
CHAPTER 5

THE ANNULUS THEOREM

AND ITS CONSEQUENCES

In this chapter, we generalize the Schoenflies theorem to annulii and disks with holes.

1. The annulus theorem.

Definition 1.1. (Annulus). An annulus is any compact space homeomorphic to A2 =
S1 × [0, 1].

Example 1.2. Any set of the form {x ∈ R2 | α ≤ ‖x‖ ≤ β}, where 0 < α < β < +∞, is an
annulus.

Lemma 1.3. If A is an annulus, its boundary ∂A consists of two disjoint simple closed
curves. Any homeomorphism between two annulii sends the boundary of the first one to the
boundary of the second one. The boundary of S1 × [0, 1] is S1 × {0} ∪ S1 × {1}.

Proof. See 2.4.9, 2.4.10 and 2.4.11.

Proposition 1.4. Let S (resp. S′) be a connected component of the boundary of the annulus
A (resp. A′). Any homeomorphism of S on S′ can be extended to a homeomorphism of A
on A′.

Proof. Let j : A2→̃A and j′ : A2→̃A′ be homeomorphisms. By composing, if necessary, j
(resp. j′) with the homeomorphism (s, t) 7→ (s, 1− t) of A2 onto itself, we can assume that
S = j(S1 × {0}) (resp. S′ = j′(S1 × {0})). If h : S→̃S′ is any homeomorphism, we can
extend the homeomorphism h′ = j′−1 ◦ h ◦ j : S1 × {0}→̃S1 × {0} to the homeomorphism
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H ′ : A2→̃A2, (s, t) 7→ (h′(s), t). The homeomorphism H = j′ ◦H ′ ◦ j−1 : A→̃A′ is an extension
of h.

Theorem 1.5. (Annulus theorem). Let γ be a simple closed curve contained in Int(B2).
There exists a homeomorphism H of B2 on itself which is the identity on ∂B2 and takes γ
to the circle 1

2S
1 = {x ∈ R2|‖x‖ = 1

2}.

Proof. Since Int(B2) is homeomorphic to R2, we can apply the Schoenflies theorem with
compact support 4.3.11 to obtain a homeomorphism with compact support of Int(B2) such
that H(γ) = 1

2S
1. Since H has a compact support in Int(B2), it can be extended by the

identity to ∂B2.

Corollary 1.6. (Annulus theorem). Let j : B2 ↪→ Int(B2) be an embedding. The set
B2\j(Int(B2)) is an annulus. In fact, we can find a homeomorphism H : B2→̃B2 such that
H is the identity on S1 = ∂B2 and H[j(B2)] = 1

2B
2 = {x ∈ R2|‖x‖ ≤ 1

2}.

2. Disks and spheres with holes.

Theorem 2.1. Let j1, . . . , jk : B2 ↪→ Int(B2) (resp. j′1, . . . , j
′
k : B2 ↪→ Int(B2)) be embeddings

with disjoint images. There exists a homeomorphism K : B2→̃B2 such that K[ji(B2)] = j′i(B
2),

for i = 1, . . . , k. Moreover, we can choose K to be the identity on ∂B2.

Proof. By 2.2.5, we can find a homeomorphism F of B2 on itself which is the identity on
∂B2 and sends ji(0) on j′i(0), for i = 1, . . . , k. So we can assume that ji(0) = j′i(0). By
corollary 1.6, we can extend j1, . . . , jk and j′1, . . . , j

′
k to embeddings R2 ↪→ B2 which will be

still denoted by j1, . . . , jk and j′1, . . . , j
′
k. Since j1(B2), . . . , jk(B2) (resp. j1(B2), . . . , jk(B2))

are disjoint, we can find r > 1 such that, if rB2 = {x ∈ R2|‖x‖ ≤ r}, the sets j1(rB2), . . . ,
jk(rB2) (resp. j′1(rB

2), . . . , j′k(rB2)) are disjoint. Since ji(0) = j′i(0), it is easy to find ε > 0
such that ji(εB2) ⊂ j′i(Int(B2)), for i = 1, . . . , k. Let θ be a homeomorphism of rB2 on itself
which is the identity on ∂(rB2) and takes B2 on εB2. We can define a homeomorphism
G : B2→̃B2 by G =identity outside j1(rB2) ∪ · · · ∪ jk(rB2) and G|ji(rB2) = ji ◦ θ ◦ j−1

i , for
i = 1, . . . , k. We have G ◦ ji(B2) = ji(εB2) ⊂ j′i(Int(B2)). So we are reduced to the case
where ji(B2) ⊂ j′i(Int(B2)). Using a slight extension of 1.6, we can find, for each i = 1, . . . ,
k, a homeomorphism hi of rB2 on itself such that hi[j′i

−1 ◦ ji(B2)] = B2 and hi =identity
on ∂(rB2). It follows from this last condition that we can construct a homeomorphism
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H : B2→̃B2 which is the identity outside j′1(rB
2)∪· · ·∪j′k(rB2), and H|j′i(rB2) = j′i ◦hi◦j′i

−1.
Of course H[ji(B2)] = j′i(hi[j′i

−1 ◦ ji(B2)]) = j′i(B
2).

Definition 2.2. (Disk with holes). A disk with k-holes is a space homeomorphic to
B2\

⋃k
i=1 ji(Int(B2)), where j1, . . . , jk : B2 ↪→ Int(B2) are embeddings with disjoint images.

If we do not want to precise the number k of holes, we will simply say a disk with holes.
A disk with 0-holes is called a disk.

Lemma 2.3. The boundary of a disk with k-holes consists of k + 1 disjoint closed curves.
Two disks with holes are homeomorphic if and only if they have the same number of holes.
Any homeomorphism between two disks with holes sends the boundary of the first one on the
boundary of the second one.

Theorem 2.4. Let j1, . . . , jk : B2 ↪→ S2 (resp. j′1, . . . , j
′
k : B2 ↪→ S2) be embeddings with

disjoint images. There exists a homeomorphism K : S2→̃S2 such that K[ji(B2)] = j′i(B
2), for

i = 1, . . . , k.

Proof. We can assume that k ≥ 1. By Schoenflies theorem, there exists a homeomorphism
H of S2 on itself such that H[j1(B2)] = j′1(B

2). It is easy now to check that the theorem
follows from its B2 version 2.1.

Definition 2.5. (Sphere with holes). A sphere with k-holes is a space homeomorphic to
S2\

⋃k
i=1 ji(Int(B2)), where j1, . . . , jk are embeddings B2 ↪→ S2 with disjoint images. If we

do not want to precise the number k of holes, we will simply say a sphere with holes.

Lemma 2.6. The boundary of a sphere with k-holes consists of k disjoint closed curves.
Two spheres with holes are homeomorphic if and only if they have the same number of holes.
Any homeomorphism between two spheres with holes sends the boundary of the first one on
the boundary of the second one.

Lemma 2.7. A sphere with (k + 1)-holes is a disk with k-holes.

Theorem 2.8. Let C be a boundary component of the disk (resp. sphere) with k-holes D. Let
C ′ be a boundary component of the disk (resp. sphere) with k-holes D′. Any homeomorphism
h : C→̃C ′ can be extended to a homeomorphism H : D→̃D′. Moreover, if we have numberings
C = C0, . . . , Ck and C ′ = C ′

0, . . . , C
′
k of the connected components of ∂D and ∂D′, we can

choose H such that H(Ci) = C ′
i, for i = 1, . . . , k.

Proof. We will prove the theorem in the case D = B2\
⋃k

i=1 ji(B2), C = ∂B2 and D′ =
B2\

⋃k
i=1 j′i(B

2), C ′ = ∂B2, the reader will deduce the general case from this one. By
Alexander’s trick 4.3.7, we can extend h to a homeomorphism F : B2→̃B2. By 2.1, there
exists a homeomorphism G of B2 on itself which is the identity on ∂B2 and such that
G[F ◦ ji(B2)] = j′i(B

2). The required extension of h is G ◦ F .
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3. Compact subsets with a connected complement.

Theorem 3.1. Let K be a compact subset in R2 (resp. S2 with S2\K 6= ∅). The following
conditions are equivalent:

(i) R2\K (resp. S2\K) is connected;
(ii) [K,S1] is trivial;
(iii) any neighborhood of K contains a neighborhood which is a finite disjoint union of

disks.

Proof. We will consider, for example, the case K ⊂ S2. We have (i)rightarrow(ii) by 3.3.1
and (iii)arrow(i) since (iii) implies that S2\K is an increasing union of disks with holes. We
prove (i)arrow(iii). Let U = S2\K, it is a non empty connected subset of S2. Let V be an
open neighborhood of K, the complement S2\V is a compact subset of U . Since U is non
empty locally compact and locally connected, we can find a compact connected subset C ⊂ U ,
with S2\V ⊂ C. By 4.2.2, each connected component of S2\C is an open set homeomorphic
to R2. Since K is compact and contained in S2\C, we can find a finite number V1, . . . , Vn

of connected components of S2\C, with K ⊂ V1 ∪ · · · ∪ Vn. Since each Vi is homeomorphic
to R2, it is easy, for i = 1, . . . , n, to find a disk Di ⊂ Vi with K ⊂

⋃n
i=1 Int(Di). We have

K ⊂
⋃n

i=1 Di ⊂
⋃n

i=1 Vi ⊂ S2\C ⊂ V .

Corollary 3.2. Let K be a compact subset of S2 with S2\K non empty and connected. If
U is an open connected neighborhood of K and V is a non empty open subset of U , there
exists a homeomorphism with compact support H : U→̃U such that H(K) ⊂ V .

Proof. By 3.1, there exists a finite number j1, . . . , jk of embeddings R2 ↪→ U with disjoint
images and such that K ⊂

⋃k
i=1 ji(R2). By 2.2.4, there exists a homeomorphism with compact

support h : U→̃U such that h(ji(0)) ∈ V , for i = 1, . . . , k. It is easy to construct, for each
i = 1, . . . , k, a homeomorphism gi : h(ji(R2))→̃h(ji(R2)) with gi(h[ji(K∩R2)]) ⊂ h(ji(R2))∩V .
Piecing together g1, . . . , gk and extending the result by the identity outside

⋃k
i=1 h(ji(R2)),

we obtain a homeomorphism with compact support g : U→̃U . The homeomorphism H can
be defined as the composition g ◦ h.

Corollary 3.3. Let K be a compact subset of S2 with S2\K non empty and connected. If
U is an open connected neighborhood of K, there exists an open subset V ⊂ U homeomorphic
to R2 and containing K.

Definition 3.4. (Cellular compacta). A compact non empty subset K of R2 is cellular
if K and R2\K are connected. A compact non empty subset of S2 is cellular if K 6= S2,
and K and S2\K are connected.

Remark 3.5. If K is a compact subset of R2, it is a cellular subset of R2 if and only if
it is a cellular subset of S2 = R2 ∪ {∞}.

Theorem 3.6. The compact non empty subset K of R2 (or S2) is cellular if and only if
there exists a basis of neighborhoods of K which are homeomorphic to B2.

Proof. If K is cellular, by 3.1, each neighborhood of K contains a neighborhood which is a
disjoint union of disks, since K is connected it is contained in one of these disks. Conversely,
suppose that each neighborhood of K contains a neighborhood which is homeomorphic to
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B2. This implies that K 6= S2. Moreover, K is connected as a decreasing sequence of
compact connected sets and, by 3.1, R2\K (or S2\K) is connected.

Theorem 3.7. Let K be a compact subset of R2 with R2\K connected. There exists a
continuous map H : R2 → R2 such that:

(i) H induces a homeomorphism between R2\K and R2\H(K);
(ii) H is the identity outside a compact subset of R2;
(iii) if x ∈ H(K) its inverse image H−1(x) is exactly a connected component of K.

Moreover, if A is a non empty compact subset of R2 with no isolated point, we
can choose H such that:

(iv) H(K) ⊂ A.

Proof. We can assume that K ∪A ⊂ Int(B2). Using 3.1, we can find a fundamental system
of neighborhoods (Vi)i≥1 of K in Int(B2) such that for each i ≥ 1, Vi is a disjoint union of
a finite number of disks Vi =

⋃ki

i=1 Bi,j and Vi+1 ⊂ Int(Vi). We construct, by induction on
i ∈ N, a sequence of homeomorphisms (Hi)i∈N of R2 such that:

(i) Hi is the identity outside B2;
(ii) Hi = Hi+1 outside Vi;
(iii) ∀j = 1, . . . , ki,diamHi(Bi,j) < 1/2i and Hi(Int(Bi,j)) ∩A 6= ∅.

To do this, we start with H0 = IdR2 . Suppose now that we have constructed Hi. For each j =
1, . . . , ki, let us consider the finite set Ij = {l|Bi+1,l ⊂ Int(Bi,j)}. Since Hi(Int(Bi,j))∩A 6= ∅
and A has no isolated point, we can find distinct points xk, k ∈ Ij , with xk ∈ Hi(Int(Bi,j))∩A.
For each k ∈ Ij , let Dk be a small Euclidean ball centered on xk contained in Hi(Int(Bi,j))
and with diameter < 1/2i+1. By theorem 2.1, for each j, we can find a homeomorphism
hj of Hi(Bi,j) on itself which is the identity on Hi(∂Bi,j) and verifies hj(Hi(Bi,j)) = Dk,
for each k ∈ Ij . We can obtain a homeomorphism Ki : R2→̃R2 by piecing the kj ’s together
and extending the result by the identity outside Hi(Vi). We can set Hi+1 = Ki ◦Hi. The
required map H is the uniform limit of the Hi’s.

Lemma 3.8. Let A be a non empty compact space with no isolated point. If U is a non
empty open subset of A, we can find a compact subset A0 of U which is non empty and has
no isolated points.

Proof. Let V be a non empty open subset of U with V ⊂ U . We claim that no point of V
is isolated in V . In fact, if x ∈ V , it cannot be isolated in V because V is open in A and
no point of A is isolated in A; if x ∈ V \V , it is obvious that it is not isolated in V .

Theorem 3.9. Let K be a compact subset of S2 with S2\K connected. If U is an open
neighborhood of K in S2, there exists a continuous surjective map H : S2 → S2 such that:

(i) H induces a homeomorphism between S2\K and S2\H(K);
(ii) H is the identity outside a compact subset of U ;
(iii) if x ∈ H(K) its inverse image H−1(x) is exactly a connected component of K.

Moreover, if A is a non empty compact subset of S2 with no isolated point and
such that A ∩ C 6= ∅ for each connected component C of U , we can choose H such
that:

(iv) H(K) ⊂ A.
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Proof. Let V1, . . . , Vk be disjoint open subsets of U homeomorphic to R2 with K ⊂
⋃k

i=1 Vi.
Since A intersects each connected component of U , we can use theorem 2.2.4 to obtain a
homeomorphism h : S2→̃S2 with compact support contained in U and such that h(Vi)∩A 6= ∅,
for i = 1, . . . , k. By lemma 3.8, we can find a compact set Ai ⊂ h(Vi) ∩ A with no isolated
point. Let us define Ki = K ∩Vi for i = 1, . . . , k; it is easy to see that the Ki’s are open and
closed in K and that they satisfy [Ki,S1] = 0—any continuous map on Ki can be extended
continuously to K as a constant map outside Ki ! It follows from 3.7 that, for i = 1, . . . , k,
we can find a map gi : h(Vi) → h(Vi) such that:

(i) gi induces a homeomorphism between h(Vi)\h(Ki) and h(Vi)\gi[h(Ki)];
(ii) gi is the identity outside a compact subset of h(Vi);
(iii) if x ∈ gi(h(Ki)) its inverse image g−1

i (x) is exactly a connected component of h(Ki);
(iv) gi(h(Ki)) ⊂ Ai.

We define g : S2 → S2 by piecing together g1, . . . , gk and extending the result by the identity
outside

⋃k
i=1 Vi. We can now set H = g ◦ h.

Corollary 3.10. Let K be a cellular subset of S2 and let V be a neighborhood of K. There
exists a map H : S2 → S2 such that H is the identity outside V , the image H(K) is reduced
to one point x0 and H induces a homeomorphism between S2\K and S2\{x0}.

Corollary 3.11. Let K be a totally disconnected compact subset of S2. If U is an open
connected subset of S2 containing K and A is a compact subset of U with no isolated point,then
there exists a homeomorphism with compact support H : U→̃U such that H(K) ⊂ A.

Corollary 3.12. Let U be a non empty connected open subset of S2, then U is homeomorphic
to S2\K where K is some totally disconnected compact subset of S2. Moreover, if A is a
compact subset of S2 with no isolated point, we can choose K ⊂ A.

Definition 3.13. Let U be an open connected subset of S2, its connectivity is the number
of connected components of S2\U if there is a finite number of such components and is ∞
otherwise. By corollary 3.4.3, the open set U has connectivity p ≥ 1 if and only if the group
[U,S1] is a free abelian group on p− 1 generators. We will say that U is p-connected (resp.
simply connected, doubly connected) if its connectivity is p (resp. 1,2).

Corollary 3.14. Let p be an integer ≥ 1, any two p-connected open connected subset of S2

are homeomorphic. In particular, they are homeomorphic to S2 minus p distincts points.
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4. Extending homeomorphisms between totally disconnected sets.

Theorem 4.1. Let K and K ′ be two totally disconnected compact subsets of S2,and let U be
an open connected subset containing K ∪K ′.Any homeomorphism h : K→̃K ′ can be extended
to a homeomorphism H : U→̃U with compact support.

Proof. Since K∪K ′ is totally disconnected, by 3.3, we can assume that U is homeomorphic to
R2, hence we can suppose that U = R2. By 3.11, we can find homeomorphisms G, G′ : R2→̃R2

with compact support such that G(K) ⊂]−1, 1[×{0} and G′(K ′) ⊂ {0}×]−1, 1[. By Klee’s
trick 5A.3, there exists a homeomorphism H1 of R2 with support in [−1, 1] × [−1, 1] such
that H1|G(K) = G′ ◦ h ◦G−1. We can define H as G′−1 ◦H1 ◦G.


