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A Short Proof of ¢(2) = w%/6

Timothy Marshall

Since Euler’s first proof {see, e.g., [2]), the famous sum §(2) = S 1/n% = n%/6 has
been proved in many ways, some elementary but difficult or long, and others shorter,
but using advanced methods such as Fourier series or complex analysis. One such
proof is first to show that

it 1

Tl

= JE— \ 1
) n;oq (w—n)?  sin*(Tw) M
and then set w = 1/2 to get
- 1 o
ghu+nz 8 2
Since
o 1 o0 1 o) 1 1 3
—_— = —_ = N D == ) ,
§(2k+1)2 ;kz ;(Qk)z (@) - 3¢@ 41;'()

£(2) = n?/6 follows.

Ahlfors [1, pp. 188-189] proves (1) by showing that the poles of the right and left
sides of (1) have the same principal parts, and hence that their difference is holo-
morphic; he then shows that this difference is also bounded and zero in the limit as
S(w) — 00, hence identically zero by Liouville’s theorem.

Here we derive (1) by a slightly different argument, which avoids any analysis of*

principal parts, but instead uses the theorem that a function which is meromorphic
on the extended complex plane must be rational [1, p. 140, Ex. 4]. For z € D =
€ {0, 1}, let
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Here the sum is taken over all branches of the logarithm. Each point in D has a
neighborhood on which the branches of log(z) are analytic, and the series (3) con-
verges uniformly away from z = 1; hence R(2) is analytic on D. (Note that R{z) =
—e3(log(z) /(2mi)y/ (4m?), so that we can also infer this from the properties of e;.
However, we prefer to treat R(z) as primitive,)
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We now observe:

(i) Since the convergence is uniform near z = 0, and each term of (3) approaches

0 as z approaches 0, the singularity at £ = 0 is removable, and we can set
R(0) = 0.

(ii) Tf}e f_)nly other singularity of R is a double pole at z = 1, contributed by the
principal branch of log(z) in (3); further lim,,; (z — 1)?R(z) = 1.
(i) R(l/z) = R(z).
(iv) By (i) and (iii), R is analytic at oo, and hence is rational. Moreover R{oo) = 0.
By (ii), the denominator of R(z) is (z — 1)%, and since R(0) = R(o0) = 0, the
numerator must be of the form az; (ii) then gives @ = 1, so that
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Setting z = 2" gives {1} and hence (2). We may also derive (2) directly from (4) by
setting z = —1.

R(z) = (4)
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The Group of Symmetries of the
Tower of Hanoi Graph

So Eun Park

The classical Tower of Hanoi puzzle, invented by the French mathematician Edouard
Lucas in 1883, consists of 3 wooden pegs and n disks with pairwise different diame-
ters. The n disks are initially stacked on a single peg in order of decreasing size, from
the largest at the bottom to the smallest at the top (see Figure 1). The goal is to move
the tower of disks to another peg, moving one topmost disk at a time while never stack-
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Figure 1. Convention for labeling & pegs and » disks in the Tower of Hanoi puzzle.
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