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Chapter |
Locally compact fields

§ 1. Finite fields. Let F be a finite field (commutative or not) with the
unit-element 1. Its characteristic must clearly be a prime p> 1, and the
prime ring in F is isomorphic to the prime field F,=Z/pZ, with which
we may identify it. Then F may be regarded as a vector-space over F,;
as such, it has an obviously finite dimension £, and the number of its
elements is g=p’. If F is a subfield of a field F’ with ¢'=p’" elements, F’
may also be regarded e.g. as a left vector-space over F; if its dimension
as such is d, we have f'=df and ¢'=¢"=p".

THEOREM 1. All finite fields are commutative.

This theorem is due to Wedderburn, and we will reproduce Witt's
modification of Wedderburn’s original proof. Let F be a finite field of
characteristic p, Z its center, g=p’ the number of elements of Z; if # is
the dimension of F as a vector-space over Z, F has ¢" elements. The
multiplicative group F* of the non-zero elements of F can be partitioned
into classes of “conjugate” elements, two elements x,x" of F * being called
conjugate if there is yeF™ such that x'= y~xy. For each xeF*, call
N(x) the sct of the elements of F which commute with x; this is a sub-
field of F containing Z; if §(x) is its dimension over Z, it has ¢°*? elements.
As we have seen above, n is a multiple of 8(x), and we have 6(x) <» unless
xeZ. As the number of elements of F* conjugate to x is clearly the index
of N(x)* in F*, i.e. (g"—1)/(g°* — 1), we have

n — qn_ 1

1) g —1=gq 1+2q5m_1,
where the sum is taken over a full set of representatives of the classes of
non-central conjugate elements of F*. Now assume that n>1, and call
P the “cyclotomic” polynomial | [(T—{), where the product is taken
over all the primitive n-th roots of 1 in the field C of complex numbers.
By a well-known elementary theorem (easily proved by induction on #n),
this has integral rational coefficients; clearly it divides (T"—DAT°—1)
whenever & is a divisor of r other than n. Therefore, in (1), all the terms
except g— 1 are multiples of P(g), so that P(g) must divide g—1. On the
other hand, each factor in the product P(q)=[](g--¢) has an absolute
value >g— 1. This is a contradiction, so that we must have n=1 and
F=2Z
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We can now apply to every finite ficld the following elementary result:

LevMa 1. If K is a commutative field, every finite subgroup of K x
is cyclic. .

In fact, let I” be such a group, or, what amounts to the same, a finite
subgroup of the group of all roots of 1 in K. For every n 1, there are at
most n roots of X"=1 in K, hence in I'; we will show that every finite
commutative group with that property is cyclic. Let a be an element of I’
of maximal order N. Let § be any element of I', and call n its order. ifn
does not divide N, there is a prime p and a power g=p" of p such that g
divides # and not N. Then one verifies at once that the order of a e is
the 1.c.m. of N and g, so that it is > N, which contradicts the definition of
N. Therefore 1 divides N. Now X”==1 has the n distinct roots «'™ in T,
with 0<i<n;as § is a root of X"=1, it must be one of these. This shows
that « generates I'.

TaEOREM 2. Let K be an algebraically closed field of characteristic
p>1. Then, for every f>1, K contains one and only one field F=F,
with q=p” elements; F consists of the roots of X=X in K; F* consists
of the roots of X%~ 11 in K and is a cyclic group of order g—1.

If F is any field with g elements, lemma 1 shows that F* is a cyclic
group of order g— 1. Thus, if K contains such a field F, F* must consist
of the roots of X7~ =1, hence F of the roots of X*—X =0, so that both
are uniquely determined. Conversely, if g= p’, x—x%is an automorphism
of K, so that the elements of K which are fixed under it make up a field F
consisting of the roots of X?— X =0; as it is clear that X7— X has only
simple roots in K, F is a field with g clements.

COROLLARY 1. Up to isomorphisms, there is one and only one field
with g=p’ elements.

This follows at once from theorem 2 and the fact that all algebraic
closures of the prime field F, are isomorphic. it justifies the notation F,
for the field in question.

COROLLARY 2. Put g=p’, ¢’ =p*, with f=1, f'>1. Then ¥ contains
a field ¥, with q elements if and only if f divides f'; when that is so, F
is a cyclic extension of ¥, of degree f'/ f, and its Galois group over K, is
generated by the automorphism x— x".

We have already said that, if F, contains F, it must have a finite
degree d over F,, and then g =¢* and f'=df. Conversely, assume that
f'=df, hence ¢'=¢*, and call K an algebraic closure of F; by theorem 2,
the fields ¥, F ., contained in K, consist of the elements of K respectively

§2. The module in a locally compact field 3

invariant under the automorphisms a, § of K given by x - x%, x — x7; as
p=0o, F_. contains F,. Clearly « maps F, onto itself; if ¢ is the auto-
morphism of F,. induced by «, F, consists of the elements of F,, invariant
under ¢, hence under the group of automorphisms of F,. generated by ¢;
this group is finite, since ¢ is the identity; therefore, by Galois theory,
it is the Galois group of F. over F, and is of order d.

COROLLARY 3. Notations being as in corollary 2, assume that f"=df.
Then, for every nz1, the elements of K, invariant under x— x*", make
up the subfield of ¥, with ¢ elements, where r=(d,n).

Let K be as in the proof of corollary 2; the elements of K, inva-
riant under x— x7", make up the subfield F’ of K with g" elements; then
F'nF, is the largest field contained both in F' and F,; as it contains
F,, the number of its elements must be of the form 47, and corollary 2
shows that r must be {d,n).

§ 2. The module in a locally compact field. An arbitrary field, provided
with the discrete topology, becomes locally compact; thus the question
of determining and studying locally compact fields becomes significant
only if one adds the condition that the field should not be discrete.

We recall the definition of the “module” of an automorphism, which
is basic in what follows. For our purposes, it will be enough to consider
automorphisms of locally compact commutative groups. Let G be such
a group (written additively), 2 an automorphism of G, and o a Haar
measure on G. As the Haar measure is unique up to a constant factor,
transforms  into ce, with ceR % ; the constant factor ¢, which is clearly
independent of the choice of @, is called the module of 4 and is denoted by
modg(4). In other words, this is defined by one of the equivalent formulas

(2) aA(X)=modgMo(X), [f(A™ (x)delx)=mods(?) | f(x)dalx),

where X is any measurable set, f any integrable function, and
0<a(X)< + 00, | fdo #0;thesecond formula may be written symbolical-
1y as d a(4(x))=mod(A)da(x). If G is discrete or compact, the first formula
(applied to X={0}, X=G, respectively) shows that the module is

1. Obviously, if 4, A’ are two automorphisms of G, the module of 2o’
is the product of those of 1 and 1'. We shall need the following lemma:

LeMMA 2. Let G’ be a closed subgroup of G, and A an automorphism
of G which induces on G’ an automorphism /' of G'. Put G"'=G/G, and
call A" the automorphism of G” determined by A modulo G'. Then:

modg(4)=modg{Aymodg-(A").
In fact, it is well-known that one can choose Haar measures oo, 0"

on G, G, G so as to have, for every continuous function f with compact
support on G:



