
CHAPTER 3

SOME PLANE TOPOLOGY

In this chapter we study in a deeper way the case of the plane R2.

1. Jordan’s theorem for the circle.

Theorem 1.1. (Jordan’s theorem for the circle). Let j : R2 ↪→ S1 be a continuous
injective map. The set R2\j(S1) has exactly two connected components, one bounded and the
other one unbounded.

Proof. We know already that R2\j(S1) has at least two connected components one of them
being unbounded. We will suppose that there exists at least three connected components
U1, U2 and U3 in R2\j(S1) and we will obtain a contradiction. Using 2.5.2, we can find
two injective arcs α1, α2 : [0, 1] → R2 such that ∂αi ⊂ j(S1), αi\∂αi ⊂ Ui, for i = 1, 2,
and the four points A1 = α1(0), A2 = α2(0), B1 = α1(1), and B2 = α2(1) are distinct and
cyclically ordered on j(S1) (see figure 1.1). Let us call [A1, A2] and [B1, B2] the two
disjoint closed subarcs of j(S1) determined by the four points A1, A2, B1 and B2. The set
γ = [A1, A2] ∪ α2([0, 1]) ∪ [B2, B1] ∪ α1([1, 0]) is homeomorphic to S1; in particular, we know
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that R2\γ is not connected. Remark that, by construction, we have U3 ⊂ R2\γ. Let V be the
connected component of R2\γ containing the connected set U3. Since U3∪]B2, A1[∪]B1, A2[
is connected—contained between U3 and its closure U3 ∪ j(S1)—and it is disjoint from γ,
it is contained in V . It follows that j(S1) ⊂ V ∪ γ. Let W be a connected component of
R2\γ distinct from V . The set W does not intersect j(S1), but, since W ⊃ α1 ∩ α2, it
intersects two distinct connected components of its complement, namely U1 and U2. This is
a contradiction.

Remark 1.2. This proof, due to Whyburn, is quite magic. We will give a more palatable
proof later on.

Definition 1.3. (Interior and exterior). Let γ ⊂ R2 be a simple closed curve. Its interior
component— or simply interior, if there no possible confusion— is the bounded component
of R2\γ, it is denoted by II(γ). Its exterior component— or simply exterior, if there no
possible confusion— is the unbounded component of R2\γ, it is denoted by IE(γ).

2. The set of homotopy classes of maps to the circle.

We identify R2 to C. In this identification, S1 becomes the unit circle in C, and is
naturally a group for the multiplication of complex numbers. In fact, S1 is a topological
compact metric abelian group. If f, g : X → S1 are two continuous maps the pointwise product
fg : X → S1, x 7→ f(x)g(x), is also a continuous map. In particular, the set of continuous
maps from X to S1, denoted by C(X,S1), is an abelian group for this multiplication.

Lemma 2.1. The group structure on C(X,S1) induces on [X,S1] a structure of abelian group.
The neutral element in [X,S1] is the class of null homotopic maps.

Proof. Exercise!
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Notation 2.2. The (surjective) exponential map R → S1, x 7→ e2iπx, will be denoted by exp.
We have exp(x) = 1 if and only if x ∈ Z. Moreover, exp has a continuous inverse above any
proper subset of S1.

Theorem 2.3. A map f : X → S1 is null homotopic if and only if there exists a lifting f̄
of f to a continuous map f̄ : X → R with exp ◦f̄ = f .

We need some lemmas to prove theorem 2.3.

Lemma 2.4. Let K, X, Y be three spaces with K compact and Y metric. Endow the set
C(K, Y ) of continuous maps from K to Y with the topology of uniform convergence. There
is a natural bijection between C(X ×K,Y ) and C(X, C(K, Y )); it associates to the map
f : X ×K → Y the map f# : X → C(K, Y ) defined by f#(x)(k) = f(x, k).

Proof. Exercise!

Lemma 2.5. The map ϕ 7→ expϕ establishes a homeomorphism between the spaces C0([0, 1],R) =
{ϕ ∈ C([0, 1],R)|ϕ(0) = 0} and C1([0, 1],S1) = {θ ∈ C([0, 1],S1)|θ(0) = 1} (the topology on set
of maps is the topology of uniform convergence).

Proof. (Sketch). The map is a continuous homomorphism of topological groups. It is injective,
because exp ◦ϕ = 1 implies ϕ(x) ∈ Z,∀x ∈ [0, 1]. By the connectedness of [0, 1], this implies
ϕ(x) = ϕ(0) = 0,∀x ∈ [0, 1]. Since the two groups are connected—exercise!— it suffices
to check that there is a continuous section on a neighborhood of the constant map 1 in
C1([0, 1],S1). Such a section is obtained by composition with a fixed continuous section of
exp : R → S1 above {z ∈ S1||z − 1| < 2}.

The following theorem is more general than 2.3.

Theorem 2.6. Let F : X × [0, 1] → S1 be a continuous map. If f : X → R is a continuous
map such that F |X × {0} = exp ◦f , then there exists a continuous map F̄ : X × [0, 1] → R
with exp ◦F̄ = F and F̄ |X × {0} = f . In particular, F |X × {1} can be lifted to a continuous
map X → R.

Proof. Define F ′ : X × [0, 1] → S1 by F ′(x, t) = F (x, t) exp(−f(x)). We have F ′|X × {0} = 1.
It follows from 2.4 and 2.5, that we can lift F ′ to a continuous map F̄ ′ : X × [0, 1] → R,
with F̄ ′|X × {0} = 0. The map F̄ is defined by F̄ (x, t) = F̄ ′(x, t) + f(x).

Proof of 2.3. Since a constant map can be lifted, by 2.6, a null homotopic map f : X → S1

can be lifted to a continuous map f̄ : X → R such that exp ◦f̄ = f . Of course, since R is
contractible, a map of the form exp ◦f̄ = f is null homotopic.

Corollary 2.7. For each topological space X, the group [X,S1] has no torsion.

Proof. Let f : X → S1 be a continuous map. If n > 0 is such that fn ∼ 0, by 2.3,
there exists a continuous map g : X → R with exp(g(x)) = fn(x). It follows that the sets
Xj = {x ∈ X|f(x) = exp[g(x) + j]/n}, j = 0, . . . , n− 1, form a partition of X into closed sets.
A lifting f̄ : X → R is obtained by defining it on Xj by f̄(x) = [g(x) + j]/n.
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Theorem 2.8. The group [S1,S1] is infinite cyclic. More precisely, the homomorphism
Z → [S1,S1], which sends 1 to the homotopy class of IdS1 , is an isomorphism.

Proof. Since IdS1 is essential by 2.7, the map is injective. Let f : S1 → S1 be a continuous
map. Since [0, 1] is contractible, we can lift f ◦ exp : [0, 1] → S1 to a map f̄ : [0, 1] → R, this
means that exp ◦f̄ = f ◦ exp. In particular n = f̄(1)− f̄(0) ∈ Z, since exp(f̄(1)) = f(exp(1) =
f(exp(0)) = exp(f̄(0)). Remark now that the map ϕ̄(t) = f̄(t) − nt verifies ϕ̄(0) = ϕ̄(1), so
we can define a continuous map S1 → R by ϕ ◦ exp |[0, 1] = ϕ̄. The formula ϕ̄(t) = f̄(t)− nt
gives exp(ϕ(z)) = f(z)z−n,∀z ∈ S1; this shows that f is homotopic to n times IdS1 .

Definition 2.9. (Degree). If f : S1 → S1 is a continuous map, the degree of f , denoted
by deg(f , is the integer n such that f is homotopic to z 7→ zn.

Theorem 2.10. Let X be a metric space which is a countable union of closed sets Fn, n ∈ N,
such that:

(i) ∀n ∈ N, Fn is connected,
(ii) ∀n ∈ N, Fn ⊂ Fn+1,
(iii) each compact subset of X is contained in one of the Fn—this condition follows, for

example, from the stronger one Fn ⊂ Int(Fn+1).

Then we have:

(a) a continuous map f : X → S1 is null homotopic if and only if for each n ∈ N the
restriction f |Fn is null homotopic,

(b) if, for each n ∈ N, we have a continuous map fn : Fn → S1, with fn+1|Fn ∼ fn, then
there exists a continuous map f : X → S1 with f |Fn ∼ fn,∀n ∈ N.

In other terms, if we look at the projective system: · · · [Fn+1,S1]
rn+1→ [Fn,S1]rn→· · · , where

rn+1([f ]) = [f |Fn], then [X,S1] can be identified to the projective limit P = lim
→

([Fn,S1], rn);

the map [X,S1] → P is given by [f ] 7→ ([f |Fn[)n∈N.

Proof. To prove (a), it suffices to show that if a map f : X → S1 is such that, for each
n ∈ N,there exists a continuous lift f̄n : Fn → R with f |Fn = exp ◦f̄n, then we can define a
continuous lift f̄ : X → R with f = exp ◦f̄ . We construct f̄ |Fn by induction. We start with
f̄ |F0 = f̄0. Suppose that we have constructed f̄ |Fn. Since f̄ |Fn and f̄n+1|Fn are two lifts
of f , the map f̄ |Fn − f̄n+1|Fn lifts a constant map. By the connectedness of Fn, we obtain
f̄ |Fn − f̄n+1|Fn = cn, where cn is a constant. It suffices to define f̄ |Fn+1 as f̄n+1 + cn. this
shows that we have a well defined lifting f̄ : X → R, with f̄ |Fn continuous for each n ∈ N.
Condition (iii) implies that f̄ is itself continuous. In fact, since X is metric, it suffices to
check continuity on compact subsets, because a convergent sequence together with its limit is
a compact subset. Continuity of f̄ on compact subsets of X is forced by (iii). To prove (b),
we construct f |Fn by induction .We start with f |F0 = f0. Suppose that we have constructed
f |Fn ∼ fn, then we have f |Fn ∼ fn+1|Fn. By the homotopy extension theorem 2.1.10, we
can find a continuous map f |Fn+1 : Fn+1 → S1, homotopic to fn+1, and whose restriction
to Fn is precisely f |Fn. The continuity of f is proven in the same lines as we did it above
for f̄ .
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Lemma 2.11. Let X be a locally connected space, and let (Xi)i∈I be the family of its
connected components. The restriction map, f 7→ (f |Xi)i∈I , induces an isomorphism between
[X,S1] and

∏
i∈I [Xi,S1].

Proof. Exercise!

Corollary 2.12. Let X be a locally connected metric space which is a countable union of
closed sets Fn, n ∈ N, such that:

(i) ∀n ∈ N,∀C connected component of X, the set C ∩ Fn is connected,
(ii) ∀n ∈ N, Fn ⊂ Fn+1,
(iii) each compact subset of X is contained in one of the Fn.

Then [X,S1] is isomorphic to the projective limit of the [Fn,S1] under the restriction maps.

Proof. The proof is an easy exercise, using 2.10 and 2.11.

3. Compact subsets in the plane.

Theorem 3.1. Let K be a compact subset of the plane, and let (Ui)i∈I be the family of
bounded connected components of R2\K. For each i ∈ I, we choose a point ai ∈ Ui. The
group [K,S1] is a free abelian group with a basis given by the Borsuk maps (θai

)i∈I , where
θai : K → S1, θai(x) = (x− ai)/‖x− ai‖.

Proof. We first show the independence of the θai
. Suppose that we have θn1

ai1
∼

∏k
j=2 θ

nj
aij

,

with n1 ∈ Z, n1 6= 0, and aij
6= ai1 ,∀j ≥ 2. Since aij

6∈ Ui1 ,∀j ≥ 2, the map
∏k

j=2 θ
nj
aij

can
be extended to Ui1 ∪K by the same formula. By the homotopy extension property 2.1.10,
the map θn1

ai1
also extends to Ui1 ∪K. Since the formula defining θa1 makes sense outside

Ui1 ∪ K, we see that θn1
ai1

extends to R2. This implies that θn1
ai1

is null homotopic, and
by 2.7, since n1 6= 0 it follows that θa1 is also null homotopic. This contradicts theorem
2.3.3. We now prove that (θai

)i∈I generates [K,S1]. Let f : K → S1 be a continuous
map. By 2.3.10, we can find a finite set ai1 , . . . , aik

and an extension f̄ : R2\{ai1 , . . . , aik
}.

We choose small disks B1, . . . , Bk centered around ai1 , . . . , aik
and contained in Ui1 , . . . , Uik

.
We start with f0 = f̄ |R2\ ∪k

j=1 Int(Bj). We construct, by induction on j = 1, . . . , k, maps
fjR2\

⋃k
l>j Int(Bj) and integers nj , such that fj is an extension of fj−1θ

−nj
aij

. Suppose that
we have already constructed f1, . . . , fj and n1, . . . , nj . By 2.8, the map fj restricted to Sj+1

the frontier of Bj+1 is homotopic to some power θ
nj+1
aij+1

restricted to Sj+1; in particular, we

can extend fjθ
−nj+1
aij+1

|Sj+1 to a continuous map from Bj+1 to S1. This allows us to extend

fjθ
−nj+1
aij+1

to a map fj+1 : R2\
⋃k

l>j+1 Int(Bl) → S1. We have fk ∼ 0, since it is defined on

R2; moreover fk|K = f
∏k

j=1 θ
−nj
aij

.
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Corollary 3.2. (Jordan’s theorem). Let j : S1 ↪→ R2 be an imbedding. The set R2\j(S1)
has exactly two connected components, one bounded and the other one unbounded. If x is
a point in the bounded component of R2\j(S1) then the degree of the composite map:S1 j→
j(S1)θx→S1 is ±1.

Proof. This follows from 3.1, since the map j∗ : [j(S1),S1] → [S1,S1], which maps the
homotopy class of f to that of f ◦ j, is an isomorphism.

Definition 3.3. Let x and y be two points in a topological space X. The subset A of X
separates x and y (in X) if x and y belong to distinct connected components of X\A.

The following proposition is easily seen to be a particular case of 2.3.6.

Proposition 3.4. Two points a, b in R2 are separated by the compact subset K if and only
if the map θa,b : K → S1, z 7→ z−a

‖z−a‖
‖z−b‖
z−b is essential.

Theorem 3.5. (Janizewski lemma). Let K be a compact subset in R2 such that K =
K1 ∪K2, with K1,K2 compact and K1 ∩K2 connected. Two points in R2\K are separated
by K if and only if they are separated either by K1 or by K2.

By proposition 3.4, the theorem is a consequence of the following lemma.

Lemma 3.6. Let A be a compact space which is a union of two compact subsets A1 and A2

with A1 ∩A2 connected. A map f : A → S1 is null homotopic if and only if f |A1 and f |A2

are null homotopic.

Proof. If f |A1 and f |A2 are null homotopic, by theorem 2.3, we can write f |Ai = exp ◦ϕi,
where ϕi : Ai → R, for i = 1, 2. Since exp ◦(ϕ1−ϕ2)|A1∩A2 = (f/f)|A1∩A2 = 1 and A1∩A2

is connected, the map (ϕ1 − ϕ2)|A1 ∩A2 is constant. If we call k its value, we see that we
can define a lift ϕ : A → R of f by ϕ|A1 = ϕ1 + k and ϕ|A2 = ϕ2. The other half of the
lemma is trivial.

Corollary 3.7. (Janizewski lemma). Let K and F be respectively a compact and a closed
subset in R2 such that K ∩F is connected. Two points in R2\K ∪F are separated by K ∪F
if and only if they are separated either by K or by F .

Proof. If two points in R2\K ∪ F are separated either by K or by F , they are of course
separated by the larger set K ∪ F . Suppose now that a and b are two points which
are contained in the same connected component of R2\F ; since this set is locally arcwise
connected—as is any open set in R2—we can find a compact connected subset C of R2\F
which contains a and b. Let R be big enough to have C ∪K contained in the interior of
the ball B(0, R). By construction a and b are not separated by F ∪∂B(0, R)—the connected
set C is disjoint from F ∪ ∂B(0, R). Suppose now that a and b are not separated by K.
Since K ∩ [∂B(0, R) ∪ (F ∩ B(0, R))] = K ∩ F is connected, by 3.5 we obtain that a and
b are not separated by the compact set K ∪ ∂B(0, R) ∪ (F ∩ B(0, R)). In particular, there
is a connected set A containing a and b and disjoint from K ∪ ∂B(0, R) ∪ (F ∩ B(0, R)).
Since a and b are in the interior of B(0, R), the set A is also contained in B(0, R) and is
consequently disjoint from F .
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Corollary 3.8. Let U be an open connected subset of R2 and let K be a compact subset in
R2 such that K\U is connected. Two points in U are separated by K in U if and only if
they are separated either by K in R2.

Proof. Let F = R2\U . Since U is connected any two points cannot be separated by F . By
3.7 two points are separated by K ∪ F if and only if they are separated by K.

The following is a useful special case of 3.8.

Corollary 3.9. Let U be an open connected subset of R2. Let α be an arc in R2 such
that ∂α is contained in a compact connected subset C of R2\U , and α\∂α is contained in
U . Distinct connected components of U\α are contained in distinct connected components of
R2\(α ∪ C).

4. Open subsets of the plane.

Theorem 4.1. Let U be a connected open subset in R2. We can find a family (Ki)i∈N of
compact subsets of U , such that:

(i) each Ki is connected;
(ii) for each i ∈ N,Ki ⊂ Int(Ki+1);
(iii) for each i ∈ N, the set R2\Ki has a finite number of connected components, and each

relatively compact component of R2\Ki contains a compact component of R2\U ;
(iv) if x and y are contained in different connected components of R2\U , and one of them

is contained in a compact component of R2\U , then there exists i0 such that x and
y are contained in different connected components of R2\Ki0 .

Corollary 4.2. Let U be an open connected subset in R2. The group [U,S1] is not reduced
to zero if and only if R2\U has a compact component. Moreover, if c is in a compact
component of R2\U , the Borsuk map θc : U → S1, x 7→ (x− c)/‖x− c‖ is not null homotopic
and it is indivisible in [U,S1].

Proof. Suppose that R2\U has no compact component. Let (Kn)n∈N be given by 4.1.
Property (iii) of 4.1 implies that each R2\Kn has only unbounded components. By 3.1, we
have [Kn,S1] = 0 for each n ∈ N. By 2.10, this implies that [U,S1] = 0. Suppose now that
C is a compact component of R2\U . By 3A.1.4, we can find an open relatively compact
subset V of R2, with C ⊂ V and FrV ⊂ U . of course, the compact set C is contained in
a relatively compact component of R2\Fr V . This implies that if c ∈ C the Borsuk map
θc : R2\{c} → S1 is such that θc|Fr V is essential and indivisible. Since Fr V ⊂ U , the
restriction θc|U is also essential and indivisible
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Corollary 4.3. Let U be an open connected subset in R2 such that R2\U has a finite
number of compact components C1, . . . , Ck. Choose for each i = 1, . . . , k, a point ci ∈ Ci. Let
θi : U → S1, x 7→ (x− ci)/‖x− ci‖ be the Borsuk map with respect to ci. The group [U,S1] is
the free abelian group generated by the homotopy classes of the θi.

Proof.

Theorem 4.4. Let U be a connected open subset in R2. The following statements are
equivalent:

(i) R2\U has no compact connected component;
(ii) each continuous map ϕ : U → S1 can be lifted to a continuous map ϕ̄ : U → R;
(iii) each continuous map θ : U → C\{0} can be lifted to a continuous map θ̄ : U → C,

with θ = exp ◦θ̄;
(iv) each holomorphic map θ : U → C\{0} can be lifted to a holomorphic map θ̄ : U → C,

with θ = exp ◦θ̄;
(v) each continuous map θ : U → C\{0} has a continuous square root;
(vi) each holomorphic map θ : U → C\{0} has a holomorphic square root.

Proof. (i)⇔(ii) follows from 4.3. (ii)⇔(iii) follows from the fact that a continuous map with
values in ]0,∞[ has a continuous logarithm. (iii)⇒(iv) is clear. (iv)⇒(i) follows from 4.2.
(iii)⇒(v)⇒(vi) are easy. (vi)⇒(ii) follows from 4.2.


