
CHAPTER 4

THE THEOREMS OF

CARATHÉODORY AND SCHOENFLIES

1. Length estimates and the Carathéodory theorem.

We will assume the reader familiar with the rudiments of the theory of holomorphic
functions of one variable up to the Riemann mapping theorem. A good reference is Rudin’s
book “Real and complex analysis”.

We will identify the Riemann sphere S2 with its complex structure to R2 ∪ {∞} the one
point compactification of R2.

The following theorem is a length-area estimate which is fundamental for our purposes.

Theorem 1.1. Let F be a biholomorphic isomorphism F : U→̃V , where U and V are open
subsets of R2. Fix a point x0 in R2 and define Cρ as the circle of center x0 and radius
ρ. For each ρ define l[F (U ∩Cρ)] as the sum of the lengths of the connected components of
F (U ∩ Cρ) (each one of these connected component is a curve, of course l[F (U ∩ Cρ)] may
be +∞ and l(∅) = 0). We have the inequality:∫ ∞

0

l[F (U ∩ Cρ)]2

ρ
dρ ≤ 2πA(V ),

where A(V ) is the area of V for the Lebesgue measure on R2.

Proof. We can write l[F (U ∩Cρ)] =
∫

Aρ
ρ|F ′(ρeiθ)| dθ, where Aρ = {θ ∈ [0, 2π]|ρeiθ ∈ U ∩Cρ}.

By the Cauchy-Schwarz inequality, we obtain:

l[F (U ∩ Cρ)] ≤ ρ[
∫

Aρ

|F ′(ρeiθ)|2 dθ]
1/2

[
∫

Aρ

dθ]
1/2

.
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This gives: ∫ ∞

0

l[F (U ∩ Cρ)]2

ρ
dρ ≤

∫ ∞

0

∫
Aρ

|F ′(ρeiθ)|22πρ dθdρ = 2πA(V ).

Corollary 1.2. With the same hypothesis as in 1.1, if for some R > 0 we have:

A[F (U ∩ {x|‖x− x0‖ < R})] < ∞,

then we can find a sequence ρn → 0 such that:

lim
n→∞

l[F (U ∩ Cρn
)] = 0.

Proof. If lim infρ→0 l[F (U ∩ Cρ)] 6= 0, we obtain:∫ R

0

l[F (U ∩ Cρ)]2

ρ
dρ = +∞.

But, by 1.1, we have:∫ R

0

l[F (U ∩ Cρ)]2

ρ
dρ ≤ 2πA[F (U ∩ {x|‖x− x0‖ < R})].

Corollary 1.3. Let F : Int(B2)→̃U be a biholomorphic isomorphism onto an open subset of S2

such that F (0) = ∞. If x0 ∈ ∂B2, let us call αρ(x0) the (compact) arc B2∩{x|‖x−x0‖ = ρ}.
Given x0 ∈ ∂B2, we can find a sequence ρn → 0 such that the map F |αρn

(x0)\∂αρn
(x0) can

be extended by continuity to αρn
(x0) and moreover, the length of F [αρn

(x0)] goes to 0 as n
goes to ∞. Of course, since F is a homeomorphism, we have F [∂αρn

(x0)] ⊂ ∂U .

proof. Exercise!

Theorem 1.4. (Carathéodory). Let F : Int(B2)→̃U be a biholomorphic isomorphism onto
an open subset of S2. If ∂U is contained in a compact locally connected subset of S2\U ,
then the map F extends continuously to a map F : B2→̃U . Since F is a homeomorphism,
we have F (∂B2) = ∂U .

Proof. Without loss of generality, we can assume that F (0) = ∞. In particular, we have
S2\U ⊂ R2. Let us call C a compact locally connected subset of R2 containing ∂U . By
a standard topological argument, given any ε > 0, we can find a δ > 0 such that if two
points x, y ∈ C verify ‖x − y‖ < δ, then we can find a compact connected subset K of C
with diameter less than ε and containing x and y. Let x0 be a point in ∂B2, we are going
to show that the diameter of F (Int(B2) ∩ {x|‖x− x0‖ < ρ}) tends to 0 as ρ → 0, this will
prove that F can be extended continuously to B2. Let the ρn be given by 1.3. Let us put
An = {x ∈ Int(B2)|‖x− x0‖ < ρn} and Bn = {x ∈ Int(B2)|‖x− x0‖ > ρn}. For n big enough
Bn contains 0,in particular F (Bn\{0}) is unbounded in R2. We call an and bn the ends
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of the arc αρn
(x0) = {x ∈ B2|‖x − x0‖ = ρn}. By 1.3, we can extend F |αρn

(x0)\{an, bn}
to αρn

(x0) by continuity, we will still call F this extension. Since F (an) and F (bn) are in
∂U ⊂ C and the length of F (αρn

(x0)) goes to 0, given ε > 0 we can find n0 such that for each
n ≥ n0 there exists a compact connected subset Kn ⊂ R2\U containing F (an) and F (bn) and
verifying diam(Kn ∪ F [αρn(x0)]) < ε. We can apply corollary 3.3.8, to conclude that F (An)
and F (Bn\{0}) are contained in distinct connected components of R2\(Kn ∪ F [αρn

(x0)])—
since F is a homeomorphism F (An) and F (Bn\{0}) are the two connected components of
F (U\{0})\F [αρn

(x0)] ! Since F (Bn\{0}) is unbounded, we obtain that F (An) is contained
in a bounded component of R2\(Kn ∪ F [αρn(x0)]) and therefore it must have a diameter
less than ε. The rest of the theorem is an exercise for the reader.

Corollary 1.5. (Carathéodory). Let F : Int(B2)→̃U be a biholomorphic isomorphism onto
an open subset of S2. Then the map F can be extended to a continuous map F : B2→̃U if
and only if ∂U is locally connected. Moreover, if F exists, we have F (∂B2) = ∂U .

Proof. If ∂U is connected, theorem 1.4 shows that F has a continuous extension. Conversly,
if there exists a continuous extension F , we must have F (∂B2) = ∂U . But a Hausdorff
image—under a continuous map—of a locally connected compact space must be locally
connected.

2. Characterisation of open subsets of the sphere with connected complement.

The following theorem is a form of the Riemann mapping theorem— see 3.4.4 and theorems
13.11 and 14.8 of the second edition of Rudin’s book “Real and complex analysis”.

Theorem 2.1. Let U be a non empty open connected subset of S2 such that S2\U is connected
and contains at least two points. There exists a biholomorphic isomorphism F : Int(B2)→̃U .
Moreover, if x ∈ U is given, we can choose F such that F (0) = x.

We obtain, using 3.4.4, the following theorem.

Theorem 2.2. Let U be a non empty open connected subset of S2 such that S2\U is
connected, then U is homeomorphic either to S2 or to R2.

Proof. If S2\U has at least two points this follows from 2.1. The rest of the theorem is
trivial.
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Theorem 2.3. Let U be an open connected subset of S2. The following statements are
equivalent:

(i) S2\U is connected;
(ii) [U,S1] = 0;
(iii) U is simply connected.

Moreover, if U is non empty and is not the whole of S2, then it is homeomorphic to R2.

3.The Schoenflies theorems for curves.

Theorem 3.1. (Schoenflies). Let γ be a simple closed curve in S2, and let V be a connected
component of S2\γ. The closure V ∪ γ of V in S2 is homeomorphic to B2.

In fact, we will prove the following stronger version of 3.1.

Theorem 3.2. Let γ be a simple closed curve in S2, and let V be a connected component
of S2\γ. There exists a biholomorphic isomorphism F : Int(B2)→̃V Any such F extends to
a homeomorphism F : B2→̃V ∪ γ.

Proof. Remark that S2\V is connected because it is the closure of the other connected
component of S2\γ. Now, the existence of F follows from 2.1. By Carathéodory’s theorem
1.4, we know that F extends continuously to a surjective map F : B2 → V ∪ γ, with
F (∂B2) = γ. It remains to show that F is injective on B2. Suppose there exists
x, y ∈ B2, x 6= y, such that F (x) = F (y). We choose α an arc contained in B2 joining x to y
and intersecting ∂B2 only in its ends x and y (see Figure 3.1). The image F (α) is in fact
a simple closed curve contained in V ∪ γ and intersecting γ only in the point F (x) = F (y).
The connected set S2\(V ∪ γ) must be contained in one of the two connected components
of S2\F (α). Of course, the other connected component O of S2\F (α) is contained in V ∪ γ
and, since it is open, it must be contained in V . The set O is also a connected component
of V \F (α). Since F : Int(B2) → V is a homeomorphism, F−1(O) must be one of the
two connected components of Int(B2)\α, we call this connected component R. We have
F (R∩∂B2) = O∩F (∂B2) = (O∪F (α))∩γ = {F (x)}. But R∩∂B2 is one of the two segments
delimited by x and y on ∂B2. Up to now, we have shown that if F is not injective on
∂B2, then it has to be constant on a non trivial segment of ∂B2. The next lemma will
show that this is absurd.
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Figure 3.1

Lemma 3.3. Let α be a non trivial segment contained in ∂B2. A continuous map Int(B2)∪α →
C, which is constant on α and holomorphic on Int(B2) is in fact constant.

Proof. Since there is a biholomorphic isomorphism of S2 which takes Int(B2) on the upper half
plane H = {x+ iy ∈ C|y > 0}, we can assume that we have a continuous map h : H∪α → C,
where α is a non trivial segment in R = ∂H. We want to show that h is constant if it is
constant on α and holomorphic on H. By multiplying h by a constant, we can assume that
the value taken by α under h is real. By Schwarz reflection principle—see theorem 11.17
of Rudin’s book—there exists a holomorphic extension h of h defined on H ∪ (α\∂α) ∪H−,
where H− is the lower half plane {x + iy ∈ C|y > 0}. But this holomorphic function h is
contant on the non discrete subset α\∂α, hence it must be constant.

As a corollary of 3.2, we obtain:

Corollary 3.4. Any simple closed curve in S2 can be approximated by an analytic simple
closed curve.

Corollary 3.5. Let γ and γ′ be simple closed curves in S2. Let V (resp. V ′) be a connected
component of S2\γ (resp. S2\γ′). There exists an analytic isomorphism G : V →̃V ′ Any such
G extends to a homeomorphism V ∪ γ→̃V ′ ∪ γ′. Moreover,if x (resp. x′) is in V (resp. V ′),
we can find G such that g(x) = x′.

Proof. By 2.1 and 3.2, there exists analytic isomorphisms F : Int(B2)→̃V and F ′ : Int(B2)→̃V
such that F (0) = x and F ′(0) = x′. The map F ′ ◦ F−1 is an analytic isomorphism of V on
V ′ with F ′ ◦F−1(x) = x′. Let now G : V →̃V ′ be an arbitrary analytic isomorphism. By 3.2,
the analytic isomorphisms F and G◦F extend respectively to homeomorphisms F : B2→̃V ∪γ

and G ◦ F : B2→̃V ∪ γ′. Of course, the required extension of G is G ◦ F ◦ F
−1

.

Corollary 3.6. Let γ and γ′ be simple closed curves in S2. Let x be a point in S2\(γ ∪ γ′).
Denote by V (resp. V ′) the connected component of x in S2\γ (resp. S2\γ′). There exists a
homeomorphism H : V ∪ γ→̃V ′ ∪ γ′, which is the identity near x. Of course H(V ) = V ′ and
H(γ) = γ′.

Proof. By 3.5, there exists an analytic isomorphism G : V →̃V ′, which extends to a homeo-
morphism G : V ∪γ→̃V ∪γ′, and verifies G(x) = x. By 4A.2.4, we can find a homeomorphism
H : V ∪ γ→̃V ′ ∪ γ′ equal to G outside a compact subset of V and equal to the identity near
x. By construction, we have H(V ) = V ′ and H(γ) = γ′. But in fact, if H : V ∪ γ→̃V ′ ∪ γ′

is any homeomorphism, by theorem 2.4.10, we must have H(V ) = V ′ and H(γ) = γ′.

Lemma 3.7. (Alexander’s trick). Let γ and γ′ be simple closed curves in S2. Let U
(resp. U ′) be a connected component of S2\γ (resp. S2\γ′). Any homeomorphism of γ on
γ′ can be extended to a homeomorphism of U ∪ γ on U ′ ∪ γ′.

Proof. Let g : γ→̃γ′ be a homeomorphism. Let F : B2→̃U ∪ γ and F ′ : B2→̃U ∪ γ′ be
given by 3.1 or 3.2. The homeomorphism h = F ′

−1 ◦ g ◦ F : S1→̃S1 can be extended to
a homeomorphism H : B2→̃B2 by H(0) = 0 and H(x) = ‖x‖H(x/‖x‖), x 6= 0— this is
Alexander’s trick. The desired extension of g is F ′ ◦ g ◦ F−1.



6 CHAPTER 4 THE THEOREMS OF CARATHÉODORY AND SCHOENFLIES

Theorem 3.8. (Schoenflies). Let γ and γ′ be simple closed curves in S2. Any homeomor-
phism of γ on γ′ can be extended to a homeomorphism of S2 on itself.

Proof. Let U1, U2 (resp. U ′1, U
′
2) be the connected components of S2\γ (resp. S2\γ′). Let

h : γ→̃γ′ be a homeomorphism. By 3.7, there exists, for i = 1, 2, an extension of h to a
homeomorphism Hi : Ui ∪ γ→̃U ′i ∪ γ′. It suffices to piece together H1 and H2 to obtain an
extension of h to a homeomorphism of S2 on itself.

Corollary 3.9. (Schoenflies). Let γ and γ′ be simple closed curves in S2. Let x be a
point in S2\(γ ∪ γ′). There exists a homeomorphism H : S2→̃S2 which is the identity near x
and such that H(γ) = γ′.

Proof. Let U (resp. U ′) be the connected component of x in S2\γ (resp. S2\γ′). Let V
(resp. V ′) be the other connected component of x in S2\γ (resp. S2\γ′). By 3.6, there exists
a homeomorphism H1 : U ∪ γ→̃U ′ ∪ γ′ which is the identity near x. By 3.7, the restriction
H1|γ can be extended to a homeomorphism H2 : V ∪ γ→̃V ′ ∪ γ′. If we piece together H1

and H2, we obtain the desired homeomorphism.

Warning 3.10. In 3.9, we cannot impose arbitrarily the map of γ on γ′.

Theorem 3.11. (Schoenflies with compact support). Let γ and γ′ be simple closed
curves in R2. There exists a homeomorphism with compact support H : R2→̃R2 such that
H(γ) = γ′.

Proof. It suffices to remark that R2 ⊂ S2 = R2 ∪ {∞} and to apply 3.9 with x = ∞.

Theorem 3.12. (Schoenflies). Let γ and γ′ be simple closed curves in R2. Any homeo-
morphism of γ on γ′ can be extended to a homeomorphism of R2 on itself.

Proof. Let g : γ→̃γ be a homeomorphism. Chose F : R2→̃R2 (resp. F ′ : R2→̃R2) a
homeomorphism such that F (S1) = γ (resp. F (S1) = γ′). The homeomorphism h =
F ′
−1 ◦ g ◦ F : S1→̃S1 can be extended to a homeomorphism H of R2 by H(0) = 0 and

H(x) = ‖x‖H(x/‖x‖), x 6= 0—another instance of Alexander’s trick. The extension of g to
R2 is F ′ ◦H ◦ F−1.

Corollary 3.13. Any imbedding j : B2 ↪→ R2 can be extended to a homeomorphism of R2

on itself.

Proof. By 3.12, the restriction j|S1 can be extended to a homeomorphism J : R2→̃R2. It
follows from 2.4.4 that j(B2) = J(B2). This implies that we can piece together j|B2 and
J |R2\Int(B2) to obtain a homeomorphism of R2.



CHAPTER 4 THE THEOREMS OF CARATHÉODORY AND SCHOENFLIES 7

4.The Schoenflies theorems for an arc.

We now turn to the case of an arc in S2 or R2.

Lemma 4.1. Let α be a simple arc in S2, there exists a simple closed curve γ in S2

containing α. Moreover, if x1, . . . , xn are in S2\α, we can choose γ disjoint from {x1, . . . ,
xn}.

Proof. Since the connected open set S2\α has a connected complement, we can apply the
Riemann mapping theorem 2.1 to find an analytic isomorphism F : Int(B2)→̃S2\α. Since α is
locally connected, by Carathéodory’s theorem 1.4, we can extend F to a continuous surjective
map F : B2 → S2. Let a, b ∈ ∂B2 be such that F (a) and F (b) are the endpoints of α. We
can find an arc β in B2 joining a and b and such that β\{a, b} ⊂ Int(B2)\{F−1(x1), . . . ,
F−1(xn)}. We can take γ = F (β) ∪ α.

Lemma 4.2. Let α be a simple arc in R2, there exists a simple closed curve γ in R2

containing α. Moreover, if x1, . . . , xn are in R2\α, we can choose γ disjoint from {x1, . . . ,
xn}.

Theorem 4.3. (Schoenflies). Let α and α′ be simple arcs in S2. Any homeomorphism of
α on α′ can be extended to a homeomorphism of S2 on itself.

Proof. Let γ and γ′ be simple closed curves containing respectively α and α′. It is easy to
show that a homeomorphism of α on α′ can be extended to a homeomorphism of γ on γ′.
Then we can apply theorem 3.8 to extend this last homeomorphism to S2.

Our goal now is to prove that, in the case of R2, we can extend a homeomorphism
between two arcs to a homeomorphism with compact support in R2.

Lemma 4.4. If α is a simple arc in R2, there exists a homeomorphism with compact support
taking α to a subarc of S1 ⊂ R2.

Proof. By 4.2, there exists a simple closed arc γ ⊂ R2 and containing α. Schoenflies theorem
with compact support 3.11 gives a homeomorphism with compact support of R2 taking γ
to S1.

Lemma 4.5. If β and β′ are two simple arcs in S1, there exists a homeomorphism with
compact support of R2 taking β to β′.

Proof. The proof is harder to say than to find, it is left as an Exercise!

Corollary 4.6. If α is a simple arc in R2, there exists a homeomorphism with compact
support of R2 taking α to the arc [0, 1] ⊂ R = R× 0 ⊂ R2.

proof. This is an easy consequence of 4.4 and 4.5.

Lemma 4.7. Any homeomorphism of [0, 1] can be extended to a homeomorphism with compact
support of R2.

Proof. Let h be a homeomorphism of [0, 1] on itself. We first consider the case h(0) = 0
and h(1) = 1. We extend h to a homeomorphism of R+ by defining it as the identity on
[1,∞[. If we define H : R2 → R2 by H(0) = 0 and H(x) = [h(‖x‖)/‖x‖]x, for x 6= 0, it can
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be checked that H is a homeomorphism of R2 which extends h and is the identity outside
B2. To finish the proof, it suffices to construct a homeomorphism G with compact support
of R2 such that G([0, 1]) = [0, 1], G(0) = 1 and G(1) = 0. This is left to the reader.

We can sum up the results obtained in the following form

Theorem 4.8. Let α and α′ be two simple arcs in R2. Any homeomorphism between α and
α′ can be extended to a homeomorphism with compact support in R2. In particular, there
exists a homeomorphism with compact support in R2 taking α to α′.


