by taking the plat closure σ and by taking the closure cl0 (resp. cl1) in
Figure 2 of the 3-string link �1σ (resp. �2σ ) obtained from σ by doubling the first (resp.
second) component. In particular if σ ∈ SL4(2)/C5, the resulting knot is an element of
SL4(1)/C5, and can be expressed in terms of the generators A and B given in Subsection
4·3·1. We collect the results in Table 2. This is straightforward for the plat closure case, and
uses the fact that the knot C given in Figure 9 satisfies C

C5∼ U . (This fact is also used for
Table 4.) For the two latter cases, the computations make use of Calculus of Claspers, and in
particular they make use of Lemma 3·2(3). For example, let us explain here the computation
for cl0(�1σ

1
id). Observe that σ 1

id is just a copy of the C4-tree s represented on the left-hand
side of Figure 14. Starting with s, doubling the first component of 12 yields a C4-tree s ′ for 13

as illustrated in Figure 14. We apply Lemma 3·2(3) repeatedly, to decompose s ′ into simple
C4-trees. This gives (13)s ′

C5∼ ∏
1�i�4(13)si , where si is a simple C4-tree for 13 as illustrated

in Figure 14, i = 1, 2, 3, 4. We need the following.
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Table 2.

σ σ 1
id σ 1

(12)
σ 1
(123)

σ 1
(13)

σ 2
id

σ/C5 A U B B A

cl0(�1σ)/C5 A3 · B−1 B−1 B3 A−1 · B3 A4 · B2

cl1(�2σ)/C5 A4 · B2 A · B2 A · B6 B6 A3 · B−1

Fig. 14. Doubling the first component of 12 and splitting the leaves.

Claim 4·3. Let σ ∈ SL(3), and σ ′ ∈ SLk(3) for an integer k � 1. Then for each i =
0, . . . , 4, the closure cli of σ · σ ′ satisfies cli (σ · σ ′)

Ck+1∼ (cliσ)�(cliσ
′).

Proof of Claim 4·3. By [14, theorem 3·17], we have σ ′ = (13)G , where G is a dis-
joint union of simple Ck-trees for 13. Let i ∈ {0, . . . , 4}. Using Calculus of Claspers,
we have cli (σ · σ ′) = cli (σ · (13)G)

Ck+1∼ cli (σ · (13)G ′), where G ′ is a union of Ck-trees
for 13 which is contained in a tubular neighbourhood of the first strand. Clearly, we have
cli(σ · (13)G ′) = (cliσ)�(cli(13)G ′). On the other hand, it can be easily checked that
cliσ

′ = cli (13)G
Ck+1∼ cli (13)G ′ . This completes the proof.

It follows that

cl0

(
4∏

i=1

(13)si

)
C5∼

4∏
i=1

cl0

(
(13)si

)
.

By an isotopy, we see that cl0((13)s1) = Uk ′ , where k ′ is a C4-tree for U represented in
Figure 15. As shown there, we have Uk ′

C5∼ (Us(13)
)−1 = B−1 using Lemma 3·2(2). For i =

2, 3, 4, a simple isotopy shows that cl0

(
(13)si

) = A.

Recall that a = P (4)

0 (A) and b = a4(B). Table 3 follows immediately from the defini-
tions of the invariants f i

4 (i = 1, . . . , 5) and the computations given in Table 2. The 5 × 5
matrix given by the entries of Table 3 having rank 5, we obtain that the five invariants f i

4

(i = 1, . . . , 5) (together with the knot invariants a4 and P (3)

0 ) do classify the abelian group
SL4(2)/C5, thus completing the proof of the lemma.

Remark 4·4. The number of linearly independent finite type 2-string link invariants of
degree 4 has been computed by Bar–Natan [3]. In particular, there are 10 linearly independ-
ent such invariants which do not have a factor coming from a single knot component, see

Fig. 15. The proof that cl0
(
(13)s1

) C5∼ B−1.
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Table 3.

σ σ 1
id σ 1

(12)
σ 1
(123)

σ 1
(13)

σ 2
id

f 1
4 (σ )/b 0 0 1 1 0

f 2
4 (σ )/a 1 0 0 0 1

f 3
4 (σ )/b −1 −1 3 3 2

f 4
4 (σ )/a 3 0 0 −1 4

f 5
4 (σ )/a 4 1 1 0 3

Fig. 16. The C4-trees uα , u′
α , u′′

α , vα , v′
α and v′′

α .

[3, §2·3·4]. Half of them come from products of lower degree invariants (namely μ(12)4,
μ(12)2 f2, μ(12) f3, μ(12)μ(1122) and ( f2)

2) and the remainning five are the invariants f i
4

(i = 1, . . . , 5).

4·3·3. The 3-component case

In this subsection we prove the following lemma.

LEMMA 4·5. Let σ , σ ′ ∈ SL4(3). Then σ and σ ′ are C5-equivalent if and only if they
share all knots invariants of degree 4, all invariants f i

4 (1 � i � 5), all invariants V j
4

(1 � j � 7), and all Milnor invariants μ(i i i jk) and μ(i j jkk) (1 � i, j, k � n; j < k).

Proof of Lemma 4·5. Let σ ∈ SL4(3). By Calculus of Claspers and Subsections 4·3·1 and
4·3·2 above,

σ
C5∼ σ̃ · (13)E · (13)F , (4·7)

where σ̃ is determined uniquely by the invariants a4, P (4)

0 and f i
4 (1 � i � 5) of σ , and

where E (resp. F) is a disjoint union of simple C4-trees for 13 with index {i, j (2), k(2)} (resp.
{i, j, k(3)}) (1 � i, j, k � n).

For α ∈ S3, denote by Uα, U ′
α, U ′′

α Vα, V ′
α and V ′′

α the 3-string links obtained from 13 by
surgery along the C4-trees uα, u′

α, u′′
α, vα, v′

α and v′′
α represented in Figure 16 respectively.

Set U := {Uα, U ′
α, U ′′

α | α ∈ S3} and V := {Vα, V ′
α, V ′′

α | α ∈ S3}. By Calculus of Claspers
and the AS and IHX relations, we have that the C5-equivalence class of (13)E , resp. of (13)F ,
is generated by U, resp. by V. So (4·7) can be rewritten as

σ
C5∼ σ̃ ·

∏
α∈S3

(Uα)
mα · (U ′

α)
m ′

α · (U ′′
α )m ′′

α · (Vα)
nα · (V ′

α)
n′

α · (V ′′
α )n′′

α (4·8)

for some integers mα, m ′
α, m ′′

α, nα , n′
α and n′′

α.
We first consider the set V ⊂ SL4(3). We have the following.
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Fig. 17. The C4-graphs ci , 1 � i � 5.

Claim 4·6. Any element L of V satisfies L
C5∼ L (1) · L (2), where L (1) is obtained from 13

by surgery along C4-trees of index {i, j (2), k(2)} and where L (2) is generated by the elements

I1 := Vid, I2 := V ′
id, I3 := V ′′

id .

Proof of Claim 4·6. Let us consider the case of the 6 elements Vα (α ∈ S3). For α = (12),
the STU relation gives V(12)

C5∼ I1 · (13)c4 , where c4 is the C4-graph represented in Figure 17.
The claim thus follows, by using the STU relation to express (13)c4 as a product (13)T ·(13)T ′

for two C4-trees T and T ′ with index {1(2), 2, 3(2)}. The same argument can be applied for
any α ∈ S3, as Vα is related to Vid by successive applications of the STU relation. By
symmetry, the case of elements V ′

α and V ′′
α is also strictly similar.

Now, observe that the 3-string links Il , l = 1, 2, 3, are distinguished by Milnor invariants.
More precisely, for all 1 � i, j, k � 3 with j < k, we have μIl (i i i jk) = ±δi,l . Note also
that μIl (i j jkk) = 0, and that μu(i i i jk) = 0 for any u ∈ U.

So it remains to classify the 18 elements of U ⊂ SL4(3). We will show that U is gen-
erated by the 10 elements Uid , U(12), U(123), U ′

id , U ′
(12), U ′′

id , U ′′
(12), U ′′

(123), U ′′
(23) and U ′′

(13).
The following relations among elements of U can be proved using the AS, IHX and STU
relations:

U(123) · (U(13))
−1 C5∼ U ′′

id · (U ′′
(23))

−1;
Uid · (U(23))

−1 C5∼ U ′′
(123) · (U ′′

(13))
−1;

U ′
(123) · (U ′

(13))
−1 C5∼ (U ′′

id)
−1 · U ′′

(12) · U ′′
(132) · (U ′′

(13))
−1;

U ′
id · (U ′

(23))
−1 C5∼ (U ′′

(123))
−1 · U ′′

(12) · U ′′
(132) · (U ′′

(23))
−1;

Uid · (U(12))
−1 · (U(132))

−1 · U(13)

C5∼ U ′
(123) · (U ′

(12))
−1 · (U ′

(132))
−1 · U ′

(23).

More precisely, the first relation is obtained as follows. Consider the C4-graph c0 represented
in Figure 17. By applying the STU relation to the edge incident to the 1-leaf of c0, we have
(1n)c0

C5∼ (U ′′
id)

−1 · U ′′
(23). Now, it follows from the IHX relation that (1n)c0

C5∼ (1n)c1 , where
c1 is shown in Figure 17, and on the other hand the STU relation can be used to show that
(1n)c1

C5∼ (U(123))
−1 · U(13), which implies the desired relation. The next four relations are

proved strictly similarly by using respectively the C4-graphs c2, c3, c4 and c5 of Figure 17 in
place of c1.

Also, we can use the C4-graphs d1 and d2 of Figure 18 in a similar way (that is, by applying
the STU relation in two different ways) to obtain the additional two relations.

U ′′
(12) · U ′′

(132)

C5∼ U(12) · U(132)

U ′′
(12) · (U ′′

(132))
−1 C5∼ U ′

(12) · (U ′
(132))

−1.
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Table 4.

σ U ′′
id U ′′

(12)
U ′′

(123)
U ′′

(23)
U ′′

(13)
Uid U(12) U(123) U ′

id U ′
(12)

cl1(σ )/C5 A−1 U B−1 U B−1 B B U B U

cl2(σ )/C5 B U A B U A U B U B

cl3(σ )/C5 U B B A B B−1 U A−1 A−1 U

cl4(σ )/C5 B B U B A A−1 U B−1 B−1 U

Fig. 18.

Finally let us show that

U ′′
(132)

C5∼ (U(12))
−1 · U ′

(12). (4·9)

To prove (4·9), we need the following lemma, which can be easily derived from the proof of
[14, proposition 4·4].

LEMMA 4·7. Let GS be a Ck-graph for 1n, and let GT and GU be the unions of two tree
claspers which differ from GS only in a small ball as depicted in Figure 6, where the two
leaves of GT , resp. GU , are from different components. Then (1n)GS

Ck+1∼ ((1n)GT )
−1 · (1n)GU ,

where ((1n)GT )
−1 denotes the inverse of (1n)GT in the abelian group SLk(n)/Ck+1.

Observe that, by the AS relation and Calculus of Claspers, we have U ′′
(132)

C5∼ 1T , where T is
the C4-tree represented in Figure 18. We have

1T
C5∼ 1F · (1F ′)−1 C5∼ 1F · (1F ′′)−1 · 1F ′′ · (1F ′)−1 C5∼ (U(12))

−1 · U ′
(12),

where F , F ′ and F ′′ are as shown in Figure 18. Here, the first and third equivalence follow
from Lemma 4·7 and isotopies, and (1F ′)−1, resp. (1F ′′)−1, denotes the inverse of 1F ′ , resp.
1F ′′ , in SL(4)/C5.

So we obtain that U is generated by the following 10 elements: U ′′
id , U ′′

(12), U ′′
(123), U ′′

(23),
U ′′

(13), Uid , U(12), U(123), U ′
id and U ′

(12). In order to show that they are linearly independent,
we make use of Milnor invariants μ(i j jkk) (1 � i, j, k � 3 ; j < k) and the invariants
V i

4 (i = 1, . . . , 7) defined in Subsection 2·4. We compute the C5-equivalence classes of the
closures cl j ( j = 1, . . . , 4) of the 10 elements listed above in a similar way as for Table 2.
These computations are summarized in Table 4.

From Table 4 and the definitions of the invariants, we obtain the desired computations, as
given in Table 5. The matrix given by this table has rank 10, which shows that any element
generated by U is uniquely determined by the invariants listed in the table. It follows that
Milnor invariants μσ (i i i jk) and μσ (i j jkk) (1 � i, j, k � 3 , j < k), and the invariants V i

4

(1 � i � 7) of σ determine uniquely all the exponents in (4·8). The lemma then follows
from the 4-additivity of these invariants.
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Table 5.

σ U ′′
id U ′′

(12)
U ′′

(123)
U ′′

(23)
U ′′

(13)
Uid U(12) U(123) U ′

id U ′
(12)

μσ (12233) 0 0 0 0 0 1 0 −1 0 0

μσ (32211) 0 0 0 0 0 0 0 0 −1 0

μσ (21133) 1 0 −1 1 −1 0 0 0 0 0

V 1
4 (σ )/b 0 0 −1 0 −1 1 1 0 1 0

V 2
4 (σ )/b 1 0 0 1 0 0 0 1 0 1

V 3
4 (σ )/b 0 1 1 0 1 −1 0 0 0 0

V 4
4 (σ )/a −1 0 0 0 0 0 0 0 0 0

V 5
4 (σ )/a 0 0 1 0 0 1 0 0 0 0

V 6
4 (σ )/a 0 0 0 1 0 0 0 −1 −1 0

V 7
4 (σ )/a 0 0 0 0 1 −1 0 0 0 0

4·3·4. The 4-component case

Let σ ∈ SL4(4). We proceed as in the previous subsections to construct a representative
of the C5-equivalence class of σ .

By Calculus of Claspers and Subsections 4·3·1 to 4·3·3, we have

σ
C5∼ σ̃ · (14)P

where σ̃ is uniquely determined by the invariants of σ listed in Lemma 4·5, and where P
is a disjoint union of simple C4-trees for 14 with index {i, j, k, l(2)} (1 � i, j, k, l � 4). By
the IHX relation, we may assume that each C4-tree in P is linear and that its ends are the
two l-leaves. Recall from Subsection 3·2 that B4(k) (1 � k � 4) is the set of all bijections τ

from {1, 2, 3} to {1, 2, 3, 4} \ {k} such that τ(1) < τ(3). By Lemma 3·4, there exists integers
mα (α ∈ B4(4)) and mα,k (1 � k � 4 and α ∈ B4(k)) such that

(14)P
C5∼

∏
α∈B4(4)

(Bα(4))mα ·
4∏

k=1

∏
α∈B4(k)

(Bα(k))mα,k , (4·10)

where the string links Bα(k) and Bα(k) are defined in Figure 7.
For τ ∈ B4(k), set μτ := μ(τ(1), τ (2), τ (3), k, k). Then for any 1 � l � 4 and α ∈ B4(l),

we have (see [26, §4]):

μτ(Bα(k)) = μτ(Bα(k)) = δα,τ .

Observe that, by definition, B4(4) is just the subgroup {id, (12), (23)} of S3. One can check
that the closures K1, K2 and K3 (see Figure 3) of the six 4-string links Bα(4), Bα(4) (α ∈
B4(4)) are as given in Table 6 (1 � i, j � 3). We thus obtain the values of the invariants
μτ (τ ∈ B4(4)) and W i

4 (i = 1, 2, 3) as in Table 7. Clearly, the matrix given by the entries
of Table 7 has rank 6. This implies that all exponents in (4·10) are uniquely determined
by Milnor invariants μσ ( j ikll) (1 � i, j, k, l � 4 ; j < k) and all invariants W i

4 of σ

(i = 1, 2, 3), and thus proves the result by the 4-additivity of these invariants.
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Table 6.

σ Bid (4) B(12)(4) B(23)(4) Bid (4) B(12)(4) B(23)(4)

K1(σ )/C5 B−1 B−1 B−1 A U U

K2(σ )/C5 B−1 B−1 U U A B

K3(σ )/C5 B−1 U B−1 U B A

Table 7.

σ Bid (4) B(12)(4) B(23)(4) Bid (4) B(12)(4) B(23)(4)

μσ (12344) 1 0 0 1 0 0

μσ (21344) 0 1 0 0 1 0

μσ (13244) 0 0 1 0 0 1

W 1
4 (σ )/a 0 0 0 1 0 0

W 2
4 (σ )/a 0 0 0 0 1 0

W 3
4 (σ )/a 0 0 0 0 0 1

4·3·5. Proof of Theorem 2·5
We now prove Theorem 2·5 in the general case.
Given σ ∈ SL(n), we know from the proof of Theorem 2·5 that σ is C4-equivalent to

σ(1) · σ(2) · σ(3), where σ(1), σ(2) and σ(3) are given by (4·1), (4·2) and (4·5) respectively.

By Calculus of Claspers, σ
C5∼ σ(2) · σ(3) · σ(4), where σ(4) is obtained from 1n by surgery

along a union of C4-trees. More precisely,

σ(4)

C5∼
5∏

i=1

σ i
(4),

where for each i = 1, . . . , 5, the n-string link σ i
(4) is obtained from 1n by surgery along a

union of C4-trees that each intersect i distinct components of 1n .
By Subsections 4·3·1 to 4·3·4, we can determine explicitly σ i

(4) for 1 � i � 4 using all

invariants a4, P (4)

0 , f i
4 (1 � i � 5), V j

4 (1 � j � 7) and W k
4 (1 � k � 3) of σ , and all

Milnor invariants μσ (i i i jk), μσ (i j jkk) and μσ ( j ikll) (1 � i, j, k, l � n ; j < k). (Using
the fact that all these invariants are 4-additive.)

Now, it is easy to see that Milnor invariants μ(i jklm) (1 � i, j, k < l < m � n) do
classify n-string links of the form (1n)T for T a C4-tree intersecting 5 distinct components
of 1n . Indeed, if T has index I = {i, j, k, l, m} (1 � i, j, k < l < m � n), we may assume
by the IXH relation that the ends of T (which is linear, since it is a C4-tree) are the l-leaf
and m-leaf. Then for every multi-index I ′ = i ′ j ′k ′l ′m ′ (1 � i ′, j ′, k ′ < l ′ < m ′ � n) we
have μ1T (I ′) = ±δI,I ′ , see [16, 28]. Since these Milnor invariants are 4-additive, the proof
is completed.
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5. Finite type concordance invariants

In this section, we define the equivalence relation on string links generated by Ck-moves
and concordance, called Ck-concordance. We classify string links up to Ck-concordance for
k � 6.

5·1. Ck-concordance

Recall that two n-string links σ, σ ′ are concordant if there is an embedding

f : (�n
i=1 Ii

) × I −→ (
D2 × I

) × I

such that f ((�n
i=1 Ii ) × {0}) = σ × {0} and f ((�n

i=1 Ii ) × {1}) = σ ′ × {1}, and such that
f (∂(�n

i=1 Ii) × I ) = (∂σ ) × I . String link concordance is an equivalence relation, and is

denoted by
c∼.

In order to study finite type concordance invariants, it is natural to consider the following.

Definition 5·1. Let k, n � 1 be integers. Two n-string links σ, σ ′ are Ck-concordant if

there is a sequence σ = σ0, σ1, . . . , σm = σ ′ such that for each i � 1, either σi
Ck∼ σi+1 or

σi
c∼ σi+1. We denote the Ck-concordance relation by

Ck+c∼ .

Clearly, two Ck-concordant string links share all finite type concordance invariants of
degree less than k. It is thus natural to ask the following.

Question 1. Let σ , σ ′ ∈ SL(n). Is it true that σ
Ck+c∼ σ ′ if and only if they share all finite

type concordance invariants of degree < k ?

It is known that Milnor invariants are concordance invariants [4]. So by [14, theorem
7.1], μ(J ) is a Ck-concordance invariant for any J with |J | � k. Habegger and Masbaum
showed that all rational finite type concordance invariants of string links are given by Milnor
invariants via the Kontsevich integral [13].

5·2. The ordered index

In order to study Ck-concordance for string links, we use the notion of ordered index of a
Ck-tree.

Definition 5·2. Let t be a linear Ck-tree with ends f0, fk . Since t is a disk, we can travel
from f0 to fk along ∂t so that we meet all other leaves f1, . . . , fk−1 in this order. If fs is
an is-leaf (s = 0, . . . , k), we can consider two vectors (i0, . . . , ik) and (ik, . . . , i0) and may
assume that (i0, . . . , ik) � (ik, . . . , i0), where ‘�’ is the lexicographic order in Z

k+1. We
call (i0, . . . , ik) the ordered index of t and denote it by o-index(t).

By Calculus of Claspers and AS, IHX, STU relations, we have the following.

LEMMA 5·1. (1) Let t and t ′ be linear Ck-trees for 1n with the same ordered index. Then

there are Ck-graphs g1, . . . , gm with loops such that (1n)t ′
Ck+1∼ (1n)

ε
t · ∏

i(1n)gi for some
ε = ±1.

(2) Let t be a linear Ck-tree (k � 3) for 1n with o-index(t) = (i0, . . . , ik). If i0 = i1 or

ik−1 = ik , then there are Ck-graphs g1, . . . , gm with loops such that (1n)t
Ck+1∼ ∏

i(1n)gi .
(3) Let t be a linear Ck-tree (k � 2) for 1n with o-index(t) = (i0, . . . , ik). If

(i0, . . . , ik) = (ik, . . . , i0) and k is even, then there are Ck-graphs g1, . . . , gm with loops

such that ((1n)t)
2 Ck+1∼ ∏

i (1n)gi .
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Fig. 19. A planar C4-tree t with o-index {3, 2, 1, 2, 3}, and the clasper t̃ obtained by a 180-degree rotation
around its edge a.

Before proving this lemma, we need the following definition. A Ck-tree for 1n is planar if
it can be represented, in the usual diagram of 1n , by a tree clasper T without any crossing
among the edges of T and with all edges of T overpassing all components of 1n up to isotopy.

Proof of Lemma 5·1. Statements (1) and (2) follow from similar arguments as for Lemma
3·6. For (1), observe that t can be deformed into t ′ by crossing changes and sliding leaves.
By the STU relation, if c′ is obtained from a Ck-tree c for 1n by a sliding a leaf, we have
(1n)c

Ck+1∼ (1n)c′ · (1n)g for some Ck-graph g with a loop. For (2), use the IHX and STU
relation as in the proof of Lemma 3·6.

For simplicity, we show (3) in the case where t is planar and both ends of t are
n-leaves. See Figure 19 for an example. By assumption the o-index(t) has the form
(i0, . . . , i(k/2)−1, ik/2, i(k/2)−1, . . . , i0). We may assume that the axis a of the edge incident
to the ik/2-leaf of t is transverse to each component of 1n up to isotopy. Let t̃ be obtained by
a 180-degree rotation of t around a fixing the leaves. See Figure 19. By sliding the leaves
of t̃ repeatedly, we can deform it into a planar Ck-tree t which only differs from t by a half-
twist on each edge incident to a leaf. By the observation above, the STU relation gives that
(1n)t̃

Ck+1∼ (1n)t
∏

i(1n)gi for some union g1, . . . , gm of Ck-graphs with loops. On the other
hand, by Lemma 3·2(2) we have (1n)t · (1n)t

Ck+1∼ 1n . The result follows.

It is known that surgery along graphs with loops implies concordance.

LEMMA 5·2. ([6, 8]) Let g be a Ck-graph with a loop for 1n. Then (1n)g
c∼ 1n.

For each o-index (i0, . . . , ik), we choose one string link T (i0, . . . , ik) obtained from 1n by
surgery along a linear Ck-tree with o-index (i0, . . . , ik), and fix it. We note that by Lem-
mas 5·1 (1) and 5·2, there are essentially two choices in SL(n)/(Ck+1 + c) for each o-index,
namely T (i0, . . . , ik) and T (i0, . . . , ik)

−1.
The next lemma can be obtained using the calculation method in [37, remark 5·3].

LEMMA 5·3. Let σ be an n-string link obtained from 1n by surgery along a linear Ck-tree
with o-index I = (i0, . . . , ik). If {i0, ik} � {i1, . . . , ik−1} = �, then we have:

(1) If (i0, . . . , ik)� (ik, . . . , i0), then for any J = i0 j1 . . . jk−1ik , μσ (J ) = ±δI,J ;
(2) if (i0, . . . , ik) = (ik, . . . , i0) and k is an odd number 2m + 1, i.e., (i0, . . . , ik) =

(i0, . . . , im, im, . . . , i0), then for any J = i0 j1 . . . jk−1i0, μσ (J ) = ±2δI,J ;
(3) if (i0, . . . , ik) = (ik, . . . , i0) and k is an even number 2m, that is if (i0, . . . , ik) =

(i0, . . . , im−1, im, im−1, . . . , i0), then the Milnor invariants of σ with length � k vanish, and
for any J = i0 j1 . . . j2mi0,

μσ (J ) =
{

±1 if ( j1, . . . , j2m) = (i1, . . . , im−1, im, im, im−1, . . . , i1)

0 otherwise

Remark 5.4. It follows in particular from (2) that Milnor invariants μ(I ) (mod 2) with
I = (i0, . . . , im, im, . . . , i0) are Ck-equivalence invariants (k = 2m + 1).
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5·3. Ck-concordance for knots

In this subsection we give a classification of knots up to Ck-concordance.
Recall that T (i i i) is a fixed n-string link obtained from the trivial 1-string link 1 by

surgery along a linear C2-tree with o-index (i, i, i). Note that this tree can be chosen to be
the C2-tree ti represented in Figure 10, in which case the closure of the i th component of
T (i i i) is the right-handed trefoil. For n = 1, we simply denote T (111) by T .

LEMMA 5·5. Let σ be a 1-string link. For any integer k � 3, there is a union G of disjoint
graph claspers with loops for 1n such that σ

Ck∼ T ε · (1n)G for some ε ∈ {0, 1}.
Proof. We proceed by induction on k. For k = 3, by Lemma 5·1 (1) (or Theorem 2·2),

we have σ
C3∼ T x for some integer x . By Lemma 5·1 (3), there is a union g of C2-graph with

loop such that T 2 C3∼ (1)g. (Actually, it is easy to check using the AS and STU relations that
in this case g is connected.) Hence we have

σ
C3∼

{
T · ((1)g)

(x+x/|x |)/2 if x is odd,

((1)g)
x/2 if x is even.

Now suppose that there is a union g1, . . . , gm of disjoint graph claspers with loops for
1n such that σ

Ck∼ T ε · ∏
i (1n)gi . Hence σ is obtained from T ε · ∏

i (1n)gi by surgery along
linear Ck-trees. Since any linear Ck-tree for a 1-string link has o-index (1, . . . , 1), by
Lemma 5·1 (2), we have that there are Ck-graphs h1, . . . , hl with loops for 1n such that
σ

Ck+1∼ T ε · ∏
i (1n)gi · ∏

j (1n)h j .

The next result is well–known to experts, and was first essentially proved by Ng [30]. We
include a short, direct proof for completeness. Another proof can be found in [33].

THEOREM 5·6 (Ng). For an integer k � 3, two knots K and K ′ are Ck-concordant if and
only if Arf(K ) = Arf(K ′).

Recall that any knot is C2-equivalent to the trivial one [29].

Proof. Let σ and σ ′ be 1-string links whose closures are K and K ′ respectively. By
Lemma 5·5, there are graph claspers g1, . . . , gm and g′

1, . . . , g′
l with loops for 1n such that

σ
Ck∼ T ε · ∏

i (1n)gi and σ ′ Ck∼ T ε′ · ∏
j (1n)g′

j
for some ε, ε′ ∈ {0, 1}. So by Lemma 5·2,

σ
Ck+c∼ T ε and σ ′ Ck+c∼ T ε′

. Since the Arf invariant is a Ck-concordance invariant [32], and
since Arf(T ) = 1, we have Arf(K ) = ε and Arf(K ′) = ε′. This completes the proof.

5·4. Ck-concordance for string links

In this section, we give classifications for n-string links up to Ck-concordance (k =
3, 4, 5, 6). For each k > 0, the set of Ck-concordance classes forms a group. In order to
give these classifications, we give a representative of the Ck-concordance class of an arbit-
rary n-string link in terms of the generators T (i i i) (1 � i � n) and T (I )’s, where I contains
at least 2 distinct integers. More precisely, we will show that any string link is Ck-concordant
to

∏
i T (i i i)a(i) · ∏

I T (I )b(I ) where a(i) and b(I ) are determined by the Arf invariant and
(mod 2) Milnor invariants respectively. For k = 3, 4, 5, we already have generators for the
Ck-equivalence classes, by the proofs of Theorems 2·2, 2·4 and 2·5, and we can choose the
desired generators among them. We will introduce similar generators for k = 6.

We will give the classification results successively, as consequences of each step of our
construction of a representative of the (C6 + c)-equivalence class of a string link. In partic-
ular, the various proofs are contained in this construction.
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Before starting the construction, we fix the convention below.

Convention 5·7. (1) By Lemma 5·3 (1) and (2), we see that for each o-index I =
(i0, . . . , ik) with {i0, ik} � {i1, . . . , ik−1} = �, we have μT (I )(I ) = ±1 or ±2. As mentioned
before, we have essentially two choices for T (I ) and T (I )−1 up to Ck+1-concordance. In
this section, we chose T (I ) so that μT (I )(I ) is positive whenever I satisfies Lemma 5·3 (1)
or (2). (Note that for such a multi-index I we have μT (I )−1(I ) = −μT (I )(I ).) For example,
T (i j) is the n-string link Li j obtained from 1n by surgery along the C1-tree li j of Figure 10
(1 � i < j � n).

(2) When denoting o-indices, we will let distinct letters denote distinct integers unless
otherwise specified. For example the set {(i jk)|1 � i, j, k � n} of o-indices does not
contain (i i i) (1 � i � n).

Let σ be an n-string link. By [29], we have that σ is C2-equivalent to a string link

σ(1) =
∏

1�i< j�n

T (i j)μ(i j).

So σ is obtained from σ(1) by surgery along linear C2-trees. So, by Lemmas 5·1 and 5·5,
there is a disjoint union G1 of C2-graphs with loops such that

σ
C3∼ σ(1) · σ(2) · (1n)G1, (5·1)

where

σ(2) =
∏

1�i�n

T (i i i)ε(i i i) ·
∏

1�i< j�n

T ( j i j)ε( j i j) ·
∏

1�i< j<k�n

T (i jk)x(i jk)

for some ε(i i i), ε( j i j) ∈ {0, 1} and some integers x(i jk). Note that T (i i i), T ( j i j) and
T (i jk) are the n-string links Ti , W ji and Bi jk introduced in Subsection 4·1, obtained re-
spectively from 1n by surgery along the C2-trees ti , w j i and bi jk of Figure 10. In particular,
we have T ( j i j)

C3∼ T (i j i). By Lemma 5·2, it follows that σ
C3+c∼ σ(1) · σ(2).

We denote by Arfi (σ ) the Arf invariant for (the closure of) the i th component of σ . By
Lemma 5·3, we have

μσ (i j) = μσ(1)(i j),
Arfi (σ ) = Arfi (σ (1)) + Arfi (σ (2)) = Arfi (σ (2)) = ε(i i i),
μσ (i jk) = μσ(1)(i jk) + μσ(2)(i jk) = μσ(1)(i jk) + x(i jk),

μσ ( j i i j) ≡ μσ(1)( j i i j) + μσ(2)( j i i j)

≡ μσ(1)( j i i j) +
∑

1�p<q<r�n

x(pqr)μT (pqr)( j i i j) + ε( j i j)

≡ μσ(1)( j i i j) + ε( j i j) mod 2.

Since these invariants are C3-concordance invariants, we have the following.

THEOREM 5·8. Two n-string links are C3-concordant if and only if they share all in-
variants Arfi , μ(i j) (1 � i < j � n), μ(i jk) (1 � i < j < k � n) and
μ( j i i j) mod 2 (1 � i < j � n).

Since, by (5·1), the n-string link σ is obtained from σ(1) · σ(2) · (1n)G1 by surgery along
linear C3-trees, by Lemmas 5·1 and 5·5, there is a disjoint union G2 of C3-graphs with loops
such that

σ
C4∼ σ(1) · σ(2) · (1n)G1 · σ(3) · (1n)G2, (5·2)
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where

σ(3) :=
∏

1�i< j�n

T ( j i i j)y( j i i j) ·
∏

1�i, j,k�n
i< j

T (ki jk)y(ki jk) ·
∏

1�i, j<k<l�n

T (ki j)y(ki jl)

for some integers y( j i i j), y(ki jk), y(ki jl). Observe that T ( j i i j), T (ki jk) and T (ki jl) cor-
respond respectively to the string links obtained by surgery along the C3-trees hi j , hi jk and
hi jkl of Figure 11. (Actually, (5·2) can also be derived from the proof of Theorem 2·4.)

By Lemma 5·3, we have

μσ ( j i i j) = μσ(1)·σ(2)( j i i j) + μσ(3)( j i i j) = μσ(1)·σ(2)( j i i j) + 2y( j i i j),

μσ (ki jk) = μσ(1)·σ(2)(ki jk) +
∑

1�p<q�n

y(qppq)μT (qppq)(ki jk) + y(ki jk),

μσ (ki jl) = μσ(1)·σ(2)(ki jl) +
∑

1�p<q�n

y(qppq)μT (qppq)(ki jl)

+
∑

1�p,q,r�n
p<q

y(r pqr)μT (rpqr)(ki jl) + y(ki jl).

Since these invariants are C4-concordance invariants and σ
C4+c∼ σ(1) · σ(2) · σ(3), we have

the following.

THEOREM 5·9. Two n-string links are C4-concordant if and only if they are C3-
concordant and they share all invariants μ( j i i j) (1 � i < j � n), μ(ki jk) (1 � i, j, k �
n ; i < j) and μ(ki jl) (1 � i, j < k < l � n).

Now, by (5·2), there is a disjoint union G3 of C4-graphs with loops such that

σ
C5∼ σ(1) · σ(2) · (1n)G1 · σ(3) · (1n)G2 · σ(4) · (1n)G3, (5·3)

where σ(4) is given by

σ(4) :=
∏
i, j

T ( j i i i j)ε( j i i i j) ·
∏

i, j<k

T (ki j ik)ε(ki j ik) ·
4∏

s=1

∏
I∈Is

T (I )z(I ) (5·4)

for some ε( j i i i j) ∈ {0, 1} and some integers ε(ki j ik) and z(I ), where

I1 = {ikkk j | 1 � i, j, k � n, i < j},
I2 = {kii jk | 1 � i, j, k � n, i < j, i < k} � {k ji ik | 1 � j < i < k � n},

I3 = {ki jpk | 1 � i, j, k, p � n, i < p}, I4 = {pi jkq | 1 � i, j, k < p < q � n}.
In particular, the second product in (5·4) is obtained from the following two observations.

On one hand, for 1 � i, j < k � n, we have by (4·9) that

T (i jk j i)
C5∼ T (k ji jk)δ · T (ki j ik)δ′

(δ, δ′ ∈ {−1, 1})
(noting that T (i jki j), T (k ji jk) and T (ki j ik) correspond to the string links obtained by

surgery along the C4-trees u′′
(12), u(12) and u′

(12) of Figure 16 respectively, and that u′′
(12)

C5+c∼
u′′

(132)). On the other hand, by Lemma 5·1 (3) the C4-trees above are 2-torsion elements in
SL(n)/(C5 + c).
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Note also that T ( j i i i j) in (5·4) corresponds to the string links obtained by surgery along
the C4-tree sk

id of Figure 12 (k = 1, 2), and that similarly for I ∈ I1, I2, the various T (I )
correspond to C5-concordance classes of the string links obtained by surgery along the C4-
trees of Figure 16.

By Lemma 5·3, we have

μσ ( j i i i i j) ≡ μσ(1)·σ(2)·σ(3)( j i i i i j) + ε( j i i i j) mod 2,

μσ (ki j j ik) ≡ μσ(1)·σ(2)·σ(3)(ki j j ik) +
∑
p,q

ε(qpppq)μT (qpppq)(ki j j ik) + ε(ki j ik) mod 2,

and for each I ∈ Is (1 � s � 4) ,

μσ (I ) = μσ(1)·σ(2)·σ(3)(I ) +
∑
p,q

ε(qpppq)μT (qpppq)(I ) +
∑
W∈It
t<s

z(W )μT (W )(I ) + z(I ).

Since these invariants are C5-concordance invariants and σ
C5+c∼ σ(1) ·σ(2) ·σ(3) ·σ(4), we

have the following.

THEOREM 5·10. Two n-string links are C5-concordant if and only if they are C4-
concordant and share all invariants μ( j i i i i j) mod 2 (1 � i, j � n), μ(ki j j ik) mod 2
(1 � i, j < k � n) and μ(I ) (I ∈ I1 � I2 � I3 � I4).

Moreover, from (5·3) we have that there is a string link σ(5) and a disjoint union G4 of
C5-graphs with loops such that

σ
C6∼ σ(1) · σ(2) · (1n)G1 · σ(3) · (1n)G2 · σ(4) · (1n)G3 · σ(5) · (1n)G4, (5·5)

where

σ(5) =
7∏

s=0

∏
J∈Js

T (J )w(J )

for some integers w(J ), where

J0 = {i j i j i j | 1 � i < j � n}, J1 = {i j j j j i | 1 � i, j � n},
J2 = {ikkkk j | 1 � i, j, k � n, i < j},

J3 = {kii i jk, kii j ik, ki j j jk, k ji j jk | 1 � i, j, k � n, i < j},
J4 = {kii j jk, ki j i jk, ki j j ik, k ji i jk| 1 � i < j < k � n},

J5 = {pikk jp, pki jkp| 1 � i, j, k, p � n, i < j, k < p}
�{pi jkkp, pik jkp | 1 � i, j < k < p � n}
�{pkki jp, pkik jp | 1 � k < i, j, p � n}
�{pkki jp, pkik jp | 1 � i, j, k, p � n, i < k < j},

J6 = {qki jpq | 1 � i, j, k, p, q � n, k < p}, J7 = {qi jkpr | 1 � i, j, k, p < q < r � n}.
Let us briefly explain how to determine these Js’s. First, separate C5-trees by their indices.

By Lemmas 3·6, 5·1 (2) and 5·2, we have eight cases : {i (3), j (3)}, {i (2), j (4)}, {i, j, k(4)},
{i (3), j, k(2)}, {i (2), j (2), k(2)}, {i, j, k(2), p(2)}, {i, j, k, p, q (2)} and {i, j, k, p, q, r}, which
correspond to J0, J1, J2, J3, J4, J5, J6 and J7 respectively. By the IHX relation, we may
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assume that each C5-tree is linear, and we may choose any pair of leaves as ends. Hence
for each of the eight cases above, we may choose the ends of any C5-tree having the cor-
responding index. Then we enumerate all possible o-indices, using Lemmas 5·1 (2) and 5·2.
For example, we may choose that the ends of any linear C5-tree with index {i (3), j (3)} are
an i-leaf and a j-leaf, so we enumerate all o-indices starting with i and ending with j . By
Lemma 5·1 (2), we are left with only two cases, namely i j i j i j and i j j i i j . Now, it follows
from two applications of the AS relation that T (i j i j i j)

C6∼ T (i j j i i j). So i j i j i j is essentially
the only o-index for C5-trees with index {i (3), j (3)}.

By combining a similar method as in [37, remark 5·3] and the IHX relation, we have that
for each J ∈ J0

μσ (J ) = μσ(1)·σ(2)·σ(3)·σ(4)(J ) + 12 · w(J ).

By Lemma 5·3, we have that for each J ∈ Js (1 � s � 7)

μσ (J ) = μσ(1)·σ(2)·σ(3)·σ(4)(J ) +
∑

0�t<s

∑
V ∈Jt

w(V )μT (V )(J ) + cJ · w(J ),

where cJ = 2 if J ∈ J1�{ki j j ik, k ji i jk| 1 � i < j < k � n} and cJ = 1 otherwise. Since

these invariants are C6-concordance invariants and σ
C6+c∼ σ(1) · σ(2) · σ(3) · σ(4) · σ(5),

we have the following.

THEOREM 5·11. Two n-string links are C6-concordant if and only if they are C5-
concordant and they share all invariants μ(J ) for J ∈ Ji (i = 0, 1, . . . , 6).

Remark 5·12. Theorem 5·8, as well as the 2-component cases of Theorems 5·9, 5·10 and
5·11, are also proved in [33], using different methods.

Note that for k � 6, we meet torsion elements in the group SL(n)/(Ck + c). This is a
remarkable difference with the group SL(n)/Ck , where no torsion element exists for k <

6 as proved in Section 4. The torsion elements we meet are all 2-torsion elements of the
form T (i i i) and T (i0, i1, . . . , i p, i p+1, i p, . . . , i1, i0), possibly with i j = ik for j, k � 0. By
Lemma 5·1 (3), there are 2-torsion elements which are not of the form T (i i i) in SL(n)/(Ck+
c) for any odd k. This implies the following.

PROPOSITION 5·13. Rational concordance finite type invariants of even degree k, to-
gether with the invariants Arfi , do not suffice to determine the classes SL(n)/(Ck+1 + c).

Remark 5·14. It is known that, for a knot K , a2(K ) ≡ Arf(K ) mod 2. Since a2 is a finite
type invariant of degree 2 and the Arf invariant is a concordance invariant, a2 mod 2 and
f2 mod 2 are both concordance finite type invariants of degree 2, where f2 is the invariant
defined in Subsection 2·2. In the definition of the string link σ(2) involved in the proof of
Theorem 5·8, ε(i i i) is modulo 2 equivalent to a2 of the closure of the i th component of σ(2),
and ε( j i j) is modulo 2 equivalent to f2 of the union of the i th and j th components of σ(2).
It follows that two n-string links are C3-concordant if and only if they share all invariants
a2 mod 2, μ(i j) (1 � i < j � n), μ(i jk) (1 � i < j < k � n) and f2 mod 2. This implies
that the classification of string links up to C3-concordance is given by concordance finite
type invariants of degree � 2, and hence that rational concordance finite type invariants of
degree 2, together with the invariants Arfi , do not suffice to determine all concordance finite
type invariants of degree 2.
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6. 2-string links up to self C3-moves and concordance

Given a multi-index I , let r(I ) denote the maximum number of times that any index
appears. For example, r(1123) = 2, r(1231223) = 3. It is known that if r(I ) = 1, then
Milnor invariant with index I is a link-homotopy invariant [12, 27], where link-homotopy is
an equivalence relation on links generated by self crossing changes. Milnor invariants give
a link-homotopy classification of string links [12].

Although Milnor invariants with r(I ) � 2 are not necessarily link-homotopy invari-
ants, Fleming and the second author showed that μ-invariants with r(I ) � k are self Ck-
equivalence invariants for string links, where the self Ck-equivalence is an equivalence rela-
tion on (string) links generated by self Ck-moves, which are Ck-moves with all k + 1 strands
in a single component. See [7, theorem 3·1] and [36].

Two string links σ and σ ′ are self-Ck concordant if there is a sequence σ = σ1, . . . , σm =
σ ′ of string links such that for each i(∈ {1, . . . , m − 1}), σi and σi+1 are either concordant
or self Ck-equivalent.

Since Milnor invariants are concordance invariants, any Milnor invariant indexed by I
with r(I ) � k is a self-Ck concordance invariant. The second author showed that Milnor
invariants μ(I ) with r(I ) � 2 classify string links up to self-C2 concordance [36]. Here we
give a self-C3 concordance classification for 2-string links.

THEOREM 6·1. Two 2-string links are self-C3 concordant if and only if they share all
invariants Arfi (i = 1, 2), μ(12), μ(2112), μ(121212), and μ( j i i i i j) mod 2 ({i, j} =
{1, 2}).

Remark 6·2. Let L be the Hopf link with both components Whitehead doubled. In [36,
Remark], the second author mentioned that L is neither self-C3 equivalent nor concordant to
the trivial 2-component link. It follows that a 2-string link σ with closure σ̂ = L is neither
self-C3 equivalent nor concordant to the trivial 2-string link. On the other hand, since L is
a boundary link, all Milnor invariants of L (and of σ ) vanish. This and Theorem 6·1 imply
that the 2-string link σ is self-C3 concordant to the trivial 2-string link.

Proof. By [7, lemma 1·2], C6-concordance implies self-C3 concordance for 2-string links.
Starting with a representative of the C6-concordance class of a 2-string link σ , as given by
(5·5), we can eliminate the generators T (I ) such that I contains the same index at least four
times to obtain a self-C3 concordance representative. We obtain that σ is self-C3 concordant
to

T (12)x · T (111)ε1 · T (222)ε2 · T (212)ε3 · T (2112)y · T (21112)ε4 T (12221)ε5 · T (121212)z,

for some integers x, y, z and for some εi ∈ {0, 1} (1 � i � 5). By Theorem 5·11,
x, y, z, εi (1 � i � 5) are determined by the invariants Arfi (i = 1, 2), μ(12), μ(2112),
μ(121212), μ(211112) mod 2, and μ(122221) mod 2. Since all these invariants except for
μ( j i i i i j) mod 2 ({i, j} = {1, 2}) are self-C3 concordance invariants, there only remains to
show that μ( j i i i i j) mod 2 is a self-C3 equivalence invariant.

Suppose that σ ′ is a string link obtained from σ ∈ SL(2) by surgery along a C3-tree with
index {1(4)}. It is enough to show that μσ ( j i i i i j) ≡ μσ ′( j i i i i j) mod 2. By Calculus of
Clasper,

σ ′ C4∼ σ · (12)t ′,

where t ′ is a C3-tree with index {1(4)} and is in a tubular neighbourhood of the 1st strand of
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12. By [37, lemma 2·1], we may assume that the C4-equivalence above is realized by surgery
along a disjoint union of C4-trees with indices {1(5)} or {1(4), 2}. So by Lemma 5·1 (2), we
have

σ ′ C5+c∼ σ · (12)t ′ .

Hence, by Remark 5.4, we have

μσ ′( j i i i i j) ≡ μσ ( j i i i i j) + μ(12)t ′ ( j i i i i j) ≡ μσ ( j i i i i j) mod 2.

This completes the proof.

7. Cn+1-moves for n-component Brunnian string links

An n-string link is Brunnian if every proper substring link of it is trivial. In this section,
we use tools developped in the present paper to classify Brunnian n-string links up to Cn+1

equivalence, thus improving a previous result of the authors [26].
Let B be a Brunnian n-string link. An explicit formula for a representative B0 of the

Cn-equivalence class of B was given in [16] (see also [26, proposition 4·2]), and can be
formulated as follows (using the notation of Section 5):

B0 :=
∏

η∈Sn−2

T (n − 1, η(1), . . . , η(n − 2), n)μB (n−1,η(1),...,η(n−2),n). (7·1)

Recall from Subsection 3·2 that for an integer k in {1, . . . , n}, Bn(k) denotes the set of all
bijections τ from {1, . . . , n−1} to {1, . . . , n}\{k} such that τ(1) < τ(n−1), and that Bα(k),
resp. Bα(k), is the n-string link obtained from 1n by surgery along the Cn-tree Tα(l), resp.
Tα(l) represented in Figure 7. For τ ∈ Bn(k), set μτ(B) := μB(τ (1), . . . , τ (n − 1), k, k). It
was proved in [26, proposition 4·5] that

B
Cn+1∼ B0 · B(1) · . . . · B(n),

where, for each k (1 � k � n), B(k) is the Brunnian n-string link∏
τ∈Bn(k)

(Bτ (k))nτ (k) · (Bτ (k))n′
τ (k), (7·2)

such that, for any τ ∈ Bn(k) (1 � k � n), the exponents nτ (k) and n′
τ (k) are two integers

satisfying

nτ (k) + n′
τ (k) = μτ(B(1) · . . . · B(n)) = μτ(B) − μτ(B0).

This uses the fact that, for any k ∈ {1, . . . , n} and α, τ ∈ B4(k), we have

μα(Bτ (k)) = μα(Bτ (k)) = δα,τ .

Given an n-string link σ and τ ∈ Bn(1), we can construct a knot Kτ (σ ) in S3 as follows.
Connect the upper endpoints of the first and the τ(1)th components of σ by an arc a1 in
S3 \(D2 × I ). Next, connect the lower endpoints of the τ(1)th and the τ(2)th components by
an arc a2 in S3 \ (D2 × I ) disjoint from a1, then the upper endpoints of the τ(2)th and τ(3)th
components by an arc a3 in S3 \(D2 × I ) disjoint from a1 �a2. Repeat this construction until
reaching the τ(n − 1)th component, and connect its lower or upper endpoint (depending on
the parity of n) to the lower endpoint of the first component by an arc an in S3 \ (D2 × I )
disjoint from

⋃
1�i�n−1 ai . The arcs are chosen so that, if ai and a j (i < j) meet in the

diagram of L , then ai overpasses a j . It follows from the construction of Kτ (σ ) and [17] that
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for any τ ∈ Bn(1), we have p := P (n)

0 (Kτ (Bτ (1))) is nonzero (note that p depends only on
n). Set

fτ (σ ) := P (n)

0 (Kτ (σ ))/p.

By the proof of Lemma 3·4, we note that for any k � 2 there is a bijection φk : Bn(1) −→
Bn(k) such that for any τ ∈ Bn(1), we have Bτ (1) · Bτ (1)−1 Cn+1∼ Bφk (τ )(k) · Bφk (τ )(k)−1.

We can now prove the following stronger version of [26, proposition 4·5].

THEOREM 7·1. Let B be a Brunnian n-string link. Then

B
Cn+1∼ B0 · B ′,

where B0 is determined by the Milnor invariants of B of length n as in (7·1), and where B ′

is given by

∏
τ∈Bn(1)

(
(Bτ (1))mτ · (Bτ (1))μτ (B)−μτ (B0)−mτ

) ·
n∏

k=2

∏
τ∈Bn(k)

(Bτ (k))μτ (B)−μτ (B0),

where mτ = fτ (B) − fτ (B0) − ∑
k�2(μφk (τ )(B) − μφk (τ )(B0)) (τ ∈ Bn(1)).

Proof. By Lemma 3·4, we may assume that n′
τ (k) = 0 in (7·2) for any τ ∈ Bn(k) with

k � 1. Hence the product B(1) · . . . · B(n) is given by

∏
τ∈Bn(1)

(
(Bτ (1))nτ (1) · (Bτ (1))n′

τ (1)
) ·

n∏
k=2

∏
τ∈Bn(k)

(Bτ (k))μτ (B)−μτ (B0).

Let τ ∈ Bn(1). It follows from the construction of Kτ (σ ) and [17] that for any η ∈ Bn(1),
we have fτ (Bη(1)) = δτ,η and fτ (Bη(1)) = 0, and that fτ (Bφk (η)(k)) = δτ,η for each k � 2.

By using a similar argument as Claim 4·3 and the multiplicativity of the HOMFLYPT
polynomial, we thus have that for each τ ∈ Bn(1)

fτ (B) = fτ (B0) + fτ (B(1) · · · B(n))

= fτ (B0) + nτ (1) +
∑
k�2

(μφk (τ )(B) − μφk (τ )(B0)).

Since μτ(B) = μτ(B0) + nτ (1) + n′
τ (1), this completes the proof.
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