CHAPTER 6
PRIME ENDS

1. Definition and first properties.

We fix a metric space (X,d) and an open subset U C X.

Notation 1.1. If A C Uwe denote by (A) (resp. Fry(A)) the closure (resp. frontier) of A
in U. Since U is open in X, we have (A) = (A)NU (resp. Fry(A) =Frx(A)NU).
Definition 1.2. (Chain). A chain in U is a sequence (£;);. of subsets of U such that:

(i) Vi € N,Q; is open and connected;
(ii) Vi € N,Fry(Q;) is connected and non emptys;
(111) Vi € N, (Qi—|—1> C Q.

Figure 1.a Figure 1.b
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Example 1.3. a) (Figure l.a) The Fry(€;)’s are all homeomorphic to R and accumulate
on a subset of U which is homeomorphic to R.
b) (Figure 1.b) Each Fry(£2;) is a part of a circle that goes through z and y.

Definition 1.4. (Finer, equivalent chain). Let (€;),.n and (£2}),.n be two chains in
U. We say that (£;),cn is finer (or refines) (£%;),cn, if for each i € N there exists j € N
such that Q) C Q;. We denote this relation by (),cn < (i);en- It is easy to check that
the relation < is a partial preorder on the set of chains in U. We say that (€;),. and
(Q)),en are equivalent if (), < (%);en and (2),cn < (24);en- We denote by [(€:),en]
or simply by [;] the equivalence class of all chains equivalent to (£;),.n. The ordering <
induces a partial order on the set of equivalence classes.

Example 1.5. If (Q;),. is a chain and (j(i)),cy is a strictly increasing infinite sequence
of integers, the chain (Qj(i))i en IS an equivalent chain.

Up to now, the fact that U was an open subset was not used. We will use it in the next
definition.

Definition 1.6. (Principal point). Let (£;);. be a chain in U and let x be a point in
X. We say that x is a principal point of (£2;),., if we have:

(i) Fry(§2;) — x as @ — oo, this means that each neighborhood of x contains all but a
finite number of the Fry(€);)’s;
(ii)) = & (Fry(£2;)) for all but a finite number of i € N.

Remark that, if = is a principal point of some chain in U, then z € U.

Figure 2.a Figure 2.b

Example 1.7. a) In Figure l.a and 1.b the chains do not have principal points.
b) (Figure 2) Let V = {(x,9)||lz| < 1]y < 1} € R*> = X. For n > 1, let C, =

{(2”_1,y)|—% <y<1} and C) = {(2211,34)\—1 <y< %} Define U = V\Un21(CnUC’,fL).

2n

For n > 1, let Q, (resp. ) be the component of U\{ (x, %)|% <z < 2511} (resp.

U\{ (x,—%) 2211 <z< 321; }) which does not contain (0,0). The two chains (€,),5, and
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Q are equivalent. The point (1,2 ) is a principal point of (£, and the point
n/n>1 2 n>1

(1,—%) is a principal point of (€,), ;-

Lemma 1.8. The point x € X is a principal point of the chain (), i U if and only if
we have:

(i) diam(Fry(Q2;) U{x}) — 0, as i — oo
(ii) d(Fry(2;) U{x}) > 0, for all but a finite number of i € N.

Proof. Exercise! 0

Proposition 1.9. Suppose that X is complete for the metric d. Let (§%;);cn be a chain in
U such that:
(i) diam(Uizn FrU(Qi)) — 0, as n — oo;
(ii) a point in X can belong to only a finite number of (Fry(2;))’s — this is implied by
the condition Vi # j, (Frp(€;)) N (Fry(Q;)) = 0.
Then (€2;),cn has a principal point.

Proof. Since diam(UDn FrU(Qi)> — 0, as n — oo and X is complete, there exists = € X

such that z =, cn(Uis, Fro(€)). It is clear that diam(Fryp(Q;) U {z}) — 0, as i — oo.
Moreover, by condition (ii), the point z can be in only a finite number of (Fry(2;)). 0

Definition 1.10. (Topological chain). A chain (£;), . in U is topological — with respect
to X — if it has a principal point in X.

Definition 1.11. (Prime point). A prime point of U (in X) is an equivalence class of
chains which contains a topological chain. The set of prime points of U is denoted by U.

Figure 3
Example 1.11. (Figure 3) Consider example 1.7.b. For each n > 1, call Q! the connected

2n+1’y> 2
(or (2

is equivalent to (),

component of U\{ <y <1} which does not contain (0,0). The chain (27),,

)n21)a but diam(Fry(2)) > 1/2, for each n € N.
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Definition 1.12. (Topology on U). For each open subset O of U define O = {[Q;] € U|Fi €
N,Q; C O}. It is obvious that (ONO’)"= ONO’; hence the family {O]O open subset in U}
defines a basis for a topology. A subset II C U is open if for each 7 € II there exists an
open subset O C U with 7 € O.

Example 1.13. Let us look to the case U = X = R. If (€;),.n is a chain in R, then
each €; has to be of the form |—oo0,a[ or Ja,+oo[ since it is a connected subset of R
with connected frontier. It is easy to show that R consists in two copies of R, namely
R; and R,, where to # € R; (resp. R,) is associated the chain (]—oo,z + %DneN (resp.

(Jo — %,—koo[)neN). A set is open in R if and only if it is of the form |—oc,al, U]b, +oo] ,
where ]—00,a[; is an interval in R; and ]b,4o00[, is an interval in R,.

2. Some general topology.

Lemma 2.1. Let Y be an open subset of the metric space X. Suppose Y connected and
locally connected. Given a and b in 'Y, we can find a connected subset F' of Y closed in X
and containing a and b

Proof. Since X is metric and Y is open, for each x € Y, we can find a closed neighborhood
of x in X which is entirely contained in Y. In particular, every small enough neighborhood
V of x verifies (V) C Y. It follows from the local connectedness of Y that we can find an
open covering (V;),.; of Y by connected subsets such that (V;) C Y, for each i € I. Since
Y is connected, we can find a finite subset {i1,...,i,} of I such that a € V;;,b € V; and
Vi, NV, 20, for i=1,...,n—1. We can take F = J;_,(V;,). 0

Lemma 2.2. Let Y be a connected and locally connected metric space and let y be in Y.
Any neighborhood V' of y in Y intersects all the connected components of Y \{y}.

Proof. Let (C;);c; be the family of connected components of Y\{y}. Since Y is locally
connected each C; is open. We can write Y as a disjoint union of two open sets
Y = (UW{G|C;nV =0}) U (U{C;|C;NV # 0} UV). Since Y is connected and y € V, the
open set (U{C;|C; NV =0}) must be empty. 0

Corollary 2.3. Let Y be a connected and locally connected metric space. If y € Y disconnects
Y, then any neighborhood of y in Y has a mon connected frontier.
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Proof. Let a,b be in distinct connected components Cy, Cy, of Y\{y}. Let U be a neighborhood
of y in Y with a,b € U. By 2.2, UNC, (resp. UNC}) is a non empty open subset of the
connected set C, (resp. Cp). Since it is not equal to C, (resp. C%), it must have a frontier
point in C, (resp. C%). This means that at least the two connected components C, and
Cy of Y\{y} intersect Fry(U), but the connected components of Y\{y} form a covering of
Fry(U) by disjoint open subsets. 0

Theorem 2.4. Let Y be a locally connected open subset of the metric space X. Suppose
that each point in Y has a basis of connected neighborhoods each of which having a connected
frontier. If O is an open connected subset of Y, we have:

(i) Yy € Y,O\{y} is connected;
(ii) if a,b € O, we can find a connected subset F' C O closed in X and containing a and

b.

The following lemma is of fundamental importance. We decided to call it the “the
5-lemma”. a better name would have been “the lemma on the five connected sets”— in
French that sounds much better “le lemme des cinq connexes”.

Lemma 2.5. (5-lemma). Let X, P,Q,A and B be five connected sets with P,Q open subsets
of X and A, B closed subsets of X. Suppose that ANB = 0,Frx(P) C A and Frx(Q) C B.
We must have one of the following possibilities:

(i) PUQ=X,ACQ,BC P;
(i) (PUA)N(QUB) =10;
(i) PUA C Q\B;

(iv) QU B C P\A.

Moreover if A and B are non empty, these four possibilities are mutually exclusive.

Proof. If A (resp. B) is empty, since P (resp. @) is such that Frx(P) C A (resp. Frx(Q) C B),
we must have P=0 or P=X (resp. Q=0 or Q = X). In the first case (iii) (resp. (iv))
holds and in the second case (iv) (resp. (iii)) holds. So we can suppose A and B non
empty. Since A (resp. B) is connected and disjoint from Frx(Q) (resp. Frx(P)), we must
have either A C Q or ANQ =10 (resp. BC P or BN P = (). This gives us four mutually
exclusive possibilities:

(a) ACQ,BC P;

(b) ANQ =BNP =0

(¢) ACQ,BNP =10;

(d) BC PANQ = 0.
In case (a) we have also that P UQ is closed since PUQ D BUA D Frx(Q) U Frx(P).
Moreover, P U (@ is open and non empty since AU B C PU Q. By the connectedness of X
we must have PUQ = X, which shows that (i) holds. In case (b) we want to show that
PN Q = 0; this obviously implies that (ii) holds. Suppose PNQ # (). Since Frx(PNQ) C
(Frx(P)NQ)U (Frx(Q)NP)U (Frx(P)NFrx(Q)) Cc (ANQ)U(BNP)U(ANB) =10, by the
connectedness of X, we must have PN = X and hence P =@ = X. This is impossible,
since A and B are non empty. In case (c) we have P # X, since B is non empty. By
the connectedness of X, this implies that Frx(P) # 0. It follows that PNQ # (. Since
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PNFrx(Q) =0 and P is connected, we conclude that P C . From A C @Q and (PUA)N B,
we obtain PUA C Q\B. Similarly, case (d) implies (iv).

3. A closer look at the space of prime points.

To avoid pathologies like example 1.13, we will suppose that we have a metric space X
with an open subset U such that each point in U has a basis of open connected neighborhoods
each of which having a connected U-frontier. This apparently inocuous hypothesis will allow
us to prove a lot of things about the space of prime points.

, .
z>ieN be a not necessarily

Lemma 3.1. Let (;),cq be a topological chain in U, and let (§2;
0. If N Q; #0, for all

topological chain in U such that Vi # j, (Fro(Q;)) N (Fro(€2)) =
i,j € N, then (Qi);en < () iens

Proof. Let x be a principal point of (£;),cn. By disjointness, there is at most one
j € N such that z € (Fry(€2))) so by forgetting one of the j;’s, we can assume that
Vj € N,z & (Frp(€2))).Let us choose y € Fry(Q2) C (22) C Q1. Since ;N Q) is non empty,
the union Q; U Q) is connected. Using 2.4, we can find, for each j > 2, a connected set
Fy C (QUQ))\{z} such that y € F}, F;NFry(2)) # 0 and Fj is closed in X. We fix now a j > 2.
Since = ¢ (Fry(€2;)) and x ¢ Fj, we have for i big enough Fry(€2;) N (FrU(Q;) UF;)=0. We
can apply the 5-lemma 2.5 to the five connected sets {3 U7, Q;, Q% Fro(Q;) and Fr(Q)) U F;.
The first and fourth possibilities of the 5-lemma are excluded because y € F; and y & ;.
The second possibility is excluded because €; ﬂQ;- # (). So we must have Q; UFry(Q;) C Q;

L

corollary 3.2. Let (;),cn and (§)),cn be topological chains in U. If Vi € N,Q; N Q5 # 0,
then [€;] = [2]

Proof. This follows from 3.1, since ; N €Y D QN Q), where k = max(i, j). 0

theorem 3.3. The space U is Hausdorf.

Proof. Let (€;),cn and (£;),cn be non equivalent topological chains in U. By 3.2, there

exist ¢ € N such that Q;NQ; = (. This implies that the neighborhoods Q. and Q; of (€24),en
and (£2}),.n are disjoint. 0



CHAPTER 6 PRIME ENDS 7

Definition 3.4. (Inclusion of U in U). If z € U, we denote by m(z) the equivalence
class of the chain which defines a basis of neighborhood of x. The prime point 7(z) is well
defined because x has a basis of neighborhoods each of which being an open connected set
with connected frontier, this chain is obviously topological with x as a principal point, and
all such chains are equivalent.

Corollary 3.5. Let (Q;),cn be a topological chain in U, let (§2),.n be a not necessarily
topological chain in U equivalent to (£;);cn, and let x be a point in U. The following
statements are equivalent:

(i) 9] = m(a);

Proof. We have obviously (i)=-(ii)=-(iii)=(iv), (i)=(v)=-(iii), and (i)=-(vi)=-(iv). It suffices
to show that (iv)=-(i). Since z € [),cn(€2;), each neighborhood of z intersects €, for each
i € N. It follows from 3.2 that (2}),.n is equivalent to any topological chain defining ().
0

Theorem 3.6. The map 7 :U — U is a homeomorphism onto its image. The set w(U) is
open and dense in U.

Proof. the fact that m is injective follows easily from the fact that two points in U have
disjoint neighborhoods. If O is an open subset of U, we have obviously W_l(O) = 0. This
shows that 7 is a homeomorphism on its image. The fact that m(U) is dense follows from
the inclusion 7(0O) C O. It remains to show that m(U) is open. Let O be an open subset
of U with (O) CU. Let (£;),cn be a topological chain with [€;] € O, we have, for i large
enough Q; C O If x is a principal point of (£2;),.n,We obtain x € ();cn() C (O) CU. By
3.5, this gives m(z) =[] and = € [);cn % C O, ie. [ € m(O). Since [Q;] is an arbitrary
point in O, we have m(0) = 0. Obviously each point in U has an open neighborhood O
with (O) C U. O

By 3.6, we can identify U and =(U).
Definition 3.7. (Prime end). A prime end of U is a prime point in U which is not in U.
Proposition 3.8. (Int (B?))"= BZ.



