CHAPTER 4A ON MAKING DIFFEOMORPHISMS THE IDENTITY NEAR A FIXED POINT

In this appendix we prove that we can change a diffeomorphism with positive jacobian near a fixed point to obtain a homeomorphism which is the identity near that fixed point.

1. Connectedness of sets of matrices.

Theorem 1.1. If E is a real finite dimensional vector space, the group $\mathrm{GL}_{+}(E)$ of invertible linear maps with positive determinant is path connected. If E is a complex finite dimensional vector space, the group $\mathrm{GL}(E)$ of invertible linear maps is path connected.
Remark 1.2. It follows from 1.1 that if E is a real finite dimensional vector space the group $\mathrm{GL}(E)$ of invertible linear maps has two connected components, namely $\mathrm{GL}_{+}(E)$ and $\mathrm{GL}_{-}(E)$ the subset of isomorphisms having negative determinant.

We are to prove 1.1 by induction on the dimension of the vector space. Suppose that E is a real (resp. complex) vector space with $\operatorname{dim} E=1$, then $\mathrm{GL}_{+}(E) \cong \mathbf{R}_{+}^{*}\left(\right.$ resp. $\left.\mathrm{GL}(E) \cong \mathbf{C}^{*}\right)$ which is obviously path connected.

Lemma 1.3. Suppose E is a real (resp. complex) vector space with $\operatorname{dim} E \geq 2$. Given e and f in $E \backslash\{0\}$, there exists a path $t \in[0,1] \mapsto A_{t} \in \mathrm{GL}_{+}(E)$ (resp. GL (E)) such that $A_{0}=\mathrm{Id}$ and $A_{1}(e)=f$.

Proof. We first suppose that e and f are independent. Call H the plane generated by e an f, and let H^{\prime} be a complementary subspace of H in E, i.e. $E=H \oplus H^{\prime}$. Let A_{t} be the linear map which is the identity on H^{\prime}, and satisfies $A_{t}(e)=e \cos (t \pi / 2)+f \sin (t \pi / 2)$ and $A_{t}(f)=-e \sin (t \pi / 2)+f \cos (t \pi / 2)$ - i.e. A_{t} is a "rotation"by angle $t \pi / 2$ in the plane H. It is easy to verify that $\operatorname{det}\left(A_{t}\right)=1, A_{0}=\mathrm{Id}$ and $A_{1}(e)=f$. If e and f are colinear, we can, since $\operatorname{dim} E \geq 2$, find $g \in E \backslash\{0\}$ independent of e and f. Applying the independent case proven above we can find a continuous path B_{t} (resp. C_{t}) of linear maps with $\operatorname{det}\left(B_{t}\right)=1, B_{0}=\mathrm{Id}, B_{1}(e)=g$ (resp. $\left.\operatorname{det}\left(C_{t}\right)=1, C_{0}=\mathrm{Id}, C_{1}(g)=f\right)$. We can take $A_{t}=C_{t} \circ B_{t}$.

End of the proof of 1.1. We will do the proof in the real case, the complex case is formally the same. We are doing the proof by induction on $n=\operatorname{dim} E$. Since the case $n=1$ is already settled, we can assume $n \geq 2$. Let A be in $\mathrm{GL}_{+}(E)$. Pick a point $e \neq 0$ in E. By 1.3, we can find a path B_{t} in $\mathrm{GL}_{+}(E)$ with $B_{0}=\mathrm{Id}$ and $B_{1}(A(e))=e$. If we put $A_{t}=B_{t} \circ A$, we have a continuous path A_{t} in $\mathrm{GL}_{+}(E)$ from $A=A_{0}$ to a map A_{1} verifying $A_{1}(e)=e$. Call $H=\mathbf{R}^{2} e$ and let H^{\prime} be a subspace of E complementary to H. With respect to the decomposition $E=H \oplus H^{\prime}$, the map A_{1} can be written $\left(\begin{array}{cc}\mathrm{Id}_{H} & C \\ 0 & D\end{array}\right)$, with $D \in \mathrm{GL}\left(H^{\prime}\right)$ and $C \in \mathrm{~L}\left(H^{\prime}, H\right)$. Since $\operatorname{det}\left(A_{1}\right)=\operatorname{det}(D)$, we have $D \in \mathrm{GL}_{+}\left(H^{\prime}\right)$. Since $\operatorname{dim} H^{\prime}=n-1$, we can apply our induction hypothesis to obtain a path D_{t} in $\mathrm{GL}_{+}\left(H^{\prime}\right)$ with $D_{0}=D$ and $D_{1}=\operatorname{Id}_{H^{\prime}}$. The path $t \mapsto\left(\begin{array}{cc}\operatorname{Id}_{H} & t C \\ 0 & D_{t}\end{array}\right)$ gives a path in $\mathrm{GL}_{+}(E)$ between A_{1} and Id_{E}.

Corollary 1.4. Let E be a complex vector space. If we consider $\mathrm{GL}(E, \mathbf{C})$ as a subset of the real linear maps, we have $\mathrm{GL}(E, \mathbf{C}) \subset \mathrm{GL}_{+}(E, \mathbf{R})$.

Proof. Since $\mathrm{GL}(E, \mathbf{C})$ is connected, its image under $\mathrm{GL}(E, \mathbf{R}) \xrightarrow{\text { det }} \mathbf{R}^{*}$ must also be connected; hence it must be contained in \mathbf{R}_{+}^{*}.

2. Blowing up a fixed point.

We consider in the following a map $H: U \rightarrow \mathbf{R}^{n}$, where U is an open subset of \mathbf{R}^{n} containing 0 . We will suppose that H is a homeomorphism between U and the open set
$H(U) \subset \mathbf{R}^{n}$. Remark that, by "Invariance of domain" 2.4.5, it suffices to know that H is continuous and injective. We will also suppose that $H(0)=0$ and that H has a derivative at 0 denoted by A. We will assume that A is invertible. In particular, there exists a map $\varepsilon: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$such that $\lim _{r \rightarrow 0} \epsilon(r)=0$ and $\|H(x)-A(x)\| \leq\|x\| \varepsilon(\|x\|)$. Since A is invertible, there exists $K>0$ such that $\|x\| / K \leq\|A(x)\| \leq K\|x\|$. We introduce polar coordinates $p: \mathbf{S}^{n-1} \times \mathbf{R}_{+} \rightarrow \mathbf{R}^{n}$ by $p(x, r)=r x$. Of course $p^{-1}(0)=\mathbf{S}^{n-1} \times\{0\}$ and p induces a homeomorphism of $\left.\mathbf{S}^{n-1} \times\right] 0, \infty\left[\right.$ on $\mathbf{R}^{n} \backslash\{0\}$.

Lemma 2.1. The homeomorphism $\tilde{H}=p^{-1} \circ H \circ p: p^{-1}(U \backslash\{0\}) \underset{\rightarrow}{\rightarrow} p^{-1}(H(U) \backslash\{0\})$ extends continuously to $\mathbf{S}^{n-1} \times\{0\}$ by the formula $\tilde{H}(x, 0)=(A(x) /\|A(x)\|, 0)$. The resulting extension is a homeomorphism between $p^{-1}(U)$ and $p^{-1}(H(U))$.
Proof. The map $\left.\tilde{A}=p^{-1} \circ A \circ p: \mathbf{S}^{n-1} \times\right] 0, \infty\left[\rightarrow \mathbf{S}^{n-1} \times\right] 0, \infty[$ is given by the formula $\tilde{A}(x, r)=(A(x) /\|A(x)\|, r\|A(x)\|)$. It is clear that the same formula gives an extension to $\mathbf{S}^{n-1} \times[0, \infty[$ which is a homeomorphism. We want to estimate the distance between $\tilde{H}(x, r)$ and $\tilde{A}(x, r)$ as $r>0$ goes to 0 . If we write $\tilde{H}(x, r)=\left(x^{\prime}, r^{\prime}\right)$, we have $x^{\prime}=H(r x) / r^{\prime}$ and $r^{\prime}=\|H(r x)\|$. This gives:

$$
\begin{align*}
\left|r\|A(x)\|-r^{\prime}\right| & =|\|A(r x)\|-\|H(r x)\|| \\
& \leq\|A(r x)-H(r x)\| \leq r \varepsilon(r) \tag{i}
\end{align*}
$$

$$
\begin{align*}
\left\|\frac{H(r x)}{r^{\prime}}-\frac{A(x)}{\|A(x)\|}\right\| & \leq \frac{\|H(r x)-A(r x)\|}{r^{\prime}}+\left\|\left(\frac{1}{r^{\prime}}-\frac{1}{\|A(r x)\|}\right) A(r x)\right\| \tag{ii}\\
& \leq \frac{1}{r^{\prime}}\left[r \varepsilon(r)+\left|\|A(r x)\|-r^{\prime}\right|\right] \leq \frac{2 r \varepsilon(r)}{r^{\prime}} .
\end{align*}
$$

Using (i) and the fact that $\|A(x)\|$ is bounded away from 0 on \mathbf{S}^{n-1}, it is easy to show that r / r^{\prime} is bounded for r near 0. It follows then from (i) and (ii) that for r small enough $d(\tilde{H}(x, r), \tilde{A}(x, r)) \leq C \varepsilon(r)$, where C is a constant. The lemma is a routine consequence of this estimation.

Corollary 2.2. Let $V \subset U$ be an open neighborhood of 0 . If $\rho>0$ is small enough so that $B(0, \rho)=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq \rho\right\} \subset V \bigcap H(U)$, we can find a homeomorphism \tilde{G} between $U \backslash \operatorname{Int}(B(0, \rho))$ and $H(U) \backslash \operatorname{Int}(B(0, \rho))$ which is equal to \tilde{H} outside V and to the map $x \mapsto[\|x\| /\|A(x)\|] A(x)$ on $\partial B(0, \rho)=\left\{x \in \mathbf{R}^{n} \mid\|x\|=\rho\right\}$.
Proof. Since $V \bigcap H(U)$ is open, we can find $\rho^{\prime}>\rho$ such that $B\left(0, \rho^{\prime}\right) \subset V \bigcap H(U)$. Let θ : $\mathbf{R}_{+} \boldsymbol{\sim} \rightarrow\left[\rho, \infty\left[\right.\right.$ be a homeomorphism such that $\theta(r)=r$, for $r \geq \rho^{\prime}$. We define a homeomorphism $\Theta: \mathbf{S}^{n-1} \times \mathbf{R}_{+} \tilde{\rightarrow} \mathbf{S}^{n-1} \times[\rho, \infty[$ by $\Theta(x, r)=(x, \theta(r))$. It is easy to check that, if we extend \tilde{H} to $\mathbf{S}^{n-1} \times\{0\}$ as provided by lemma 2.1, the map $G=p \circ \Theta \circ \tilde{H} \circ \Theta^{-1} \circ p^{-1}$ is well defined on $U \backslash \operatorname{Int}(B(0, \rho))$ and has the required properties.

Corollary 2.3. If $\operatorname{det} A>0$, then given any neighborhood V of 0 , we can find a homeomorphism $U \xrightarrow{\sim} H(U)$ which is equal to H outside V and equal to the identity on a neighborhood of 0 .
Proof. By 2.2, it suffices to show that if $\operatorname{det} A>0$, then the map $\partial B(0, \rho) \rightarrow \partial B(0, \rho), x \mapsto$ $[\|x\| /\|A(x)\|] A(x)$ can be extended to a homeomorphism of $B(0, \rho)$ on itself which is equal
to the identity near 0 . By 1.1, we can find a continuous map $[0, \rho] \rightarrow \mathrm{GL}_{+}\left(\mathbf{R}^{n}\right), r \mapsto A_{r}$ such that $A_{\rho}=A$ and $A_{r}=\mathrm{Id}$, for $r \in[0, \rho / 2]$. The desired homeomorphism can be defined by the formula $x \mapsto\left[r /\left\|A_{r}(x)\right\|\right] A_{r}(x)$, where $r=\|x\|$.

The following theorem sums up the results of this appendix.
Theorem 2.4. Let $H: U \rightarrow \mathbf{R}^{n}$ be a homeomorphism of the open subset U of \mathbf{R}^{n} onto the open subset $H(U)$ of \mathbf{R}^{n}. Suppose that for some x in U we have $H(x)=x$ and that the derivative of H at x exists, is invertible, and has a positive determinant. If $V \subset U$ is a neighborhood of x, there exists a homeomorphism $G: U \stackrel{\sim}{\rightarrow} H(U)$ which is equal to H outside V and is equal to the identity in a neighborhood of x.

