
CHAPTER 4A

ON MAKING DIFFEOMORPHISMS THE

IDENTITY NEAR A FIXED POINT

In this appendix we prove that we can change a diffeomorphism with positive jacobian
near a fixed point to obtain a homeomorphism which is the identity near that fixed point.

1. Connectedness of sets of matrices.

Theorem 1.1. If E is a real finite dimensional vector space, the group GL+(E) of invertible
linear maps with positive determinant is path connected. If E is a complex finite dimensional
vector space, the group GL(E) of invertible linear maps is path connected.

Remark 1.2. It follows from 1.1 that if E is a real finite dimensional vector space the
group GL(E) of invertible linear maps has two connected components, namely GL+(E) and
GL−(E) the subset of isomorphisms having negative determinant.

We are to prove 1.1 by induction on the dimension of the vector space. Suppose that E is
a real (resp. complex) vector space with dimE = 1, then GL+(E) ∼= R∗

+ (resp. GL(E) ∼= C∗)
which is obviously path connected.
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Lemma 1.3. Suppose E is a real (resp. complex) vector space with dimE ≥ 2. Given e and
f in E\{0}, there exists a path t ∈ [0, 1] 7→ At ∈ GL+(E) (resp. GL(E)) such that A0 = Id
and A1(e) = f .

Proof. We first suppose that e and f are independent. Call H the plane generated by e
an f , and let H ′ be a complementary subspace of H in E, i.e. E = H ⊕H ′. Let At be
the linear map which is the identity on H ′, and satisfies At(e) = e cos(tπ/2) + f sin(tπ/2)
and At(f) = −e sin(tπ/2) + f cos(tπ/2) — i.e. At is a “rotation”by angle tπ/2 in the
plane H. It is easy to verify that det(At) = 1, A0 =Id and A1(e) = f . If e and f are
colinear, we can, since dimE ≥ 2, find g ∈ E\{0} independent of e and f . Applying the
independent case proven above we can find a continuous path Bt (resp. Ct) of linear maps
with det(Bt) = 1, B0 = Id, B1(e) = g (resp. det(Ct) = 1, C0 = Id, C1(g) = f). We can take
At = Ct ◦Bt.

End of the proof of 1.1. We will do the proof in the real case, the complex case is formally
the same. We are doing the proof by induction on n = dim E. Since the case n = 1 is
already settled, we can assume n ≥ 2. Let A be in GL+(E). Pick a point e 6= 0 in E.
By 1.3, we can find a path Bt in GL+(E) with B0 = Id and B1(A(e)) = e. If we put
At = Bt ◦A, we have a continuous path At in GL+(E) from A = A0 to a map A1 verifying
A1(e) = e. Call H = R2e and let H ′ be a subspace of E complementary to H. With respect
to the decomposition E = H ⊕H ′, the map A1 can be written

(
IdH C

0 D

)
, with D ∈ GL(H ′)

and C ∈ L(H ′,H). Since det(A1) = det(D), we have D ∈ GL+(H ′). Since dimH ′ = n − 1,
we can apply our induction hypothesis to obtain a path Dt in GL+(H ′) with D0 = D and
D1 = IdH′ . The path t 7→

(
IdH tC

0 Dt

)
gives a path in GL+(E) between A1 and IdE .

Corollary 1.4. Let E be a complex vector space. If we consider GL(E,C) as a subset of
the real linear maps, we have GL(E,C) ⊂ GL+(E,R).

Proof. Since GL(E,C) is connected, its image under GL(E,R)det→R∗ must also be connected;
hence it must be contained in R∗

+.

2. Blowing up a fixed point.
We consider in the following a map H : U → Rn, where U is an open subset of Rn

containing 0. We will suppose that H is a homeomorphism between U and the open set
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H(U) ⊂ Rn. Remark that, by “Invariance of domain” 2.4.5, it suffices to know that H is
continuous and injective. We will also suppose that H(0) = 0 and that H has a derivative
at 0 denoted by A. We will assume that A is invertible. In particular, there exists a map
ε : R+ → R+ such that lim

r→0
ε(r) = 0 and ‖H(x)− A(x)‖ ≤ ‖x‖ε(‖x‖). Since A is invertible,

there exists K > 0 such that ‖x‖/K ≤ ‖A(x)‖ ≤ K‖x‖. We introduce polar coordinates
p : Sn−1 × R+ → Rn by p(x, r) = rx. Of course p−1(0) = Sn−1 × {0} and p induces a
homeomorphism of Sn−1×]0,∞[ on Rn\{0}.

Lemma 2.1. The homeomorphism H̃ = p−1 ◦ H ◦ p : p−1(U\{0})→̃p−1(H(U)\{0}) extends
continuously to Sn−1×{0} by the formula H̃(x, 0) = (A(x)/‖A(x)‖, 0). The resulting extension
is a homeomorphism between p−1(U) and p−1(H(U)).

Proof. The map Ã = p−1 ◦ A ◦ p : Sn−1×]0,∞[→ Sn−1×]0,∞[ is given by the formula
Ã(x, r) = (A(x)/‖A(x)‖, r‖A(x)‖). It is clear that the same formula gives an extension to
Sn−1× [0,∞[ which is a homeomorphism. We want to estimate the distance between H̃(x, r)
and Ã(x, r) as r > 0 goes to 0. If we write H̃(x, r) = (x′, r′), we have x′ = H(rx)/r′ and
r′ = ‖H(rx)‖. This gives:

(i)
|r‖A(x)‖ − r′| = |‖A(rx)‖ − ‖H(rx)‖|

≤ ‖A(rx)−H(rx)‖ ≤ rε(r),

(ii)
‖H(rx)

r′
− A(x)
‖A(x)‖

‖ ≤ ‖H(rx)−A(rx)‖
r′

+ ‖( 1
r′
− 1
‖A(rx)‖

)A(rx)‖

≤ 1
r′

[rε(r) + |‖A(rx)‖ − r′|] ≤ 2rε(r)
r′

.

Using (i) and the fact that ‖A(x)‖ is bounded away from 0 on Sn−1, it is easy to show
that r/r′ is bounded for r near 0. It follows then from (i) and (ii) that for r small enough
d(H̃(x, r), Ã(x, r)) ≤ Cε(r), where C is a constant. The lemma is a routine consequence of
this estimation.

Corollary 2.2. Let V ⊂ U be an open neighborhood of 0. If ρ > 0 is small enough so
that B(0, ρ) = {x ∈ Rn|‖x‖ ≤ ρ} ⊂ V

⋂
H(U), we can find a homeomorphism G̃ between

U\Int(B(0, ρ)) and H(U)\Int(B(0, ρ)) which is equal to H̃ outside V and to the map
x 7→ [‖x‖/‖A(x)‖]A(x) on ∂B(0, ρ) = {x ∈ Rn|‖x‖ = ρ}.

Proof. Since V
⋂

H(U) is open, we can find ρ′ > ρ such that B(0, ρ′) ⊂ V
⋂

H(U). Let θ :
R+→̃[ρ,∞[ be a homeomorphism such that θ(r) = r, for r ≥ ρ′. We define a homeomorphism
Θ : Sn−1×R+→̃Sn−1× [ρ,∞[ by Θ(x, r) = (x, θ(r)). It is easy to check that, if we extend H̃

to Sn−1 × {0} as provided by lemma 2.1, the map G = p ◦Θ ◦ H̃ ◦Θ−1 ◦ p−1 is well defined
on U\Int(B(0, ρ)) and has the required properties.

Corollary 2.3. If detA > 0, then given any neighborhood V of 0, we can find a homeomorphism
U→̃H(U) which is equal to H outside V and equal to the identity on a neighborhood of 0.

Proof. By 2.2, it suffices to show that if detA > 0, then the map ∂B(0, ρ) → ∂B(0, ρ), x 7→
[‖x‖/‖A(x)‖]A(x) can be extended to a homeomorphism of B(0, ρ) on itself which is equal
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to the identity near 0. By 1.1, we can find a continuous map [0, ρ] → GL+(Rn), r 7→ Ar

such that Aρ = A and Ar = Id, for r ∈ [0, ρ/2]. The desired homeomorphism can be defined
by the formula x 7→ [r/‖Ar(x)‖]Ar(x), where r = ‖x‖.

The following theorem sums up the results of this appendix.

Theorem 2.4. Let H : U → Rn be a homeomorphism of the open subset U of Rn onto the
open subset H(U) of Rn. Suppose that for some x in U we have H(x) = x and that the
derivative of H at x exists, is invertible, and has a positive determinant. If V ⊂ U is a
neighborhood of x, there exists a homeomorphism G : U→̃H(U) which is equal to H outside
V and is equal to the identity in a neighborhood of x.


