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ANOTHER EXAMPLE OF A EUCLIDEAN RING

The complex numbers a--bi (¢ and b are ordinary integers) form the ring of

Gaussian integers,
From the definition of a product

(a+bi) (c+di) = (ac—bd)-+{ad+be)i,
on defining the “norm” of a number &« = a+5&i by
N(e) = (a+bi) (a—bi) = a®+ b2,

we easily derive the equation

N

N(=B) = N(=)- N(B). (.12
The norm N(x) is an ordinary integer which, being the sum of two squares,
vanishes only when o vanishes, and which is positive in any other case. From
(3.12) it follows that a product.«f vanishes only when « or 8 vanishes; hence the
ring is an integral domain,
According to Section 3.3, a quotient field exists. If « = a+5i + 0, then

-1 _a—bi
N’ .
thus the numbers of the quotient field may be expressed by (a/n)+(b/n)i (a, b, n

are integers). These “fractional numbers™ form the “Gaussian number field.”

The definition of the norm and equation (3.12) hold for the elements of this field
as well. ‘

In order to arrive at a division algorithm for the ring of the Gaussian integers,
we have to find for a given @ and 8 < 0 a number «—A8 having norm less than 8.
Let us first determine a fractional number A’ = a’-+5'f so that a—A'f = 0; then

let us replace a’ and b’ by the nearest integers @ and b, and put A = a+bi,
A"—X = & Then we have

a—AB = a—A'B+f = B
N(x—2g) = N(e)N(B)
N(e) = NA' =) = (@’—a)* +(b'-b)? = (%)2+(%)2<1
N(z—2B) < N(B).

Thus we have found a “division algorithm,” which proves that the ring is a
Euclidean ring. '° :

L0 Bibliographic note: Concerning the question whether the Euclidean algorithm or its
generalization exists in arbitrary principal ideal rings, see H. Hasse in J. reine x, angew.,
Math., 159, 3-12 (1928). Investigations as to the question in what algebraic number rings the
Euclidean algorithm is valid were carried out by Q. Perron (Math. Ann., Vol. 107, p. 489),
A. Oppenheim (Math. dnn., Vol. 109, p. 349), E. Berg (Kgl. Fysiogr, Sillskapets Lund
Forhandl. Vol. 5N 5), N. Hofreiter (Mh. Math. Physik, Vol. 42, p. 397), H. Behrbohm and
L. Redei (L. reine u. angew. Math., Vol. 174, p, 198).
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3.8 FACTORIZATION
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= b(p) in the given ring may, of course, readily be seen
= 1. For this implies

1 = ar-t+ps
b = arb+pshb
b = arb(p).

We infer at once: If a product is divisible by the prime element p, so is one of the
for the residue class ring has no divisors of zero.

Exercises

325. Solve the congruence
6x = (19)

using the Euclidean algorithm.
If in a principal ideal ring a product ab is divisible by ¢ and « is not

3.26.
divisible by ¢, then b is divisible by c.

We are now in a position to prove the theorent of uniqueness of prime factoriza-
tion in principal ideal rings. Let
a=pPr- -Pr =192 -4s

be two factorizations of the same number a in a principal ideal ring. We shall
exclude the trivial case where @ is & unit and where, consequently, all p; and ¢;
are units. Then we may assume that p, and ¢, are not units, and that all possible
units among the factors p; and g; are combined with the factor p, and ¢4,
respectively. Thus let the p; and g, not be units. Now we state: r = s, and the

1, except for their order and for unit factors.
nce @ = p, is prime, the product g, ... ¢,

Thus we may proceed by induction on r.
p, must divide one of the factors g;. With

(3.12)

p; and g are identica
For r = 1 the proof is clear, for si

can contain only one factor g, = p;.
Since p, divides the product g, .. . qs
the g rearranged, p, will divide g,
gy = &1P,-
Here ¢, must be a unit, or else ¢, would not be prime. Substituting (3.13) in
(3.12) and dividing by py, we obtain
P2 P = (e192)43 - - - U5

factors on the left and right side of (3.14)
factors. Since p, is identical with ¢, except

(3.13)

(3.14)

By the induction hypothesis, the
must be the same, except for the unit
for the unit factor 4, the proof is completed.

From the theorems proved we infer: The elem
uniquely expressible as products of prime elements,

ents of a Euclidean ring are
except for units and for the
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order of the factors. This is true in particular for the integers, for the polynomials
in one variable with coefficients from a field, and for the Gaussian integers.

Exercises )
3.27. The integral polynomials J{x) modulo any-prime number p are uniquely
decomposable into factors which are irreducible modulo p.
3.28. What are the units of the Gaussian number ring? Decompose into prime
factors the numbers 2, 3, 5 in this ring,
3.29. For the number 4 in the ring of the numbers a+ 5./ -3 there are two
substantially different factorizations into -prime factors:

4=22=(1+/=3)A—/3).

3.30. Inaprincipalideal ring the residue classes modulo o consisting of elements
relatively prime to a form a group under multiplication.

In Chapter 5 we shall see that there are rings other than principal ideal rings
for which the unique factorization theorem holds, For all such rings we shall
now prove the following theorem. ‘

Theorem: If in o every element Jactors uniquely into prime elements, then every
prime element p generates a prime ideal, and every nonprime element distinct from
zero generates a nonprime ideal.

Proof: Let p be prime. If ab = 0(p), then the factor p must occur, when ab
is factored, This factorization, however, is obtained by combining the factoriza-
tions of ¢ and b; therefore, the factor p must already occur in @ or b, whence
a = 0(p) or b = O(p).

Now let p factor: p = ab, where g and b are proper divisors of p. Then it
follows that ab = 0(p), ¢ = 0(p), b % 0(p). Therefore the ideal (p) is not prime.

Exercise

3.31. Prove that for all rings with unique factorization every two or more
elements have a “greatest common divisor” and a “least common
multiple,” both of them being determined except for unit factors.

Remark: For rings of the kind considered, the g.c.d. in the sense of an element
is not always the same as the g.c.d. in the sense of an ideal. For example, in the
polynomial domain of a variable x with integer coefficients the clements 2 and x
have no common divisors except units; but the ideal (2, x) is not the unit ideal.
(In Chapter 5 it will be proved that there is unique factorization in this ring.)

Chapter 4

VECTOR SPACES
AND TENSOR SPACES

41 VECTOR SPACES

i hich are called coefficients
be a skew field with elements a, b, .- whi .
. l(l)s I§2)GSJE be a module (that is, an additive Abel.lalll grf)up) with demel‘lttﬁ
or e \:vhich are called vectors, and (3) xa be a multiplication of vectors wi

.:é:;;rs with the following properties:
V1. xa lies in .
V2, (x+y)a = xatya.
V3. x(a+b) = xa-+xb.
V4. x(ab) = (xa)b.
V5. xl =x. - e
If these requirements are fulfilled, then M is called a vector space ov s

more precisely, a right K vector space, since the coefﬁf:ient; a s;an;l ;1(()) tI:; g?ttgi
the vectors. The concept of a left K vector space 15 defined a g ;
associative law V4 for a left vector space reads
V4 (ab)x = a(bx). . e
1f K is commutative, we may also write xa in plaf:e of ax. A ng?att;r‘?:tcz; :Il:a::e
thus becomes a left vector space. If, however, K is not commu \

istingui i tor spaces.
tinpnish between right and left vec ' .
mlii;[ed\:fsrilteg;ab rather than x(ab) or (xa)b. The zero element of Mt is denoted by

j the zero element for K. . .
Ojlgita?;ples of vector spaces are all extension fields of a field X and, mo

generally, of all rings R containing a skew field X as long as the unit element of
K is also a unit element of R.
From V2 it follows as usual that
(x,+ - +x)a=xa+ " +x4a
(x—yla = xa—ya
| 0z=0,
Al
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of the columns are given. The following example (# = 3, a¢ = 0, Aay =1,
A%a, = 6, A*qq = 6) will explain the computation:

0 o =0
1
1 6 A =1
7 6
8 12 N =%=13
19 6
27 18 A =E=1
37 6
64 24
61
125

FO) = Ao+ Agx+Agx(x— 1) +Asx(x —1) (x—2)
= x+3x(x—D+x(x—1) {x—2) = x°.

By an arithmetic series of Oth order we shall mean a sequence of identical
numbers ¢, ¢, ¢, ..., and by an arithmetic series of nth order a sequence of
numbers such that its sequence of differences is an arithmetic series of (n—1)th
order. Then it is obvious that the first column of the array (5.13) forms an
arithmetic series of the nth order, provided the (#+2)th column consists of zeros
only. Consequently, what was proved above may be formulated as follows.

The values of a polynomial (%) of degree n at the points 0, 1, 2, 3,...form
an arithmetic series of the nth order, and every arithmetic series of the nth order
consists of the values of a polynomial of at most degree n at those points. The poly-
nomial f(x) itself is obtained from (5.7) and (5.14). Thus the generic term a, of
an arithmetic series of order # is given by the formula

. Az A,n
a, = f(x) = ap+(Aag)x+ 2a0 x(x—1)+-+ ;0 x(x=1...(x—n+1).

A practical application of the array of differences {5.13) can be found in the
interpolation and integration of functions given by numerical tables (for example,
by tables obtained empirically). If @, @y, @3, ... ar€ the values of a function
@(x) for equidistant argument values wo, @g-+/, eg+2h, ..., it will be seen
that, for well-behaved functions and for not too great an interval /1, the second,
third, fourth, or in the worst case the fifth difference becomes practically zero,
which shows that in some adjacent intervals the function behaves almost exactly
like the polynomial of at most degree four. Thus, for numerical interpolation or
integration, the function may be replaced by the polynomial which assumes the
table values at two to five successive points. Interpolation is carried out by means
of formula (5.7). In most cases linear or quadratic interpolation is sufficient,
which means that only the first and second differences are needed, and the higher
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ones may be neglected. When differences A¥g, are converted into difference
quotients, powers of the length of the interval s appear besides the factors k!;
accordingly, instead of (5.14), we must use the formula

Aag

A = LT

For argument values «g, %, . . . 0O longer equidistant we must form difference
quotients (5.12) right at the outset instead of the differences A*q,. Further dctallf
of the computation as well as error estimates will be found in special text books.

Exercises

5.5. The partial sums s, = Ymsa, of an arithmetic series of the nth order
(where 5o = 0) form an arithmetic series of the (n+1)th order. Derive
from this the formula for the sum

m n
8y = ma0+(r;)Aa0+---+(n+l)Aao.

H -1 -1_2 -1_3
5.6. Furnish formulas for the sums ;2o v, v YoV

5.4 FACTORIZATION

We saw already in Section 4.1 that the theorem on unique factorization holds
for the polynomial domain K{x], where Kis a commutative field. We shall pro-
ceed to prove the following more general main theorem.

Theorem: If S is an integral domain with an identity, and if the unique factoriza-
tion theorem holds in S, then the same theorem holds for the polynomial domain
S[xl.

The proof is due to Gauss.

Let f(x) = Ysax' be a polynomial in ©jx] distinct from zero. The greatest
common divisor d of ag, - « . , @, in & (cf. Exercise 3.31) is called the content of
f(x). Factoring out d, we have

f(x) = d-glx),

where g(x) has the content 1. Both g(x) and d are uniquely determined, except f.or
unit factors. Polynomials having content 1 are called primitive polynomials (with

respect to ©). o
Lemma 1: The product of two primitive polynomials is itself primitive.

1For example, Kowalewski, Interpolation und gendherte Quadrarur (Leipzig, 1930).
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Proof: Let

SO = agtapit -
and

8(x) = bot+byx+---

be primitive polynomials. Let us suppose the coefficients of f(x)-g(x) have a
common divisor d other than a unit. If pis a prime factor of d, then P must divide
all coefficients of f(x)g(x). Let a, be the first coefficient of f(x) not divisible by P
(it must exist; otherwise f(x) would not be a primitive polynomial); similarly,
let b; be the first coefficient of &(x) not divisible by p.

The coefficient of x"** in f(x)g(x) is of the form

arbs+ar+1bs—1 +ar+2bs_—2:_|_ te
Fa_1boi it sbg

The sum is supposed to be divisible by p. All terms except the first term are divisible
by p. Hence, a,b, must be divisible by p; thatis, either 4, or b_ has to be divisible by
P, contrary to the assumption,

Let  be the quotient field of S (Section 3.3). Then every polynomial in Z[x]
can be factored uniquely (Section 3.8). In order to pass from the factorization
in Z[x] to that in S[x], we utilize the following fact: Every polynomial g(x) of
Z[x} may be written in the form [F)/b (F(x) in ©[x], b in ), where b is, say,
the product of the denominators of the cocefficients of @(x). Moreover, we may
express F{(x) as the product of its “content by a primitive polynomial”:

Fx) = a-f(x),

#x) = /(3. (5.15)

Now we state the following.

Lemma 2:  The primitive polynomial f(x) occurring in (5.15) is uniquely deter-
mined by o(x) up to units of S. Conversely, ¢[x] is by (5.15) uniquely determined
by f(x) up to units of Z[x]. If in this manner we assign to each ¢(x) of Z[x) a
primitive polynomial f(x), then to the product of two polynomialy o(x) - $(x) there
corresponds, up to units, the product of the respective primitive polynomials (and

vice versa). If o(x) is irreducible in Z[x), then f(x) is irreducible in &lx] (and con-
versely).

Proof: Let two different expressions for @(x) be given:

#0) = L/ = 8.

Then
adf(x) = chg(x) (5.16)
follows.
The content of the left side is ad, that on the right side, cb ; hence
ad = ech

il
i

AT AT T T o
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where ¢ 1s a unit in &. Substituting it in (5.16) and dividing by ¢b, we get

f(x) = g(x).

Thus f(x) and g(x) differ from one another only by a unit in .
For the product of two polynomials

#() = 5 1)

e
l}(x) = Eg(x)s
we obtain at once

P00 4(x) = = 108,

By Lemma 1, f(x)g(x) is again a primitive polynomial. Thus the product f(x)- g(x)
corresponds to the product o(x)-y{x). N

If, finally, ¢(x) is indecomposable, so is f(x); for a decomposition f(x) =
g(x)A(x) would immediately imply a decomposition

?0) = 216) = £ 209,

The converse can be proved in a similar fashion.

This completes the proof of Lemma 2. .

By virtue of Lemma 2, the unique factorization of the .polynomlals cp(x) may
readily be applied to the respective primitive polynomiais. Hence.: Primitive

polynomials may uniquely (up to unit factors) be decomposed into prime factors
which are themselves primitive polynomials.

Let us now turn to the factorization of arbitrary polynomials in Slx]. A
polynomial which does not factor is necessarily either a pr?me constant or an
irreducible primitive polynomial, for any other polynomial factors into _1ts
content times a primitive polynomial. To factor a polynomial f(x), then, write
it as content times a primitive polynomial, and factor these two parts into prime
factors. The first part can be so factored (uniquely except for unit factors). by
the hypothesis of our main theorem; so can the second, by what we have just
proved. This completes the proof of the main theorem.

The following assertion is an additional result of the proof,

If a polynomial F(x) in C[x] factors in Z[x), then it factors in C'S[x].

For if we put F(x) = d-f(x), we obtain a primitive polynomial f(x) corre-
sponding to the polynomial F(x), and according to Lemma 2 a factorization of
F(x) in Z[x] entails one of f(x) in S[x]. Thus, if f(x) factor.s, so does F(x).

For example, a polynomial with integer coefficients which factors when we
allow rational coefficients must also factor using integer coefficients. Thus, if a
polynomial with integral coefficients cannot be factored using integral coefficients,
it also cannot be factored using rational coefficients.
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By induction we obtain another result from the main theorem.

If © is an integral domain with an identity element, and if the unique factorizq.
tion theorem is valid in S, then this theorem is likewise valid in the polynomigl
domain S[xy, ..., x,].

From this théorem follows, for example, the unique factorization for poly-
nomials with integer caefficients (in any number of variables), for polynomials
with coefficients in a field, and so on.

The concept of a “primitive polynomial,” introduced in the Gaussian lemmas
above, is particularly useful whenever we are dealing with polynomial domaing
in several variables. If K is a field, then a polynomial f of Klxy, ..., x,)is called
primitive with respect tox,, . . ., x -y if it is primitive with respect to the integral
domain Kix,, ..., x,_,], that is, if it does not have a nonconstant factor that
depends only on x, ..., Xp—1-

Exercises

5.7.  The only units in S[x] are those in &,

5.8.  Prove that the factorization of a homogeneous polynomial yields only
homogeneous factors. :

5.9.  Prove that the determinant

Xig . Xy
A =
L3 I
is irreducible in the polynomial domain Slx1ys -y X,). (Select one
indeterminate, say x,,, and show that A is primitive with respect to the

others.)

5.10. Establish a rule to decide whether a polynomial with integer coefficients
has a factor of the first degree.
5.11.  Prove the irreducibility of the polynomial

x*—x?+1

in the polynomial domain of the indeterminate x over the ring of integers.
Is the polynomial reducible when rational coeflicients are allowed? Is it
reducible over the ring of Gaussian integers?

5.5 IRREDUCIBILITY CRITERIA

Let G be an integral domain with an identity element in which unique factoriza-
tion holds. Let

Jx) = ag+ayx+- - +axn
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be a polynomial in &[x]. The following theorem frequently supplies information

as to the irreducibility of f(x). '
Eisenstein’s Theorem: If there exists a prime element p in & such that

a, * 0(p)
a, = 0(p) foralli<n
dy ElE 0(102)’

then f(x) is irveducible in ©[x], except for constant factors; in other words, f(x)
is irreducible in X[x], where X is the quotient field of ©.
Proof: Let us suppose f(x) factors:

J(x) = g(x) hlx),

glx) = 20} byx",

hx) =3 ex,
0

r>0, 5>0, r+s=n;
then we would have ‘
ag = byey and ay = 0(p).

1t follows that either by = 0(p) or ¢o = 0(p). Let, for example, b, = 0(p). Then
¢o % O(p), or else we would have ag = boc, = 0(p?). _

Not all the coefficients of g{x) are divisible by p, for ‘othervguse the. product
J(x) = g{x)-h(x) would be divisible by p, and all coefﬁments, in particular a,,
would be divisible by p, which contradicts the hypothesis. Thus let &; be the first
coefficient of g(x) not divisible by p(0 <i<r<n). Then

a; = biC0+bi_lcl+ e +boc,'

a, = 0(p)
bi—, = 0(p)
bo = 0(p);
hence
bieg = 0(p)
¢y = 0(p)
b; = 0(p),

contrary to the hypothesis.

Hence f(x) is irreducible, except for constant fac.tors. _
Example 1: x"—p(p prime)isirreducible over the ring of 1ntegers.(and .therefore
also over the field of rational numbers). Hence J/p(m>1, p prime) is always

irrational.
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Example 2: f() =xP"14xPT24 4T ds t
?quatlon” if p is a prime number. We aga
Integers. The Eisenstein criterion canno

as follows: If f(x) were reducible, f(x+ 1) would be also, Now we have

Fed1) = %_—_11 _ ""*(‘i’)x”‘1+ ---’+(Pfl)x

X

=xp_1+(?)xp—2+...+( P )
p—1

A.Il coefficients, except that of x?~ ! are divi
binomial coefficients

(p) zp(p—l)---(p—iH).

i il

the numerator is divisible by p for i < j:2

the constaat s but not the denominator. Furthermore,

(pfl) —7

c J(x+1) is irreducible, and so is Ji(x).
= x*+ 1 the same transformation leads to a decision, since

1s not divisible by p2. Hence
Example 3:  For f(x)

Jx+1) = x*+2x42,

Exercises

5.12. Prove the irrationalit m
. y of Wpip, ... p., wh
prime numbers and m > 1, Vpira- .o whers v
5.13. Show that

s Py are different

x4y -1

is irreducible in Pfx, y], where P is any field i .
5.14. Show that the polynomials d nwhich +1 + 1,

x* 41, xS4xt+]

are irreducible in the polynomial domain over the integers

Basically, the Eisenstein theorem rests on the fact that the equation

Jx) = g(x)-h(x)

Is transformed into a congruence modulo P*, namely

() = g(x) h(x),

. he le'ft member of a “cyclotomic
in ask for irreducibility over the ring of
t be applied directly, but we can reason

sible byﬂp; for in the formula for the
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which leads to an absurdity. In many other cases it is likewise possible to furnish
;reducibility proofs by transforming the equations into congruences, modulo

. some quantity g of the domain ©, and by investigating whether the polynomial
1) under consideration can be resolved modulo g. If, in particular, & is the
- “domain of the integers Z, then there are only a finite number of polynomials of a

 given degree in the residue class domain modulo ¢; hence there are always but a

finite number of possibilities of a resolution of f(x) modulo ¢ that have to be
jnvestigated. If it is found that f(x) is irreducible modulo g, then f(x) was also
irreducible in Z[x], and even in the opposite case we might be able to draw
conclusions from the decomposition modulo g. In the case where ¢ is a prime
pumber we may apply the unique factorization theorem of the polynomials
modulo g (Exercise 3.27).

Example 4: & = Z;f(x) = x° — x2+ 1. If f{») factors modulo 2, then one of the
factors has to be linear or quadratic. Now there are but two lincar polynomials

modulo 2:
X, x+ 15

and but one irreducible quadratic polynomial:
x4x+1.

On performing the division, we see that x% —x*+1 is not divisible by any of these
polynomials (modulo 2). This can be seen directly from

-1 =3 =D+1 = e+ 1)+ x+ D+

Hence, f(x) is irreducible.

5.6 FACTORIZATION IN A FINITE NUMBER OF STEPS

Thus far we have only scen that there is a theoretical possibility to decompose
into prime factors any polynomial in % [xy, ... ,x,] for a given field £, and in
some instances we have provided the tools for actually furnishing a decom-
position, or for showing the impossibility; yet we still lack a general method for
performing the factorization in a finite number of steps for any case that may
present itself to us. We proceed to develop such a method at least for the case
in which = is the field of rational numbers:

According to Section 4.5, we may assume the coefficients of any rational
polynomial to be integers, and we may perform its factorization in the domain of
integers. In the ting Z of the integers itself a factorization into primes can
evidently be performed by a finite trial and error method; furthermore, there
are only a finite number of units (+1 and —1) in the ring Z, and hence a finite
number of possible factorizations. Similarly, in the polynomial domain
Z[x,, . . . , X,] there are only the units +1, —1. By the method of induction on
the variable number # we shall now reduce everything to the following problem.



98 POLYNOMIALS

Let any factorization in © be performable in a finite number of steps: moreover,
let there be only a finite number of units in S, We wish to find a method of, Jactoring
every polynomial in S[x] into prime factors.

The solution is due to Kronecker. :

Let f{x) be a polynomial of degree # in S[x]. If f{x) can be factored, then one
of the factors is of degree <n/2; thus, if s is the greatest integer < /2, we must
investigate whether f(x) has a factor g(x) of degree <.

We form the functional values f(a,), f(a,), . . ., f(a,) for s+1 integral argu-
ments g, 4y, . . . , @, If f(x) is to be divisible by g(x), then f{a,) must be divisible
by g(ao), and f(a,) by g(a,), and so on. However, every f(a;) in © possesses only a
finite number of factors; therefore, for every g(a;) there are only a finite number
of possibilities all of which may be found explicitly. For every possible combina-
tion of values g(a), g(ay), - . - , g(a,) there is, according to the theorems of Section
4.4, one and only one polynomial g(x) which may be formed by Lagrange’s or,
more conveniently, Newton’s interpolation formula. In this way a finite number
of possible factors g(x) are found. Employing the division algorithm, we may
now find out whether each of these polynomials g(x) is actually a factor of f(x).
If, apart from the units, none of the possible g(x) is a factor of f(x), then f(x)is
irreducible; otherwise, a factorization has been found, and we may proceed to
apply the same procedure to the two factors, and so forth. In this manner we
finally arrive at the irreducible factors.

In the integral case (& = Z) the procedure may frequently be shortened
considerably. By factoring the given polynomial modulo 2 and possibly modulo
3, we get an idea what degrees the possible factor polynomials g(x) might have,
and to what residue classes the coefficients modulo 2 and 3 might belong. This
limits the number of the possible g(x) considerably. Moreover, when applying
Newton’s interpolation formula, one should note that the last coefficient A, must
be a factor of the highest coefficient of f(x), which limits the number of possi-
bilities still further. Finally, it is an advantage to use more than s+1 points ¢

{preferably 0, 1, +2 and so on). For determining the possible g(a;) we use
those f(a;) which contain the least number of prime factors; the other points
may afterwards be used in order to limit the number of possibilities still further

by examining each g(x), and to see whether it assumes values which are factors
of the respective f(a;) at all points «;.

Exercises
5.15. Factor
() = X +x* 4+ X2+ x42
in Z[x].
5.16. Factor

3,2 = =X =y =24+ XMy + D)+ y2x+2) + 22 (x+y) — 2xpz
in Z[x, y, z].
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