
CHAPTER 7

PRIME ENDS OF PLANAR OPEN SETS

In this chapter, we will find the prime ends of a planar open set of finite connectivity.

1. Some analytical preliminaries.

Lemma 1.1. Let R = [a, b]× [c, d] ⊂ R2 = C be a compact rectangle and let F :]a, b[×]c, d[→ C
be a holomorphic injective map. If θ ∈ C, the set E of y ∈]c, d[ such that limx→a F (x+ iy) = θ
has zero Lebesgue measure.

Proof. Since F is injective, we can find x0 ∈]a, b[ such that θ /∈ F
(
x0×]c, d[

)
. Suppose now

that ε > 0 is fixed. By compactness of F
(
x0 × [c + ε, d− ε]

)
, there exists ρ > 0 such that for

r < ρ the ball B(θ, r) does not contain any point of F
(
x0 × [c + ε, d− ε]

)
. It follows that if

y ∈ E∩ [c+ ε, d+ ε], then for each r < ρ we have
(
]a, b[×{y}

)
∩F−1

(
∂B(θ, r)∩F (Int(R))

)
6= ∅.

Hence we obtain, m
(
E∩ [c+ε, d−ε]

)
≤ m

(
F−1

(
∂B(θ, r)∩F (Int(R))

))
≤ length F−1

(
∂B(θ, r)

)
,

where m is the Lebesgue measure on [c, d] and p is the projection of [a, b] × [c, d] on the
second factor. We can apply 4.2.1 to the map F : F−1

(
F (Int(R))

)
→ Int(R) to obtain a

sequence of rn → 0 such that the length l
(
F−1

(
∂B(θ, rn)∩F (Int(R))

))
→ 0. This gives that

m
(
E ∩ [c + ε, d− ε]

)
= 0 for each ε > 0.

Lemma 1.2. Let z0 ∈ ∂B2. For each ρ ∈]0, 2[, let be the intersection of ∂B(z0, r) with B2;
and let γ−(r) and γ+(r) be the two endpoints of γ(r), with γ−(r) before γ+(r) when we go along
∂B(z0; r) in the counterclockwise direction. Let 0 < α < β < 2 and let F : Int(B2) ∩ {z|α <
|z − z0| < β} → C be a holomorphic injective map. If θ ∈ C, the two sets set E+(θ) = {r ∈

1
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]α, β[| limz∈γ(r),z→γ+(r) F (z) = θ} and E−(θ) = {r ∈]α, β[| limz∈γ(r),z→γ−(r) F (z) = θ} have
zero Lebesgue measure.

Proof. The proof is very similar to the last one, it is left to the reader.

Theorem 1.3. Let F : Int(B2) → S2 be a conformal representation on a simply connected
subset U , we will suppose that F (0) = ∞. Let z0 ∈ ∂B2, we can find a sequence (rn!n≥1

such that:
(i) ∀n ≥ 1, 2n+1 ≤ rn ≤ 2n;
(ii) l(F (γ(rn))) → 0 as n →∞, where γ(ρ) = Int(B2) ∩ {z| |z − z0| = ρ}.
(iii) ClS2

(
F (γ(rn))

)
∩ ClS2

(
F (γ(rn′))

)
= ∅ for n 6= n′.

Remark that since l(F (γ(rn))) < +∞, the restriction F |γ(rn) can be extended by continuity
to {γ+(rn), γ−(rn)} = {z ∈ ∂B2| |z − z0| = rn}, and that ClS2

(
F (γ(rn))

)
is the image of that

extension. We denote by F (γ+(rn)) and F (γ−(rn)) the values of γ+(rn) and γ−(rn) under
that extension.

Proof. Call Vn the set {z ∈ Int(B2)| 2−n+1 < |z − z0| < 2n}. Since F (0) = ∞, the union⋃
n≥1 Vn is included in the compact region S2\F

(
Int(B(0, 1/4))

)
of R2; hence, we have:

A
( ⋃
n≥1

Vn

)
=

∑
n≥1

A(Vn) < +∞.

We are going to construct the sequence (rn)n≥1 by induction. Suppose that we have
already defined r1, . . . , rn, with l(F (γ(rn)))2 ≤ 2πA(Vn)/ log 2 + 1/n. Define Fn+1 as the set
of numbers r ∈ [2−(n+2), 2−(n+1)] such that one of the two limits limz∈γ(r),z→γ+(r) F (z) or
limz∈γ(r),z→γ−(r) F (z) exists and is equal to one of the F (γ+(ri)) or F (γ−(ri)), i = 1, . . . , n.

By lemma 1.2, the set Fn+1 ⊂ [2−(n+2), 2−(n+1)] has zero Lebesgue measure. Hence, the set
En+1 = [2−(n+2), 2−(n+1)]\Fn+1 has full Lebesgue measure in [2−(n+2), 2−(n+1)]. By theorem
4.1.1, we have: ∫ 2−(n+1)

2−(n+2)

l[F (γ(ρ))]2

ρ
dρ ≤ 2πA(Vn+1).

By what we have obtained,; this implies:∫
En+1

l[F (γ(ρ))]2

ρ
dρ ≤ 2πA(Vn+1).

If we define Ln+1 as inf{l[F (γ(ρ))]| ρ ∈ En+1}, we have:

2πA(Vn+1) ≥ L2
n+1

∫
En+1

dρ

ρ
= L2

n+1(log 2−(n+2) − log 2−(n+1))

= L2
n+1 log 2.

In particular, we can find rn+1 ∈ En+1 with:

l[F (γ(rn))]2 ≤ 2πA(Vn+1)
log 2

+
1

n + 1
.
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The reader will easily check that (rn)n≥1 has the required properties.

2. Prime ends of a simply connected open set of the sphere.

Let us consider U a simply connected open subset of the sphere S2.

Proposition 2.1. If U is S2 minus a point p, then Û = S2. The identification map S2 → Û
d is defined as the identity on U andf sends p to the chain

(
Int(B(p, rn))\{p}

)
n≥1

, where
(rn)n≥1 is any sequence going to zero.

Proof. The above defined map S2 → Û is clearly continuous. By 6.3.6, it has a dense image.
Since, by 6.3.3, the space Û is Hausdorff and since the sphere S2 is compact, this map is
in fact a homeomorphism.

We now consider the case where S2\U has at least two points. By the Riemann mapping
theorem, there exists a biholomorphic map F : Int(B2)→̃U , we are going to show that F

extends to a homeomorphism F̂ : B2 → Û .

Theorem 2.2. Let F : Int(B2)→̃U be a conformal representation, it extends to a homeo-
morphism F̂ : B2 → Û . In fact, the extension F̂ can be thought as the natural extension
F̂ : ̂Int(B2) → Û .

Proof. Without loss of generality, we can assume that F (0) = ∞. By proposition 6.3.8, each

point z of ∂B2 can be identified to a point in ̂Int(B2), by sending z to the class of any
chain

(
Int(B2) ∩ Int(B(z, rn))

)
n≥1

, where rn → 0.
For each z ∈ ∂B2, let us choose a sequence

(
rn(z)

)
n≥1

as given by theorem 3.1. For each
z ∈ ∂B2 and each n ≥ 1, let us call Un(z) the connected component of Int(B2)\γ(rn(z))
which does not contain 0. Of course, the sequence

(
F (Un(z))

)
n≥1

is a chain in U , since,
for each n ≥ 1, the frontier FrU

(
F (Un(z))

)
= F (γ(rn(z))) is connected and contained in

F (Un−1(z)). Moreover, by conditions (i) and (ii) of theorem 1.3, each
(
F (Un(z))

)
n≥1

is a
topological chain.

We define F̂ (z) =
(
F (Un(z))

)
n≥1

. It is clear that F̂
(
{z ∈ B2| |z−z0| < rn(z0)} ⊂ F̂ (Un(z0)),

since, for each z ∈ ∂B2 such that |z − z0| < rn(z0), we have Un′(z) ⊂ B(z, rn′(z)) ⊂
B(z0, rn′(z0)) as soon as rn′(z) < rn(z0) − |z − z0|. This shows that F̂ is continuous. If
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z ∈ ∂B2, we have
⋂

n≥1 Un(z) = ∅; since F is bijective, we obtain
⋂

n≥1 F
(
Un(z)

)
= ∅. By

6.3.2, this shows that F̂ (z) ∈ Û\U . To check that F̂ is injective it now suffices to remark
that for z, z′ ∈ ∂B2, z 6= z′, we have, for n large, F

(
Un(z)

)
∩ F

(
Un(z′)

)
= ∅ because F is

bijective and Un(z)
⋂

Un(z′) = ∅ for n large.
Up to now, we have shown that F̂ is continuous and injective. By 6.3.3, it has also

a dense image—it contains U . Moreover, since Û is Hausdorff and B2 is compact, the
extension F̂ must be a homeomorphism.

3. Prime ends of open subsets of finite connectivity.

Our goal is to prove the following theorem:

Theorem 3.1. Let U be an open connected subset of S2 with finite connectivity. Let F1, . . . ,
Fl be the connected components of S2\U which are not reduced to points and let {p1, . . . ,

pk} be the remaining part of S2\U . The set of prime points Û is homeomorphic to a sphere
with l-holes. In fact, we have Û = (S2\(F1

⋃
. . .

⋃
Fl)) .̂ Moreover, if for i = 1, . . . , l, we

choose Di ≈ B2 such that Int(Di) ⊃ Fi, and Di ∩Dj = ∅ for 1 ≤ i < j ≤ l, then there exists
a homeomorphism of S2\

⋃l
i=1 Int(Di) on Û . We can impose that that homeomorphism is

the identity on any choosen compact subset of S2\
⋃l

i=1 Di.

We will need several lemmas.

Lemma 3.2. Let C1, . . . , Cm be the connected components of S2\V , where V is an open subset
of finite connectivity in S2. Let W1, . . . ,Wm be open disjoint neighborhood of respectively
C1, . . . , Cm. If [Ωi]i∈N is a topological chain defining a prime end of V , then there
exists j ∈ {1, . . . ,m} such that Ωi ⊂ Wj for i large enough. Hence, we obtain that V̂ =
bigl(S2\

⋃m
j=1 Wj

) ⋃(⋃m
j=1(Wj\Cj)

)̂
, where, here (Wj\Cj)̂= {[Ωi] ∈ V̂ | ∃i ∈ N,Ωi ⊂ Wj}.

Proof. Since [Ωi]i∈N defines a prime end of V , we have I =
⋂

i∈N ClS2(Ωi) ⊂
⋃m

i=1 Ci. But I

is connected, because it is the decreasing intersection of the compact connected sets ClS2(Ωi).
This implies that I ⊂ Cj for some j. By compactness, we must have ClS2(Ωi) ⊂ Wj for i

big enough.
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Lemma 3.3. Under the hypothesis of 3.2, if we call Uj the simply connected set S2\Cj, we
have:

{[Ωi] ∈ Ûj | ∃i ∈ N,Ωi ⊂ Wj} = {[Ωi] ∈ V̂ | ∃i ∈ N,Ωi ⊂ Wj}.

Proof of theorem 3.1. Consider the open connected set U . Using 3.3 and 1.1, we can
replace U by U

⋃
{p1, . . . , pl}, and then suppose that each connected component of S2\U

has at least two points; of course, we call F1, . . . , Fm these components. Let D1, . . . , Dm

be topological disks such that Int(Di) ⊃ Fi and Di

⋂
Dj = ∅, i 6= j, the existence of such

disks follows from ??. Call Ui the open subset S2\Fi. It is easy to obtain from 1.2 that
{[Ωi] ∈ Ûj | ∃i ∈ N,Ωi ⊂ Dj} is homeomorphic to an annulus with one component of the
boundary equal to FrS2(Dj) and the other one equal to the set of prime ends of Uj . It is
easy to finish the proof.

4. Impression, set of principal points and accessible prime end.

We establish some results on impression, set of principal points and accessible prime end
for planar open subsets of finite connectivity.

Theorem 4.1. Let U be a simply connected open subset of S2 with S2\U having at least two
points. Let F : Int(B2)→̃U be a biholmorphic homeomorphism. Call F̂ : B2→̃Û its continuous
extension. We have:

P
(
F̂ (eiθ0)

)
= {x | ∃rj → 1, x = F (rje

iθ0)}

I
(
F̂ (eiθ0)

)
= {x | ∃zj → eiθ0 , F (zj) → x}.

We will need the following lemma:

Lemma 4.2. Fix θ0 ∈ R. Define:

Cθ
n = {ρeiθ + eiθ0 | 1

2n+1
≤ ρ ≤ 1

2n
and ρeiθ + eiθ0 ∈ B2}.
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We have:

∀α ≤ β ∈ R,∫ β

α

∞∑
n=1

l
(
F (Cθ

n)
)2

dθ ≤ A(
(
F

(
Int(B2)\1

2
B2

))
.

Proof. Since we have:

l
(
F (Cθ

n)
)

=
∫ 2−n

2−n−1
|F ′(ρeiθ + eiθ0)| dρ.

By the Cauchy-Schwarz inequality, we obtain:

l
(
F (Cθ

n)
)2 ≤

[ 1
2n

− 1
2n+1

] ∫
2−n−1

2−n

|F ′(ρeiθ + eiθ0)|2 dρ

=
1

2n+1

∫ 2−n

2−n−1
|F ′(ρeiθ + eiθ0)|2 dρ

≤
∫ 2−n

2−n−1
|F ′(ρeiθ + eiθ0)|2ρ dρ because ρ ≥ 1

2n+1
.

This gives:
∞∑

n=1

l
(
F (Cθ

n)
)2 =

∫ 1
2

0

|F ′(ρeiθ + eiθ0)|2ρ dρ.

From which it follows:∫ β

α

∞∑
n=1

l
(
F (Cθ

n)
)2

dθ ≤
∫ β

α

∫ 1
2

0

|F ′(ρeiθ + eiθ0)|2ρ dρ

= A
((

F
(
Int(B2)\1

2
B2

))
.

Corollary 4.3. Under the hypothesis of 4.2, we have:

lim
n→∞

l
(
F (Cθ

n)
)

= 0, for almost all θ.

Corollary 4.4. Given 0 < α < β < π, we can find r0 > 0 and a sequence of closed simple
curves Cl ⊂ Int(B2) such that:

(i) II(Cl)
⋂

II(Ck) = ∅ for k 6= l;
(ii) diam(Cl) → 0;
(iii)

⋃
l∈N[II(Cl)

⋃
Cl] ⊃ {ρeiθ + eiθ0 | 0 < ρ < r0, α ≤ θ ≤ β}.

Proof. Put together 4.3 and 1.3.
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Definition 4.5. Stoltz domain. A domain of the form {ρeiθ + eiθ0 | 0 < ρ < r0, α ≤ θ ≤ β}
with 0 < α < β < π is called a Stoltz domain with vertex eiθ0 .

Corollary 4.6. Let U be a simply connected open subset of S2 with S2\U containing at least
two points. Let F : Int(B2)→̃U be a biholomorphic automorphism. Given eiθ0 ∈ ∂B2, the set
of accumulation points of F along a Stoltz domain with vertex at eiθ0 is independent of the
Stoltz domain. It is also the set of accumulation points of F along any arc ending at eiθ0

and contained in a Stoltz domain. It is also equal to P
(
F̂ (eiθ0)

)
.


