
CHAPTER 6

PRIME ENDS

1. Definition and first properties.

We fix a metric space (X, d) and an open subset U ⊂ X.

Notation 1.1. If A ⊂ U we denote by (A) (resp. FrU(A)) the closure (resp. frontier) of A
in U . Since U is open in X, we have (A) = (A) ∩ U (resp. FrU(A) = FrX(A) ∩ U).

Definition 1.2. (Chain). A chain in U is a sequence (Ωi)i∈N of subsets of U such that:

(i) ∀i ∈ N,Ωi is open and connected;
(ii) ∀i ∈ N,FrU(Ωi) is connected and non empty;
(iii) ∀i ∈ N, (Ωi+1) ⊂ Ωi.

Figure 1.a Figure 1.b
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Example 1.3. a) (Figure 1.a) The FrU(Ωi)’s are all homeomorphic to R and accumulate
on a subset of U which is homeomorphic to R.
b) (Figure 1.b) Each FrU(Ωi) is a part of a circle that goes through x and y.

Definition 1.4. (Finer, equivalent chain). Let (Ωi)i∈N and (Ω′
i)i∈N be two chains in

U . We say that (Ω′
i)i∈N is finer (or refines) (Ωi)i∈N, if for each i ∈ N there exists j ∈ N

such that Ω′
j ⊂ Ωi. We denote this relation by (Ω′

i)i∈N ≺ (Ωi)i∈N. It is easy to check that
the relation ≺ is a partial preorder on the set of chains in U . We say that (Ωi)i∈N and
(Ω′

i)i∈N are equivalent if (Ωi)i∈N ≺ (Ω′
i)i∈N and (Ω′

i)i∈N ≺ (Ωi)i∈N. We denote by
[
(Ωi)i∈N

]
or simply by [Ωi] the equivalence class of all chains equivalent to (Ωi)i∈N. The ordering ≺
induces a partial order on the set of equivalence classes.

Example 1.5. If (Ωi)i∈N is a chain and (j(i))i∈N is a strictly increasing infinite sequence
of integers, the chain (Ωj(i))i∈N

is an equivalent chain.

Up to now, the fact that U was an open subset was not used. We will use it in the next
definition.

Definition 1.6. (Principal point). Let (Ωi)i∈N be a chain in U and let x be a point in
X. We say that x is a principal point of (Ωi)i∈N, if we have:

(i) FrU(Ωi) → x as i → ∞, this means that each neighborhood of x contains all but a
finite number of the FrU(Ωi)’s;

(ii) x 6∈ (FrU(Ωi)) for all but a finite number of i ∈ N.

Remark that, if x is a principal point of some chain in U , then x ∈ U .

Figure 2.a Figure 2.b

Example 1.7. a) In Figure 1.a and 1.b the chains do not have principal points.
b) (Figure 2) Let V = {(x, y)||x| < 1, |y| < 1} ⊂ R2 = X. For n ≥ 1, let Cn =

{
(

2n−1
2n , y

)
|− 1

2 ≤ y ≤ 1} and C ′
n = {

(
2n

2n+1 , y

)
|−1 ≤ y ≤ 1

2}. Define U = V \
⋃

n≥1(Cn∪C ′
n).

For n ≥ 1, let Ωn (resp. Ω′
n) be the component of U\{

(
x, 1

2

)
| 2n−1

2n ≤ x ≤ 2n
2n+1} (resp.

U\{
(

x,− 1
2

)
| 2n
2n+1 ≤ x ≤ 2n+1

2n+2}) which does not contain (0, 0). The two chains (Ωn)n≥1 and
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(Ω′
n)n≥1 are equivalent. The point

(
1, 1

2

)
is a principal point of (Ωn)n≥1 and the point(

1,− 1
2

)
is a principal point of (Ω′

n)n≥1.

Lemma 1.8. The point x ∈ X is a principal point of the chain (Ωi)i∈N in U if and only if
we have:

(i) diam(FrU(Ωi) ∪ {x}) → 0, as i →∞;
(ii) d(FrU(Ωi) ∪ {x}) > 0, for all but a finite number of i ∈ N.

Proof. Exercise!

Proposition 1.9. Suppose that X is complete for the metric d. Let (Ωi)i∈N be a chain in
U such that:

(i) diam
(⋃

i≥n FrU(Ωi)
)
→ 0, as n →∞;

(ii) a point in X can belong to only a finite number of (FrU(Ωi))’s — this is implied by
the condition ∀i 6= j, (FrU(Ωi)) ∩ (FrU(Ωi)) = ∅.

Then (Ωi)i∈N has a principal point.

Proof. Since diam
(⋃

i≥n FrU(Ωi)
)
→ 0, as n → ∞ and X is complete, there exists x ∈ X

such that x =
⋂

n∈N(
⋃

i≥n FrU(Ωi)). It is clear that diam(FrU(Ωi) ∪ {x}) → 0, as i → ∞.
Moreover, by condition (ii), the point x can be in only a finite number of (FrU(Ωi)).

Definition 1.10. (Topological chain). A chain (Ωi)i∈N in U is topological — with respect
to X — if it has a principal point in X.

Definition 1.11. (Prime point). A prime point of U (in X) is an equivalence class of
chains which contains a topological chain. The set of prime points of U is denoted by Û .

Figure 3

Example 1.11. (Figure 3) Consider example 1.7.b. For each n ≥ 1, call Ω′′
n the connected

component of U\{
(

2n
2n+1 , y

)
| 12 ≤ y ≤ 1} which does not contain (0, 0). The chain (Ω′′

n)n≥1

is equivalent to (Ωn)n≥1 (or (Ω′
n)n≥1), but diam(FrU(Ω′′

n)) ≥ 1/2, for each n ∈ N.
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Definition 1.12. (Topology on Û). For each open subset O of U define Ô = {[Ωi] ∈ Û |∃i ∈
N,Ωi ⊂ O}. It is obvious that (O∩O′)̂= Ô∩ Ô′; hence the family {Ô|O open subset in U}
defines a basis for a topology. A subset Π ⊂ Û is open if for each π ∈ Π there exists an
open subset O ⊂ U with π ∈ Ô.

Example 1.13. Let us look to the case U = X = R. If (Ωi)i∈N is a chain in R, then
each Ωi has to be of the form ]−∞, a[ or ]a,+∞[ since it is a connected subset of R
with connected frontier. It is easy to show that R̂ consists in two copies of R, namely
Rl and Rr, where to x ∈ Rl (resp. Rr) is associated the chain

(
]−∞, x + 1

n [
)
n∈N

(resp.(
]x− 1

n ,+∞[
)
n∈N

). A set is open in R̂ if and only if it is of the form ]−∞, a[l ∪ ]b, +∞[r,
where ]−∞, a[l is an interval in Rl and ]b, +∞[r is an interval in Rr.

2. Some general topology.

Lemma 2.1. Let Y be an open subset of the metric space X. Suppose Y connected and
locally connected. Given a and b in Y , we can find a connected subset F of Y closed in X
and containing a and b

Proof. Since X is metric and Y is open, for each x ∈ Y , we can find a closed neighborhood
of x in X which is entirely contained in Y . In particular, every small enough neighborhood
V of x verifies (V ) ⊂ Y . It follows from the local connectedness of Y that we can find an
open covering (Vi)i∈I of Y by connected subsets such that (Vi) ⊂ Y , for each i ∈ I. Since
Y is connected, we can find a finite subset {i1, . . . , in} of I such that a ∈ Vi1 , b ∈ Vin and
Vij

∩ Vij+1 6=∅, for i = 1, . . . , n− 1. We can take F =
⋃n

k=1(Vij
).

Lemma 2.2. Let Y be a connected and locally connected metric space and let y be in Y .
Any neighborhood V of y in Y intersects all the connected components of Y \{y}.

Proof. Let (Ci)i∈I be the family of connected components of Y \{y}. Since Y is locally
connected each Ci is open. We can write Y as a disjoint union of two open sets
Y = (∪{Ci|Ci ∩ V = ∅}) ∪ (∪{Ci|Ci ∩ V 6= ∅} ∪ V ). Since Y is connected and y ∈ V , the
open set (∪{Ci|Ci ∩ V = ∅}) must be empty.

Corollary 2.3. Let Y be a connected and locally connected metric space. If y ∈ Y disconnects
Y , then any neighborhood of y in Y has a non connected frontier.
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Proof. Let a, b be in distinct connected components Ca, Cb of Y \{y}. Let U be a neighborhood
of y in Y with a, b 6∈ U . By 2.2, U ∩ Ca (resp. U ∩ Cb) is a non empty open subset of the
connected set Ca (resp. Cb). Since it is not equal to Ca (resp. Cb), it must have a frontier
point in Ca (resp. Cb). This means that at least the two connected components Ca and
Cb of Y \{y} intersect FrY(U), but the connected components of Y \{y} form a covering of
FrY(U) by disjoint open subsets.

Theorem 2.4. Let Y be a locally connected open subset of the metric space X. Suppose
that each point in Y has a basis of connected neighborhoods each of which having a connected
frontier. If O is an open connected subset of Y , we have:

(i) ∀y ∈ Y,O\{y} is connected;
(ii) if a, b ∈ O, we can find a connected subset F ⊂ O closed in X and containing a and

b.

The following lemma is of fundamental importance. We decided to call it the “the
5-lemma”. a better name would have been “the lemma on the five connected sets”— in
French that sounds much better “le lemme des cinq connexes”.

Lemma 2.5. (5-lemma). Let X, P,Q, A and B be five connected sets with P,Q open subsets
of X and A,B closed subsets of X. Suppose that A ∩ B = ∅,FrX(P ) ⊂ A and FrX(Q) ⊂ B.
We must have one of the following possibilities:

(i) P ∪Q = X, A ⊂ Q, B ⊂ P ;
(ii) (P ∪A) ∩ (Q ∪B) = ∅;
(iii) P ∪A ⊂ Q\B;
(iv) Q ∪B ⊂ P\A.

Moreover if A and B are non empty, these four possibilities are mutually exclusive.

Proof. If A (resp. B) is empty, since P (resp. Q) is such that FrX(P ) ⊂ A (resp. FrX(Q) ⊂ B),
we must have P = ∅ or P = X (resp. Q = ∅ or Q = X). In the first case (iii) (resp. (iv))
holds and in the second case (iv) (resp. (iii)) holds. So we can suppose A and B non
empty. Since A (resp. B) is connected and disjoint from FrX(Q) (resp. FrX(P )), we must
have either A ⊂ Q or A ∩Q = ∅ (resp. B ⊂ P or B ∩ P = ∅). This gives us four mutually
exclusive possibilities:

(a) A ⊂ Q,B ⊂ P ;
(b) A ∩Q = B ∩ P = ∅;
(c) A ⊂ Q,B ∩ P = ∅;
(d) B ⊂ P,A ∩Q = ∅.

In case (a) we have also that P ∪ Q is closed since P ∪ Q ⊃ B ∪ A ⊃ FrX(Q) ∪ FrX(P ).
Moreover, P ∪Q is open and non empty since A ∪B ⊂ P ∪Q. By the connectedness of X
we must have P ∪ Q = X, which shows that (i) holds. In case (b) we want to show that
P ∩Q = ∅; this obviously implies that (ii) holds. Suppose P ∩ Q 6= ∅. Since FrX(P ∩Q) ⊂
(FrX(P ) ∩Q) ∪ (FrX(Q) ∩ P ) ∪ (FrX(P ) ∩ FrX(Q)) ⊂ (A ∩Q) ∪ (B ∩ P ) ∪ (A ∩B) = ∅, by the
connectedness of X, we must have P ∩Q = X and hence P = Q = X. This is impossible,
since A and B are non empty. In case (c) we have P 6= X, since B is non empty. By
the connectedness of X, this implies that FrX(P ) 6= ∅. It follows that P ∩ Q 6= ∅. Since
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P ∩FrX(Q) = ∅ and P is connected, we conclude that P ⊂ Q. From A ⊂ Q and (P ∪A)∩B,
we obtain P ∪A ⊂ Q\B. Similarly, case (d) implies (iv).

3. A closer look at the space of prime points.

To avoid pathologies like example 1.13, we will suppose that we have a metric space X
with an open subset U such that each point in U has a basis of open connected neighborhoods
each of which having a connected U -frontier. This apparently inocuous hypothesis will allow
us to prove a lot of things about the space of prime points.

Lemma 3.1. Let (Ωi)i∈N be a topological chain in U , and let (Ω′
i)i∈N be a not necessarily

topological chain in U such that ∀i 6= j, (FrU(Ω′
i)) ∩ (FrU(Ω′

j)) = ∅. If Ωi ∩ Ω′
j 6= ∅, for all

i, j ∈ N, then (Ωi)i∈N ≺ (Ω′
i)i∈N;

Proof. Let x be a principal point of (Ωi)i∈N. By disjointness, there is at most one
j ∈ N such that x ∈ (FrU(Ω′

j)) so by forgetting one of the Ωj ’s, we can assume that
∀j ∈ N, x 6∈ (FrU(Ω′

j)).Let us choose y ∈ FrU(Ω2) ⊂ (Ω2) ⊂ Ω1. Since Ω1 ∩ Ω′
1 is non empty,

the union Ω1 ∪ Ω′
1 is connected. Using 2.4, we can find, for each j ≥ 2, a connected set

Fj ⊂ (Ω1∪Ω′
1)\{x} such that y ∈ Fj , Fj∩FrU(Ω′

j) 6= ∅ and Fj is closed in X. We fix now a j ≥ 2.
Since x 6∈ (FrU(Ω′

j)) and x 6∈ Fj , we have for i big enough FrU(Ωi) ∩
(
FrU(Ω′

j) ∪ Fj

)
= ∅. We

can apply the 5-lemma 2.5 to the five connected sets Ω1∪Ω′
1,Ωi,Ω′

j ,FrU(Ωi) and FrU(Ω′
j)∪Fj .

The first and fourth possibilities of the 5-lemma are excluded because y ∈ Fj and y 6∈ Ωi.
The second possibility is excluded because Ωi ∩Ω′

j 6= ∅. So we must have Ωi ∪FrU(Ωi) ⊂ Ω′
j .

corollary 3.2. Let (Ωi)i∈N and (Ω′
i)i∈N be topological chains in U . If ∀i ∈ N,Ωi ∩ Ω′

i 6= ∅,
then [Ωi] = [Ω′

i]

Proof. This follows from 3.1, since Ωi ∩ Ω′
j ⊃ Ωk ∩ Ω′

k, where k = max(i, j).

theorem 3.3. The space Û is Hausdorff.

Proof. Let (Ωi)i∈N and (Ω′
i)i∈N be non equivalent topological chains in U . By 3.2, there

exist i ∈ N such that Ωi∩Ω′
i = ∅. This implies that the neighborhoods Ω̂i and Ω̂′

i of (Ωi)i∈N

and (Ω′
i)i∈N are disjoint.
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Definition 3.4. (Inclusion of U in Û). If x ∈ U , we denote by π(x) the equivalence
class of the chain which defines a basis of neighborhood of x. The prime point π(x) is well
defined because x has a basis of neighborhoods each of which being an open connected set
with connected frontier, this chain is obviously topological with x as a principal point, and
all such chains are equivalent.

Corollary 3.5. Let (Ωi)i∈N be a topological chain in U , let (Ω′
i)i∈N be a not necessarily

topological chain in U equivalent to (Ωi)i∈N, and let x be a point in U . The following
statements are equivalent:

(i) [Ωi] = π(x);
(ii) x ∈

⋂
i∈N Ω′

i;
(iii) x ∈

⋂
i∈N(Ω′

i);
(iv) x ∈

⋂
i∈N(Ω′

i);
(v) {x} =

⋂
i∈N(Ω′

i);
(vi) {x} =

⋂
i∈N(Ω′

i).

Proof. We have obviously (i)⇒(ii)⇒(iii)⇒(iv), (i)⇒(v)⇒(iii), and (i)⇒(vi)⇒(iv). It suffices
to show that (iv)⇒(i). Since x ∈

⋂
i∈N(Ω′

i), each neighborhood of x intersects Ω′
i, for each

i ∈ N. It follows from 3.2 that (Ω′
i)i∈N is equivalent to any topological chain defining π(x).

Theorem 3.6. The map π : U → Û is a homeomorphism onto its image. The set π(U) is
open and dense in Û .

Proof. the fact that π is injective follows easily from the fact that two points in U have
disjoint neighborhoods. If O is an open subset of U , we have obviously π−1(Ô) = O. This
shows that π is a homeomorphism on its image. The fact that π(U) is dense follows from
the inclusion π(O) ⊂ Ô. It remains to show that π(U) is open. Let O be an open subset
of U with (O) ⊂ U . Let (Ωi)i∈N be a topological chain with [Ωi] ∈ Ô, we have, for i large
enough Ωi ⊂ O If x is a principal point of (Ωi)i∈N,we obtain x ∈

⋂
i∈N(Ωi) ⊂ (O) ⊂ U . By

3.5, this gives π(x) = [Ωi] and x ∈
⋂

i∈N Ωi ⊂ O, i.e. [Ωi] ∈ π(O). Since [Ωi] is an arbitrary
point in Ô, we have π(O) = Ô. Obviously each point in U has an open neighborhood O
with (O) ⊂ U .

By 3.6, we can identify U and π(U).

Definition 3.7. (Prime end). A prime end of U is a prime point in Û which is not in U .

Proposition 3.8. (Int
(
B2

)
)̂= B2.


