CHAPTER 5A

KLEE'S TRICK

In this appendix we give an instance of Klee's trick.

Let x be in $\operatorname{Int}\left(\mathbf{B}^{n}\right)$. We call g_{x} the map $\mathbf{B}^{n} \rightarrow \mathbf{B}^{n}$ which is the identity on $\partial \mathbf{B}^{n}$ and maps each ray emanating from 0 linearly on the ray emanating from x.

Lemma 1. The map $G: \operatorname{Int}\left(\mathbf{B}^{n}\right) \times \mathbf{B}^{n} \rightarrow \operatorname{Int}\left(\mathbf{B}^{n}\right) \times \mathbf{B}^{n},(x, u) \mapsto\left(x, g_{x}(u)\right)$ is a homeomorphism, in particular, the map $(x, u) \mapsto g_{x}^{-1}(u)$ is continuous on $\operatorname{Int}\left(\mathbf{B}^{n}\right) \times \mathbf{B}^{n}$.

Proof. We have $g_{x}(y)=(1-\|y\|) x+y$. It follows that G is continuous. Since for each $x \in \operatorname{Int}\left(\mathbf{B}^{n}\right)$, the map $y \mapsto g_{x}(y)$ is bijective, we obtain that G is bijective. For each $r<1$, the map G induces a bijective continuous map from $r \mathbf{B}^{n} \times \mathbf{B}^{n}$ on itself, where $r \mathbf{B}^{n}=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq r\right\}$. It follows from the compactness of $r \mathbf{B}^{n} \times \mathbf{B}^{n}$ that G^{-1} is continuous on $r \mathbf{B}^{n} \times \mathbf{B}^{n}$. It is not difficult to conclude that G^{-1} is continuous on the whole of $\operatorname{Int}\left(\mathbf{B}^{n}\right) \times \mathbf{B}^{n}$.

Theorem 2. Let A be a closed subset of the metric space X, and let $\varphi: A \rightarrow \operatorname{Int}\left(\mathbf{B}^{n}\right)$ be a continuous function. If U is a neighborhood of A in X, we can define a homeomorphism $H: X \times \mathbf{B}^{n} \stackrel{\sim}{\rightarrow} X \times \mathbf{B}^{n}$ of the form $(x, u) \mapsto(x, h(x, u))$ such that H is the identity outside $U \times \operatorname{Int}\left(\mathbf{B}^{n}\right)$ and $H(x, 0)=(x, \varphi(x))$ if $x \in A$. This last condition means that H takes $A \times\{0\}$ on the graph of φ.

Proof. By Tietze-Urysohn theorem 1.4.4, we can extend φ to a continuous map $\bar{\varphi}: X \rightarrow$ $\operatorname{Int}\left(\mathbf{B}^{n}\right)$ such that $\bar{\varphi} \mid X \backslash U=0$. We define H by $(x, u) \mapsto\left(x, g_{\bar{\varphi}(x)}(u)\right)$, its inverse is given by $(x, u) \mapsto\left(x, g_{\bar{\varphi}(x)}^{-1}(u)\right)$. From lemma 1, we obtain that H is a homeomorphism. Moreover, we have $H(x, 0)=\left(x, g_{\bar{\varphi}(x)}(0)\right)=(x, \bar{\varphi}(x))$, and if $x \notin U$, we have $H(x, u)=\left(x, g_{0}(u)\right)=(x, u)$.

Theorem 3. Let A be a compact space and let $\varphi: A \hookrightarrow \operatorname{Int}\left(\mathbf{B}^{k}\right)$ and $\psi: A \hookrightarrow \operatorname{Int}\left(\mathbf{B}^{k}\right)$ be embeddings. There exists a homeomorphism $H: \mathbf{B}^{k} \times \mathbf{B}^{n} \stackrel{\rightarrow}{\rightarrow} \mathbf{B}^{k} \times \mathbf{B}^{n}$ which is the identity on $\partial\left(\mathbf{B}^{k} \times \mathbf{B}^{n}\right)$ and such that $H(\varphi(x), 0)=(0, \psi(x))$.

Proof. We can apply theorem 2 to obtain homeomorphisms $G, G^{\prime}: \mathbf{B}^{k} \times \mathbf{B}^{n} \underset{\rightarrow}{\sim} \mathbf{B}^{k} \times \mathbf{B}^{n}$ such that $G(\varphi(x), 0)=\left(\varphi(x), \psi \circ \varphi^{-1}[\varphi(x)]\right)=(\varphi(x), \psi(x)), G^{\prime}(0, \psi(x))=(\varphi(x), \psi(x))$ and G, G^{\prime} are the identity on $\partial\left(\mathbf{B}^{k} \times \mathbf{B}^{n}\right)$. We can define $H=G^{\prime-1} \circ G$.

