CHAPTER 4A ON MAKING DIFFEOMORPHISMS THE IDENTITY NEAR A FIXED POINT

In this appendix we prove that we can change a diffeomorphism with positive jacobian near a fixed point to obtain a homeomorphism which is the identity near that fixed point.

1. Connectedness of sets of matrices.

Theorem 1.1. If E is a real finite dimensional vector space, the group $GL_+(E)$ of invertible linear maps with positive determinant is path connected. If E is a complex finite dimensional vector space, the group GL(E) of invertible linear maps is path connected.

Remark 1.2. It follows from 1.1 that if E is a real finite dimensional vector space the group GL(E) of invertible linear maps has two connected components, namely $GL_{+}(E)$ and $GL_{-}(E)$ the subset of isomorphisms having negative determinant.

We are to prove 1.1 by induction on the dimension of the vector space. Suppose that E is a real (resp. complex) vector space with $\dim E = 1$, then $\operatorname{GL}_+(E) \cong \mathbf{R}^*_+$ (resp. $\operatorname{GL}(E) \cong \mathbf{C}^*$) which is obviously path connected.

1

Lemma 1.3. Suppose E is a real (resp. complex) vector space with dim $E \ge 2$. Given e and f in $E \setminus \{0\}$, there exists a path $t \in [0,1] \mapsto A_t \in GL_+(E)$ (resp. GL(E)) such that $A_0 = Id$ and $A_1(e) = f$.

Proof. We first suppose that e and f are independent. Call H the plane generated by e an f, and let H' be a complementary subspace of H in E, i.e. $E = H \oplus H'$. Let A_t be the linear map which is the identity on H', and satisfies $A_t(e) = e \cos(t\pi/2) + f \sin(t\pi/2)$ and $A_t(f) = -e \sin(t\pi/2) + f \cos(t\pi/2) -$ i.e. A_t is a "rotation" by angle $t\pi/2$ in the plane H. It is easy to verify that $\det(A_t) = 1, A_0 = \text{Id}$ and $A_1(e) = f$. If e and f are colinear, we can, since $\dim E \geq 2$, find $g \in E \setminus \{0\}$ independent of e and f. Applying the independent case proven above we can find a continuous path B_t (resp. C_t) of linear maps with $\det(B_t) = 1, B_0 = \text{Id}, B_1(e) = g$ (resp. $\det(C_t) = 1, C_0 = \text{Id}, C_1(g) = f$). We can take $A_t = C_t \circ B_t$.

End of the proof of 1.1. We will do the proof in the real case, the complex case is formally the same. We are doing the proof by induction on $n = \dim E$. Since the case n = 1 is already settled, we can assume $n \ge 2$. Let A be in $\operatorname{GL}_+(E)$. Pick a point $e \ne 0$ in E. By 1.3, we can find a path B_t in $\operatorname{GL}_+(E)$ with $B_0 = \operatorname{Id}$ and $B_1(A(e)) = e$. If we put $A_t = B_t \circ A$, we have a continuous path A_t in $\operatorname{GL}_+(E)$ from $A = A_0$ to a map A_1 verifying $A_1(e) = e$. Call $H = \mathbb{R}^2 e$ and let H' be a subspace of E complementary to H. With respect to the decomposition $E = H \oplus H'$, the map A_1 can be written $\begin{pmatrix} \operatorname{Id}_H & C \\ 0 & D \end{pmatrix}$, with $D \in \operatorname{GL}(H')$ and $C \in \operatorname{L}(H', H)$. Since $\det(A_1) = \det(D)$, we have $D \in \operatorname{GL}_+(H')$. Since $\dim H' = n - 1$, we can apply our induction hypothesis to obtain a path D_t in $\operatorname{GL}_+(H')$ with $D_0 = D$ and $D_1 = \operatorname{Id}_{H'}$. The path $t \mapsto \begin{pmatrix} \operatorname{Id}_H & tC \\ 0 & D_t \end{pmatrix}$ gives a path in $\operatorname{GL}_+(E)$ between A_1 and Id_E . \Box

Corollary 1.4. Let E be a complex vector space. If we consider $GL(E, \mathbb{C})$ as a subset of the real linear maps, we have $GL(E, \mathbb{C}) \subset GL_+(E, \mathbb{R})$.

Proof. Since $GL(E, \mathbb{C})$ is connected, its image under $GL(E, \mathbb{R}) \xrightarrow{\det} \mathbb{R}^*$ must also be connected; hence it must be contained in \mathbb{R}^*_+ .

2. Blowing up a fixed point.

We consider in the following a map $H: U \to \mathbb{R}^n$, where U is an open subset of \mathbb{R}^n containing 0. We will suppose that H is a homeomorphism between U and the open set

3

 $H(U) \subset \mathbf{R}^n$. Remark that, by "Invariance of domain" **2**.4.5, it suffices to know that H is continuous and injective. We will also suppose that H(0) = 0 and that H has a derivative at 0 denoted by A. We will assume that A is invertible. In particular, there exists a map $\varepsilon : \mathbf{R}_+ \to \mathbf{R}_+$ such that $\lim_{r \to 0} \epsilon(r) = 0$ and $||H(x) - A(x)|| \leq ||x|| \epsilon(||x||)$. Since A is invertible, there exists K > 0 such that $||x||/K \leq ||A(x)|| \leq K||x||$. We introduce polar coordinates $p : \mathbf{S}^{n-1} \times \mathbf{R}_+ \to \mathbf{R}^n$ by p(x,r) = rx. Of course $p^{-1}(0) = \mathbf{S}^{n-1} \times \{0\}$ and p induces a homeomorphism of $\mathbf{S}^{n-1} \times]0, \infty[$ on $\mathbf{R}^n \setminus \{0\}$.

Lemma 2.1. The homeomorphism $\tilde{H} = p^{-1} \circ H \circ p : p^{-1}(U \setminus \{0\}) \rightarrow p^{-1}(H(U) \setminus \{0\})$ extends continuously to $\mathbf{S}^{n-1} \times \{0\}$ by the formula $\tilde{H}(x,0) = (A(x)/||A(x)||,0)$. The resulting extension is a homeomorphism between $p^{-1}(U)$ and $p^{-1}(H(U))$.

Proof. The map $\tilde{A} = p^{-1} \circ A \circ p$: $\mathbf{S}^{n-1} \times]0, \infty[\to \mathbf{S}^{n-1} \times]0, \infty[$ is given by the formula $\tilde{A}(x,r) = (A(x)/||A(x)||, r||A(x)||)$. It is clear that the same formula gives an extension to $\mathbf{S}^{n-1} \times [0, \infty[$ which is a homeomorphism. We want to estimate the distance between $\tilde{H}(x,r)$ and $\tilde{A}(x,r)$ as r > 0 goes to 0. If we write $\tilde{H}(x,r) = (x',r')$, we have x' = H(rx)/r' and r' = ||H(rx)||. This gives:

(i)
$$|r||A(x)|| - r'| = |||A(rx)|| - ||H(rx)||| \\ \leq ||A(rx) - H(rx)|| \leq r\varepsilon(r),$$

(ii)
$$\|\frac{H(rx)}{r'} - \frac{A(x)}{\|A(x)\|}\| \le \frac{\|H(rx) - A(rx)\|}{r'} + \|(\frac{1}{r'} - \frac{1}{\|A(rx)\|})A(rx)\| \le \frac{1}{r'}[r\varepsilon(r) + |\|A(rx)\| - r'|] \le \frac{2r\varepsilon(r)}{r'}.$$

Using (i) and the fact that ||A(x)|| is bounded away from 0 on \mathbf{S}^{n-1} , it is easy to show that r/r' is bounded for r near 0. It follows then from (i) and (ii) that for r small enough $d(\tilde{H}(x,r),\tilde{A}(x,r)) \leq C\varepsilon(r)$, where C is a constant. The lemma is a routine consequence of this estimation.

Corollary 2.2. Let $V \subset U$ be an open neighborhood of 0. If $\rho > 0$ is small enough so that $B(0,\rho) = \{x \in \mathbf{R}^n | \|x\| \le \rho\} \subset V \bigcap H(U)$, we can find a homeomorphism \tilde{G} between $U \setminus \operatorname{Int}(B(0,\rho))$ and $H(U) \setminus \operatorname{Int}(B(0,\rho))$ which is equal to \tilde{H} outside V and to the map $x \mapsto [\|x\|/\|A(x)\|]A(x)$ on $\partial B(0,\rho) = \{x \in \mathbf{R}^n | \|x\| = \rho\}.$

Proof. Since $V \cap H(U)$ is open, we can find $\rho' > \rho$ such that $B(0, \rho') \subset V \cap H(U)$. Let θ : $\mathbf{R}_{+} \tilde{\rightarrow} [\rho, \infty[$ be a homeomorphism such that $\theta(r) = r$, for $r \geq \rho'$. We define a homeomorphism $\Theta : \mathbf{S}^{n-1} \times \mathbf{R}_{+} \tilde{\rightarrow} \mathbf{S}^{n-1} \times [\rho, \infty[$ by $\Theta(x, r) = (x, \theta(r))$. It is easy to check that, if we extend \tilde{H} to $\mathbf{S}^{n-1} \times \{0\}$ as provided by lemma 2.1, the map $G = p \circ \Theta \circ \tilde{H} \circ \Theta^{-1} \circ p^{-1}$ is well defined on $U \setminus \operatorname{Int}(B(0, \rho))$ and has the required properties.

Corollary 2.3. If det A > 0, then given any neighborhood V of 0, we can find a homeomorphism $U \xrightarrow{\sim} H(U)$ which is equal to H outside V and equal to the identity on a neighborhood of 0.

Proof. By 2.2, it suffices to show that if detA > 0, then the map $\partial B(0,\rho) \to \partial B(0,\rho), x \mapsto [||x||/||A(x)||]A(x)$ can be extended to a homeomorphism of $B(0,\rho)$ on itself which is equal

to the identity near 0. By 1.1, we can find a continuous map $[0, \rho] \to \operatorname{GL}_+(\mathbf{R}^n), r \mapsto A_r$ such that $A_{\rho} = A$ and $A_r = \operatorname{Id}$, for $r \in [0, \rho/2]$. The desired homeomorphism can be defined by the formula $x \mapsto [r/||A_r(x)||]A_r(x)$, where r = ||x||.

The following theorem sums up the results of this appendix.

Theorem 2.4. Let $H: U \to \mathbb{R}^n$ be a homeomorphism of the open subset U of \mathbb{R}^n onto the open subset H(U) of \mathbb{R}^n . Suppose that for some x in U we have H(x) = x and that the derivative of H at x exists, is invertible, and has a positive determinant. If $V \subset U$ is a neighborhood of x, there exists a homeomorphism $G: U \to H(U)$ which is equal to H outside V and is equal to the identity in a neighborhood of x.