CHAPTER 4A
ON MAKING DIFFEOMORPHISMS THE
IDENTITY NEAR A FIXED POINT

In this appendix we prove that we can change a diffeomorphism with positive jacobian
near a fixed point to obtain a homeomorphism which is the identity near that fixed point.

1. Connectedness of sets of matrices.

Theorem 1.1. If E is a real finite dimensional vector space, the group GL(FE) of invertible
linear maps with positive determinant is path connected. If E is a complex finite dimensional
vector space, the group GL(E) of invertible linear maps is path connected.

Remark 1.2. It follows from 1.1 that if E is a real finite dimensional vector space the
group GL(FE) of invertible linear maps has two connected components, namely GL, (E) and
GL_(E) the subset of isomorphisms having negative determinant.

We are to prove 1.1 by induction on the dimension of the vector space. Suppose that E is
a real (resp. complex) vector space with dimF = 1, then GL(E) =2 R} (resp. GL(E) = C*)

which is obviously path connected.
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Lemma 1.3. Suppose E is a real (resp. complex) vector space with dimE > 2. Given e and
f in E\{0}, there exists a path t € [0,1] — A; € GL(E) (resp. GL(E)) such that Ay = 1d
and Ai(e) = f.

Proof. We first suppose that e and f are independent. Call H the plane generated by e
an f, and let H' be a complementary subspace of H in F, i.e. E=H ® H'. Let A; be
the linear map which is the identity on H’, and satisfies A;(e) = ecos(tw/2) + fsin(tr/2)
and A.(f) = —esin(tn/2) + fcos(tw/2) — ie. Ay is a “rotation”by angle tw/2 in the
plane H. It is easy to verify that det(A;) = 1,Ap =Id and A;(e) = f. If e and f are
colinear, we can, since dimFE > 2, find g € E\{0} independent of e and f. Applying the
independent case proven above we can find a continuous path B; (resp. C}) of linear maps
with det(B;) = 1,By = Id, B1(e) = g (resp. det(Cy) = 1,Cy = 1d,C1(g) = f). We can take
Ay = Cyo By. O

End of the proof of 1.1. We will do the proof in the real case, the complex case is formally
the same. We are doing the proof by induction on n = dim E. Since the case n =1 is
already settled, we can assume n > 2. Let A be in GLy(F). Pick a point e # 0 in FE.
By 1.3, we can find a path B; in GLy(F) with By = Id and B;(A(e)) = e. If we put
Ay = By o A, we have a continuous path A; in GL,(F) from A = Ay to a map A; verifying
Aj(e) =e. Call H=R? and let H' be a subspace of E complementary to H. With respect

to the decomposition £ = H @& H’, the map A; can be written (IdOH g), with D € GL(H)

and C € L(H',H). Since det(A;) = det(D), we have D € GL4(H'). Since dimH’' =n — 1,
we can apply our induction hypothesis to obtain a path D; in GLy(H') with Dy = D and

D; =1dy/. The path t — <IdOH ﬁ) gives a path in GL;(E) between A; and Idg. 0

Corollary 1.4. Let E be a complexr vector space. If we consider GL(E,C) as a subset of
the real linear maps, we have GL(E,C) C GLy(E,R).

Proof. Since GL(E, C) is connected, its image under GL(E,R)d—efR* must also be connected;
hence it must be contained in RY. 0

2. Blowing up a fixed point.
We consider in the following a map H : U — R", where U is an open subset of R"
containing 0. We will suppose that H is a homeomorphism between U and the open set
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H(U) c R™. Remark that, by “Invariance of domain” 2.4.5, it suffices to know that H is
continuous and injective. We will also suppose that H(0) =0 and that H has a derivative
at 0 denoted by A. We will assume that A is invertible. In particular, there exists a map
e: Ry — R4 such that }i_n)%e(r) =0 and [|H(z) — A(z)|| < ||z|le(||z]|). Since A is invertible,
there exists K > 0 such that ||z||/K < ||A(z)|| < K||z||. We introduce polar coordinates
p:S" ! xRy — R" by p(z,r) = re. Of course p~1(0) = S"~1 x {0} and p induces a
homeomorphism of S"~!x]0,00[ on R™\{0}.

Lemma 2.1. The homeomorphism H = 12_1 oHop:p H(U\{0})=p L (H(U)\{0}) extends
continuously to S"~1 x {0} by the formula H(x,0) = (A(x)/||A(x)]|,0). The resulting extension
is a homeomorphism between p~1(U) and p~(H(U)).

Proof. The map A = p~' o Aop : 8" 1x]0,00[— S" 1x]0,00[ is given by the formula
A(z,r) = (A(z)/||A(@)||, r||A(z)|]). It is clear that the same formula gives an extension to
S"~1 x [0, 0o which is a homeomorphism. We want to estimate the distance between H (z,r)
and A(x,7) as r >0 goes to 0. If we write H(z,r) = (z/,7'), we have 2’ = H(rz)/r’ and
r’ = ||H(rx)||. This gives:

Pl A@)I| = | = [[|A(rz) || = [[H (ra)|]
< [[A(rz) = H(rz)|| < re(r),

. H ()~ Ao 11
= e =T 1~ TG

< Lire) + 140} - ) <

Using (i) and the fact that ||A(x)|| is bounded away from 0 on S™~! it is easy to show
that r/r" is bounded for r near 0. It follows then from (i) and (ii) that for r small enough

d(H(z,r), A(z,r)) < Ce(r), where C is a constant. The lemma is a routine consequence of
this estimation. ]

Corollary 2.2. Let V C U be an open neighborhood of 0. If p > 0 is small enough so
that B(0,p) = {z € R™|||z|| < p} € VO H(U), we can find a homeomorphism G between
U\Int(B(0,p)) and H(U)\Int(B(0,p)) which is equal to H outside V and to the map
z = [lzll/[|A)[[]A(z) on 0B(0,p) = {x € R"[||z| = p}.

Proof. Since V(VH(U) is open, we can find p’ > p such that B(0,p’) C V(H(U). Let 0 :
R =[p, 00[ be a homeomorphism such that 6(r) = r, for r > p’. We define a homeomorphism
0 :S8" ! xR,y 58" 1 x [p,00[ by O(z,7) = (x,0(r)). It is easy to check that, if we extend H
to 8”71 x {0} as provided by lemma 2.1, the map G —poO®oHoO® top! is well defined
on U\Int(B(0,p)) and has the required properties. 0

Corollary 2.3. If detA > 0, then given any neighborhood V' of 0, we can find a homeomorphism
USH(U) which is equal to H outside V' and equal to the identity on a neighborhood of 0.

Proof. By 2.2, it suffices to show that if detA > 0, then the map 0B(0,p) — 9dB(0,p),z —
[lz]|/||A(z)|[]JA(z) can be extended to a homeomorphism of B(0,p) on itself which is equal
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to the identity near 0. By 1.1, we can find a continuous map [0,p] — GL(R"),r — A,
such that A, = A and A, =1d, for r € [0,p/2]. The desired homeomorphism can be defined
by the formula x — [r/||A,(z)||]A(z), where r = ||z||. 0

The following theorem sums up the results of this appendix.

Theorem 2.4. Let H : U — R™ be a homeomorphism of the open subset U of R™ onto the
open subset H(U) of R™. Suppose that for some x in U we have H(x) = x and that the
derivative of H at x exists, is invertible, and has a positive determinant. If V C U is a
neighborhood of x, there exists a homeomorphism G :U->H(U) which is equal to H outside
V' and is equal to the identity in a neighborhood of x.



