I LINEAR ALGEBRA

A. Pilelds,

A field 1s a set of eleménts In which a pair or opera-
tions called multiplication and additlon 13 defined analogous
to the operatlons of multiplication and addition 1in the preal
number system (which is ltgelf an example of a fleld). In
each field F there exist unigue elements called o and 1 which,
under the operations of addition and maltiplication, behave
with respect to all the other elements of F exactly as their
correspondents in the real number system. In two reapects,
the analogy is not complete: 1) multiplication 13 not mssumed
to be commutatlve in every fleld, and 2) a field may have
only a finite number of elements.

More exactly, = field is_a set of elemnents which, under
the above mentioned operation of additlon, forms an additive
abelian group and for which the elements, exclusive of zerg,
form a nultiplicative group and, finally, in which the two -
group opeérations are connected by the distributive law.,
Furthermore, the product of o and any element 13 deflned to
be o,

If multlplication in the field 1s commutative, then the
fleld is called g commutative field,

B. Vector Spaces.

IfV 1s an additive abellan group with elements A,B

IEEEN

F a fleld with elements a,b,..., and If for each aeF and AzV
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the product aA denotes an element of V, then V 1s called a

(left) vector apace over F If the followlng aasumptions hold:

aA + aB

1) a{A + B}
2) {(a + b)A = sk + bA
3) a(bA) = (abla
4) la=a
The reader may readlly verlfy that 1f V is a vector space over
F, then oA = 0 and a0 = © whers o 1a the zero element of P and
0 that of V. For example, the first relation follows from the
equations: 7 h
A = (& +* o)A = ad + oA
Scmetimes products between elements of P and ¥ are

written In the form Aa in which case V 1a ¢alled a right

vactor space over F to distingulsh it from the prevliocus caae

where multiplication by fleld elements iz from the left. IFf,
In the discusslon, left and right veetor spaces do not cccur

simultaneously, we shall almply use the term “vector space.m

C. ﬁomoggneous Linear Equations.

If In a fleld F, aij' 1= 1,2...,m. j=1,2,...,n are
m.n elements, 1t 1sa frequently-neceSsary to know condlitiona
guaranteelng the exlatence of elementa In F asuch that the
followiﬁg equatlons are satisfied:

831%1 * ajpxpg £ v Foayux, =0
(1) . . . .

- - - .

x + see 4+ g x = o,
ml °

+
fn1*1 T Bme¥e mn

The reader wlll recall that such equations are called linear

homogenecus equatlons, and a set of elements, X sXgrenns Xy,

of F, for which all 'the above equations are true, is called

a solution of the ayastem. If not all of the elements
X1sZgseres Xy are 0 the solution is called non-trivial; other-
wlse, 1t 138 celled trivial.

THEOREM 1. A system of linear homogeneous eguatlons

always has a non-trivial solution if the number of unknowns

aexceeds the number of eguations.

The proof of thia follows the method famlliar to most
high school students, namely, successive elimination of
unknowns., TIf no sequetions in n > 0 variables are prescribed,
then cur unkmowns sre unrestrlcted and we may set them all =1,

'ﬁe shell proceed by complete induction. et us suppose
that each system of k equations 1n more than X unknowns hes a
non-triv}al solutlon when k¥ <« m« In the system of equationa
(1) we assume that n > m, and dénote the expression '
ByqXq + *er + @y x by Ly, L= 1,2,...,m. We seek elements
Xys-s-2X, not all o such that Iy = Ly = .,. = L = o, If
8y =0 for each i and J, then any cholce of Xj,...,x, will ”
serve as a golution. If not all “ij are o, then we may
azaume that 817 # o, for the order in which the equations are

written or In which the unknowns are numbered has no 1nf1uence

"on the exlstence or non-existeucsﬂof a simultaneous solution.

We can find a non-trivial solutlon to our given system of

equatiéna; 1f snd ohly 1f we can find & non-trivial solution

to the following system:

Iy =0

-1 _
Ly -~ apgy8)7’Ly =0

2 e e« - -

=1 _
Ly - amB1y iy = o



For, 1r RyseresXy 1s a solutlon of these latter eguatlons
then, aince L1 = o, the second term Iin each of the remalning
equations 1s o and, Hence, L2 = L‘.5 = .., = Lm = 0. Conversely,
1f (1) is satisfled, then the new system is clearly Batlsfied,
The reader will notlce that-the new gsystem wds seé up in such
a way as to "elimlnate" x, from the last Nl equatilons.
Furthermore, - 1f a non-trivial solutlon of the iést n-1 egua-
tlona, when viewed as equations in Kp,eessX,, oxlats then
teking X, = - a1;1(312x2 *agax, b e alﬁxn) would give us
8 sclution teo the whole system. However, the 1last m.l-
equations have a solutlon by our induective assumption, from
which the theorem follows.

Remark: If the linear homogeneous pquations had been
wrltten in the form ijaij =0, 1 =1,2,...,n, the above
theorem would atill hold and with the same proof although with
the order in which terms are written changed In a few

instances.

D. Dependence and Independence of Vectors.

In a vector space V over a field F, the vectors Apseee, Ay
ars called dependent 1 there sxlst elements S LEERFE not all
o of F such that xjA; + Xphy + +++ + X A = 0. If the vectors
Al,...,An are nbt depehdent, they are called independent.

The dimenslon of a vector space V over a field F is the
maximum number of independent elements in V. 'Thus, the
dimension of V is n if there are n independent élements in Vv,
but no set of more than n independent elements.

A system Ay,...,A, of elementa In V 1s celled a

gonerating system of V if each element A of V can be expresaed
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linearly in terms of Al,...,Am, l.e., & =liilai for a suitable
choice of a4, 1 = 1,...,m, in F.

THEOREM 2. In any generating system the maximum number

of independent vectors 1as egual to the dimension of the

Yector spsce.
Let fdys+ee Ay be a generating system of a vector space V

of dlmenaion n. Let r be the maximum number of Independent
olements in the generating system. By a sultable reordering
of the generators we may assume Al,...,Ar Independent, By
the definition of dimenslon, 1t follows that r = n. For esch
Js Al,...,Ar, Ar+j are dependent, and in the rqlation
QIAI + a2A2 + ens ¥ ar‘r ¥ ar+jAr+j =0
expreasing this, ar+J # o, for the contrary would assert the
dependence of Al,.,.,ar. Thus,
Apes = - aI“*}l[alAl *oaghpt et 4 aAL]L

It follows that Al"'i"r ig mlsoc a generating system since in
the linear relatlion for any element V thé/terms involving
Ar+J’ } # o, can all be replaced by linesar expr;saions in
Al,...,Ar.

Now, 1let Bl""'Bt be any system of ve:tors in V¥ whers
t > r, then there exiat 8y such that BJ =1£1aiin,
J=21,2,...,t, aince the A;'s form a generating ayatem. If we
can show that By,«ee,By are dependent, this will give us r>n,
and the theorem will follow from this together with the pre-
veous lnequality r < n. Thus, we must exhibit the exlstense
of 8 non-trivial aclution out of F of the equation

xlBl + szz + se. & xtBt = 0.



To thls end, 1t will be sufficlent to choose tha'xi'a 30 as to

t
satisfy the linear eguations X833 = 0, 1=1,2,...,r,
1= 1

since these expressions will be the coefficients of Ai when

in Z xJBJthe Bj's are replaced by E aiin and terms are

collected. A solutlon to the equations g xjaij = o,
1=1,2,...,7, always exists by Theorem 1.

Remark: Any n 1ndependent vectors Al,...,A in an n
dimensional vector space form a generating system. For any
vector A, the vectors A, &;,...,A  are dependent and the
coefficient of A, in the dependence relation, cammot be zero.
Solving for A in terms of Al,...,An, exhibits Al,...,An as a
generating system,

A subset of a veector space 1z called a aubsgace if it 1a
a subgroup of the veetor space and 1f, in addition, the
multiplication of any element In the subset by any element of
the fleld 1s also in the subset. If Al,...,AS are elements
of a vector space V, then the set of all elements of the form

1A1 + e+ asAs clearly forms.a subépace of V. It is alao
evident, ;rom the definition of dimenaion, that the dimension
of any subspace never exceeds the dimension of the whole
vector space, ' _

An s-tuple of elements (al,...,as) 1p & fleld F will be
called a row vector. The totality of such s-tuples form a
vector space 1f we define |

al) (al,az,...,a ) = (bl,bz,...,b Y if and only if
a, = bi’ i1=1,...,s, ) 7
g) (al,ag,...,aa) + (bl,bz,...,bs) = (a) + by,ag + by,

ceesbg bs),

y) blay,89,.00,84) = (bal,baa,...,bas), for B‘an
element of F.

When the s-tuples are written vertically, 1

lpcn-g

they will be called column vectors.

THEOREM &. The row {column) vector space F! of all

n-tuples from a fleld F 1s s vector space of dimension n

over F.
The n elements

= {1,0,0,444,0)

[y}
[ =]
{

ep = (0,1,044..,0)

e, =(0,0,v0.,0,1)
are independent and generate F'. Both remarks follow from
the relation (al,ag,...,an) = Zaisi.

We call a rectangular array

871183190+ +87p

81850+ By

e s o
e v »

m1%m2" " * fn

of elements of a field F a matrix. By the right row rank of a
matrix, we mean the maximum number of independent row vectors
among the rows {ail,...,ain) of the mntrii when multiplica-
tion by fleld eiements is from the right. Similarly, we
define left row renk, right column rank snd left column rank,

THEQOREM 4. In any matrix the right coluwmn rank eguals

the left row rank and the left column rank equals the right
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row rank, If the fleld is commutative, these four numbers are

equal to each other and are called the rank of the matrix.

Call the column vectors of the matrix Cl"“’cn and the

row vectors Ry,...,R» The column vector O is and any

O« =« OO

dependence clxl + CoXp + 0n- CpX, = © 1s egulvalent to a
solution of the equations )
81171 * Bp¥p * vt ax o

+

(1) : :

Im*1 o fmpXp * ccc *oapX, = o,

4ny change in the order in which the rows of the matrix ave
written glves rlse to the same system of equations and, hence,
does not change the columm rank of the natrix, but also does
not change the row rank since the changed matrlx would have
the same set of row veetors. Call ¢ the right column rank
and r the left row rank of the matrix. By the above remarks
we may assume that the firat r rows are independent row
vectors: The row vector space gensrated by all the rows of
the matrix has, by Theorem y the dimension r and ls even
generated by the flrst r row. Thus, each row after the rth

is linearly expressible in terms of the first r rows.
Consequently, any solution of the first r equatlons in (1)
wlll be a solution of the entire system since any of the last
n-r equations is obtalnsble as a linear combination of the
first r. Conversely, any solutlon of (1) will elso be a solu-

tlon of the first r equations. This means that the matprlx

811808y

arl

Y
2" Trm

PR

conglsting of the firat r rows of the origlnal matrix has the
same right column rank as the orfginal, It has also the same
left row rank since the r rows were chosen independent. But
the column rank of the émputated matrix cannot exceed r by
Theorem 3. Hence, ¢ < r. Similarly, calling ¢! the left
¢olumn rank and r' the right row rank, e' < r'. If we form
the transpose of the original matrix, that 1s, replace rows
by columms and columns by rows, then the left row rank of the
transposed matrix equals the left column rank of the original,
If then to the transposed matrix we apply the above conzidera-

tions we arrive at r < ¢ and »!'' < ¢!,

E. JXNon-heomogeneous Linear Equations.

The system of non-homogensous linear equaetions
B11%1 * feFp t ottt aX, T

azlxl F srssarenneas +_32n_xn = b2

() . ) ]
amlxl + srsenvrases 4 amnxn = bm
has a solution Lf and only 1f the column vector by lies
- bm

in the space generated by the vectors

]

11 sveey ﬁln

ﬂ...
me o
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This means that there 1s a solution 1f and only if the right

column of the matrix all"'aln 1s the same as the
Byqeeef
right column rank of the augmented matrix all"'alnbl
8,

wl® " * 3mnlm
since the vector space generated by the orliginal must be the
same a3 the vector apace generated by the augmented matrix
and In elther case the dimenslon is the same as the rank of
the matrix by Theorem 2.

By Theorem 4, thils means-that the row ranks are equal.
Conversely, if the row rank of the augmented matrix la the
same as the row rank of the origlnal matrix, the column ranks
wlll be the same end the equations will have a solution.

If the equations (2) have a solution, then any relation
among the rows of the original matrix subsists among the rows
of the augmented matrlx. For equations (2) this merely means
that like comblnations of equals are equal. Conversely, 1if

each relation whilch subsists between the rows of the orlginal

matrix also subsists between the rows of the augmented matrix,

then the row rank of the auvgmented matrix 1s the same as the

row rank of the original mabtrix., In terms of the equations

-thls means that there will exist a sclution I1f and only if the

equations are consistent, 1.e., if and only if any dependence

between thé left hand sldes of the egquations also holds

between the right sides.

11

THEOREM 5, 1If In eguations (2) m = n, there exlsts a

unigue splution 1f and only‘if the corresponding homogeneocus

equations

il
=]

813%) F 8ypXp ¥ e tag X,

a x. +a x F s 4+g x
nl 1l n2 2. nn n

1}
ke

have only the trivial solution,

If they have only the trivial solution, then the column
vectors are independent. It follows that the original n
equations in n unknowns will have a unique solutlon 1f they
have any sclutlon, sluce the differencs, term by term, of two
distinct solutions would be a non-trivial selution of fhe
homogeneous equétions. A solution would exlist since the n
Independent column vectors form a generating system for the
n-dimensional space of column vectors.

Conversely, let us suppose our equations have one and
only one golutlon. In thls case, the homogeneous equatibns
added term by term to a.solution of the orlginal equations
would yleld a new solutlion to the original equations. Hence,

the homogenecus equations have only the trivial solution.

F. Determinants.’

The theory of determinants that we shall develop in this
chapter la not needed 1n Galois theory; The reader may, there-
fore, omit this section if he so desires.

We assume our fleld to be commtative and conalder the

square matrix

1} Of the preceding theory only Theorem 1 for
homogenecus equations and the notion of
linear dependence are assumed known.
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811%12° %10

8o38ggr - +8g,
(1)

of n rows and n colurmns. We ghall define a certaln function
of this matrix whose value 13 an element of our fleld. The

function will be called the determinant and will be dencted by
By1Bqges-eByy

8B518ppe e e s8g,
{2) cettevensenne

8 g8 peeecB
or by D(Al,Aa,...An) if we wish to consider 1t ss a functlon
of the column vectors Al,Aa,...An of {1). If we keep all the
columng but Ak conatant and conaider the determinant as a
funetion of Ay, then we write Dk(Ak) end sometimes even only D.

Definition. A functlion of the column vectors 1as a
determinant 1f 1t satisfles the followlng three axioms:
1. Viewed as a function of any columm Ay 1t 1s llnear and

homogeneous, l.e.,

(3) Dkuk + Aﬁ) = Dk(Ak) + Dk(Aé)

(4) Dk(cAk) = c-Dk(Ak)

2., 1Ita value la = 0 i1f two adjacent columns A and &, are
equal.

3. Its wvalue iz =1 1f all Ak are the unit vectors U, where

=

13
1 0 0
0 1 0
(5) u={o),o=fof..... w=]o
o 0 1

'The question as to whether determinants exist will be
left opén for the present. But we derive consequences from
the axloms: .

a) If we put ¢ = 0 1In (4) we get: a determinant is ¢ if
one of the colurms 1s O.

b) Dk(Ak) = Dk(Ak + cAkil) or a determinant remains

_unchanged 1f we add a multlple of one colurn to an adjacent

colunn. Indeed

Dyl + eh ) = Dlh) + eD(A, ) = D la,)

because of axlom 2.

¢} Consider the two columns 4, and Ak+1' We may replace
them by Ay apd Apyq ¥+ Ay, subtracting the second from the
first we may replace them by ‘;Ak+1 and Ak+1 + Ak: adding the
fiist to the second we now have ~Ap 4y and ak; finally, we
facéor out -1, We conclude: a determinant changes sign if
we Interchange twe adjacent columns. |

d) A determinant vanishes 1f any two of 1ts columns are
equal. Indeed, we may brlng the two columna side by side
after an Interchange of adjacent columns and then use axlom 2.
In the same way as in b) and ¢) we may now prove the more
general rules:

e) Adding a multiplé of one column to another does not
change the value of the determinant.

£} Interchanging any two columns changes the sign of D.



14

g) TLet (vl,ve,...vn) be a permutation of the subscripts
{1,2,...n). If we rearrange the columns in D(Avl!AVQ"°°’Avn)
until they are back in the natural order, we see that

D(Avl,sz,...,Avn) =t D(A ApsenesA }.

2
Here + 1s a definlte slgn that does not depend on the special
values of the A . If we substitute U, for Ak we see that
D(le’Uvg""'Uvn) = + 1 and that the sign depends only on
the permutation of the unlt vectoras.

Now we replace each vector Ak by the followlng linear

combination A' of Al,Az,...,An:

= + 4+ aes +
(8) Ak blkA1 b A2 bnkAn.

In computing D(A',Aé,...,ﬁ&) we first apply axiom 1 on
Ai bfeaking up the determinant into a sum. then in each term
r

we do the same with A! and so on., We get

2
t)=
(7) D(A',Aa',...,An) b D(blev’bv EAV ,...,bv nAv)
Vo s Weys v apV 1 "2 2 n n
1’72 n
= Z b b *eostb D{a A ee-s AL )
Vll V22 V1 yarihyar iy
vl'vZ""'vn n 1 2 n

where each wy; runs Independently from 1 to n. Should tho of
the indiceg v, be equal, then D(Avl;AVZ,...,AVn) = 0, we need
therefore keep only those terms in which (vrvz,...,vn) is a

permutation of (1,2,...,n). This glves

(8) D(Ai,Aé,...,Aé)
= D(A_, ,...,A ). z +b *b L) )
1 2 ( 1s- ’yn) vil “woR vy

where(vl,vz,...,vn)runs through all the permutatlons of
{l,2,...,n) end where + stands for the slgn assoclated with
that permutation. It is 1mpoftant to remark that we would

have arrived at the same formula (8} 1f our function D
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gatisfied only the firat two of our axloms.
Many conclusions may be derlved from (8).
We first assume axiom 3 and speclalize the Ak to the
" =
unlt vectors U of (5). Thls makes Ak B,_ where Bk 1s the
column vector of the matrix of the bik' {8) yields now:

R

(9) D(BI’BZ""’BTI)= z ‘b\JBB -Vnn

vl,vz,...,vn)- bfll
glving us an explicit formula for determinants and showing
that they sre unlquely determlned by our axioms provided they
exist at all.

With expression (9} we return to formula {8) and get

(10} D{a 12,...,A } = D(Al,Az,...,A )D(B1 BB""’Bn)'

This is the so-called multiplicatlon theorem for deter-
minants. At the left. of (10) we have the determinant of an
n-rowed matrlx whoae elements gy aAre given by

{11) 3 b

c =
ix v=1 iv "vk®

cy) is obtalned by multiplying the elements of the i-th row
of D(Al,Az,...,An) by those of the k-th column of
D(Bl,Bz,...,B ) end adding.

Let us now replace D. in (8) by & functlon F(Al,...,A }
that satlsfles only the flrst two axloms. Comparing with (9)
we find

F(A' Al ,...,A') = Fla ,...,A (B ,B ,...,B }.
1’ e’ n

Speclalizing ‘k to the unit vectora Uk leads to
(1z) F(Bl,Bz,...,Bn} = c'D(Bl’B2""'Bn)

with ¢ = F(U,T,,...,T ).
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Next we speclallze {10} in the Following way: If 1 i3 a
certain subscript from 1 to n-1 we put a4 = U for k #£ i, 1+

A, = U, + U A = Q, Then D(Al,Az,...,An) = 0 since one

1 i 1+1° "1+l

column is Q. Thus, D(Ai,Aé,...,Aé)= 0, but thils determinant
differs from-that of the elementa bjk only 1n the respect that
the 1+l-st row has been made equal to the i-th . We therefore
see:

A determinent vanishes 1f two adJacent rows are equal.

Each term in (9) ls a product where precisely one factor
comes from a given row, say, the l-th. This shows that the
determinant is linear and homogeneous 1f consldered as
function of thls row. If, finally, we select for each row
the correspondlng unlt vector, the determinant 1s = 1 slnce
the matfix is the same a3 tha% ln which the columns are unit
vectors. This shows that a determinant satisfles our three
axioms 1f we conslder it as function of the row vectors. In
view of the unlgqueness 1t follows:

A determinant remains vnchanged i1f we transpose the row
vectors into column vectors, that 13, If we rotate the matrix
about its main dlagonal.

A determinant vanishes Lf any two rows are equal. 1t
changes sign if we interchange any two rows. It remalns
unchanged if we add a multiple of one row to another.

Wwe shall now prove the exlatence of deferminanta. For a
l-rowed matrix 83y the element 811 itself ia the determlinant.
Let us assume the existence of (n-l)-rowed determinants. If

we consider the n-rowed matrix (1) we may assoclate with it

certain (n-l)-rowed determlnants in the following way: Let

17 .

&y) be a partlcular element In (1}. We cancel the l-th
row and the k-th column in (1) and take the determinant of ths
remaining (n-1}-rowed matrix.. This determiﬁant multiplied by
(-l)l+k will be called the cofactor of a,, and be denoted by
Ay, The dlstridutlon of the sign (-1}*™¥ follows the chess-
board pattern, namely,

o b e e

-t ot e e

O

I T TR

* B2 s 2 a2 s s =

Let 1 be any number from 1 to n. We consider the follow-

ing function D of the matrix (1):

(13) b Agg + *++ + &

= fnfu T fefe infin:

It 1s the sum of the products of the i-th row and thelr
cofactors.

Conslder this D in 1ts dependénce on a glven column, say,
Ay For v ¥ k, Ay depends linearly on A, and 8y does not
depend on 1t; for v= X, Aik does not depend on Ak but ayy
is one element of this column. Thus, axiom 1 is satlsfled,
Asaume next that two adjacent columns Ak and Ak+l are equal,
For v# k, kK + 1 we have then two equal columns in Aiv so0 that
Aiv = 0. The determinants used in the computatlon of Ai,k
and Ai;k+1 aré,the same bubt the signs are opposite: hence,

A

'Ai,k+1 whereas a; Thus D = 0 and axlom 2

1% Sk OBt
holds. "For the speclal case A, = Uv(v =1,2,...,n) we have

ag, = 0 for v # 1 while a5y = 1, &, = 1. Hence, D =1 and

this 1s axiom 3. This proves both the exlstence of an n-rowed

R ARt R PR T
[FEL 13 TR 3 B LI EaS
e T R R AR ¥
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determinant as well as the truth of formula {13), the sc-
called development of a determinant according to its 1-th row.
(13} may be generalized as follows: 1In our determinant
replace the l-th row by the J-th row and develop according te
this new row. TFor 1 ¥ § that determinant is 0 and for i = j
it 1s D:

D for j§
(14) ayjAy) + agohyp + <o + By, = {

1
0 for §F#1

I1f we Interchange the rows and the columns we get the

D for h

+ a4 + ave + g A

21ph ¥ fonfax nh

following formula:
(15) nk (

0 for h # &

Now let A represent an n-rowed and B an m-rowed square
matrix. By }A|, [B| we mean their determinsnts. Let C be é
matrix of n rows and m columns and form the square mstriz of
n + m rows

(16) A C

( 0 B)

where 0 gtands for a zero metrix with m rows and n columns.
If we conslder the determinant of the matrix (16) =ss function
of the colwmns of A only, it satlsfies obviﬁusly the first two
of our axioms. Because of (12) 1ts value is c+]A] where ¢ is
the determinant of (16) after substituting unit vectors for
the columns of A. This ¢ still depends on B and considered as
function of the rows of B satisfies the firat two axloms,
Therefore the determinant of (16) 1s d-]A] +]|B| where d 1s the
speciel case of the determinant of (16) with unlt vectors for
the columa of A as well as of B. Subtf#cting multiples of

the colums of A from C we can replace C by Q. This shows

d = 1 and hence the formula

19

(17) A C
= |A} +|B].
0 B

In a similar fashlon we could have shown

(18} A 0
= 4] +13].

¢ B

The formulas (17), (18) ere speclel cases of & general
theorem by Lagrange that can be derived from them., We refer
the reader to any textbook on determinants since 1n most
applications (17) and {18} are sufficlent.

We now investigate what 1t means for a matrix 1f 1ts
determlnant 1s zerc. We can easlly establlish the following
facts:

a) If A1,80,00.,4, are linearly dependent, then -

D(A),Ap,.+.A,) = 0. Indeed one of the vectors, say Ay, 18 .
then a linesy combination of the other columns: subtracting '5
thlis linear combination from the column 4, reduces it to 0 ‘ %
and g0 D = Q,
b} If any vector B can be expressed as linear combina-
tlon of Ay,A5,...,A, then D(Aj,Ag,...,4,) # 0. Returning to
(6) and (10) we may select the values for bik in such a fésh-
lon that every Ai = Ui' For this cholce the left slde in
{10) is 1 and hence D(Aj,Ay,.04,4,) on the right side # 0.
c) Leﬁ Aj,Ag,+..,A, be linearly independent and B any
other vechor. If we go back to the components in the equation
Alxl + A2x2 L Anxn + By = 0 we obtaln n linear homo-
geneous equations In the n + 1 unknowns_xl,xz,...,xn, Ve
Consequently, there 1s 8 non-trivial solutlon. & mist be ¥ 0
or else the Ay,Ap,...,4, would be linearly dependent. But

then we can compute B out of this equation as a linesar



