CHAPTER 7

Selected Topics

In this final chapter we have set ourselves two objectives. Our first is to
present some mathematical results which cut deeper than most of the ma-
terial up to now, results which are more sophisticated, and are a little apart,
from the general development which we have followed. Our second goal is
to pick results of this kind whose discussion, in addition, makes vital use
of a large cross section of the ideas and theorems expounded earlier in the
book. To this end we have decided on three items to serve as the focal
points of this chapter.

The first of these is a celebrated theorem proved by Wedderburn in 1905
(“A Theorem on Finite Algebras,” Transactions of the American Mathema-
weal Society, Vol 6 ( 1905), pages 349-352) which asserts that a division
ring which has only a finite number of elements must be g commutative
field. We shall give two proofs of this theorem, differing totally from each
other. The first one will closely follow Wedderburn’s original proof and will
use a counting argument; it will lean heavily on results we developed in the
chapter on group-theory. The second one will use a mixture of group-
theoretic and field-theoretic arguments, and will draw incisively on the
material we developed in both these directions. The second proof has the
distinet advantage that in the course of executing the proof certain side-
results will fall out which will enable us to proceed to the proof, in the
division ring case, of a beautiful theorem due to Jacobson (“Structure
Theory for Algebraic Algebras of Bounded Degree,” Annals of Mathe-
matics, Vol. 46 (1945), pages 695-707) which is a far-reaching generaliza-
tion of Wedderburn’s theorem.

Our second high-spot is a theorem due to Frobenius (“Uber lineare Sub-
stitutionen und bilineare F ormen,” Jowrnal fiir die Reine und Angewandte
Mathematik, Vol. 84 (1877), especially pages 59-63) which states that the
only division rings algebraic over the field of all real numbers are the field
of real numbers, the field of complex numbers, and the division ring of real
quaternions. The theorem points out a unique role for the quaternions, and
makes it somewhat amazing that Hamilton should have discovered them
in his somewhat ad hoc manner. Our proof of the Frobenius theorem, now
quite elementary, is a variation of an approach laid out by Dickson and
Albert; it will involve the theory of polynomials and fields.
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Our third goal is the theorem that every positive integer can be repre-
sented as the sum of four squares. This famous result apparently was first
conjectured by the early Greek mathematician Diophantos. Fermat grag-
pled unsuccessfully with it and sadly announced his failure to solve it (in &
paper where he did, however, solve the two-square theorem which we
proved in Section 8 of Chapter 3). Euler made substantial inroads on the
problem; basing his work on that of Euler, Lagrange in 1770 finally gawe
the first complete proof. Our approach will be entirely different from thss
of Lagrange. It is rooted in the work of Adolf Hurwitz and will involve &
generalization of Euclidean rings. Using our ring theoretic techniques on &
certain ring of quaternions, the Lagrange theorem will drop out as a conse-
quence.

En route to establishing these theorems many ideas and results, interest-
ing in their own right, will erop up. This is characteristic of a good the-
orem—its proof invariably leads to side-results of almost equal interest.

1. Finite Fields. Before we can enter into a discussion of Wedderburn's
theorem and finite division rings it is essential that we investigate the na-
ture of fields having only a finite number of elements. Such fields are called
finite fields. Finite fields do exist, for the ring J, of integers modulo amy
prime p, provides us with an example of such. In this section we shall de
termine all possible finite fields and many of the important properties whick
they possess.

We begin with

Levmma 7.1. Let F be a finite field with q elements and suppose thal F © K
where K is also a finite field. Then K has q" elements where n = [K:F].

Proof. K is a vector space over F and since K is finite it is certainly finite-
dimensional as a vector space over F. Suppose that [K:F] = n; then K hsas
a basis of n elements over F. Let such a basis be v, v3, ..., v,. Then every
element in K has a unique representation in the form a,v; + ags +-- ==
anv, Where @y, as, ..., ay, are all in F. Thus the number of elements in A &
the number of vy + asvs + - - - + aqv, as the a;, as, ..., @, range over £,
Since each coefficient can have ¢ values K must clearly have ¢" elements

CoroLLARY 1. Let F' be a finite field; then F has p™ elements where ihe
prime number p is the characteristic of F.

Proof. Since F has a finite number of elements, by Corollary 2 to Theoress
2.4, f1 = 0 where f is the number of elements in F. Thus F has characteris=
tic p for some prime number p. Therefore F' contains a field F isomorphis
to J,. Since F, has p elements, F' has p™ elements where m = [F:Fy), by
Lemma 7.1.
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COROLLAR 2. If the finite field F has p™ elements then every a € F
satisfies a®” = a.

Proof. If a = 0 the assertion of the corollary is trivially true.

On the other hand, the nonzero elements of F form a group under multi-
plication of order p™ — 1 thus by Corollary 2 to Theorem 2.a,a”” — = 1 for
all @ # 0 in F. Multiplying this relation by a we obtain that ¢*” = a.

From this last corollary we can easily pass to

Lemma 7.2. If the finite ﬁeld F has p™ elements then the polynomial x*" — z

in Flx] factors in Flz] as 2% —z=J[@-».
AEF

Proof. By Lemma 5.2 the polynomial 27" — x has at most p™ roots in F.
However, by Corollary 2 to Lemma 7.1 we know p™ such roots, namely all
the elements of F. By the corollary to Lemma 5.1 we can conclude that

2 —x =[] (& —=»).

AECF

COROLLARY. I_f the field F has p™ elements then F s the splitting field of
the polynomial z*" — z.

Proof. By Lemma 7.2, 2" — certainly splits in F. However, it cannot
split in any smaller field for that field would have to have all the roots of
this polynomial and so would have to have at least p™ elements. Thus F is
the splitting field of 2*" — z.

As we have seen in Chapter 5 (Theorem 5.j) any two splitting fields
over a given field of a given polynomial are isomorphic. In light of the
corollary to Lemma 7.2 we can state

LemMmA 7.3. Any two finite fields having the same number of elements
are isomorphic.

Proof. If these fields have p™ elements, by the above corollary they are
both splitting fields of the polynomial z*" — z, over J, whence they are
isomorphic.

Thus for any integer m and any prime number p there is, up to iso-
morphism, at most one field having p™ elements. The purpose of the next
lemma is to demonstrate that for any prime number p and any integer m
there is a field having p™ elements. When this is done we shall know that
there is exactly one field having p™ elements where p is an arbitrary prime
and m an arbitrary integer.
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LemMma 7.4. For every prime number p and every positive integer m thess
exists a field having p™ elements.

Proof. Consider the polynomial 2" — z in J,[z], the ring of polynomisls
in  over J,, the field of integers mod p. Let K be the splitting field of this
polynomial. In K let F = {a € K|a?" = a}. The elements of F are thus
the roots of 2" — x, which by Corollary 2 to Lemma 5.6 are distinet whenes
F has p™ elements. We now clalm that Fisa field. If a, b € F thena?” = &

= b and so (ab)” = g b” = gb; thus ab € F. Also since the charae-
terlstlc isp, (@b’ = a?" £ b" =a b, whence a &= b € F. Conse
quently F is a subfield of K and so is a field. Having exhibited the field &
having p™ elements we have proved Lemma 7.4.

Combining Lemmas 7.3 and 7.4 we have

THEOREM T.A. For every prime number p and every positive integer m there
18 a unique field having p™ elements.

We now return to group theory for a moment. The group-theoretic resuls
we seek will determine the structure of any finite multiplicative subgroug
of the group of nonzero elements of any field, and, in particular, it will de-
termine the multiplicative structure of any finite field.

LemMa 7.5. Let G be a finite abelian group enjoying the property that the
relation =" = e is satisfied by at most n elements of G, for every integer n
Then G is a cyclic group.

Proaf. If the order of G is a power of some prime number g then the resuls
is very easy. For suppose that a € @ is an element whose order is a,s larp
as posnuble its order must be ¢" for some integer r. The elements 8,0, 62y wabs
a? ! give us ¢" distinet solutions of the equation z¢" = e, which, by our
hypothesis, implies that these are all the solutlous of this equation. Now &
b € @ its order is ¢* where s < r, hence by = (b7)7 ™" = ¢. By the observa-
tion made above this forces b = a for some ¢, and so (7 is cyclie.

The general finite abelian group G can be realized as G = S, Sy, ..., Sg
where the g; are the distinet prime divisors of o() and where the S, are
the Sylow subgroups of G. Moreover, every element g € ( can be writien
in a unique way as g = 883, ..., S Where s; E S,, (see Section 7, Chapter
2), Any solution of #" = ¢ in »Sq: is one of 2" = e in G so that e&ch S, In-
herits the hypothesis we have imposed on . By the remarks of the first
paragraph of the proof each S, is a cyclic group; let a; be a generator of
8y, We claim that e = aja,, ..., arisa eyelic generator of (7. To verify this
all we must do is prove that o(G) divides m, the order of c. Since c™ = ¢, we
have that a,”as™, ..., @™ = e. By the uniqueness of representation of an
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element of G as a product of elements in the S,,, we conclude that each
a™ = e. Thus o(8,,) [m for every 1. Thus o(G) = 0(S,,)0(S,,) ... o(Sy) |m.
However, m|o(G) and so o(@) = m. This proves that (7 is eyelic.

Lemma 7.5 has as an important consequence

Lemma 7.6. Let K be a field and let G be a finite subgroup of the multi-
plicative group of nonzero elements of K. Then G is a cyclic group.

Proof. Since K is a field, any polynomial of degree n in K[x] has at most
n roots in K. Thus in particular, for any integer n, the polynomial 2™ — 1
has at most n roots in K, and all the more so, at most n toots in G. The
hypothesis of Lemma 7.5 is satisfied, so G is eyelic.

Even though the situation of a finite field is merely a special case of
Lemma 7.6, it is of such wide-spread interest that we single it out as

TueorEM 7.8. The multiplicative group of nonzero elements of a finite
field is cyelic.

Proof. Let F be a finite field. By merely applying Lemma 7.6 with F = K
and G = the group of nonzero eléements of F, the result drops out.

We conclude this section by using a counting argument to prove the
existence of solutions of certain equations in a finite field. We shall need the
result in one proof of the Wedderburn theorem.

Lemma 7.7, If F is a finite field and a # 0, 8 # 0 are two elements of F
then we can find elements a and b in F such that 1 + aa® + gb® = 0.

Proof. If the characteristic of F is 2, F has 2" elements and every element
x in F satisfies #°° = 2. Thus every element in F is a square. In particular
a”' = a*for some @ € F. Using thisa and b = 0 we have 1 + aa® + gb% =
l1+aa'40=141=0, the last equality being a consequence of
the fact that the characteristic of F is 2.

If the characteristic of F is an odd prime p, F has p" elements. Let W, =
{1 + a2®|z € F}. How many elements are there in W,? We must check
how often 1 4 az® = 1 + ay®. But this relation forces ez = ay® and so,
since & 0, 2 = y. Finally this leads to 2 = ==y. Thus for x # 0 we get

from each pair @ and —z one element in W, and for & = 0 we get 1 € W..
mn . 1 n + 1 .
Thus ¥, has1 + ——- 2 " clements. Similarly IV = | —82* |z € F|
n + 1 = 0
has . 5 elements. Since each of W, and W3 has more than half the
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elements of F' they must have a nonempty intersection. Let ¢ € W, M Wg
Since ¢ € Wa, ¢ = 1 + aa?® for some a € F; since ¢ € W, ¢ = —8b° far

some b € F. Therefore 1 + aa® = —gb?% which, on transposing yields the

desired result 1 + aa® + gb° = 0.

PROBLEMS

1. By Theorem 7.b the nonzero elements of .J, form a cyclic group undes

multiplication. Any generator of this group is called a primative root of g
(a) Find primitive roots of: 17, 23, 31.
(b) How many primitive roots does a prime p have?

2. Using Theorem 7.b prove that z* = —1 mod p is solvable if and oniy
if the prime p is of the form 4n + 1.

3. If a is an integer not divisible by the odd prime p, prove that =g
mod p is solvable for some integer « if and only if " =1 mod g
(This is called the Euler criterion that a be a quadratic residue mod p.)

4. Using the result of Problem 3 determine if:

(a) 3 is a square mod 17.
(b) 10 is a square mod 13.

5. If the field F has p" elements prove that the automorphisms of ¥
form a eyclic group of order n.

6. If F is a finite field, by the quaternions over F we shall mean the ses
of all ag + 17 + asj + agk where ag, a1, as, a3 € F and where additios
and multiplication are carried out as in the real quaternions (i.e., P=7F=
k? = 4jk = —1, ete.). Prove that the quaternions over a finite field do net
form a division ring.

2. Wedderburn’s Theorem on Finite Division Rings. In 1905 Weddes-
burn proved the theorem, now considered a classic, that a finite division
ring must be a commutative field. This result has caught the imaginatios
of most mathematicians because it is so unexpected, interrelating two seem-
ingly unrelated things, namely the number of elements in a certain algebraie
system and the multiplication of that system. Aside from its intrinsic beauty
the result has been very important and useful since it arises in so many con-
texts. To cite just one instance, the only known proof of the purely ge-
ometric fact that in a finite geometry the Desargues configuration implies
that of Pappus (for the definition of these terms look in any good book on
projective geometry) is to reduce the geometric problem to an algebrais
one, and this algebraic question is then answered by invoking the Wedder-
burn theorem. For algebraists the Wedderburn theorem has served as &
jumping-off point for a large area of research, in the 1940’s and 1950°s
concerned with the commutativity of rings.
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Tarorem 7.c (WEDDERBURN). A finite division ring is necessarily a com-
mulative field.

First Proof. Let K be a finite division ringand let Z = {¢: € K|z22 = 22
for all z € K| be its center. If Z has q elements then, as in the proof of
Lemma 7.1, it follows that K has ¢" elements. Our aim is to prove that
Z = K, or, equivalently, that n = 1.

Ifa€ K let N(a) = v € K|za = az}. N (a) clearly contains Z, and,
as a simple check reveals, N(a) is a subdivision ring of K. Thus N (a) con-
tains ¢" elements for some integer n(a). We claim that n(a) |n. For, the
nonzero elements of N(a) form a subgroup of order ¢"® — 1 of the group
of nonzero elements, under multiplication, of K which has ¢" — 1 elements.
By Lagrange’s theorem (Theorem 2.a) ¢"'* — 11is a divisor of ¢" — 1; but
this forees n(a) to be a divisor of n (see Problem 1 at the end of this section),

In the group of nonzero elements of K we have the conjugacy relation
used in Chapter 2, namely a is a conjugate of b if a = 27 bz for some z < 0
in K.

By Theorem 2.h the number of elements in K conjugate to a is the index
of the normalizer of a in the group of nonzero elements of K. Therefore the
number of conjugates of a in K is 4 -

q
n(a) = n, thus by the class equation (see the corollary to Theorem 2.h)

el Now a € Z if and only if

nia) 1n 4

: g — 1
(1) i e B
n(a)|n 4 =l

nia)=n

where the sum is carried out over one a in each conjugate class for a’s not
in the center.

The problem has been reduced to proving that no equation such as (1)
can hold in the integers. Up to this point we have followed the proof in
Wedderburn’s original paper quite closely. He went on to rule out the possi-
bility of equation (1) by making use of the following number-theoretic
result due to Birkhoff and Vandiver: for n > 1 there exists a prime number
which is a divisor of ¢" — 1 but is not a divisor of any q™ — 1 where m is a
proper divisor of #, with the exceptions of 26 — 1 = 63 whose prime factors
already occur as divisors of 22 — 1 and 2% — 1, and n = 2, and p a prime
of the form 2* — 1. If we grant this result, how would we finish the proof?
This prime number would be a divisor of the left-hand side of (1) and also a
divisor of each term in the sum oceurring on the right-hand side since it
divides ¢" — 1 but not ¢"® — 1: thus this prime would then divide ¢ — 1
giving us a contradiction. The case 2% — 1 still would need ruling out but
that is simple. In case n = 2, the other possibility not covered by the above
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argument, there can be no subfield between Z and K and this forces Z = K.
(Prove!—See Problem 2.)

However, we do not want to invoke the result of Birkhoff and Vandiver
without proving it, and its proof would be too large a digression here. So
we look for another artifice. Our aim is to find an integer which divides

=y

T for all divisors n(a) of n except n(a) = n, but does not divide
@ —

g — 1. Once this is done, Equation (1) will be impossible unless n = 1 and,
therefore, Wedderburn’s theorem will have been proved. The means to
this end is the theory of cyclotomic polynomials. (These have been men-
tioned in the problems at the end of Section 6, Chapter 5.)

Consider the polynomial z* — 1 considered as an element of C[z] where C'
is the field of complex numbers. In Clz]

(2 g —1 ="M — X)),

where this product is taken over all X satisfying A" = 1.

A complex number # is said to be a primative nth root of unity if 6" = 1
but 8™ # 1 for any positive integer m < n. The complex numbers satisfy-
ing " = 1 form a finite subgroup, under multiplication, of the complex
numbers, so by Theorem 7.b this group is eyclic. Any cyclic generator of
this group must then be a primitive nth root of unity, so we know that such
primitive roots exist. (Alternately, 8§ = ¢**/" yields us a primitive nth root
of unity.)

Let ®,(x) = I(z — 6) where this product is taken over all the primitive
nth roots of unity. This polynomial is called a cyclotomic polynomial. We
list the first few cyclotomic polynomials: ®;(z) = x — 1, ®s(z) = @ + 1,
Biz) =242+ 1, d(x) =22+ 1, &@) =2 +22+22+z+1,
®g(r) = 2 — = + 1. Notice that these are all monic polynomials with
integer coefficients.

Our first aim is to prove that in general ®,(x) is a monic polynomial with
integer coefficients. We regroup the factored form of #” — 1 as given in (2),
and obtain

(3) " — 1 = ] ®alx).

din

By induction we assume that ®;(z) is a monic polynomial with integer co-
efficients for d|n, d # n. Thus z" — 1 = ®,(2)g(z) where g(z) is a monic
polynomial with integer coefficients. Therefore,
at—-1
g(z)

which, on actual division (or by comparing coefficients), tells us that ®,(x)
iz a monic polynomial with integer coefficients.

P,(z) =
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We now claim that for any divisor d of n, where d = n,

" =1
P, () e
in the sense that the quotient is a polynomial with integer coefficients. To
see this first note that 27 — 1 = H ®y(x), and since every divisor of d

kd

is also a divisor of n, by regrouping terms on the right-hand side of (3) we
obtain z” — 1 on the right-hand side; also since d < n, ¥ —1 does
not involve ®,(z). Therefore, " — 1 = &, (x)(x* — 1)f(z) where fz) =

II @i(2) has integer coefficients, and so
k|n
ktd

%=1

b, (x
(x) 3

in the sense that the quotient is a polynomial with integer coefficients.
This establishes our claim.

For any integer ¢, ®,(f) is an integer and from the above as an integer
divides (1" — 1)/(t* — 1). In particular, returning to equation (1),

qn — 1
qn(aj — 1

and ®,(q)[(¢" — 1); thus by (1), ®,(g) | (g — 1). We claim, however, that if
n > 1 then |®,(g)|> ¢ — 1. For ®,(g) = I(g — 6) where @ runs over all
primitive nth roots of unity and |¢ — 6| > g — 1 for all # ## 1 a root of
unity (Prove!) whence |&,(¢)|= I q — 8| > q — 1. Clearly, then ®,(g)
cannot divide ¢ — 1, leading us to a contradiction. We must, therefore,
assume that n = 1, forcing the truth of the Wedderburn theorem.

&, (q)

Second Proof. Before explicitly examining finite division rings again, we
prove some preliminary lemmas,

Lemma 7.8. Let R be a ring and let a € R. Let T, be the mapping of R
wndo tiself defined by 2T, = za — ax. Then

-
T

m(m — 1)
gt

2

2T," = za™ — maxa™ !

m(m — 1)(m — 2)
koo (SRS i M
3!

Proof. What is 27.,°? 2T,* = (aT)T, = (za — ax)T, = (za — az)a
a(za — ax) = xa® — 2axa + a®xr. What about zT,%? 27T,% = @TAHT, =
(za® — 2aza + @’r)a — a(za® — 2aza + a%) = xa® — 3aza® + 3alra
a’r. Continuing in this way, or by the use of induction, we get the result
Lemma 7.8.

22a™ 8 ...,
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CoroLLARY. If R is a L ring m which pr= 0 for all x € R, where p is a
prime number, then xT', P = zg?" — oz

Proof. By the formula of Lemma 7.8, if p = 2, 2T,? = za® — a’z, since
2aza = 0. Thus, 27,* = (va® — a’x)a® — a®*(za® — a’z) = za* — a'z, and
so on for 27,2 .

If p is an odd prime, again by the formula of Lemma 7.8,

p(p — 1) o

2

zT? = za®? — paxa®™! + a? "% ... — aPz,

and since

(@ — 1) s (pr—t+ 1)
4 il

for ¢« < p, all the middle terms drop out and we are left with 27,” =
za® — a’z = 2Tr. Now 21" = 2(T»)? = 2T 4, and so on for the higher
powers of p.

Lemma 7.9. Let D be a division ring of characteristic p > 0 with center
Zyandlet P={0,1,2,...,(p— 1)} be the subfield of Z isomorphic to J,.
Suppose that a € D, a & Z is such that a®" = a for some n > 1. Then there
exists an x € D such that

@) zaz ' #a
(2) zaz™" € P(a) the field obtained by adjoining a to P.

Proof. Define the mapping 7', of D into itself by yT, = ya — ay for every
y € D.

P(a) is a finite field, smce a is algebraic over P and has, say, p™ elements
These all ss.tlsfy u?" = u. By the corolla.ry to Lemma 7.8, yT,7
ya®" —a”y—ya—ay-—yT,,, and so T," = T..

Now, if A € P(a), (A2)Ts = (A\z)a — a(Az) = A\ra — \az = A(za — az)
= AzT,), since A\ commutes with a. Thus the mapping A of D into itself
defined by A : 1y — My commutes with 7', for every A € P(a). Now the

polynomial w*" — u = II (u =) by Lemma 7.2. Since Ty commules
AEP(a)

with A for every X\ € P(a), and since T,”" = T, we have that 0 =
TP — To= [I (T.—AD.
AEP(a)

If for every A # 0 in P(a), T, — M annihilates no nonzero element in D
(if y(Ta — M) = 0 implies y = 0), since To(Ty — M) ... (Ta — M) = 0,
where A, ..., A\ are the nonzero elements of P(a), we would get 7', = 0.
That is, 0 = yT, = ya — ay for every y € D forcing a € Z contrary to
hypothesis. Thus there is a A # 0 in P(a) and an z # 0 in D such that
(T, — AI) = 0. Writing this out explicitly, za — ax — Az = 0; hence,
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1

zax”" = a + Aisin P(a) and is not equal to a since \ = 0. This proves the
lemma.
CoroLLARY. In Lemma 7.9, xax™" = a* 5 a for some integer 1.

Proof. Let a be of order s; then in the field P(a) all the roots of the poly-
nomial u* — 1 are 1, a, @’ ..., @’ since these are all distinct roots
and they are s in number. Since (zaz™)" = za'z—' = 1, and since

zax™' € P(a), zaz™ is a root in P(a) of u* — 1, whence raz™! = a'.

We now have all the pieces that we need to carry out our second proof of
Wedderburn’s theorem.

Let D be a finite division ring and let Z be its center. By induction we may
assume that any division ring having fewer elements than D is a commuta-
tive field.

We first remark that if @, b € D are such that b'a = ab® but ba = ab
then b* € Z. For, consider N(b) = {« € D|b'x = zb'}. N(b") is a subdivi-
sion ring of D; if it were not D, by our induction hypothesis, it would be
commutative. However, both ¢ and b are in N (b%) and these do not com-
mute; consequently, N(b‘) is not commutative so must be all of D. Thus
b e Z.

Every nonzero element in D has finite order, so some positive power of it
falls in Z. Given w € D let the order of w relative to Z be the smallest posi-
tive integer m(w) such that w™™ € Z. Pick an element @ in D but not in Z
having minimal possible order relative to Z , and let this order be r. We
clavm that r is a prime number for if r = ryr, with 1 < r1 < r then a™ is not
in Z. Yet (') = a” € Z, implying that a’' has an order relative to Z
smaller than that of a.

By the corollary to Lemma 7.9 there is an « € D such that vaz—' =
a'# a; thus 2%a2~? = z(zar )z~ = zaiz—! = (raz ™)' = (a')! = a'.
Similarly, we get 2" laz =" = 4", However, ris a prime number thus by
the little Fermat theorem (corollary to Theorem 2.a),1" " = 1 + uyr, hence
0’ = @!ur — gg%r — Xg where A = "o € Z. Thus 2" 'a = Aazz" L.
Since z € Z, by the minimal nature of 7, 2"~ cannot be in Z. By the re-
mark of the earlier paragraph since za = az, " 'a # az’ ' and so A = 1.
Letb = 2"~ thusbab™" = \a; consequently, \'a” = (bab—")" = ba’b~" = o’
since a” € Z. This relation forces \* = 1.

We claim that if y € D then whenever " = 1, then y = A for some 7,
for in the field Z(y) there are at most r roots of the polynomial u” — 1; the

elements 1, A, X%, ..., A"~ in Z are all distinct since ) is of the prime order »
and they already account for r roots of 4" — 1 in Z( ), in consequence of
which y = A",

Since \" =1, b" = \b" = (Ab)" = (a'ba)" = a~"a from which we
get ab” = b"a. Since a commutes with b” but does not commute with b, by
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the remark made earlier, b” must be in Z. By Theorem 7.b the multiplicative
group of nonzero elements of Z is cyclic; let v € Z by a generator. Thus
a” =, b" = y¥; if j = sr then a” = 4", whence (a/y*)" = 1; this would
imply that a/y = A}, leadmg to a € Z, contrary to a & Z. Hence, il s
similarly r { k. Let a; = ¢* and b, = ¥ a direct computation from ba =
Aab leads to a;b; = ubja, where u = )\_”’ € Z. Since the prime number
r which is the order of X does not divide j or &, M* = 1 whence u > 1. Note
that u” = 1.

Let us see where we are. We have produced two elements a;, b; such that:

1) ai"=b"=a€ Z
(2) albl = ,ublal with u o= 1in Z.
(3) u" =

We compute (al lb])r, (I!Il lb )2 = 'blal 1b1 = a; l(blal l)bl =
“Huay " by)by = way b % If we compute (a;'by)? we ﬁnd it equal to
1"'2 1733 Continuing we obtain (a,~'h,)" = pl+2+ +0=1), " =
,u""""‘ TRl = =2 T o is an odd prlme since " = 1 we get
w2 = 1 whence (al_’b )" = 1. Being a solution of y" = 1, a; 7 h; = A}
so that b, = Na;; but then wbya, = a1b; = biay, contradmtmg w1l
Thus if  is an odd prime number, the theorem is proved.

We must now rule out the case r = 2. In that special situation we have
two elements a;, b; € D such that a;” = b,> = « € Z, a;b; = ubya, where
=1and p1. Thus p = —1 and a,fn = —b,al # bia;; in conse-

quenoe the characteristic of D is not 2. By Lemma 7.7 we can find elements
{, n € Z such that 1 + {* — an® = 0. Consider (a; + by + nayby)?; on
computing this out we find that (a, + ¢b; 4 5a,b1)% = (1 + 2 — ap?) =0
Being in a division ring this yields that a; + ¢by + ga;b, = 0; thus 0
2&12 = al(a, -+ fb] + Tfalbj) + (a[ + fbl < ﬂa[b])a] = 0. This contradic-
tion finishes the proof and Wedderburn’s theorem is established.

This second proof has some advantages in that we can use parts of it to
proceed to a remarkable result due to Jacobson, namely,

TrEOREM 7.0 (JacoBsoN). Let D be a division ring such that for every
a € D there exists a positive integer n(a) > 1, depending on a, such that
a"® = a. Then D is a commutative field.

Proof. If a # 0 is in D then a" = a and (2a)™ = 2a for some integers
n,m>1 Let s=(n—1)(m — 1)+ 1; s > 1 and a simple calculation
shows that a’ = a and (2a)* = 2a. But (2a)* = 2°¢° = 2%, whence 2%a = 2a
from which we get (2° — 2)a = 0. Thus D has characteristic p > 0.
If P C Z is the field having p elements (isomorphic to .J,), since @ is alge-
braic over P, P(a) has a finite number of’element-s, in fact, p" elements for
some integer h. Thus, since a € P(a), a”" = a. Therefore, if a @ Z all the
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conditions of Lemma 7.9 are satisfied, hence there exists a b € D such that

(1) bab™! = a*  a.

By the same argument, " = b for some integer £ > 1. Let W =

ph ph

{x €D| 2 3 pia't’ where p;; € P}. W is finite and is closed under
f=1 j=1

addition. By virtue of (1) it is also closed under multiplication. (Verify!)

Thus W is a finite ring, and being a subring of the division ring D, it itself

must be a division ring (Problem 3). Thus W is a finite division ring; by

Wedderburn’s theorem it is commutative. But a and b are both in W;

therefore, ab = ba contrary to a“b = ba. This proves the theorem.

Jacobson’s theorem actually holds for any ring R satisfying a™® = a for
every a € R, not just for division rings. The transition from the division
ring case to the general case while not difficult involves the axiom of choice,
and to discuss it would take us too far afield.

PROBLEMS

1. If £ > 1 is an integer and (" — 1)|(t* — 1), prove that m|n.

2. If D is a division ring, prove that its dimension (as a vector space)
over its center cannot be 2.

3. Show that any finite subring of a division ring is a division ring.

4. (a) Let D be a division ring of characteristic p # 0 and let G be a
finite subgroup of the group of nonzero elements of D under
multiplication. Prove that G is abelian. (Hint: consider the sub-
set |z € D|z =EN\g;, M E P, ¢g; € G}.)

(b) In part (a) prove that G is actually eyclic.

*5. (a) If R is a finite ring in which 2™ = z, for all # € R where n > 1
prove that R is commutative.

(b) If R is a finite ring in which z*> = 0 implies that = = 0, prove
that R is commutative.

*6. Let D be a division ring and suppose that @ € D only has a finite
number of conjugates (i.e., only a finite number of distinet 2™ "az). Prove
that a has only one conjugate and must be in the center of D.

7. Use the result of Problem 6 to prove that if a polynomial of degree n
having coeflicients in the center of a division ring has n + 1 roots in the
division ring then it has an infinite number of roots in that division ring.

*8. Let D be a division ring and K a subdivision ring of D such that
zKz™' C K for every « 5 0 in D. Prove that either K = Z, the center of
D or K = D. (This result is known as the Brauer-Cartan-Hua theorem.)
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*9. Let D be a division ring and K a subdivision ring of D. Suppose that
the group of nonzero elements of K is a subgroup of finite index in the group
(under multiplication) of nonzero elements of D. Prove that either D is
finite or K = D.

10. If 8 # 1 is a root of unity and if ¢ is a positive integer, prove that
lg —8|>q—1.

3. A Theorem of Frobenius. In 1877 Frobenius classified all division rings
having the field of real numbers in their center and satisfying, in addition,
one other condition to be described below. The aim of this section is to
present this result of Frobenius.

In Chapter 6 we brought attention to two important facts about the
field of complex numbers. We recall them here:

Facr 1. Every polynomial of degree n over the field of complex numbers
has all its n roots in the field of complex numbers.

Fact 2. The only irreducible polynomials over the field of real numbers
are of degree 1 or 2.

DerFiniTion. A division algebra D is said to be algebraic over a field I if:

(1) F is contained in the center of D;
(2) every a € D satisfies a nontrivial polynomial with coefficients in F.

If D, as a vector space, is finite-dimensional over the field ' which is con-
tained in its center, it can easily be shown that D is algebraic over F (see
Problem 1, end of this section). However, it can happen that D is algebraic
over F yet is not finite-dimensional over F.

We start our investigation of division rings algebraic over the real field
by first finding those algebraic over the complex field.

Lemuma 7.10. Let C be the field of complex numbers and suppose that the
division ring D s algebraic over C. Then D = C.

Proof. Suppose that a € D. Since D is algebraic over C, a" + aya™ ™" +
vt ap_1a + a, = 0 for some e, ag, ..., a; in C.

Now the polynomial p(z) = 2" 4+ a2~ 4+ -+ an_1z + a, in Cz],
by Fact 1, can be factored, in C[z], into a product of linear factors; that is,
p() = (z — A)(@ — N2) ... (@ — \n), where Ay, Az, ..., A, are all in C.
Since C is in the center of D, every element of ¢ commutes with a, hence
pla) = (@ — \)(@ —Ap) ... (@ — \,). But, by assumption, p(a) =0,
thus (@ — A\)(@ — Ns) ... (@ — \,) = 0. Since a product in a division ring
is zero only if one of the terms of the product is zero, we conclude that

FOm 6 3 & s B [
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@ — A = 0 for some k, hence a = Ar, from which we get that a € (.
Therefore, every element of D is in C; since C C D, we obtain D = (.

We are now in a position to prove the classic result of Frobenius, namely,

THEOREM 7.E (FROBENIUS). Let D be a division ring algebraic over F,
the field of real numbers. Then D is isomorphic to one of: the Jield of real
numbers, the field of complex numbers, or the division ring of real quaternions.

Proof. The proof consists of three parts. In the first, and easiest, we dis-
pose of the commutative case; in the second, assuming that D is not com-
mutative, we construct a replica of the real quaternions in D; in the third
part we show that this replica of the quaternions fills out all of D.

Suppose that D = F and that a is in D but not in F. By our assumptions,
a satisfies some polynomial over F, hence some irreducible polynomial over
F. In consequence of Fact 2, a satisfies either a linear or quadratic equation
over F. If this equation is linear, @ must be in F contrary to assumption. So
We may suppose that e + 2aa + 8 = 0 where @, 8 € F. Thus (a — a)? =
o® — 8; we claim that o — B <0 for, otherwise, it would have a real
Square root ¢ and we would have @ — o = 45 and so @ would be in F.
Since o® — 8 < 0 it can be written as —v* where v € F. Consequently
a— o

2
(@ — a)? = —+?, whence ( ) ==L Thusif a € D, a € F we can

v

2
a —

Jind real &, v such that ( ) = —1.
Y

If D is commutative, picka € D,a @ Fandleti = 2% where a, ¥
7 4

in F are chosen so as to make 2 = — 1. Therefore D contains F(3), a field
isomorphic to the field of complex numbers. Since D is commutative and
algebraic over F it is, all the more 80, algebraic over F(7). By Lemma 7.10
we conclude that D = F(3). Thusif D is commutative it is either F or F(z),

Assume, then, that D is not commutative. We claim that the center of I
must be exactly F. If not there is an a in the center, a not in . But then for

2
a— o
some a, ¥y € F, ( ) = —1 so that the center contains a field isomor-
¥
phic to the complex numbers. However, by Lemma 7.10 if the complex num-
bers (or an isomorph of them) were in the center of D then D = (¢ forcing
D to be commutative. Hence F is the center of D).
a—aua

Let a €D, a € F; for some a, v € F, i = satisfies 1° = —1,
v
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Since ¢ € F, 1is not in the center of F. Therefore there is an element b € D
such that ¢ = bi — 4b # 0. We compute ic + ei; ic + ¢i = i(bi — ib) +
(bi — ib)i = ibi — 4°b + bi® — 4ibi = 0 since * = —1. Thus ic = —ci;
from this we get ic> = —e(ic) = —c(—ci) = ¢%, and so ¢? commutes with
1. Now ¢ satisfies some quadratic equation over F, ¢ 4 Ae + ¢ = 0. Since
¢® and p commute with 7, A\e must commute with 7; that is, Aei = i\¢ =
Aic = —Xet, hence 2\e¢i = 0, and since 2¢7 # 0 we have that A = 0. Thus
¢ = —pu;since ¢ @ F (for ¢t = —ic  ic) we can say, as we have before,

c
that uis positive and so u = »* where » € F. Therefore ¢* = —»%;letj = -
Then j satisfies: 4

2
¢
(1) /2 = et

e+ e
=0

e ¢
@) jitij=-i+i-=
v v v
Let k = 7j. The 4, j, k we have constructed behave like those for the qua-
ternions, whence 7' = {ap + a1i + agj + agk|ag, a;, ay, a3 € F} forms a
subdivision ring of D isomorphie to the real quaternions. We have produced
a replica, 7', of the division ring of real quaternions in D!

Our last objective is to demonstrate that T = D.

If r € D satisfies 1> = —1 let N(r) = {x € D|zr = rz}. N(») is a sub-
division ring of D; moreover r, and so all ey + eyr, e, a; € F, are in the
centerof N (r). By Lemma 7.10 it follows that N (r) = {ay + a7 | ag, o € F}.
Thus if 2r = rz then x = &y + a;r for some «y, @ in F.

satisfies

u
Suppose that u € D, u & F. For some a, 3 € F, w =

w? = —1. We claim that wi + 4w commutes with both 7 and w; for
i(wi + dw) = wi + Pw = dwi + wi® = (w + wi)i since 2 = —1.
Similarly w(wi + dw) = (wi + @w)w. By the remark of the preceding para-
graph, wi 4+ iw = af + a1i = ag + ayw. If w & T this last relation forces
a; = 0 (for otherwise we could solve for w in terms of 7). Thus wi + w =
ag € F. Similarly wj 4 jw = 8o € F and wk + kw = v, € F. Let
a . Bo. Yo
z=w+ 21+ 234—?1«:.
Then

ﬁ+a=m+m+?w+ﬁ+%w+m+¥m+m

= Qg — oy = 0;
similarly zj + jz = 0 and 2k + kz = 0. We claim these relations force z to
be 0. For 0 = zk + kz = 2ij + djz = (21 + 42)j + i(jz — 2zj) = i(jz — 2))
since zi + 1z = (. However 7 # 0, and since we are in a division ring, it
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follows that jz — zj = 0. But jz + z7 = 0. Thus 2jz = 0, and since 2j = 0
we have that z = 0. Going back to the expression for z we get

@y Bo Yo

2 2 2
whence w € T, contradicting w & 7. Thus, indeed, w € T. Since w =
U —

,u = pw + aand sou € T. We have proved that any element in D
isin T. Since T' C D we conclude that D = T'; because T is isomorphic to
the real quaternions we now get that D is isomorphic to the division ring
of real quaternions. This, however, is just the statement of the theorem.

PROBLEMS

1. If the division ring D is finite-dimensional, as a vector space, over the
field F contained in the center of D, prove that D is algebraic over F.

2. Given an example of a field K algebraic over another field F' but not
finite-dimensional over F.

3. If A is a ring algebraic over a field ' and A has no zero divisors prove
that A is a division ring,

4. Integral Quaternions and the Four-Square Theorem. In Chapter 3 we
considered a certain special class of integral domains called Euclidean rings.
When the results about this class of rings were applied to the ring of Gaus-
sian integers we obtained, as a consequence, the famous result of Fermat
that every prime number of the form 4n + 1 is the sum of two squares.

We shall now consider a particular subring of the quaternions which, in
all ways except for its lack of commutativity, will look like a Euclidean ring.
Because of this it will be possible to explicitly characterize all its left-ideals.
This characterization of the left-ideals will lead us quickly to a proof of the
classic theorem of Lagrange that every positive integer is a sum of four
squares.

Let @ be the division ring of real quaternions. In @ we now proceed to
introduce an adjoint operation, #, by making the

DeriniTioN. For = ey + eyi + azj + ask in Q the adjoint of z, de-
noted by z* is defined by 2* = oy — a7 — as] — azh.

Lemma 7.11. The adjoint in Q satisfies

(1) z** =g
(2) (6z + yy)* = oz* + vy*
(3) (xy)* = y*z*

for all z, y in Q and all real & and .
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PTOOf. o= (2] + C!g_?; + a'zj + a3k t.hen g = @y — a]_?: =7 agj = ask,
whence z** = (2*)* = ay + ayi + axj + ask, proving (1).

Let * = ag + aui + aoj + ask and y = Bo + Bit + B2j + Bk be in @
and let 8 and v be arbitrary real numbers. Thus éz 4+ vy = (8ag + ¥Bo) +
(3a; + vB8))i + (8az + ¥B2)j + (8az + ¥Ba)k, therefore by the definition
of the x, (8z + vy)* = (dag + ¥Bo) — (8 + ¥B1)i — (Bez + vB2)j —
(8ag + ¥B3)k = 8(ap — ayi — agj — ask) + ¥(Bo — But — B2j — Bsk) =
sz* + yy*. This, of course, proves (2).

In light of (2), to prove (3) it is enough to do so for a basis of @ over the
reals. We prove it for the particular basis 1, 7, j, k. Now ij = k hence (j)* =
k* = —k = ji = (—j)(—1) = j** Similarly (¢ck)* = k**, (jk)* = k%™
Also (1*)* = (=1)* = —1 = (%)%, and similarly for j and k. Since (3) is
true for the basis elements and (2) holds, (3) is true for all linear combina-
tions of the basis elements with real coefficients, hence (3) holds for arbi-

tary = and y in Q.

Derinirion. If @ € Q then the norm of , denoted by N (z), is defined by
Nix) = az®

Note that if z = ag + eyt + asj + azk then N(z) = 22* = (ag + ayt +
asj + azk)(ag — ayf — @z — agk) = ep® + a® + as® + as?; therefore
N(0) = 0 and N(z) is a positive real number for z # 0 in Q. In particular,

1

for any real number a, N(a) = o”. If z # 0 note that 2™ = *

N@ z*

Lemma 7.12. For all z, y € Q, N(zy) = N(@)N(y).

Proof. By the very definition of norm, N(zy) = (xy)(xy)*; by part (3)
of Lemma 7.11, (zy)* = y*z* and so N(zy) = zyy*z*. However, yy* =
N(y) is a real number, and thereby it is in the center of @; in particular it
must commute with =*. Consequently N(zy) = z(yy*)z* = (zz*)(yy*) =
N(x)N(y).

As an immediate consequence of Lemma 7.12 we obtain

Lemma 7.13 (LAGRANGE IDENTITY). If oo, a1, ag, a3 and By, B1, Ba, B3 are
real numbers then (a? + 2 + a® + aa®)(Be® + B2 + B2 + B3%) =
(aoBo — By — asBs — agB)® + (aohs + aifo + By — asba)® +
(eoBz — 183 + aaBo + @3B1)® + (@oBs + anBs — @by + asfo)’.

Proof. Of course there is one obvious proof of this result, namely, multiply
everything out and compare terms.
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However, an easier way both to reconstruct the result at will and, at the
same time, to prove it is to notice that the left-hand side is N (z) N (y) while
the right-hand side is N (zy) where z = o + 1% + asj + ask and Y =
Bo + Bii + Baj + Bsk. By Lemma 7.12 N ()N (y) = N(zy), ergo the La-
grange identity!

The Lagrange identity says that the sum of four squares times the sum
of four squares is again, in a very specific way, the sum of four squares. A
very striking result of Adolf Hurwitz says that if the sum of n squares times
the sum of n squares is again a sum of n squares, where this last sum has
terms computed bilinearly from the other two sums, then n = 1,2 4, or 8.
There is, in fact, an identity for the product of sums of eight squares but
it is too long and cumbersome to write down here.

Now is the appropriate time to introduce the Hurwitz ring of integral
quaternions. Let ¢ = 1(1 4 ¢ + J+ k) and let

H = {mgf + myi + maj + mgk |mo, my, mo, mg integers).

LeMMa 7.14. H 45 a subring of Q. If x € H then z* € H and N(2) is a
positive integer for every nonzero x in H.

We leave the proof of Lemma 7.14 to the reader. It should offer no diffi-
culties,

In some ways H might appear to be a rather contrived ring. Why use the
quaternions {? Why not merely consider the more natural ring Q, =
tmo + myi + moj + mak | mo, my, my, my are integers|? The answer is that
Qo is not large enough, whereas H is, for the key lemma which follows to
hold in it. But we want this next lemma to be true in the ring at our disposal
for it allows us to characterize its left-ideals. This, perhaps, indicates why
we (or rather Hurwitz) chose to work in H rather than in Qo.

Lemma 7.15 (Lerr-Division ALGORITHM). Let @ and b be in I with
b #= 0. Then there exist two elements ¢ and d in H such that a = ¢b + d
and N(d) < N(b).

Proof. Before proving the lemma, let’s see what it tells us. If we look back
in the section in Chapter 3 which deals with Euclidean rings, we can see
that Lemma 7.15 assures us that except for its lack of commutativity A
has all the properties of a Euclidean ring. The fact that elements in &7 may
fail to commute will not bother us. True, we must be a little careful not to
jump to erroneous conclusions; for instance a = b + d but we have no
right to assume that a is also equal to be + d for b and ¢ might not commute.
But this will not influence any argument that we shall use.




332 SELECTED TOPICS CH. 7

In order to prove the lemma we first do so for a very special case, namely,
that one in which @ is an arbitrary element of H but b is a positive integer
n. Suppose that a = tof + 4t + toj + sk where ty, {y, ls, t3 are integers and
that b = n where n is a positive integer. Let ¢ = xpf + 217 + z2f + a3k
where 1, ¥y, T2, T3 are integers yet to be determined. We want to choose

them in such a manner as to force N(a — e¢n) < N(n) = n® But
1t+d+7+% . . 14+2+74+k
a—cn=|Il med ) 4+ 4t + o] + 3k ) — nxg e )

— nayt — nasj — nizhk
= §(to — nxo) + F(to + 2ty — nlte + 221))s
+ 3(lo + 26, — nlto + 222))j + F(to + 2tz — nllo + 223))k.

If we could choose the integers xg, x1, @2, 3 in such a way as to make
[ty — naxo| S%n, [to+ 26 — nlto+221) [ S m, | to + 2t — n(lo + 225) [ < n
and |ty + 2f3 — n(ly + 2x3)| < n then we would have

(to "‘4"'1‘0)2 n (o + 28 — :(to + 2z,))2 v

< gnP+ I+ I+ in® <n® =N,

N(a — cn) =

which is the desired result. But now we claim this can always be done:

n n
(1) There is an integer z, such that {, = zyn 4+ r where — B s 3

n
for this xq, |to — xon| =[] < 7

(2) There is an integer k such that t; + 2¢, = kn +rand 0 < r < n. If
k — ty is even, put 2x; = k — {y; then &y + 24 = (22, +fo)n + 1
and |ty + 2¢; — (22, + ig)n| = r < n. If, on the other hand, k — fis
Odd, put 2.’1'-1 =k — to o ]., thus to + Qtl = (2.111 -+ 7 1)?1- +r =
(22, + to)n + r — n, whence |ty + 2t; — (22, +to)n|=|r —n|< n
since 0 < r < n. Therefore we can find an integer x; satisfying
[ty + 2t; — (221 + to)n| < n.

(3) As in (2) we can find integers x, and x3 which satisfy [f, + 26, —
(225 + to)n| < n and |ty + 203 — (223 + fo)n| < n respectively.

In the special case in which a is an arbitrary element of H and b is a posi-
tive integer we have now shown the lemma to be true.

We go to the general case wherein @ and b are arbitrary elements of H
and b # 0. By Lemma 7.14 n = bb* is a positive integer thus there exists a
¢ € H such that ab* = en + d, where N(d;) < N(n). Thus N(ab* — en) <
N(n); but n = bb* whence we get N(ab* — cbb*) < N(n), and so
N((a — ¢b)b*) < N(n) = N(bb*). By Lemma 7.12 this reduces to
N(a — eb)N(b*) < N(b)N(b*); since N(b*) > 0 we get N(a — cb) < N(b).
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Putting d = a — ¢b we have a = ¢b + d where N(d) < N(b). This com-
pletely proves the lemma.
As in the commutative case we are able to deduce from Lemma 7.15

Lemma 7.16. Let L be a lefi-ideal of H. Then there exists an element u € I,
such that every element in I is a left-multiple of u; in other words, there exists
aw & L such that every x € L is of the form x = ru where r € H.

Proof. If L = (0) there is nothing to prove, merely put u = 0,

Therefore we may assume that I has nonzero elements. The norms of the
nonzero elements are positive integers (Lemma 7.14) whence there 18 an
element u > 0 in L whose norm is minimal over the nonzero elements of I..
If # € L, by Lemma 715, x = cu + d where N{d) < N(u). However d
is in L because both z and u, and 80 cu, are in L which is a left-ideal. Thus
N(d) = 0Oandsod = 0. From thisz = cuisa consequence,

Before we can prove the four-square theorem, which is the goal of this
section, we need one more lemma, namely

LemMa 7.17. If a € H thena™' € H of and only if N(a) = 1.

Proof. 1f both a and a™" are in H, then by Lemma 7.14 both N(a) and
N(a™") are positive integers. However, aa ™! = 1, whence, by Lemma 7.12,
N(a)N(a™) = N(aa™) = N(1) = 1. This forces Nia) = 1.

On the other hand, if a € H and N(a) = 1, then aa* = N(a) = 1 and
goat = ag* But, by Lemma 7.14, since a < H we have that a* € H, and

so ™! = a* is also in A.

We now have determined enough of the structure of H to use it effectively
to study properties of the integers. We prove the famous, classical theorem
of Lagrange,

TurOREM 7.%. Every positive tnteger can be expressed as the sum of squares
of four inlegers.

Proof. Given a positive integer 7 we claim in the theorem that n = z,2 +
% + 252 + 252 for four integers xo, 1, 2, 3. Since every integer factors
into a product of prime numbers, if every prime number were realizable as
a sum of four squares, in view of Lagrange’s identity (Lemma 7.13) every
integer would be expressible as a sum of four squares. We have reduced the
problem to consider only prime numbers n. Certainly the prime number 2
can be written as 12 + 12 + 02 + 02 as a sum of four squares.

Thus, without loss of generality, we may assume that n is an odd prime
number. As is customary we denote it by p.
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Consider the quaternions W, over J,, the integers mod p; W, =
lag + ant + asj + ask|ag, a1, @, ag € J,}. W, is a finite ring; moreover,
since p # 2 it is not commutative for ij = —ji # ji. Thus, by Wedder-
burn’s theorem it cannot be a division ring, whence by Problem 1 at the
end of Section 5 in Chapter 3, it must have a left-ideal which is neither (0)
nor W,.

But then the two-sided ideal V in H defined by V = {xof + x17 + 22§ +
z3k | p divides all of xq, z;, T3, 3} cannot be a maximal left-ideal of H, since
H/V is isomorphic to W,. (Prove!) (If ¥ were a maximal left-ideal in H,
H/V, and so W,, would have no left-ideals other than (0) and H/V).

Thus there is a left-ideal L of H satisfying: L % H, L # V,and L D V.
By Lemma, 7.16, there is an element « € L such that every element in L is a
left-multiple of . Since p € V, p € L, whence p = cu for some ¢ € H.
Since u € V, ¢ cannot have an inverse in H, otherwise . = ¢~'p would be
in V. Thus N(¢) > 1 by Lemma 7.17. Since L # H, u cannot have an in-
verse in H, whence N(u) > 1. Since p = cu, p* = N(p) = N(cw) =
N(c)N(u). But N(c) and N(u) are integers, since both ¢ and « are in H,
both are larger than 1 and both divide p®. The only way this is possible is
that N(¢c) = N(u) = p.

Since u € H, u = mo{ + mqi + maj + mak where my, my, mg, ms are in-
tegers; thus 2u = 2mof + 2nt + 2maj + 2mgk = (mo + mot + mej + mek) +
2myi + 2mej + 2mgk = mg + (Cmy + me)i + 2me 4+ mo)j +
(2mg + mo)k. Therefore N(2u) = mg® + (2my + mg)? + (2ma + mp)® +
(2mz + mg)%. But N(2u) = N(2)N(u) = 4psince N(2) = 4and N(u) = p.
We have shown that 4p = mo® + @my + mo)® + 2ms + me)® +
(2mgz + mg)?. We are almost done.

To finish the proof we introduce an old trick of Euler’s: If 2a = z,? +
212 + 152 + 232 where a, o, 71, 7, and 23 are integers, then a = yo* + y:*
+ 5% + 4 for some integers yo, ¥1, ¥a, ¥z. To see this note that, since 2a
is even, the 2’s are all even, all odd or two are even and two are odd. At any
rate in all three cases we can renumber the z's and pair them in such a way
that

g 3y T — 23 Lo + I3 Tp — X3

= v Y = ; = v oand Y. =
Yo 2 51 5 Y2 2 K] 5

are all integers. But
¥l + yi® + v + vs?

£0+1712 Io—$12 $2+JI32 .’Ez—xsz
(2 )+(2 )+( 2 )+(2—)
=%(1’02+-f12+$22+#1?32)

= 1(2q)

= a.

Il
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Since 4p is a sum of four squares, by the remark just made 2p also is;
since 2p is a sum of four squares, p also must be such a sum. Thus P = ag? +

2 2 2 * ] 3
a;” 4 as® + a3® for some Integers ay, a,, as, az and Lagrange’s theorem is
established.

This theorem itself is the starting point of a large research area in number
theory, the so-called Waring problem. This asks if every integer can be
written as a sum of a fixed number of kth powers. For instance it can be
shown that every integer is a sum of nine cubes, nineteen fourth powers,
ete. The Waring problem was shown to have an affirmative answer, in this
century, by the great mathematician Hilbert.

PROBLEMS

1. Prove Lemma 7.14.

2. Find all the elements a in Q, such that ap ™" is also in Q.

3. Prove that there are exactly 24 elements a in H such that a ! is also in
H. Determine all of them.

4. Give an example of an a and b, b # 0, in Q, such that it is impossible
to find ¢ and d in Q, satisfying a = ¢b + d where N(d) < N(b).

6. Prove that if a € H then there exist integers a, 8 such that a® + «a +
‘6 =

6. Prove that there is a positive integer which cannot be written as the
sum of three squares.

*7. Exhibit an infinite number of positive integers which cannot be writ-

ten as the sum of three squares.

Supplementary Reading

For a deeper discussion of finite fields: ALBERT, A. A., Fundamental Concepts
of Higher Algebra. University of Chicago Press, Chicago, 1956.

For many proofs of the four-square theorem and a discussion of the Waring
problem: Harpy, G. H., and Wricnt, E. M., An Introduction to the
Theory of Numbers, second edition. Clarendon Press, Oxford, England,
1945,

For another proof of the Wedderburn theorem: Arrin, E., “Uber einen
Satz von Herrn J. H. M. Wedderburn,”  Abhandlungen, Hamburg
Mathematisches Seminar, Vol. 5 (1928), pages 245-50.




