- b) Le groupe multiplicatif K^* est cyclique d'ordre q-1.
- c) On a $x^{q-1} = 1$ pour tout $x \in K^*$, et $x^q = x$ pour tout $x \in K$.

En effet, comme Z est infini, K ne peut être de caractéristique 0. Donc il contient \mathbf{F}_p , avec p premier. Ainsi K est un espace vectoriel sur \mathbf{F}_p ; sa dimension s est finie, sinon K serait infini. En tant qu'espace vectoriel, K est isomorphe à $(\mathbf{F}_p)^s$, donc a p^s éléments. L'assertion b) résulte du § 6, th. 1. On en déduit aussitôt c).

Exemple. Appliquons b) à \mathbf{F}_p , sù p est premier: il existe un entier $x \in \mathbf{Z}$ tel que $0 \le x \le p-1$ et que tout entier p non multiple de p soit congru modulo p à une puissance de p. On dit alors que p est une racine primitive modulo p. La recherche des racines primitives modulo p n'est nullement triviale. Par exemple il p a p est p a constant p est p est

Remarque. Il résulte de c) qu'un corps fini K à q éléments est l'ensemble des racines du polynôme $K^q - K$ (qui n'a que q racines). On peut en déduire que deux corps finis à q éléments sont isomorphes. On note souvent F_q un corps fini à q éléments.

A titre d'exercice et d'intermède, nous allons démontrer un élégant théorème relatif aux équations diophantiennes sur un corps fini :

Théorème 2 (Chevalley). Soient K un corps fini, et $F(X_1, \ldots, X_n)$ un polynôme homogène de degré d sur K. On suppose d < n. Il existe alors un point $(x_1, \ldots, x_n) \in K^n$ distinct de l'origine $(0, \ldots, 0)$ tel que $F(x_1, \ldots, x_n) = 0$.

Étant donnés un corps K et un entier j, on dit que K est un corps C_j si tout polynôme homogène sur K de degré d et à n variables, tel que $n > d^j$, admet un zéro non trivial (i.e. distinct de l'origine) dans K^n . Les corps C_0 sont les corps algébriquement clos. Le théorème de Chevalley exprime que les corps finis sont C_1 (on dit aussi « quasi-algébriquement clos »). On montre que, si K est un corps C_j , le corps K(T) des fractions rationnelles à une variable sur K et le corps K(T) des séries formelles à une variable sur K sont des corps C_{j+1} ([5]). On s'est longtemps demandé si les corps p-adiques sont C_2 , et on a récemment montré qu'il n'en est rien ([8]).

Démontrons le th. 2. Notons q le cardinal de K et p sa caractéristique (de sorte que $q=p^s$). Soit $V \subset K^n$ l'ensemble des zéros de F, i.e. des points $(x_1, \ldots, x_n) \in K^n$ tels que F(x) = 0 (nous employons, ici et dans la suite, l'écriture vectorielle où x désigne un point (x_1, \ldots, x_n) de K^n). D'après le th. 1, c), on a $F(x)^{q-1} = 0$ pour $x \in V$, et $F(x)^{q-1} = 1$ pour $x \in K^n - V$; ainsi le polynôme $G(x) = F(x)^{q-1}$ est une fonction caractéristique de $K^n - V$, à valeurs dans F_p . Le nombre modulo p de points de $K^n - V$ sera donc donné par la somme $\sum_{x \in K^n} G(x)$; nous allons calculer cette somme et montrer qu'elle est nulle. Alors card $(K^n - V)$ sera multiple de p; comme card $(K^n) = q^n = p^{ns}$ est aussi multiple de p,

card (V) sera multiple de p; comme V contient déjà l'origine, il contiendra nécessairement d'autres points, car $p \ge 2$; le th. 2 sera ainsi démontré. Calculons donc $\sum_{x \in \mathbb{R}^n} G(x)$. Le polynôme G est combinaison linéaire de monômes $M_{\alpha}(X) = X_1^{\alpha_1} \dots X_n^{\alpha_n}$; et on est ramenés à calculer $\sum_{x \in \mathbb{R}^n} M_{\alpha}(x) = \sum_{x \in \mathbb{R}^n} x_1^{\alpha_1} \dots x_n^{\alpha_n} = \left(\sum_{x_1 \in \mathbb{R}} x_1^{\alpha_1}\right) \dots \left(\sum_{x_n \in \mathbb{R}} x_n^{\alpha_n}\right)$. Il s'agit donc de calculer des sommes de la forme $\sum_{x \in \mathbb{R}} z^{\beta} (\beta \in \mathbb{N})$.

- (a) Pour $\beta = 0$, on a $z^{\beta} = 1$ pour tout $z \in K$, et la somme vaut q = 0;
- (b) Pour $\beta > 0$, le terme 0^{β} est nul, et la somme se réduit à $\sum_{z \in K^*} z^{\beta}$. Or K^* est un groupe cyclique d'ordre q 1(th. 1, b); soit ω un générateur de celui-ci. Alors $\sum_{z \in K^*} z^{\beta} = \sum_{j=0}^{q-2} \omega^{\beta j}$, qui est la somme d'une progression géométrique. Donc:
- (b') Si la raison ω^{β} est $\neq 1$, c'est-à-dire si β n'est pas multiple de q-1, on a $\sum_{j=0}^{q-2} \omega^{\beta j} = \frac{\omega^{\beta(q-1)}-1}{\omega^{\beta}-1} = 0$ (car $\omega^{q-1} = 1$).
- (b'') Si $\omega^{\beta} = 1$, c'est-à-dire si β est multiple de q 1, on a

$$\sum_{j=0}^{q-2} \omega^{\beta j} = q - 1.$$

Il résulte de (a), (b') et (b'') que $\sum_{x \in \mathbb{K}^n} x_1^{\alpha_1} \dots x_n^{\alpha_n}$ est nul sauf si tous les α_i sont > 0 et multiples de q-1. Le degré $\alpha_1 + \dots + \alpha_n$ du monôme est, dans ce cas, $\geqslant (q-1)n$. Mais, comme $G = \mathbb{F}^{q-1}$, G est de degré (q-1)d, et on a (q-1)d < (q-1)n d'après l'hypothèse. On a donc $\sum_{x \in \mathbb{K}^n} M_{\alpha}(x) = 0$ pour tout monôme $M_{\alpha}(X)$ qui figure dans G avec coefficient non nul. D'où, par addition, $\sum_{x \in \mathbb{K}^n} G(x) = 0$. Nous avons vu que cette relation entraîne notre conclusion.

On remarquera qu'il aurait, au lieu de supposer F homogène, suffit de supposer F sans terme constant. Naturellement l'inégalité stricte d < n entre degré et nombre de variables est essentielle. Par exemple la norme de $F_q n$ à F_q (cf. chap. II, \S 6) fournit un polynôme homogène de degré n et à n variables sur F_q qui n'a d'autre zéro que l'origine.

Un exemple. Une forme quadratique à 3 variables sur un corps fini K « représente 0 » (i.e. a un zéro non trivial). En passant de K³ au plan projectif $P_2(K)$, ceci veut dire qu'une conique sur K admet un point rationnel sur K (i.e. dont les coordonnées homogènes peuvent être choisies dans K). L'exemple de la conique $x^2 + y^2 + z^2 = 0$ sur R (resp. $x^2 + y^2 - 3z^2 = 0$ sur Q; pour s'assurer que $x^2 + y^2 - 3z^2 = 0$ n'a pas de solution non triviale dans Q, on se ramène au cas où x, y, z sont des entiers premiers entre eux, et on réduit modulo 4) montre qu'il ne s'agit pas d'une propriété vraie sur tout corps.