Chapter IX

Simple algebras

§ 1. Structure of simple algebras. This Chapter will be purely algebraic
in nature: this means that we will operate over a groundfield, subject
to no restriction except commutativity, and carrying no additional
structure. All fields are understood to be commutative. All algebras are
anderstood to have a unit, to be of finite dimension over their ground-
field, and to be central over that field (an algebra 4 over K is called
central if K is its center). If 4, B are algebras over K with these properties,
so is A@yB; if A is an algebra over K with these properties, and L is a
field containing K, then A; =A@y L is an algebra over L with the same
properties. Tensor-products will be understood to be taken over the
groundfield ; thus we write AQ B instead of A ® ;B when A, Bare algebras
over K, and A® L or A, instead of A®x L, when A is an algebra over K
and L a field containing K, A being always considered as an algebra
over L. _

Let A be an algebra over K, with the unit 1,; all modules over 4
will be understood to be unitary (this means, e.g. for a left module M,
that 1 ,-m=mfor all me M) and of finite dimension over K, when regarded
as vector-spaces over K by putting, e.g. for a left module M, Em=(£1,)m
forall £€ K and me M. 1f M’ isa subset ofa left A-module M, the annihilator
of M’ in A is the set of all xe A such that xm=0 for all meM'; thisisa
left ideal in A. The annihilator of M in 4 is a two-sided ideal in 4; ifitis
{0}, M is called faithful.

DEFINITION 1. Let A be an algebra over K. An A-module is called simple
if it is not {0} and has no submodule except itself and {0}. The algebra A
is called simple if it has no two-sided ideal except itself and {0}.

For a given A, there are always simple left A-modules; for instance,
any left ideal of 4, other than {0}, with the smallest dimension over K,
will be such a module.

PROPOSITION 1. Let A be an algebra over K, with a faithful simple
left A-module M. Then every left A-module is a direct sum of modules, all
isomorphic to M.

We first prove our assertion for A itself, considered as a left A-module.
In M, there are finite subsets with the annihilator {0} in A (c.g. any basis
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of M over K); take any minimal set {m,,...,m,} with that property.
For 0<i<n, call 4; the annihilator of {m;,,,...,m,} in 4; for i=1, put
M;=A4;m;. Clearly Aog={0}, A,=A;forizl, A;>A; |, and 4;#A4;_,,
since otherwise xm;=0 for j>i would imply xm;=0, and m; could be
omitted from {m,,...,m,}. For iz 1, A4; is a left ideal, M, is a submodule
of M, and x—xm; induces on A4; a morphism of 4; onto M; with the kernel
A;_1, so that it determines an isomorphism of 4,;/4;_, onto M, for their
structures as left A-modules. As 4;¥4;_,, M, is not {0}; therefore it
is M. By induction on i for 0<i<n, one sees now at once that
x—(xmy,...,xm;) induces on 4; a bijective mapping of A; onto the
pro_duct M'=M x_...x M of i modules, 21! equal to M ; this is obviously
an isomorphism for the structure of left A-module. For i=n, this proves
our assertion for A. Now take any left A-module M’, and a finite set
{mi, fes m)} generating M’ (e.g. any basis of M’ over K). Then the
mapping of A" into M, given by (x,), s;g,ﬁinm;-, is a surjective mor-
phism of left A-modules; as we have just proved that A, as such, is iso-
morphic to M" for some #, this shows that there is a surjective morphism
of M™ onto M’, or, what amounts to the same, a surjective morphism F

onto M’, of a direct sum of s=nr modules M,, all isomorphic to Mj
Call N the kernel of F, and take a maximal subset {M,,,...,M,} of
{M 15 ++-5 M} such that the sum N'=N+3"M,_is direct; after renun;ber-

ing the M; if necessary, we may assume that this subset is {M,,..., M,}.

Then, for j>h, the sum N'+ M is not direct, so that N'n M is not {0};
as it is a submodule of M;, which is isomorphic to M, it is M ;. This shows
that M;c N’ for all j>h. ThereforehF maps N’ onto M’; as its kernel is N,

it determines an isomorphism of )’ M; onto N'.
i=1

ProposITION 2. Let A and M be as in proposition 1, and let D be the

:"in'g of endomorphisms of M. Then D is a division algebra over K, and A
is isomorphic to M (D) for some nz 1.

.We recall that here, as explained on p. XV, D should be understocd as
a ring of right operators on M, the multiplication in it being defined
accordingly. As D is a subspace of the ring of endomorphisms of the
u‘nderlying vector-space of M over K, it is a vector-space of finite dimen-
sion over K. Every element of D maps M onto a submodule of M, hence
onto M or {0}; therefore, if it is not 0, it is an automorphism, hence
invertible. This shows that D is a division algebra over a center which is
of ﬁnitfa dimension over K. By prop. 1, there is, for some n>1, an iso-
mprphlsm of 4, regarded as a left A-module, onto M”"; this must deter-
mine an isomorphism between the rings of endomeorphisms of these two
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left A-modules. Clearly that of M" consists of the mappings
(mj)l sjsn_“(zmidij 1€j€n

with d;;eD for 1<ij<n, and may therefore be identified with the
ring M,(D) of the matrices {d;}) over D. On the other hand, an endo-
morphism of A regarded as a left A-module is a mapping f such that
flxy)=x f(y)forall x, y in 4; for y=1,, this shows that f can be written
as x—xa with a=f(L,); the ring of such endomorphisms may now be
identified with A, which is therefore isomorphic to M,(D). As the center
of M,(D) is clearly isomorphic to that of D, this implies that the latter
is K, which completes the proof.

THEOREM 1. An algebra A over K is simple if and only if it is iso-
morphic to an algebra M, (D), where D is a division algebra over K; when
A is given, n is uniquely determined, and so is D up to an isomorphism.

Let A be simple; take any simple left A-module M; as the annihila-
tor of M in A is a two-sided ideal in A and is not 4, it is {0} ; therefore M
is faithful, and we can apply prop.2 to 4 and M; it shows that A is iso-
morphic to an algebra M,(D). Conversely, take A=M, D). Forl<hk<n,
call e,, the matrix (x;)) given by xu,=1, x;=0 for (i,j)#£(h.k). If a=(a;)
is any matrix in M (D), we have e;;ae, =d; ey for all i, j, h, k; this shows
that, if a0, the two-sided ideal generated by ¢ in A contains all the e;
therefore it is 4, so that 4 is simple. Let now M be the left ideal generated
by e,, in A; it consists of the matrices (a;) such that a,;;=0 for j=2;
if @ is such a matrix, we have ¢ ;a=a; ¢;, which shows that, if a0,
the left ideal generated by a is M, which is therefore a minimal left ideal
and a simple left A-module. Let now f be an endomorphism of M
regarded as a left A-module, and put f (e,,)=a with a=(a;)), a;=0 for
j=2. Writing that f(e;e, )=e;a, we get, for j»2, a;; =0; then, for
x=(x;;) with x;;=0 for j=2, we get f(x)=f(xe, )=xa=(x;a,,). This

_ shows that the ring of endomorphisms of M is isomorphic to D. As

prop. 1 shows that all simple left A-modules are isomorphic to M, this
shows that D is uniquely determined by A up to an isomorphism. As
the dimension of A over K is n® times that of D, n also is uniquely
determined.

We recall now that the inverse of an algebra A4 over K is the algebra A°
with the same underlying vector-space over K as 4, but with the multi-
plication law changed from (x,y}—xy to (x,y)—yx.

PROPOSITION 3. Let A be an algebra over K; call A° its inverse, and
put C=A®A°. For all a, b in A, call {(a, b) the endomorphism x—axh
of the underlying vector-space of A; let F be the K-linear mapping of C
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into EndKl(A) such that Fla®b)=f(a,b) for all a, b. Then A is simple if
and' only if F maps C surjectively onto Endg(A4)}; when that is so, F is
an isomorphism of C onto Endg{A).

One verifies at once that F is a homomorphism of C into Endg(A).
I_f N is the dimension of 4 over K, both C and End{A) have the dimen-
sion N? over K; therefore F is an isomorphism of C onto Endg(A4) if
gnd only if it is surjective, and if and only if it is injective. Assume that A4
is not simple, i.e. that it has a two-sided ideal I other than {0} and A.
Then, for all a,b, f(a,b) maps I into I; therefore the same is true of F(c)
for all ceC, so that the image of C under F is not the whole of Endg(A4).
Assume now that A is simple, and call M the underlying vector-space
of A4 over K, regarded as a left C-module for the law {¢,x}— F(c)x. Any
submpdule M’ of M is then mapped into itself by x—axb for all a, b, so
Ll_mt it is a two-sided idcal in A; as A4 is simple, this shows that M is
simple. An endomorphism ¢ of M is a mapping ¢ such that g(uxb)=
=a(x)b for all a,x,b in A; for x=b=1,, this gives @(a)=ap(l,), hence
axbo(l,)=axe(l )b, so that ¢(l,} must be in the center K of 4; in
other words, ¢ is of the form x—¢x with £ K. Call C’ the annihilator
of M in C, which is the same as the kernel of F. We can now apply
prop. 2 to the algebra C/C’, to its center Z, and to the module M;as D
is then K, it shows that C/C’ is isomorphic to some M, (K), hence Z
tq K; but then, as has been seen in the proof of th. 1, M must have the
dimension n over K, so that n=N. As C/C’ has then the same dimension
N2 over K as C, we get C'= {0}, which completes the proof.

CoroLLARY 1. Let L be a field containing K. Then the algebra
Ap=A®L over L is simple if and only if A is so.

_ In fact_, _1et C;, F, be defined for A, just as C, F are defined for 4
in proposition 3; one sees at once that C;=C®L, and that F; is the
L-linear extension of F to C,. Qur assertion follows now from pro-
position 3. '

CORQLLARY 2. Let L be an algebraically closed field containing K.
Then A is simple if and only if A, is isomorphic to some M, (L).

. If D s a division algebra over a field K, the extension of K generated
in D by any £eD—K is an algebraic extension of K, other than K. In
particular, if Lis algebraically closed, there is no division algebra over L
other than L. Therefore, by th. 1, an algebra over L is simple if and onl);

if it is isomorphic to some M, (L). Our assertion follows now from
corollary 1. .

COROLLARY 3. The dimension of a simple algebra A over K is of
the form n?.
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In fact, by corollary 2, A, is isomorphic to some M, (L) if .L'is an
algebraic closure of K; its dimension over L is then »? and it is the
same as that of 4 over K.

COROLLARY 4. Let A, B be two simple algebras over K; then A®B
is simple over K.

Take an algebraic closure L of K; (A®B), is the same as A;®5,.
Since clearly M (K)®M,,(K) is isomorphic to M, (K) for all m, n, and
all fields K, our conclusion follows from corollary 2.

COROLLARY 5. Let A be a simple algebra of dimension n* over K.
Let L be a field containing K, and let F be a K-linear homomorphism
of A into M,(L). Then the L-linear extension F; of F to A, is an iso-
morphism of A; onto M (L).

Clearly F, is a homomorphism of 4, into M,(L), so that its kernel
is a two-sided ideal in 4;. As A, is simple by corollary 1, and as Fj,
is not 0, this kernel is {0}, i.e. F, is injective. As A; and M,(L) have
the same dimension n? over L, this implies that it is bijective, so that
it is an isomorphism of A; onto M,(L).

COROLLARY 6. Let L be an extension of K of degree n; let A be a
simple algebra of dimension n* over K, containing a subfield isomorphic
to L. Then A; is isomorphic to M {L).

We may assume that 4 contains L. Then (x,&)—x&, for xeA, {eL,
defines on A a structure of vector-space over L; call V that vector-
space, which is clearly of dimension »n over L. For every ac 4, _the map-
ping x—ax may be regarded as an endomorphism of ¥, which, if we
choose a basis for ¥ over L, is given by a maltrix F(a) in M, (L). Our
assertion follows now from corollary 5.

PrOPOSITION 4. Let A be a simple algebra over K. Then every auto-
‘morphism o of A over K is of the form x—a " 'xa with acA”™.

Take a basis {a;,...,ay} of A over K. Then every element of A@A°
can be written in one and only one way as y a,®b;, with b,e4° for
1<i<N. By prop. 3, & can therefore be written as x— a,xb;. Writing
that a(x y)=a(x)aly) for all x, y, we get

0=Y a;xyb;— Y a;xbaly} =7, a;x(y b;— b;a(y)).

For each yeA, this is so for all x; by prop. 3, we must therefore have
yb;=b;a(y). In particular, since this gives y(b;z)=>b;a(y)z for all y and z
in A, b;A is a two-sided ideal in 4, hence 4 or {0}, for all , so that b; is
either 0 or invertible in A. As o is an automorphism, the b; cannot all
be 0; taking a=b;#0, we get the announced result.
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COROLLARY. Let o and a be as in proposition 4, and let a’'c A be such
that @' a{x)=xd for all xe A. Then a'=¢a with éeK.

In fact, the assumption can be written as @ a~'x=xa’a" ! for all x;
this means that a’a~? is in the center K of A.

Proposition 4 is generally known as “the theorem of Skolem-
Noether” (although that name is sometimes reserved for a more com-
plete statement involving a simple subalgebra of A}. One can prove,
quite similarly, that every derivation of 4 is of the form x — xa —ax, with
acA.

We will also need a stronger result than corollary 2 of prop. 3; this
will appear as a corollary of the following:

PROPOSITION 5. Let D be a division algebra over K, other than K.
Then D contains a separably algebraic extension of K, other than K.

We reproduce Artin’s proof. In D, considered as a vector-space
over K, take a supplementary subspace E to K=K 1, and call ¢ the
projection from D=E®K -1, onto E. Then, for every integer m3>1,
x—¢(x"} is a polynomial mapping of D into E, whose extension to D,
and E;, if Lis any field containing K, is again given by x—¢(x™), where @
denotes again the L-linear extension of ¢ to D, and E,. Now call N
the dimension of D over K. Clearly every &b, not in K, generates
over K an extension K(¢) of degree > 1 and <N ; moreover, if this is
not purely inseparable over K, it contains a separable extension of K,
other than K. Assume now that our proposition is not true for . Then
K has inseparable extensions, which implies that it is of characteristic
p>1 and that it is not a finite field; moreover, every £€D must be
purely inseparable over K, hence must satisfy an equation 7' =xekK,
where p” is its degree over K. As this degree is <N, it divides the highest
power g of p which is <N, so that £2eK. Then, if E and ¢ are as above
defined, the polynomial mapping x— @(x% maps D onto 0. As K is an
infinite field, this implies that the same holds true for the extension of
that mapping to D, and E,, when L is any field containing K. In other
words, for all L, x—x* maps D;, into its center L- 1,,. This is palpably
false when L is algebraically closed, for then D, is isomorphic to an
algebra M, (L), and taking e.g. x=e,, in the notation of the proof of
th. 1, we have x?=e,,, and this is not in the center of M, (L).

CoROLLARY. Let A be a simple algebra over K, and L a sepdrably
algebraically closed field containing K. Then A, is isomorphic to an
algebra M ,(L).

The assumption means that L has no separably algebraic extension
other than itself. Then proposition 5 shows that there is no division
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algebra over L, other than L. Our conclusion follows now at once from
th. 1, combined with corollary 1 of prop. 3.

§ 2. The representations of a simple algebra. Let A be a simple algebra
over K; by corollary 3 of prop. 3, § 1, its dimension N over K may be
written as N=n2. For any field L containing K, call 2, the space of
the K-linear mappings of A into M,(L); every such mapping F can be
uniquely extended to an L-linear mapping Fy of A, into M,(L). If one
takes a basis o= {d,,...,ay} of 4 over K, F is uniquely determined by
the N matrices X;=F(a;), so that, by the choice of this basis, MM, is
identified with the space of the sets (X )y <isn Of N matrices in M, (L),
which is obviously of dimension N* over L. -

By corollary 5 of prop. 3, §1, a mapping FeM, is an isomorphism
of A into M,(L), and its extension Fy to A, is an isomorphism of Ay
onto M,(L), if and only if F is a homomorphism, i.e. if and only if
F(1,)=1, and F(ab)=F(a)F(b) for all a, b in A, or, what amounts to
the same, for all a, b in the basis «. When that is so, we say that F is an
L-representation of A; if we write K(F) for the field generated over K
by the coeflicients of the matrices F (a) for all ae A, or, what amounts
to the same. for all aca, then F is also a K(F)-representation of A.

If L is suitably chosen (for instance, by corollary 2 of prop.3, §1,
if it is algebraically closed, or even, by the corollary of prop. 5, § 1, if
it is separably algebraically closed), the set of L-representations of A
is not empty. Moreover, if F and F’ are in that set, then FjoFy ! is an
automorphism of M (L), hence, by prop. 4 of§ 1, oftheformX—-»Y XY
with YeM,(L)*; this can be written as F(F,'{X)=Y 1XY; for
ac A, X=F(a), it implies F'(a)= Y1 F(a) Y; we express this by writing
F'=Y-'FY. Moreover, when F and F' are given, the corollary of
prop. 4, § 1, shows that Y is uniquely determined up to a factor in the
center L* of M, (L)".

PropOSITION 6. Let A be a simple algebra of dimension n? over K.
Then there is a K-linear form 140 and a K-valued function v on A, such
that, if L is any field containing K, and F any L-representation of A,
t(a)=tr(F(a)) and v(a)=det(F{a)) for all aeA; if K is an infinite field,
v is a polynomial function of degree n on A.

Put N=n?, and take a basis {a,,...,ay} of 4 over K. Take first for L
a “separable algebraic closure” of K, i.e. the union of all separably
algebraic extensions of K in some algebraically closed field containing K;
this is always an infinite field. By the corollary of prop. 5, § 1, there is
an L-representation F of 4, and then, as we have seen above, all such
representations can be written as F'= Y~1FY with YeM,(L)". Cleatly
a—tr(Fy(a)) is an L-linear form = on 4, and a—det(F,(a)) is a poly-
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nomial function v of degree n on 4;; as F; is an isomorphism of A4,
onto M (L), 7 is not 0; neither = nor v is changed if F is replaced by
F'=Y 'FY. Writing a=) x;a; with x;eL for 1 <i<N, we can write 1
and v as a linear form and as a homogeneous polynomial of degree #,
respectively, in the x;, with coefficients in L. If ¢ is any automorphism
of L over K, we will write %, v° for the polynomials in the x;, respec-
tively derived from <, v by substituting for each coefficient its image
under ¢. Similarly, we write F” for the L-representation of A such that,
for each ain the basis {d,,...,ay}, F(a) is the image F(a)” of F{a}under g,
i.e. the matrix whose coefficients are respectively the images of those
of F{a). Then, clearly, for all ae4;, 1%(a) and v"(a) are respectively the
trace and the determinant of F°(a); as we have seen above, they must
therefore be equal to t{a), v(a) for all ae4;. This implies that all the
coefficients in T and v, when these are written as polynomials in the x;,
are invariant under all antomorphisms of L over K, hence that they
are in K. This proves our assertion, so far as only L-representations
are concerned, with L chosen as above. Obviously it remains true for
L-representations if L' is any field containing L. As every ficld containing
K is isomorphic over K to a subfield of such a field L, this completes the
proof.

The functions z, v defined in proposition 6 are called the reduced
trace and the reduced normin A. Clearly t(x y)=1t(yx) and v(x y) = v{x)v(y)
for all x,.y in A4; in particular, v determines a morphism of A into K*.

COROLLARY 1. Let A and v be as in proposition 6. Then, for every
ac A, the endomorphisms x—ax, x—xa of the underlying vector-space
of A over K have both the determinant N 4x(a)=v(a)".

It is clearly enough to verify this for 4, with a suitable L; taking L
such that A; is isomorphic to M, (L), we see that it is enough to verify
it for an algebra M (L) over L; but then it is obvious. This is the result
announced in the remarks preceding th. 4 of Chap. IV-3.

COROLLARY 2. Let D be a division algebra over K; let ty, vo be the
reduced trace and the reduced norm in D. For any m=1, put A=M, (D),
and call 1, v the reduced trace and the reduced norm in A. Then, for every
x=(x;) in A, 'c(x)=Z'co(xﬁ); if the matrix x=(x;;) in A is triangular,

ie if x;=0 for 1gj<i<m, v(x)=] [vo(x).
i

Take L such that D has an L-representation F. Then the mapping
which, to every matrix x=(x;;) in M, (D), assigns the matrix obtained
by substituting the matrix F(x;;) for each coefficient x;; in x is an
L-representation of 4. Using this for defining 7 and v, we get at once
the conclusion of our corollary.
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COROLLARY 3. Let assumptions and notations be as in corollary 2.
Then v(A*)=vo(D™).

We may regard A as the ring of endomorphisms of the space V=D"
considered as a left vector-space over D, and consequently A™ as the
group of automorphisms of that space. By an elementary result (already
used in the proof of corollary 3 of th. 3, Chap. I-2, but only for a vector-
space over a commutative field), every automorphism of ¥ can be
written as a product of automorphisms, each of which is either a permu-
tation of the coordinates or of the form

(ETNE I IT: M e )
i -

with a,eD* and a;eD for 2<i<m. By corollary 2, the latter auto-
morphism has the reduced norm vo{a,). Asto a permutation of coordi-
nates, the same L-representation. of A which was used in the proof of
corollary 2 shows at once that it has the reduced norm 1 if the dimen-
sion d of D over K is even, and +1 if it is odd. As vo(—1p)=(—1)%,
we have thus shown that v(4*) contains v,(D*) and is contained in it.

§ 3. Factor-sets and the Brauer group. Up to an isomorphism, the al-
gebras over a given field K may be regarded as making up a set, since
the algebra structures that one can put on a given vector-space over K
clearly make up a set, and every such space is isomorphic to K" for
some n.

From now on, we will consider only simple algebras over K; it is
still understood that they are of finite dimension and central over K.
Consider two such algebras 4, A'; by th. 1 of § 1, they are isomorphic
to algebras M,(D), M,.(D'), where D, D' are division algebras over K
which are uniquely determined, up to an isomorphism, by 4, A’. One
says then that A and A’ are similar, and that they belong to the same
class, if D and D’ are isomorphic over K. Clearly, in each class of simple
algebras, there is, up to an isomorphism, one and only one division
algebra, and there is at most one algebra of given dimension over K.
An algebra will be called trivial over K if it is similar to K, i.e. isomor-
phic to M(K) for some n. We will write ClI{A) for the class of simple
algebras similar to a given one A.

Let A, A’ be two simple algebras, respectively isomorphic to M (D)
and to M (D), where D, D' are division algebras over K. By corollary 4
of prop. 3, § 1, D@ D' is simple, hence isomorphic to an algebra M, (D"),
where D" is a division algebra over K which is uniquely determined,
up to an isomorphism, by D and I, hence also by 4 and A'. By the
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associativity of tensor-products, A ® A’ is isomorphic to M, (D). This

.shows that the class of A® A’ is uniquely determined by those of A

and A’. Write now:

Cl(A®@A)=Cl(4) - Cl{4),

and consider this as a law of composition in the set of classes of simple
algebras over K. It is clearly associative and commutative; it has a
neutral element, viz., the class CI(K) of trivial algebras over K. More-
over, if A° is the inverse algebra to A, prop. 3 of § 1 shows that A® A°
is trivial, so that C1(4°) is the inverse of CI{A4) for our law of composition.
Therefore, for this law, the classes of simple algebras over K make up
a group; this is known as the Brauer group of K; we will denote it by
B(K). If K’ is any field containing K, and A a simple algebra over K,
it is obvious that the class of 4, is determined uniquely by that of A4,
and that the mapping Cl{4)}— Cl(4.) is a morphism of B(K) into B(K'),
which will be called the natural morphism of B(K) into B(K').

It will now be shown that the Brauer group can be defined in another
way, by means of “factor-sets”; this will require some preliminary defi-
nitions. We choose once for all an algebraic closure K for K; we will
denote by K., the maximal separable extension of K in K, i.e. the
union of all separable extensions of K of finite degree, contained in K.
We will denote by ® the Galois group of K., over K, topologized as
usual by taking, as a fundamental system of neighborhoods of the iden-
tity &, all the subgroups of ® attached to separable extensions of K of
finite degree. Clearly this makes & into a totally disconnected compact
group. As K is purely inseparable over K., each automorphism of
K,.p can be uniquely extended to one of K, so that ® may be identified
with the group of all automorphisms of K over K.

DEFINITION 2. Let B™ be the product ® x---x & of m factors equal
to ®; let § be an open subgroup of ®. Then a mapping f of ®™ into
any set S will be called H-regular if it is constant on left cosets in &™
with respect to H™,

This amounts to saying that f(o,,...,0,) depends only upon the left
cosets $0y,...,90, determined by the o; in &. When that is so, f is
locally constant, or, what amounts to the same, it is continuous when S
is provided with the discrete topology. Conversely, let f be a mapping
of G™ into §; if it is locally constant, it is continuous if § is topologized
discretely, hence uniformly continuous since ® is compact ; this implies
that there is an open subgroup $ of ® such that f is $-regular.



