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A linking invariant for algebraic curves

Benoît Guerville-Ballé and Jean-Baptiste Meilhan

Abstract. We construct a topological invariant of algebraic plane curves, which is in some
sense an adaptation of the linking number of knot theory. �is invariant is shown to
be a generalization of the I -invariant of line arrangements developed by the �rst author
with Artal and Florens. We give two practical tools for computing this invariant, using a
modi�cation of the usual braid monodromy or using the connected numbers introduced by
Shirane. As an application, we show that this invariant distinguishes several Zariski pairs,
i.e., pairs of curves having same combinatorics, yet di�erent topologies. �e former is the
well known Zariski pair found by Artal, composed of a smooth cubic with 3 tangent lines
at its in�exion points. �e latter is formed by a smooth quartic and 3 bitangents.
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Introduction

�e topological study of algebraic plane curves was initiated at the beginning of
the 20th century by Klein and Poincaré. One of the main questions is to understand
the relationship between the combinatorics and the topology of a curve. It is
known, since the seminal work of Zariski [Zar1, Zar2, Zar3], that the topological
type of the embedding of an algebraic curve in the complex projective plane
is not determined by the combinatorics. Indeed, Zariski constructed two sextics
with 6 cusps having same combinatorics, and proved that the fundamental group
of their complements are not isomorphic. Geometrically, these two curves are
distinguished by the fact that the cusps in the �rst curve lie on a conic, while they
do not in the second curve. Since this historical example, using various methods,
numerous examples of pairs of algebraic curves having same combinatorics but
di�erent topologies have been found, see for example Artal, Cogolludo and
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Tokunaga [ACT], Cassou-Noguès, Eyral and Oka [CNEO], Degtyarev [Deg],
Oka [Oka], Shimada [Shim1], or the �rst author [GB]. Artal suggests in [Art] to
call such examples Zariski pairs.

�e topology of curves in CP2 is intimately connected to the topology of
knots and links in S3 . Several tools are indeed shared by these two domains, such
as the homology or the fundamental group of the complement, the Alexander
polynomial or module, although they usually have rather di�erent behaviours.

Recently, Artal, Florens and the �rst author de�ned a topological invariant of
line arrangements (i.e. algebraic plane curves with only irreducible components
of degree 1 ) which is in some sense modelled on the linking number of knot
theory [AFGB]. �is invariant was then successfully used in [GB] to distinguish a
new Zariski pair of line arrangements. In the present paper, we construct another
invariant adapting the linking number to the more general case of algebraic plane
curves. In the case of a line arrangement, this invariant is shown to be equivalent
to the invariant of [AFGB], thus providing a generalization of this earlier work
through a di�erent adaptation of the linking number.

�e construction of our linking invariant can be roughly outlined as follows.
Consider a reducible algebraic curve decomposed in two nonempty subcurves C
and D , and pick a topological cycle 
 in the subcurve C . �e basic idea is
to consider the image of a certain coset of 
 in the �rst homology group of
CP2 n D . More precisely, this set is regarded in the quotient of H1.CP2 n D/
by an appropriate indeterminacy subgroup JC , which controls the topological
di�erences among the various cycles in the considered coset of 
 . �is de�ne
the linking invariant of C with D along 
 , which is an invariant of the pair
.CP2; C [D/ .

Our construction thus builds on a rather elementary idea, and is not technically
involved. Remarkable is rather the fact that it reveals quite e�cient in practice,
despite its apparent simplicity. We mention below several applications of the
linking invariant on concrete examples of Zariski pairs of various natures.

�is linking invariant has a nice behaviour for some particular choices of curve
or cycle. In the case of line arrangements, for example, the linking invariant is
indeed a single homology class rather than a coset. �is allows us to prove the
equivalence with the I -invariant of [AFGB] in this case.

From a practical viewpoint, we provide two methods of computation of this
linking invariant. �e �rst one is based on a topological construction using an
adaptation of the braid monodromy. �is makes a concrete connection between
our invariant and the usual linking number of knot theory. �e second method is
algebraic and comes from the relation, observed in [GBS], between our linking
invariant, the connected numbers and the splitting numbers introduced by Shirane
in [Shir1, Shir2].
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To illustrate the e�ciency of this adaptation of the linking number to algebraic
curves, we use it to distinguish two examples of Zariski pairs. �e �rst example
is formed by the well known 3 -Artal curves introduced by Artal in [Art]. �ey
are composed of a smooth cubic and three in�exional tangent; in the �rst curve
the considered in�exion points are collinear, while they are not in the second one.
�e computation of the linking invariant of the three lines with the cubic is made
using the above mentioned algebraic method. �e second example of Zariski pair
is formed by a smooth quartic and three bitangents. �ese curves have been very
recently studied in [BTY]. For that example, we use the topological method based
on the linking number of knot theory.

After an earlier version of this paper was circulated, our linking invariant
(then called linking set) has been further studied, and being used to distinguish
other examples of Zariski pairs.

In [Shir1] Shirane introduces the splitting numbers and detects the �1 -
equivalent Zariski k -plets suggested by Shimada [Shim2]. By proving that the
splitting numbers and the linking invariant are equivalent (in some particular
cases), the �rst author and Shirane obtain in [GBS] that the linking invariant
distinguishes the Shirane-Shimada �1 -equivalent Zariski k -plets. �is implies
that the linking invariant is not determined by the fundamental group of the
complement.

�e linking invariant is also used in [BGBS] to classify the topology of the
k -Artal curves (i.e., a smooth cubic and k in�ectional tangent lines). Furthermore,
Shirane constructed recently in [Shir2] an adaptation of the splitting number, called
the connected numbers, which allows to classify the topology of the Artal curves
of degree b (i.e., smooth curves of degree b and with three total in�ectional
tangent lines). Here again, the proofs of [GBS] imply that the linking invariant
can distinguish the Artal curves of degree b .

In the particular case of line arrangements, the linking invariant (in the form
of the I -invariant) has been successfully used in [GB] to detect a Zariski pair of
12 lines. Recently, the �rst author and Viu-Sos gave an e�ective diagrammatic
reformulation of this invariant in the particular case of real line arrangements,
see [GBVS]. Using this reformulation, they provide 10 examples of complexi�ed
real Zariski pairs.

Convention. All homology groups are to be understood with integral coe�cients,
and this will be omitted in the notation.
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1. �e linking invariant

1.1. Preliminaries. Let C be an algebraic plane curves, possibly non-reduced.
Following [ACT], we de�ne the combinatorics of C as the data:�

Irr.C/; deg;Sing.C/; †top; �top;
®
C.P /

¯
P2Sing.C/; ¹ˇP ºP2Sing.C/

�
;

where:

� Irr.C/ is the set of all irreducible components of C ,

� deg assigns to each irreducible component its degree,

� Sing.C/ is the set of all singular points of C ,

� †top is the set of topological types of singular points of C , and �top assigns
to each singular point its topological type,

� for each singular point P of C , C.P / is the set of local branches of C at P ,
and ˇP assigns to each local branch at P the global irreducible component
containing it.

Two curves have the same combinatorics if there exist bijections between their sets
Irr and Sing of irreducible components and singular points, which are compatible
with the sets C.P / and †top of local branches and topological types, and with
the assignments deg, �top and ¹ˇP º in the natural way; see [ACT, Rem. 3] for
details.

We also associate to the curve C the intersection graph �C of its irreducible
components. �is is a bipartite graph whose �rst set of vertices, called component-
vertices, corresponds to the irreducible components of C , while the second set of
vertices, called point-vertices, corresponds to the singular points of C contained
in at least two distinct irreducible components. An edge of �C joins a point-
vertex and a component-vertex if and only if the corresponding singular point is
contained in the corresponding irreducible component. Note that the information
encoded in �C are contained (but not equivalent) to the combinatorics of C . For
example, the information given by �top is not contained in �C .

A cycle of �C is a (non necessarily connected) closed oriented walk without
repeated edges which contain at least one component-vertex. Note that this includes
the case of a single vertex. A (combinatorial) cycle of �C can be lifted to a
(topological) cycle on the curve C , i.e., an oriented closed loop in C , although
it is not uniquely determined in general. Such a topological lift has a natural
induced orientation only if the combinatorial cycle is not simply connected. If the
combinatorial cycle is simply connected (i.e., it consists of a single component-
vertex) then a topological lift is any (possibly non-contractible) closed loop in
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the corresponding irreduccible component of C , with an arbitrary choice of
orientation.

In what follows, we will be mainly interested in reducible algebraic curves
C[D , which decompose into two subcurves C and D (without common irreducible
component). In this context, a cycle of �C is simply a cycle lying in the
subgraph �C of �C[D . On one hand, such a cycle is called maximal if it contains
all component-vertices of �C ; in other words, a maximal cycle in �C lifts to
a topological cycle in C [ D that intersects the smooth part of all irreducible
components of C . On the other hand, a cycle of �C[D is said to avoid D if it
lies in �C (and is thus disjoint from all component-vertices of D ) and avoids
all point-vertices of C \D .

In this paper, by a homeomorphism � between two such reducible algebraic
curves C1 [D1 and C2 [D2 , we will always mean an ambient homeomorphism
of CP2 which sends C1 to C2 and D1 to D2 . Furthermore, we will denote
by �� W �C1[D1 ! �C2[D2 the induced map at the combinatorial level. Note that,
if � is orientation preserving, then �� preserves the cycle orientation.

1.2. �e linking invariant. Let C[D be a reducible algebraic curve, decomposed
into two nonempty subcurves C and D .

Consider the inclusion maps i W C n D ,! C and j W C n D ,! CP2 n D , and
denote respectively by i� and j� the induced map on the �rst homology groups.
Note that ker.i�/ identi�es with H1.@

S
C2Irr.C/ C nD/ '

L
C2Irr.C/H1 .@.C nD//

in H1.C nD/ .

De�nition 1.1. �e indeterminacy subgroup with respect to C , denoted by JC , is
the subgroup of H1.CP2 n D/ de�ned as the image of

L
C2Irr.C/H1 .@.C nD//

by j� .

Now, let 
 be a maximal cycle in �C avoiding D . Pick a topological lift e

of 
 on the curve C � C [ D . By assumption, e
 lies in C n D , and intersects
the smooth part of all irreducible components of C .

For brevity, we simply denote by Œ
� the image of e
 in H1.CP2 n D/=JC .
We also denote by IC the image of

L
C2Irr.C/H1.C nD/ by j� , composed with

the projection map H1.CP2 nD/! H1.CP2 nD/=JC .

De�nition 1.2. �e oriented linking of C with D along 
 , denoted by lk
 .C;D/ ,
is the coset of IC in H1.CP2 nD/=JC with respect to Œ
� . In other words,

lk
 .C;D/ D Œ
�IC � H1.CP2 nD/=JC :

�eorem 1.3. �e above formula is well-de�ned, i.e., lk
 .C;D/ does not depend
on the choice of topological lift of 
 .
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Proof. Let e
 1 and e
 2 be two topological lifts of 
 , and let Œ
�1 and Œ
�2

denote their homology classes in H1.CP2 n D/ . �ere are essentially two ways
in which Œ
�1 and Œ
�2 may di�er. If e
 1 and e
 2 have same homology class in
H1.C/ , then they di�er by elements of [C2Irr.C/@.C nD/ , so that Œ
�1 and Œ
�2

di�er by an element of the indeterminacy subgroup JC . Now, if e
 1 and e
 2
have di�erent homology classes in H1.C/ , then the di�erence is mapped in IC
by j� , so that e
 1 and e
 2 yield the same coset of IC in H1.CP2 nD/=JC .

Remark 1.4. We stress that the neither of the two assumptions made here, that

 is maximal and that it avoids D , is necessary to de�ne our invariant – this
is discussed in Remark 1.7 and in Section 1.3.2 below. But, on one hand, these
assumptions turn out to greatly simplify the exposition and, on the other hand,
all the relevant topological information on C [D are already essentially detected
by this simple version of our invariant. As a matter of fact, all the examples of
this paper will involve the above assumptions.

We have the following description of JC .

Proposition 1.5. �e indeterminacy subgroup JC is spanned by the elements of
the form: X

d2D.P /

IP .b; d/:mˇP .d/; for all P 2 C \D and all b 2 C.P / ,

where IP .b; d/ denotes the intersection multiplicity of the local branches b and
d at P , and mˇP .d/ is given by a meridian of the irreducible component ˇP .d/
of D containing d .

Proof. �e indeterminacy subgroup is the image of
L
C2Irr.C/H1 .@.C nD// in

H1.CP2 nD/ . It is thus generated by the class of the cycles in C 2 Irr.C/ around
the points P 2 C\D . Pick such a singular point P , and consider a small sphere
S around P . Each local branch b of C at P intersects S along a knot Kb ,
and it is well-known that, for each local branch d of D at P , the intersection
of b [ d with S is an oriented two-component link whose linking number is
precisely I.b; d/ (see [BKS, pp. 439]). Hence the homology class of the knot Kb
in H1.CP2 nD/ is given by

P
d2D.P / I.b; d/:mˇP .d/ , and the result follows.

As a consequence of Proposition 1.5, the group H1.CP2nD/=JC is determined
by the combinatorics of the curve C [D . So we can use the linking invariant to
compare the topology of curves with the same combinatorics. Indeed, we have
the following theorem, which implies that the linking invariant is an invariant of
the oriented topology of .CP2; C [D/ .
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�eorem 1.6. Let � be an orientation-preserving homeomorphism between two
algebraic curves C1 [ D1 and C2 [ D2 . �en � induces an isomorphism ��

between H1.CP2 n D1/ and H1.CP2 n D2/ mapping JC1 to JC2 , and for any
cycle 
1 2 �C1 avoiding D1 , we have

��
�
lk
1.C1;D1/

�
D lk�� .
1/.C2;D2/;

where �� is map induced by �� on the quotients by the indeterminacy subgroups.

Proof. By de�nition, the homeomorphism � W CP2 ! CP2 maps D1 to D2 ,
so it induces an isomorphism �� between H1.CP2 n D1/ and H1.CP2 n D2/ .
Furthermore, for each C1 2 Irr.C1/ with image C2 D �.C1/ 2 Irr.C2/ , we have
that � maps C1 \ D1 to C2 \ D2 , and maps @.C1 n D1/ to @.C2 n D2/ ; this
implies that �� maps JC1 to JC2 . Now, � maps any (oriented) lift of 
1 to
a cycle on C2 which is a lift of ��.
1/ , respecting the orientation. Since the
linking invariant does not depend on the choice of lift, the result follows.

Remark 1.7. As mentioned in Remark 1.4, the cycle 
 in De�nition 1.2 does
not need be maximal. Indeed, if � does not contain all component-vertices of
�C , then the coset Œ
�IC still yields an invariant of the oriented topology of
.CP2; C [ D/ . But in this case a �ner invariant is given by regarding the curve
C [D as decomposed into the union of C
 and .C [D/ n C
 , where C
 denotes
the union of all irreducible components of C intersecting 
 .

Remark 1.8. �e linking invariant of De�nition 1.2 is an invariant of the oriented
topology of .CP2; C[D/ . If 
 is simply connected, however, the linking lk
 .C;D/
of C with D along 
 is a topological invariant of .CP2; C[D/ , since any choice
of orientation of a topological lift yields the same coset. In general, we can easily
remove the condition of orientation, simply by considering

�Œ
�IC [ Œ
�IC � H1.CP2 nD/=JC;

which is clearly an invariant that doesn’t depend on the orientation of 
 , but only
on its combinatorics. As a corollary to �eorem 1.6, this non-oriented linking is
a topological invariant of the pair .CP2; C [D/ .

1.3. Two variants. We now discuss two variants of our linking invariant. �e
�rst one is a ‘global’ version which doesn’t rely upon the choice of a cycle; the
second one is a generalization, where we allow arbitrary cycles.

As in the previous section, C[D will denote here a reducible algebraic curve
decomposed into two subcurves C and D .
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1.3.1. Global linking. We can de�ne the following coarser invariant, which is
a ‘global’ version of the linking invariant, in the sense that it doesn’t involve
the choice of a cycle. Recall that j� is the map induced in homology by the
inclusion of C nD in CP2 nD .

De�nition 1.9. �e global linking of C with D , denoted by L.C;D/ , is the class
of Imj� in H1.CP2 nD/=JC .

Remark that the global linking of C with D can also be de�ned as the union,
over all cycles 
 in �C avoiding D , of the linking invariants of C with D
along 
 .

�e invariance of the global linking is a direct consequence of the proof of
�eorem 1.6:

�eorem 1.10. Let � be a homeomorphism between two curves C1 [ D1 and
C2 [D2 . We have

��
�
L.C1;D1/

�
D L.C2;D2/;

where �� is the map induced by �� on the quotients by the indeterminacy
subgroups.

Hence the global linking of C with D is a topological invariant of the pair
.CP2; C [D/ .

Remark 1.11. Notice that if C is an irreducible curve, then lk�.C;D/ D L.C;D/ ,
where � denotes the unique component-vertex of �C .

1.3.2. Linking along an arbitrary cycle. In the above de�nition of the linking
invariant, we assumed throughout that the cycle 
 avoids all point-vertices of �C

corresponding to singularities in C \ D . Although this will not be used in the
main examples of this paper, we outline here how the construction can be easily
generalized to arbitrary cycles.

Let 
 be any cycle in �C . Denote by S
 the set of singularities in C \ D
whose corresponding point-vertices are contained in 
 . We de�ne the subgroup
J
 of H1.CP2 nD/ as

J
 D hmˇP .d/, for all P 2 S
 and all d 2 D.P /i:

(here we make use of the same notation as in Proposition 1.5.)

De�nition 1.12. �e 
 -indeterminacy subgroup is the subgroup J.C;
/ of
H1.CP2 nD/ generated by JC [ J
 .



A linking invariant for algebraic curves 71

Now, we need a slightly generalized notion of topological lift for the cycle 
 .
Speci�cally, for each singular point P in S
 , pick a small closed 4 -ball BP
centered at P . A D -avoiding lift of 
 is a cycle in CP2 n D which coincides
with a topological lift outside [P2S
BP (and in particular lies in C ), and whose
intersection with each 4 -ball BP is an arc lying in the boundary of BP . So,
roughly speaking, such a cycle di�ers from a topological lift of 
 by locally
pushing it away from the curve C [D , so that it avoids the singularities in S
 .

Now, using this re�ned indeterminacy subgroup and generalized notion of
lift, the exact same construction yields an invariant: the (oriented) linking of C
with D along an arbitrary cycle 
 is the coset

lk
 .C;D/ D Œ
�IC � H1.CP2 nD/=J.C;
/;

where Œ
� denotes the image of a D -avoiding lift of 
 in H1.CP2nD/=J.C;
/ , and
where IC is the image of

L
C2Irr.C/H1.C nD/ by j� , seen in H1.CP2nD/=J.C;
/ .

�e proof that this is well-de�ned, i.e., does not depend on the choice of
the D -avoiding lift of 
 , is completely similar to the proof of �eorem 1.3, and
readily follows from the de�nition of J.C;
/ . �e only di�erence here is that, if

 passes through a point-vertex P in C \ D , then two D -avoiding lifts of 

may only di�er by a copy of a meridian mˇP .d/ , for any local branch d in
D.P / . Considering these cycles in H1.CP2 nD/ , we have by de�nition that the
di�erence lies precisely in J
 , hence in the 
 -indeterminacy subgroup J.C;
/ .

Remark 1.13. In the case where 
 avoids all point-vertices in C \ D , then
the 
 -indeterminacy subgroup J.C;
/ coincides with the original indeterminacy
subgroup JC , and we recover the invariant of De�nition 1.2.

1.4. Line arrangements and the I -invariant. In this section, we restrict
ourselves to the case where C [ D is a line arrangement, i.e., when all the
irreducible components of C and D are of degree 1. In this particular case, another
linking invariant, called the I -invariant, has been de�ned by Artal, Florens and
the �rst author in [AFGB]. We will prove here that the present linking invariant
generalizes the I -invariant.

First, let us recall some terminologies introduced in [AFGB] to de�ne the
I -invariant. Let A be a line arrangement. Recall that H1.CP2 n A/ is free of
rank j Irr.A/j�1 and is generated by the set of all meridiens mL for L 2 Irr.A/ .

De�nition 1.14. Let A be a line arrangement, � W H1.CP2 n A/ ! C� be a
non-trivial character and 
 be a cycle of the intersection graph �A . �e triple
.A; �; 
/ is called an inner-cyclic arrangement if
(1) For each singular point P of A with associated point-vertex in 
 ,

�.m`/ D 1 , for any line ` of A containing P ,
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(2) For each line L of A with associated component-vertex in 
 ,

(i) �.mL/ D 1 ,
(ii)

Q
`3S

�.m`/ D 1 , for any singular point S in L , where the product runs

over all the lines ` in A containing S .

In [AFGB], the I -invariant is then de�ned as

I.A; �; 
/ D � ı ��. N
/;

where �� is the map induced by the inclusion � of the boundary BA of a tubular
neighbourhood Tub.A/ of A in CP2 n A , and where N
 is a suitably chosen
lift of the cycle 
 in BA . More precisely, this lift is a ‘nearby cycle’ in the
terminology of [AFGB], which roughly means that this cycle is contained in
BC nTub.D/ � CP2 nD , where A D C[D with Irr.C/ D ¹L 2 Irr.A/jL\
 ¤ ¿º
and Irr.D/ D ¹L 2 Irr.A/jL \ 
 D ¿º – see [AFGB, Def. 2.11] for a precise
de�nition.

Now, if A D C [ D is a line arrangement, the set IC is always trivial. �e
linking of C and D along a cycle 
 is thus the class Œ
� of a lift of 
 in
H1.CP2 nD/=JC . �e relationship to the I -invariant is as follows:

�eorem 1.15. Let A D C [ D be a line arrangement, and let 
 be a maximal
cycle in �C . Let � be a character on H1.CP2nA/ such that .A; �; 
/ is an inner-
cyclic arrangement. �en there is a nontrivial character �� on H1.CP2nD/=J.C;
/
induced by � such that

I.A; �; 
/ D ��
�
lk
 .C;D/

�
:

Proof. Since .A; �; 
/ is an inner-cyclic arrangement, we have that �.mL/ D 1 for
each line L of A with corresponding component-vertex in 
 – these correspond
to the lines of C since 
 is maximal. �is shows that � factors through the
projection map H1.CP2 n A/ ! H1.CP2 n D/ . Furthermore, conditions (1) and
(2-ii) of De�nition 1.14 ensures that � further factors to H1.CP2 nD/=J.C;
/ , thus
providing the desired nontrivial character �� .1 So we have

I.A; �; 
/ D � ı ��. N
/ D ��
�
Œ N
�
�
;

where N
 is any lift of 
 which is a nearby cycle, and Œ N
� denotes its image in
H1.CP2 nD/=J.C;
/ . On the other hand, we have by de�nition that

lk
 .C;D/ D Œe
 � 2 H1.CP2 nD/=J.C;
/;
1�is shows, in particular, that the quotient H1.CP2 nD/=J.C;
/ is nontrivial.
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where e
 is a D -avoiding lift of 
 . �e result then follows from the fact that
the homology classes of the cycles N
 and e
 in H1.CP2 n D/ can only di�er
by elements of J.C;
/ , as follows from the de�nition of a nearby cycle given
in [AFGB].

2. Computations

In this section, we describe two concrete methods for computing our invariant.
�e �rst one is topological and is based on a modi�cation of the braid monodromy,
and uses the usual linking number of links in the 3 -sphere. �e second one is an
algebraic method using the connected numbers introduced by Shirane in [Shir2],
and its relations with the linking invariant, observed in [GBS].

2.1. Topological method. For simplicity, we consider an algebraic curve C [D ,
such that all the irreductible components of C have topological genus zero (see
however Remark 2.3), together with a cycle 
 in the intersection graph of C .
For this class of curves, we have that the set IC is trivial, so that the linking
invariant lk
 .C;D/ is the class of a lift of 
 in H1.CP2 nD/=JC , rather than a
coset (this was already observed in the case of line arrangements in Section 1.4).

De�nition 2.1. A path e
 in C is 
 -admissible if it is a lift of 
 and if there is a
generic projection � W CP2 n¹�º ! CP1 such that �.e
 / has no self-intersection,
and

�
��1 ı �.e
 /� \ Sing.D/ D ¿ .

Note that the latter condition can always be ful�lled, up to a small modi�cation
of � .

Let e
 be a 
 -admissible path in C . For any point p of �.e
 / , we consider the
�ber Fp over p . By the de�nition of 
 -admissibility, the number of intersection
points of D with Fp equals the degree of D for all points p 2 �.e
 / . We denote
by LD the oriented link

(1) LD D
�
��1 ı �.e
 /� \D � CP2:

Noting that e
 and LD do not intersect, we de�ne e
 [LD . �is link naturally
sits in a copy of S3 , as follows. Let D be the disc bounded by �.e
 / in CP1 .
Pick a polydisc P of CP2 such that �.P/ D D and ��1.D/\ .C [D/ � P . By
construction, the link e
 [LD lies in the boundary of P , which is homeomorphic
to S3 . �is construction yields the following.
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�eorem 2.2. Under the above assumptions, the homology class of the path e

in H1.CP2 nD/ is given by:

�

� X
c2LD

`.c; e
 /:mc�;
where ` is the usual linking number in S3 and � is the map induced by the
inclusion of S3nLD in CP2nD , which maps the meridian mc of each component
c of LD to the meridian of the irreducible component of D containing c .

Remark 2.3. If the irreducible components of the curve C are allowed to have
nonzero topological genus, we can also use the present method to compute the
value of the generators of IC in H1.CP2nD/ , and thus to compute the coset Œ
�IC .

�is provides a computational formula for the linking invariant of C with D
along 
 in terms of the usual linking number. See Section 3.2 for an application
on a concrete example.

2.2. Algebraic method. �e second method of computation comes from the
connected numbers introduced by Shirane in [Shir2]. �is method applies when
C is a nodal curve with Sing.C/\D D ¿ (this implies that C nD is connected),
and if H1.CP2 nD/=JC ' Z=mZ .

Let  W X ! CP2 be a cyclic cover of degree m branched over D . �e
connected number of C for  is the number of connected components of
 �1.C n D/ ) in X . Based on a previous version of the present paper, it has
been proved in [GBS] that if C and D are smooth curves then the connected
number and the global linking of C and D are essentially equivalent. For the
purpose of this paper, however, we will rather give the following statement.

�eorem 2.4. Suppose that C is a nodal curve such that Sing.C/ \ D D ¿ ,
and that H1.CP2 n D/=JC ' Z=mZ . �en the global linking of C and D is
the unique subgroup of H1.CP2 n D/=JC of index deg.D/=� , where � is the
minimal degree of a plane curve E such that C \D D C \E and for each point
P 2 C \D , we have .deg.D/=�/ � IP .C; E/ D IP .C;D/ .

Sketch of proof. By the proof of [GBS, �eorem 2.5], we know that the index
of L.C;D/ in H1.CP2 n D/=JC is equal to the connected number of C for  .
Since H1.CP2 n D/=JC is cyclic then each of its subgroup is determined by its
index. �e result is thus a consequence of [Shir2, Corollary 2.5].
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3. Applications

In this section, we use our linking invariants (both the oriented and global
versions) to distinguish two types of Zariski pairs.

3.1. 3 -Artal curves. As an application of the algebraic method of computation
of the linking invariant, we propose to distinguish the Zariski pair found by Artal
in [Art]. �ese curves are formed by a smooth cubic C and three in�exional
tangent lines. �e geometry of the 9 in�exion points of a cubic is well known;
the collinearity relations are the same as in F23 , the plane over the �nite �eld
of 3 elements. We consider P1; : : : ; P4 four in�exion points of C such that
P1; P2; P3 are collinear and P1; P2; P4 are not. Set A1 D L1 [ L2 [ L3 and
A2 D L1 [ L2 [ L4 , where Li denotes the in�exional tangent line at Pi .

�eorem 3.1. �e global linking of the line arrangement Ai with the cubic C
is:

L.Ai ; C/ D

´
¹0º if i D 1;

¹0; 1; 2º if i D 2:

Proof. Since the cubic C is smooth, we have H1.CP2 nC/ ' Z=3Z . Furthermore,
Proposition 1.5 implies that JAi D h3mi , where m is a meridian of the cubic.
So the quotient H1.CP2 n C/=JAi is also isomorphic to Z=3Z .

We �rst compute the global linking L.A1; C/ . By construction, there is a line
E (i.e., an algebraic curve of degree 1) passing through P1; P2 and P3 . By
Bezout theorem, we have IPj .A1; E/ D 1 for j 2 ¹1; 2; 3º , and the following
equality holds for j 2 ¹1; 2; 3º

deg.C/
deg.E/

� IPj .A1; E/ D IPj .A1; C/:

�us by �eorem 2.4 the index of L.A1; C/ in H1.CP2 n C/=JA1 is 3.
Let us now turn to L.A2; C/ , and look for the minimal degree curve E passing

through the points P1; P2 and P4 and satisfying deg.C/
deg.E/�IPj .A2; E/ D IPj .A2; C/

for j 2 ¹1; 2; 4º . By construction, no line E satis�es these conditions. Similar
considerations as above show that no conic can verify these conditions either.2
But taking E to be the cubic C obviously works, and it follows by �eorem 2.4
that the index of L.A2; C/ in H1.CP2 n C/=JA2 is 1.

Corollary 3.2. �e curves C [A1 and C [A2 form a Zariski pair.

2�is also follows from �eorem 2.4, since the existence of such a conic would imply that L.A2;C/
is an index 2 subgroup of Z=3Z .
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3.2. �e quartic and its bitangents. As an application of the topological method,
we will distinguish a Zariski pair formed by a quartic and 3 bitangents. Let Q be
the Klein quartic de�ned by x3yCy3zCz3x D 0 . �e full list of its 28 bitangents
is given in [Shi]. We will consider here only four of them. Let � be a primitive
7 th root of unity, and de�ne the real numbers "i D �i C ��i , for i 2 ¹1; 2; 3º .
We consider the following bitangents:

L1 W x C y C z D 0; L2 W x C "
�2
3 y C "

2
1z D 0;

L3 W x C �
3"�23 y C �"

2
1z D 0; L4 W x C �

2"�22 y C �
3"23z D 0:

Let Ai D L1 [ L2 [ L2Ci , for i 2 ¹1; 2º . We will compute the linking of
Ai with Q along 
i , where 
i is a cycle generating H1.Ai / ' Z . Since
H1.Lj / D 0 for all j , we have IAi D 0 for i D 1; 2 . Furthermore, Q is smooth
so H1.CP2 nQ/ ' Z=4Z . By Proposition 1.5, we have that JAi D h2mi , where
m is a meridian of Q . So we have

H1.CP2 nQ/=JAi ' Z=2Z:

In order to simplify the computations, we apply on Q [ A1 and Q [ A2 the
linear change of variables given respectively by the following matrices:

P1 D

0B@ 4�5 C 4�4 � �2 C � C 6

�6�5 � 6�4 � 2�2 � 5� � 2

2�5 C 2�4 C 3�2 C 4� C 3

��5 � 5�4 C 2�3 C 6�2 C 5

5�5 C 4�4 � 3�3 � 2�2 C 7� C 3

�4�5 C �4 C �3 � 4�2 � 7� � 1

�3�5 C �4 � 2�3 � 5�2 � � C 3

�5 C 2�4 C 3�3 C 4�2 � 2� � 1

2�5 � 3�4 � �3 C �2 C 3� � 2

1CA ;

P2 D

0B@�3�5 � 2�4 � 4�3 � 2�2 � 3� C 7�6�5 C 3�4 � �3 � 4�2 C �

9�5 � �4 C 5�3 C 6�2 C 2� C 7

8�5 � 2�4 � 9�3 C �2 C 9

�12�5 � 11�4 � 4�3 � 5�2 � 7� � 3

4�5 C 13�4 C 13�3 C 4�2 C 7� C 8

�5�5 C 4�4 C 13�3 C �2 C 3� C 12

18�5 C 8�4 C 5�3 C 9�2 C 6� C 3

�13�5 � 12�4 � 18�3 � 10�2 � 9� � 15

1CA :
�e change of variables Pi sends L1 , L2 and L2Ci to xCy D 0 , xCz D 0 and
yCz D 0 respectively (we denote by Ai the arrangement .xCy/.xCz/.yCz/ D
0 ). �e images of Q by the changes of variables Pi are denoted by Qi , and
their equations are given in Appendix A. Since Pi is a linear change of variables,
we have

lk
i .Ai ;Q/ D lk
i .Ai ;Q
i
/:
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By �eorem 2.2, the linking invariant lk
i .Ai ;Q
i
/ is given by the linking numbers

of the cycle 
i with each component of the link L
Qi

de�ned in (1). We can take
as topological cycle Q
1 (resp. Q
2 ) the triangle formed by the lines x C y D 0 ,
xC z D 0 and yC z D 0 in the chart z D 1 (resp. y D 1 ) of RP2 . �ese charts
together with the cycles Q
i are represented in Figure 1.

�e link L
Qi

lives in the intersection of Qi with the boundary of the polydisk
P D T �D2 , where T is the disk of the real plane bounded by Q
i and where
D2 is a 2–disk intersecting all the components of Qi (see Section 2.1). �e
desired linking number can be computed as the algebraic intersection number of
L

Qi
with this disk T . Since we are working here with .Z=2Z/ -coe�cients, this

amounts to counting the parity of the number of intersection points.
In order to compute these numbers of intersection points between the interior

of the triangle T and the quartics Qi , we proceed as follows. First of all, we
choose an embedding of � in the �eld of complex number. In the following,
we take � D exp

�
2I�
7

�
' 0:62349C 0:78183i . �en, we decompose Qi into two

quartics QiRe and QiIm , obtained from Qi by taking only the real part (resp.
the imaginary part) of its coe�cients. Using the previous approximation of � ,
we have the following approximations

Q1Re '� 838:65x
4
C 1903:1x3y C 2540:3x2y2 C 2686:2xy3 � 4017:2y4C

1074:6x3z � 2073:7x2yz � 10166:xy2z C 28829:y3z C 7382:2x2z2�

13500:xyz2 � 14908:y2z2 C 5379:5xz3 � 3835:5yz3 � 456:29z4;

Q1Im '� 2525:0x
3y C 5338:2x2y2 � 9450:5xy3 C 12939:y4 � 2525:0x3zC

5824:0x2yz � 4948:5xy2z � 5115:5y3z C 485:83x2z2 C 8936:1xyz2�

17722:y2z2 C 4434:2xz3 C 2330:9yz3 C 1999:1z4;

Q2Re '2327:4x
4
C 28631:x3y C 105760:x2y2 C 115460:xy3 C 28853:y4�

22196:x3z � 114530:x2yz � 79537:xy2z C 22480:y3z C 9417:8x2z2�

107220:xyz2 � 116350:y2z2 C 64365:xz3 C 62192:yz3 C 348:69z4;

Q2Im '518:62x
4
� 5686:3x3y � 56227:x2y2 � 101110:xy3 � 35790:y4C

10085:x3z C 133160:x2yz C 275020:xy2z C 106780:y3z � 71462:x2z2�

187780:xyz2 � 76906:y2z2 C 9523:7xz3 � 961:76yz3 C 838:07z4:

�us, the real points of Qi correspond to those points on which both QiRe and
QiIm vanish; in other words, they correspond to the intersection points of these
two quartics considered in the real plane. �erefore, we count how many of
these real points lie in the disk T , since by de�nition, they are the intersection
points of L

Q
i with T . Using the previous equations, for each i , we depicts (see
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-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

For i D 1 , in the chart z D 1 For i D 2 , in the chart y D 1

Figure 1
Real part of Qi [Ai (Ai solid line, QiRe dashed line, and QiIm dotted line)

Figure 1) in the real plan the arrangement Ai (solid line) and the quartics QiRe
(dashed line) and QiIm (dotted line). In this way, we get that the value of Q
i in
H1.CP2 nQ

i
/=JAi is

�. Q
i / D

´
0 if i D 1;
1 if i D 2:

From these computations and using Remark 1.8, we have the following theorem
and its corollary.

�eorem 3.3. �e linking of the line arrangement Ai with the quartic Q along

i is

lk
i .Ai ;Q/ D
´
¹0º if i D 1;
¹1º if i D 2:

Corollary 3.4. �e curves Q [A1 and Q [A2 form a Zariski pair.

Remark 3.5. Since 
i generates H1.Ai / , we can also compute the global linking
of Ai with Q . It is given by:

L.Ai ;Q/ D

´
¹0º if i D 1;
¹0; 1º if i D 2:

Remark 3.6. �is result is in adequation with the computation of the connected
numbers of these curves made in [BTY].
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A. Explicit equations of the quartics Q
i

�e equations of the quartics Qi introduced in Section 3.2 are given by:

Q1 W .343�5 C 343�2 � 686/x4C
.�2058�5 C 4802�4 C 2058�3 � 4802�2 C 1715� C 5488/x3yC

.�1029�5 � 26754�4 � 14406�3 C 7203�2 � 10290� � 26754/x2y2C

.�1029�5 C 37044�4 C 17493�3 � 17150�2 C 18865� C 36015/xy3C

.�2401�5 � 19551�4 � 4802�3 C 10633�2 � 7889� � 19208/y4C

.�2058�5 C 7546�4 C 4802�3 � 4802�2 C 1715� C 9604/x3zC

.�2058�5 � 20580�4 � 6174�3 C 8232�2 � 13377� � 16464/x2yzC

.27783�5 C 14406�4 � 3087�3 C 16464�2 C 17493� � 1029/xy2zC

.�18865�5 � 1372�4 � 343�3 � 19894�2 � 5831� C 22295/y3zC

.�11319�5 C 2058�4 C 4116�3 � 9261�2 � 3087� C 10290/x2z2C

.3087�5 � 10290�4 � 3087�3 C 12348�2 � 4116� � 19551/xyz2C

.14406�5 C 14406�4 � 1029�3 � 1029�2 C 5145� � 3087/y2z2C

.�6517�5 � 4116�4 C 1029�3 � 2058�2 � 2744� C 2401/xz3C

.1715�5 C 4116�4 C 3773�3 C 2058�2 C 2744� C 2401/yz3C

.�1715�4 � 343�3 C 1715�2 � 343� � 1715/z4 D 0:

Q2 W .13720�5 � 6174�4 C 16121�3 C 1029�2 C 4116� C 12005/x4C
.34300�5 � 19208�4 C 13720�3 � 24696�2 C 48020� � 4116/x3yC

.�88494�5 � 69972�4 � 51450�3 � 129654�2 � 30870� � 32928/x2y2C

.�94668�5 � 111132�4 � 107016�3 � 127596�2 � 90552� � 74088/xy3C

.686�5 � 49735�4 � 56595�3 � 15092�2 � 22295� � 56252/y4C

.�94668�5 C 10976�4 � 26068�3 � 42532�2 � 31556� � 46648/x3zC

.�49392�5 C 49392�4 � 78204�3 C 176988�2 � 41160� � 86436/x2yzC

.139944�5 C 209916�4 C 102900�3 C 288120�2 C 226380� C 156408/xy2zC

.58996�5 C 214032�4 C 127596�3 C 56252�2 C 187964� C 238728/y3zC
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.104958�5 C 98784�4 C 69972�3 C 32928�2 C 14406� C 183162/x2z2C

.�8232�5 � 176988�4 C 107016�3 � 152292�2 � 218148� � 69972/xyz2C

.�80262�5 � 183162�4 C 12348�3 � 67914�2 � 222264� � 164640/y2z2C

.23324�5 C 37044�4 � 32928�3 � 58996�2 C 153664� � 35672/xz3C

.�78204�5 � 117992�4 � 93296�3 � 16464�2 � 91924� � 91924/yz3C

.117992�5 C 114219�4 � 4116�3 C 79919�2 C 114219� C 72373/z4 D 0:
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