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THE NUMBER ¢
J. L. COOLIDGE, Harvard University

1. The Greek beginning. The distinguished American mathematician, Ben-
jamin Peirce, was wont to find all of analysis in the equation

i~ = +/em.

In fact, he had his picture taken in front of a blackboard on which this mystic
formula, in somewhat different shape, was inscribed. He would say to his hearers,
“Gentlemen, we have not the slightest idea of what this equation means, but we
may be sure that it means something very important.”

With regard to the symbols which appear in this charm, there is a vast
literature connected with 7; and 7, when written +/—1, leads into the broad field
of analysis in the complex domain; but it seems surprisingly difficult to find a
connected account of e.

I think we may make a fair beginning with the twelfth proposition of the
Second Book of Apollonius, Conics, which tells us that if from a point on a
hyperbola lines be drawn in given directions to meet the asymptotes, the prod-
uct of the two distances is independent of the position of the point chosen on the
curve. This theorem is more general than we shall need to arrive at the number
e, and it is not original with Apollonius. Let us confine ourselves to the very spe-
cial case where the hyperbola is rectangular, ahd we draw to each asymptote
a line parallel to the other. When x and y are distances, we may write

(1) xy = 1.

It is intriguing to inquire who first discovered the theorem which leads to
this equation. In the commentary of Eutocius on the Sphere and Cylinder of
Archimedes [1], we come to a discussion of the classical problem of inserting
two mean proportionals between two given lengths. In one solution, which he
labels “ut Menaechmus,” we have what amounts to the equations

a/x = x/y = y/b;

2]
& y? = bx; xy = ab.

He goes on to seek the intersection of a parabola and a hyperbola.

Eutocius’ statement would place the theorem very early in the history of the
conics, for Menaechmus is usually regarded as the discoverer or inventor of
these curves, although this ascription is by no means certain. Allman writes [2],
“It is much to be regretted that the two solutions of Menaechmus have not been
transmitted to us in their original form. That they have been altered either
by Eutocius or by some author whom he followed appears not only in the em-
ployment in these solutions of the terms parabola and hyperbola, as has fre-
quently been pointed out, but more from the fact that the language used in
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them is, in character, altogether that of Apollonius.” A similar doubt is shown
in Loria [3]. On the other hand, Heath is perfectly definite on this point; he
states, “This property in the particular case of the rectangular hyperbola was
known to Menaechmus” [4].

But there is another reason for doubting the ascription to Menaechmus,
aside from the linguistic objection. The classical Greek discussion of the conics
always corresponds to our analysis when the axes are a tangent and the diameter
through the point of contact, and with these data proofs are not simple. Heath,
following Zeuthen, shows the fact that the hyperbola can be written immedi-
ately in the form (1) if we start with a technique like ours, that is, when the axes
are a pair of conjugate diameters [5]. That is perfectly true, but the Greeks
made surprisingly little study of the conics when expressed in this form more
familiar to us; Apollonius comes to it quite late. It seems to me altogether
doubtful that the first discoverer of the curves should have been able to make
the transition.

2. Grégoire de St. Vincent. If we grant that the Greek mathematicians, per-
haps Menaechmus, were familiar with the fundamental property of the rec-
angular hyperbola expressed in (1), what has this to do with ¢? We must look
ahead some two thousand years to that original writer whose name appears at
the head of this paragraph. In 1647, he published his fundamental Prologomena
o Santo Vincento, Opus geometricum quadraturae circuli et sectionum cons. This 1
have not seen in its original form, but the content is given at great length by
Bopp in [6]. Here is the general scheme. We take the hyperbola

(1) xy = 1.
On the x axis we take # equivalent rectangles whose bases are
PPy, PPy, - -+, Py_1 P,
while each has an upper vertex on the curve Q;. Then,

PoPy-PoQo = P1Py-PiQy = PoP3-PyQy = - -+,

and
@ PoQo _ PP, : POy _ PyPs
PiQ1 PPy PyQy PP
but
OPy-PoQo = OP1-P1Qy = OP2-PyQy - - -,
so that

0Py POy PPy OP .
= = = » by composition.
O.Pl PoQo P1P2 0P2
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If
@) OP; = pOP,  then  OP; = piOP,.

St. Vincent even treats the case where OPy and OP; are incommensurable,
but we need not follow him here.

The importance of this equation was early recognized, because of its connec-
tion with logarithms which were based on the relation of arithmetical and
geometrical series. There is a good deal to be said in favor of the thesis that
the credit for relating the rectangular hyperbola with logarithms is due to
Sarasa. I have not seen his work, but like Cantor, I rely on Kistner. In 1649,
Sarasa published Solutio Problematis o R. P. Marino Mersenno propositi. This
was concerned with the problem: Given three positive quantities and the
logarithms of two of them, find the logarithm of the third. Kastner writes [7],
“Zu ihrer Beanwortung brang Sarasa drey Saetze aus des Gregorius Buche von
der Hyperbel bey, die betreffen Flaechen der Hyperbel an der Aysmptoten,
Sarasa erinnert wie das mit Logarithmen zusammenhangt.” Cantor’s view is
similar [8]; he states, “Mit andern Worten, Gregorius hatte das Auftreten von
Logarithmen bei der erhihnten Flichenraumen erkannt, wen auch nicht mit
Namen genannt. Letzteres that Sarasa, und darin liegt das wirkliche Verdienst
seiner Stratschrift.”

A contrary view is expressed by Charles Hutton [9] in the words, “As to
the first remarks on the analogy between logarithms and hyperbolic spaces, it
having been shown by Gregory St. Vincent . . . that if an asymptote be divided
into parts in geometrical progression, and from the points of division ordinates
be drawn parallel to the other asymptote, they will divide the space between the
asymptote and the curve into equal portions, from hence it was shown by
Mersenne, that by taking continual sums of these parts there would be obtained
areas in arithmetical progression which therefore were analogous to a system of
logarithms.”

This may be true, but I must point out that whereas St. Vincent published
the work referred to above in 1647, Mersenne died in the middle of 1648, and
the dates of all of his mathematical writings which I have seen were much
earlier. However, St. Vincent’s work was certainly well observed. We find Wallis
writing in 1658 to Lord Brouncker [10], “Sumptis (in Asymptoto) rectis NH,
NI, NK, NQ, NL, NM geometrice proportionalibus, in punctis H, I, K, Q, L,
M, ducantur rectae parallelae alteri Asymptoto, spatium Hyperbolicum
A B H M in quinque partes dividi ostendit Gregor de Sancto Vincento (si
memini) decimo.”

3. The introduction of logarithms. The actual word logarithm occurs again
in an account of Gregory's Vera circuli et hyperbolae quadratura, which was pub-
lished in Padua in 1667 and laid before the Royal Society [11]. Here we read,
“And lastly by the same method he calculates both the logarithm of any natural
number, and, vice versa, the natural number of any given logarithm.” Perhaps
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the wisest word on the subject has been pronounced by the kindly old writer
Montucla [12], “Au reste la découverte de cette propriété est revindiquée par
divers autres géométres.” Among these I surely must mention Christian
Huygens, who acknowledges the work of St. Vincent, even though he does not
claim for himself the discovery of the relation between the hyperbola and
logarithms. This is admirably set forth in [13], first in a French account, then
Huygens’ own Latin. He finds the areas bounded by the x axis, which is an
asymptote, the curve and ordinates. Two such areas terminating by the same
ordinate of 1 are

Area FGDE  log. FG
Area ABDE log. 10

= 10g1o FG.

Huygens divides numerator and denominator by 32, which amounts to finding
the 32nd root of each area, but this has the effect of so far closing up the figure
that we may safely replace the hyperbola by a parabola whose outside area is
known. He checks by finding a very good value for logy 2.

In the same year, 1661, Huygens finds another curve which he calls logarith-
mic but we should probably call it exponential. This curve has the property
that the ordinate corresponding to the point mid-way between two given points
of the x-axis is the mean proportional between their ordinates. The equation
of the curve is y=ka®. Huygens takes

lo
4 y = 2%, g = g Xo.
log 2
The constant subtangent is
ydx %o
®) T T
dy  log. 2

Huygens takes
%0 = 10" logye 2.
This gives for the constant subtangent
logio e = .43429448190325180,
“qualium logarithmus binarij est”

.30102995663981195.

These numbers had long been known as they had appeared, for instance,
in Briggs’ Arithmetica logarithmica of 1624, pages 10 and 14. As a matter of fact,
there appeared in 1618 a second edition of Wright’s translation of Napier’s
Mirifici Logarithmorum Canonis Descriptio which contained an appendix, prob-
ably written by Oughtred, giving the natural logarithms of various numbers
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from 100,000 to 900,000. This is probably the earliest table of natural logarithms,
although a very similar table by John Spidell appeared in 1619 [14].

The astonishing thing about all of those writers who connected logarithms
with hyperbolic areas is their lack of interest in what we should call the base.
Napier began by considering the-relation between an arithmetical and a geo-
metric series. A geometric series consists in successive powers of one number.
What is that number? Or given a set of logarithms, what number has the
logarithm 1? I mentioned that Briggs gave the logarithm of e, to the base 10
but I find no mention of ¢ itself. Of course, we might write

107 4 Ax

X
10 log]()" — = 10 logg 1 -l-
10” (

A
10"

)logwe=Axlogme+ ceey,

but e itself does not appear. The fact is that there was no comprehension that a
logarithm was essentially an exponent. Tropfke is very explicit in this point; he
writes, “Freilich diirfen wir nicht an die moderne Erkldrung der Logarithmen
denken, die in ihnen Potenzexponenten einer bestimmten Grundzahl erkennt.
Diese Auffassung machte sich erst um die Mitte des achtenten Jahrhunderts
geltend” [15]. This is perhaps too strong a statement, for in a note on the same
page he quotes James Gregory (whom he calls David Gregory) as saying in his
Exercitationes Geometricae of 1684, p. 14, “Exponentes sunt ut logarithmi.” I
have not been able to verify this, but we find in [16], “Si seriei Termonorum in
Progressione geometrica ab 1 continue proportionalium, puta

1, 2, 4, 8, 16, 32, 64, etc.

accomedetur series Indicum, sive Exponentium, in progressione ab o continue
procedentium, puta

0,1, 2 3, 4,5, 6, etc.

Hos exponentes appelabant Logarithmos.” We could not well ask for anything
clearer or more explicit.

If most writers did not look on logarithms as exponents, how did they con-
sider them? I think we find the clue in St. Vincent’s identification of logarithms
with hyperbolic areas, remembering that these were the days of Cavalieiri and
Roberval, when an area was looked upon as the same thing as an infinite number
of line segments, a very helpful if dangerous definition. We find Halley writing
[17], “They may more properly be said to be numeri rationum exponentes,
wherein we consider ratio as a quantity sui generis, beginning from the ratio of
equality, or 1 to 1=0, + - - and the rationes we suppose to be measured by the
number of ratiunculae in each. Now these ratiunculae are in a continued scale
of proportionals, infinite in number, between the two terms of the ratio, which
infinite number of mean proportionals is to that infinite number of the like and
equal ratiunculae between any other two terms as the logarithm of one ratio is
to the logarithm of the other. Thus if we suppose there to be between 1 and 10
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an infinite scale of mean proportionals whose number is 100000 ad infinitum,
between 1 and 2 there shall be 30102 of said proportionals and between 1 and 3,
47712 of them which numbers therefore are the logarithms of the ratio of 1 to 10
110 2, and 1 to 3, and so properly called the logarithms of 10, 2, and 3.”

It is hard to see how there could be a much worse explanation of logarithms
for those who “make constant use of logarithms without having an adequate
rotion of them.” The one certain thing seems to be that a logarithm is an infi-
nite number. I suppose we might translate this into the form

b aet+netratr a+r b
a_ a a+r1a+r2' 'a+r,._1a+rn
If
a7 b
—_— =, —_—=gn
a+ rj—1 a

Then # would be the logarithm.

4. Mercator, Newton, Leibniz. It is fair to say that such a definition of a
logarithm was not original with Halley. We find Mercator writing in 1668,
[18] “Est enim Logarithmus nihil aliud, quam numerus ratiuncularum con-
tentarum in ratione quam absolutus quisque ad unitatem obtinet.” I may
mention also that this seems the first place where the words “logarithmus
naturalis” are used. But the real significance of the article comes from the fact
that instead of studying log x he takes up log (1+x), which enables him to
start from 0. The article is not clearly written, so I follow the much clearer
exposition in Wallis [19], which was published in the same year.

We study the area under the curve (1) from x =1 to x =14+ X. We divide the
length on the x-axis into # equal parts, each of length Ax. The abscissas are

1, 14+Ax, 14+2Ax, - - -, 14+ X and the corresponding ordinates are
. 1 1 1
"1+ 4 1+282 14+ (n— Dax’

The infinitesimal, rectangular areas are
Ax, Ax[1 — Ax 4 Ax? — AP+ - - - ],
Az[1 — (24%) + (24%) — (2Ax)* + - - ], -

Such infinite expansions were common in Wallis’ work. The sum of these
rectangular areas may be written

Ax[14+141---] — Ax[Ax + 280 + 325+ - - - ]
+ Ax[(A%)? + (242)% + (3Ax)2 4 -+ -] — -

Now #nAx =X, so we have



1950] THE NUMBER e 597

(6) X—Ax2[1 4243 ] 4+Aa®[12422432...]—....

With regard to these sums, Wallace says [19], page 222, “quod ostendit ille
prop XVI etque a me alibi demonstratum.” A reference he makes to Mercator
is not conclusive as the statement is sketchy; as to his own work I will follow
[20], as I shall need that again. Here he is seeking the area under the curve
y=x™from x =0 to x = X. His method is not perfectly clear, as he seems merely
to generalize by analogy from cases worked out earlier, but what he does is
essentially the following:

We take N equal lengths from 0 to NAx=X. We have a set of rectangles
whose combined areas are

Ax[om + ()™ + (2Az)™ + (3Ax)™ + - - - |.

Let us assume that 07417+ . .. +(N—1)»=aqN™t1{BN=fyNm14 . . .
Replacing N by N+1, and subtracting, we obtain

N™ = (m 4+ 1)aN™ + bN™1 4 (N=2. ..,
o)
1
m+ 1 )

Substituting, and remembering that NAx =X, there results

Xmt+1

+ BARX™ + yAxEX ™1,

Area =
m+ 1

The limit of this as N— is X”t1/m+1, since Ax—0. We thus can substitute
this result in (6), when m=1, 2, 3, - - -, to obtain Mercator’s famous formula:

Y] g(l+X)=X-——+—-"—+..

A good deal has been written about this series, as we see from Mazeres and
elsewhere. The obvious way to obtain the equation is to apply the calculus, so
we now turn to see how this instrument was brought to bear. In 1669, a year
after Mercator had published his work on logarithms [18], Newton sent to
Collins his article, De Analysi per aequationes numero terminorum Infinitas [21].
This represents his first studies of areas under curves, which he had been
working at for a year or two, but had not published. In fact, publication did
not occur for a goodly number of years to come; there is, however, no question
of giving his results precedence over those of Mercator. It begins as shown
below:

Curvarum simplicium Quadratura
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an
xmtn)/n = Area ABD.

Reg. 1 Si gamin = y, erit
m 4+ n

I must speak further of this. In [22] we read on p. 176, “Dr. Wallis published
in his Arithmetica infinitorum in the year 1655 and in the 59th Proposition of
that Book, if the Abscissa of any curvilinear figure be called ¥ and m and # be
two Numbers, the ordinates erected at right Angles be x*/™ the area of the Figure
shall be (z/m~+n)x™t»», And this is assumed by Mr. Newton, upon which he
founds his Quadrature of Curves. Dr. Wallis demonstrated this by steps in many
particular Propositions and then connected all the Propositions into one by a
Table of Cases. Mr. Newton reduced all Cases to One, with an indefinite Index,
and at the end of his Compendium demonstrated it at once by his method of
moments, he being the first who introduced indefinite Indices of Dignites into
the Operations of Analysis.” This is Newton's own statement of the case and
must be taken as final. It is true that Wallis worked out a number of special
cases in a manner not exactly like the method followed here, and did not use a
literal exponent. The greater generality of Newton'’s formula is found by replac-
ing x by x'» Newton’s proof by “the method of moments” we should call
differentiation, and consisted in showing that if

gz = L ximtm)in.  then gz =xmin,
m—+n dx

It is fair to say also that although he gives Mercator’s formula, he gives it as
the area under the hyperbola, with no mention of Mercator or of logarithms.

It is time to turn for a moment to. the other inventor of the calculus, Gott-
fried Leibniz. We find him writing in 1677 or 1678 [23],

“In Hyperbol sit AB = 1, BM = x, ML =

)

14+ =%

1 1 1 1
CBMLC = —0 — — a2+ — 2% — —at...”
1 2 3 4

This is proved by the straight expansion of 1/1-x, after which there is integra-
tion term by term. We find something more interesting a dozen years later,
when he writes to Huygens, who is said never to have understood Leibniz cal-
culus of differences [24], “Soit donc x 'abscisse et ¥ I'ordonnée de la courbe, et
I’équation comme je vous ay dit

¥y

—L = pe,

h

Je désignerai le logarithme de & par log x et nous aurons
3log x + log y — log © = 2xy.

supposant que le log de I'unite soit 0 et le log b=1. Donc par la quadrature de
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I’hyperbole nous aurons

dx
Sf +f———logh—2xy

dx
3— +-— = 2xdy + 2ydx,
x

dx sera & dy, on bien DB sera & y comme 2x*y—x est & 3y —2xy c’est & dire DB
sera

2x%y — xa?
3a? — 2xy

comme vous le demandées, @ estant 1'unité.”

5. Leonhard Euler. It is now time to turn to the man who pulled all this
together and who put the number e definitely on the map, Leonhard Euler.
This he did in [25], beginning in “Caput VII” with the base a. His argument
is outlined below:

Since a’=1, we may put a*=1-4kw; w=log (1+%w). Assume w to be very
small, and write

it — 1) it —1)(E—2)

w = (1 kw)t = 1 —k — b2y PRI A— ° 77
a (1 + kw) + —kw + = w? + 123 v +

Since w is infinitesimally small, and < is infinitely large, we write 1w =3

kz \¢ - i — 1)@ — 2
az=(1——i>=1+k +( )leH'(z =2 bt
i 1-1-2-3
Since < is very large, we may assume (1 —n)/i=1, then
k2?2 B
=14 kbt —F—
+ z-l- +1 Y 3+
If 2=1,
1+k+ ¥ + #
‘= 123

If we take @ =10, the base in the logarithm system of Briggs, Euler gives
k = 2.30238, approximately.

For a natural logarithm we take k=1; a =¢; and

1
8 - o
®) e=1+— + +123+
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Euler gives this value to 18 places, without naming the source, namely,
1\¢
i—w 1

With regard to the use of the letter ¢, Euler had long employed it, for we find
him writing [26], page 80, “scribitur pro numero cujus logarithmus est unitas
e, qui est 2.7182817. . .. ” Note that this is Leibniz’ .

I pass to Ch. VII of the Introductio. Euler assumes for small values of z,

sin g = 2; cosz = 1.
He then, following DeMoivre, writes,

(cos 3 4+ +/— 1sing)" + (cosz — v/— 1 sinz)"

cos #g = s
2
. (cos 3+ +/— Lsing)* — (cos s — v/— 1sing)"
sin nz = = .
2v/—1
Putting nz=9, and remembering that z is small,
2 2t
cosy=1—— — e,
1-2 + 1.2.3-4
? 7

Sne =0 st osas

Comparing these with the value given previously for a? one obtains

GVV: + 8—-0\/:1 eW-:f — e—m/:f
(10) sy =————: s§iny=——— ;
2 2v/—1
and
11 v/ — 1 = log [cos » + +/— 1 sin 2].

This last formula was not, strictly speaking, original. Roger Cotes in [27]
sought the area of an ellipsoid of revolution. When the rotation is about the
minor axis there is no trouble, but when the motion is about the major axis we
find him writing “Posset hujus etiam superficiei per Logometriam designari, sed
modo inexplicabili . . . arcus erit rationis inter

EX + XC\/:T aCE mensura ducta in v/ — 1.”

I will leave Euler for a moment to speak of the numerical value of e. William
Shanks, who, until quite recently, held the world’s record of 707 places for ,
had a try at e [28]. Glaisher found an error in this, but Shanks corrected it,
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and calculated a value which he was sure was right to 205 places. Glaisher veri-
fied 137 of them. Boorman [29] calculated e to 346 places. He acknowledged
that he and Shanks agreed only up to 187 places. “One is wrong, which one?”
Boorman gives the impression of being a rather amateurish mathematician.
Adams [30] calculated logio € to 272 places, probably all correct. Many years
ago I knew a youthful teacher of mathematics who had the vaulting ambition
to calculate e by long-hand methods to 1,000 places. I lost sight of him over
fifty years ago, probably he died early of heart failure.

I return to Euler. In Caput XVIII of De Fractionibus continuis [25], he
describes methods of expansion into a continued fraction. When it is a question
of turning a rational fraction into a continued one, the process is essentially
that of finding a highest common factor, and can be done in only one way.
Euler writes

¢ = 2.718281828459 - - - ,

e—1

— 0.8591409142295.

He writes this in the form,

e—1 1
2 1+1
6+1
1041
1441
18+1

etc.

b

and remarks [25], page 388, “Cuius fractio ex Calculo infinitesimali dari potest.”

Euler assumes that the quotients will increase by 4 each time, so that the
fraction goes on indefinitely. Hence e is not a rational fraction.

As for finding this “ex Calculo infinitesimali” he returns to this very much
later in life, “Summatio fractionis continuae cujus indices progressionem
arithmeticam constituunt” in Vol. 23 of his Opera mentioned in [25]. The
method consists in establishing contact with a Riccati differential equation. For
a fuller discussion see [31]. Euler did not complete all the details with modern
rigor, but what I have just shown is the first attempt to demonstrate the irra-
tionality of e.

We must wait a whole century for anything really new and startling in this
line. This came in 1874 with Hermite's proof that e is not an algebraic number
[32], that is, not the root of any equation with integral coefficients. A much
simpler demonstration is given by Klein in [33].
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