
CHAPTER 2

COMPACT SUBSETS OF EUCLIDEAN SPACE

JORDAN’S THEOREM

We will prove in this chapter that if a compact subset A of Rn disconnects Rn, then any
other subset of Rn homeomorphic to A also disconnects Rn. We will obtain as consequences
Jordan’s theorem and the topological invariance of the dimension.

1. Some elementary homotopy theory.

Definition 1.1. (Homotopy). Given two continuous maps f, g : X → Y , we say that f is
homotopic to g if there exists a continuous map F : X× [0, 1] → Y , such that F |X×{0} = f
and F |X × {1} = g; we denote this relation by f ∼ g. The relation of homotopy is an
equivalence relation (exercise). The set of equivalence classes of continuous maps from X to
Y is denoted by [X, Y ]. An element of [X, Y ] is called a homotopy class.

Lemma 1.2. If we have continuous maps f, g : X → Y and f ′, g′ : Y → Z such that f ∼ g
and f ′ ∼ g′ then f ′ ◦ f ∼ g′ ◦ g.

Proof. Exercise!

Warning 1.3. If we have continuous maps f, g : X → Y and h : Y → Z such that h◦f ∼ h◦g,
this does not imply that f ∼ g. As an example we can take X = {0}, Y = {0, 1} and Z = [0, 1].
The two maps from X to Y are not homotopic, but if we compose them with the inclusion
Y ↪→ Z they become homotopic.
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Definition 1.4. (null homotopic, essential). A continuous map is said null homotopic if
it is homotopic to a constant map. An essential map is a map that is not null homotopic.

Lemma 1.5. Let X, Y, Z nbe topological spaces.
(i) Two null homotopic maps f, g : X → Y are homotopic if and only if their images are

contained in the same path component of Y . In particular, if Y is path connected,
there is a well defined null homotopy class;

(ii) a space Y is path connected if and only if [{0, 1}, Y ] is reduced to one class;
(iii) if we can write a map as a composition f = f1 ◦f2, where f1 : X → Z and f2 : Z → Y ,

and either of the two maps f1, f2 is null homotopic, then f is also null homotopic.
In shorter words, if a map factorizes through a null homotopic map then it is null
homotopic.

Proof. Exercise!

Definition 1.6. (Contractible space). A space X is said contractible if IdX is null
homotopic.

Lemma 1.7. Given a space X, the following are equivalent:
(i) X is contractible,
(ii) [X, X] is reduced to one class,
(iii) ∀Y, [Y,X] is reduced to one class,
(iv) ∀Y, [X, Y ] is reduced to one class.

Proof. Exercise!

example 1.8. A convex subset C of Rn is contractible. If x0 is a point in C, the map
F : C × [0, 1] → C,F (x, t) = tx0 + (1− t)x gives the desired contraction.

Proposition 1.9. (Filling criterion). A map f from the sphere Sn to a space Y is null
homotopic if and only if it extends to a map f̄ : Bn+1 → Y . In particular IdSn is essential.

Proof. If a map f : Sn → Y extends to f̄ : Bn+1 → Y , then we can write f = f̄ ◦ IdBn+1 ◦ i,
where i is the inclusion of Sn in Bn+1. Since, by 1.8, the ball Bn+1 is contractible, this
implies that f factorizes through a null homotopic map and hence is itself null homotopic
by 1.5.(iii). Suppose now that the map f : Sn → Y extends to a map F : Sn × [0, 1] → Y
such that F |Sn × {0} is a constant map with value y and F |Sn × {1} = f , then it is easy
to check that F factorizes through the surjective map q : Sn × [0, 1] → Bn, (x, t) 7→ tx. If we
define f̄ by F = f̄ ◦ q, then f̄ is indeed a continuous extension of f . Finally, an extension
of IdSn to a map Bn+1 → Sn is precisely a retraction of Bn+1 on Sn, this is impossible by
the no retraction theorem 1.4.2.

Proposition 1.10. (Homotopy extension for Sn). Let X be a metric space, and A be
a closed subset of X. If a continuous map f : A → Sn is homotopic to the restriction g|A
of a continuous map g : X → Sn, then it can be extended to a continuous map f̄ : X → Sn.
In fact, we can extend a homotopy between g|A and f to a map X × [0, 1] → Sn whose
restriction to X × {0} is g.

We need a couple of lemmas in order to prove 1.10.
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Lemma 1.11. (Sn is an ANR). If X is a metric space and A is a closed subset of X,
then any map from A to Sn extends continuously to a map defined on a neighborhood of A
in X.

Proof. By Tietze-Urysohn theorem 1.4.4, we can extend a continuous map f : A → Sn to a
continuous map f : X → Rn+1. The set U = F−1(Rn+1\{0}) is an open neighborhood of A
in X, and the map g : U → Sn, x 7→ F (x)/‖F (x)‖ is the desired extension.

Lemma 1.12. (Sandwich lemma). Let A be a closed subset of the space X, and let Y be
a compact space. Any neighborhood of A× Y in X × Y contains a neighborhood of the form
U × Y , where U is a neighborhood of A in X.

Proof. Exercise!

Proof of 1.10. Let F : A × [0, 1] → Sn be a homotopy from g|A to f . We can extend F
continuously to a map F1 : X × {0} ∪ A × [0, 1] → Sn by F1|X × {0} = g. By lemma 1.11,
it is possible to extend F1 to a neighborhood V of X × {0} ∪ A × [0, 1] in X × [0, 1], we
denote also this extension by F1. By lemma 1.12, we can find a neighborhood U of A in
X such that U × [0, 1] ⊂ V . By Tietze-Urysohn theorem 1.3.4, there exists a continuous
function ϕ : X → [0, 1] such that ϕ|A = 1 and ϕ|X\U = 0. We define a continuous map
G : X × [0, 1] → X × [0, 1] by G(x, t) = (x, tϕ(x)) (see figure 1.1 below). By construction
of G, we have G(X × [0, 1]) ⊂ X × {0} ∪ U × [0, 1] ⊂ V , and G|A × [0, 1] = Id. It is clear
that F2 = F1 ◦G extends F and that it is a well defined homotopy from g to the desired
extension F2|X × {0}.

Figure 1.1

2.Some elementary constructions of homeomorphisms with compact support.
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Definition 2.1. (Support, compact support). The support of a homeomorphism h :
X→̃X, denoted by supp((h)) or supp( )h, is {x ∈ X | h(x) 6= x}, i.e. the closure in X of the
set of points that move under h. Of course, h is a homeomorphism with compact support
if its support is compact.

Lemma 2.2. If X is an open subset of the Hausdorff space Y , and h : X→̃X is a homeo-
morphism with compact support, then its extension to Y via the identity is a homeomorphism
having the same (compact) support.

Proof. Exercise!

Lemma 2.3. Given two points x, y in the interior of a ball B in Rn, there exists a
homeomorphism h with compact support contained in the ball B such that h(x) = y.

Proof. Without loss of generality, we can assume that B is the unit ball Bn in Rn. We
define h as the identity outside Bn, and h maps linearly a segment from x to a point z in
Sn−1 to the segment from y to z (see figure 2.1). In the case x = 0, if we denote by hy

this homeomorphism, we have hy(v) = (1 − ‖v‖)y + v for v in Bn, it is easy to check by
direct arguments that hy|Bn is a bijective continuous map, hence it is a homeomorphism
since Bn is compact. For a general x in Bn, the map h constructed above is in fact hyh−1

x ,
this proves that it is a homeomorphism.

Figure 2.1

Theorem 2.4. Let U be a connected open subset of Rn, and let V be a non empty open
subset of U . If x1, . . . , xk are points in U , then there exists a homeomorphism h : U→̃U with
compact support such that h(x1), . . . , h(xk) are in V .

Proof. (Induction on k). Consider first the case k = 1. Since U is connected and V is non
empty, given a point x in U , we can find a sequence of closed balls B0, . . . , Bl such that
Int(Bi)∩ Int(Bi+1) 6= ∅, i = 0, . . . , l − 1, x ∈ Int(B0) and V ∩ Int(Bl) 6= ∅. Let us choose points
y1, . . . , yl with yi ∈ Int(Bi−1) ∩ Int(Bi), i = 1, . . . , l, choose yl+1 ∈ Int(V ) ∩ Int(Bi) and define
y0 = x. By 2.3, for i = 0, . . . , l, we can find a homeomorphism hi with support in Bi such
that hi(yi) = yi+1. The homeomorphism h = hl · · ·h1h0 verifies h(x) = yl+1 ∈ V and has
support contained in B0 ∪ · · · ∪Bl, which is a compact subset of U . Suppose now that the
theorem is true for k points and that we have to check it for k + 1 points x1, . . . , xk+1.
Applying the case of k points, it is possible to obtain a homeomorphism g : U→̃U with
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compact support and such that g(x1), . . . , g(xk) ∈ V . Of course, we would like to find a
homeomorphism with compact support g′ : U\{g(x1), . . . , g(xk)}→̃U\{g(x1), . . . , g(xk)} such
that g′g(xk+1) ∈ V , then we would extend g′ by the identity to {g(x1), . . . , g(xk)}. The case
k = 1 allows us to do that when U\{g(x1), . . . , g(xk)} is connected. Remark that this is true
as soon as the dimension n of Rn is ≥ 2. Anyway, we can handle the general situation in
almost the same way. Let Ũ be the connected component of g(xk+1) in U\{g(x1), . . . , g(xk)},
it is an open set in U different from U . Since U is connected, this implies that Ũ has a
boundary point in U . Such a boundary point cannot be in U\{g(x1), . . . , g(xk)} because Ũ

is closed in that subset. Hence one of the g(xi) is a boundary point of Ũ ; in particular,
since V is a neighborhood of the g(xi), we have Ũ ∩ V 6= ∅. We can now apply the case
k = 1 to Ũ , xk+1, Ũ ∩ V to obtain a homeomorphism g′ : Ũ→̃Ũ with compact support in
Ũ and such that g′(g(xk+1)) ∈ Ũ ∩ V , we extend this homeomorphism by the identity to a
homeomorphism of U , which we still call g′. We define the desired h as g′ ◦ g.

Exercise 2.5. (i): Let U be an open connected subset of Rn, with n ≥ 2. If x1, . . . , xk

(resp. y1, . . . , yk) are distinct points in U , then there exists a homeomorphism with compact
support h : U→̃U such that h(xi) = yi, i = 1, . . . , k.(Hint: Induction on k. Use the fact n ≥ 2
to know that the complement of a finite set in U is connected.)

(ii): The statement given above is false for n = 1. Why ? Give a correct statement and
prove it.

3.Disconnection of Euclidean space by a compact set.

Definition 3.1. (Borsuk map). Let A be a subset in Rn and a /∈ A. The map
θa,A : A → Sn−1, x 7→ (x− a)/‖x− a‖, is called the Borsuk map associated with a and A.

Lemma 3.2. Let A be a closed subset in Rn. If two points a and b are contained in the
same connected component of Rn\A, then θa,A and θb,A are homotopic.

Proof. Since A is closed, the connected components of Rn\A are path connected. If α : [0, 1] →
Rn\A is a path between a and b, the map A× [0, 1] → Sn−1, (x, t) 7→ (x− α(t))/‖x− α(t)‖
is a homotopy between θa,A and θb,A.

Theorem 3.3. Let A be a compact subset in Rn. The point a ∈ Rn\A is contained in a
bounded connected component of Rn\A if and only if the Borsuk map θa,A : A → Sn−1 is
essential.

Proof. Since A is compact, there exists a ball B with center 0 and finite radius containing A
in its interior. If b ∈ Rn\B, the map θb,B is an extension of θb,A to B, since B is contractible
θb,A is null homotopic. It follows from 3.2 that θa,A is null homotopic if a is contained in an
unbounded connected component of Rn\A. Suppose now that a is contained in the bounded
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connected component G of Rn\A, by the homotopy extension property 1.10, if the map
θa,A : A → Sn−1 is null homotopic, then θa,A extends continuously to the closed set G ∪ A.
We denote by f such an extension. We can extend f to a continuous map f̄ : Rn → Sn−1

by defining it on Rn\G as the Borsuk map associated with a and Rn\G. Since G ∪ A is
compact, we can find a ball B(a,R) containing G∪A. The map Bn → Sn−1, x 7→ f̄(a+Rx),
is easily seen to be a retraction of Bn on Sn−1. This is impossible by the no retraction
theorem 1.4.2.

In fact, the end of the previous proof proves also the following theorem:

Theorem 3.4. If a is contained in the bounded connected component G of Rn\A, where A
is a compact subset in Rn, then θa,A does not extend continuously to G ∪A.

Corollary 3.5. Let A be compact subset in Rn. If Rn\A has a bounded connected component,
then there exists an essential map A → Sn−1. In particular, for n ≥ 2, if A disconnects Rn,
there exists an essential map A → Sn−1.

Proof. The first part is a special case of 3.3. The second part follows from the first, since
for n ≥ 2, Rn\A has exactly one unbounded connected component.

Of course, corollary 1.4.5 is a particular case of corollary 3.5.
As a corollary of theorem 3.4, we obtain:

corollary 3.6. Let A be a compact subset in Rn and a be a point in the bounded connected
component G of Rn\A. If b ∈ Rn\A is such that θb,A ∼ θa,A, then b ∈ G. In particular, for
n ≥ 2, two points in Rn\A have homotopic Borsuk maps if and only if they are contained
in the same connected component.

Proof. If b is not in G, then of course θb,G∪A is well defined and extends θa,A. By the
homotopy extension property 1.10, it follows that if θa,A is homotopic to θb,A then θa,A

extends to G ∪ A. This is impossible by proposition 3.4. Another way of saying what
we obtained is the following: if x and y are points in Rn\A such that θx,A ∼ θy,A, then
either they are in the same bounded connected component, or they are both contained in
unbounded connected components (eventually distinct) of Rn\A. Since, for n ≥ 2, there is
only one unbounded connected component, this proves the second part of the corollary.

Our goal is to prove the converse of 3.5. We have some preliminary work to do.

Lemma 3.7. There exists in Rn a countable dense subset S such that any n + 1 points in
S are affinely independent.

Proof. Exercise!

Lemma 3.8. Let A be a compact set contained in the interior of Bn. Any continuous map
f : A → Sn−1 can be extended to a continuous map g : Bn → Rn such that g−1(0) is finite.
In particular, the map f̄ : Bn\g−1(0) → Sn−1, x 7→ g(x)/‖g(x)‖, is an extension of f to Bn

minus a finite number of points.

Proof. Since Bn and ∆n are homeomorphic, we can prove our lemma for ∆n instead of Bn.
By Tietze-Urysohn theorem 1.4.4, we can extend f to a map f1 : ∆n → Rn, but f−1

1 (0) is
not known to be finite. Since ∆n is compact, the map f1 is uniformly continuous; hence
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we can find a sufficiently fine subdivision K of ∆n (see 1.1.4) such that for each simplex σ
in K, we have diam(f1(σ)) < 1/12. By lemma 3.7, for each vertex v of K, we can choose
a point xv in Rn such that ‖f1(v) − xv‖ < 1/12, xv 6= xv′ , for v 6= v′, and any subset
of points xv1 , . . . , xvk

, with k ≤ n + 1, is affinely independent. We can define in a unique
way a map f2 : ∆n → Rn, which is affine on each simplex σ in K and sends each vertex
v of K to xv. By the independence property of the points xv, the map f2 is injective
on each simplex of K. This implies that the preimage of a point under f2 is finite. If
x =

∑n
i=0 tivi, ti ≥ 0,

∑n
i=0 ti = 1, where the vi are the vertices of K defining the n-simplex

of K containing x, we have:

‖f1(x)− f2(x)‖ ≤ ‖f1(x)−
n∑

i=0

tif1(vi)‖+ ‖
n∑

i=0

ti(f1(vi)− xvi
)‖

≤
n∑

i=0

ti‖f1(x)− f1(vi)‖+
n∑

i=0

ti‖f1(vi)− xvi
‖

<
1
6

Since f1(A) = f(A) ⊂ Sn−1, we obtain f2(A) ∩ B(0, 1/2) = ∅. By Tietze-Urysohn theorem
1.4.4, we can then choose ϕ : ∆n → [0, 1] such that ϕ(A) = 1 and ϕ(f−1

2 [B(0, 1/2)]) =
0. We define the map g : Bn → Rn by g(x) = ϕ(x)f1(x) + (1 − ϕ(x))f2(x). Since
‖f1(x) − f2(x)‖ < 1/6, we have ‖f1(x) − g(x)‖ < 1/6; hence, if ‖f2(x)‖ ≥ 1/2, we have:
‖g(x)‖ ≥ ‖f2(x)‖ − ‖g(x)− f2(x)‖ ≥ 1/2− 1/6 > 0. This implies that g−1(0) is contained in
f−1
2 (B(0, 1/2)), but on this set g = f2 by construction of ϕ; in particular, g−1(0) = f−1

2 (0)
is finite. Moreover, we have also g|A = f1|A = f by construction of ϕ.

Corollary 3.9. Given a compact set A in Rn, and a continuous map f : A → Sn−1, we can
find a finite number of points q1, . . . , ql in Rn and a continuous extension f̄ : Rn\{q1, . . . ,
ql} → Sn−1 of f .

Proof. Without loss of generality, we can assume that A is contained in the interior of Bn.
By 3.8, there exists p1, . . . , pk in Bn and an extension Bn\{p1, . . . , pk} → Sn−1. Since A is
contained in the interior of Bn and the set {p1, . . . , pk} is finite, we can find r ∈]0, 1[ so
that A is contained in the interior of B(0, r) and the boundary {x | ‖x‖ = r} of B(0, r) does
not contain any of the pi. We define {q1, . . . , ql} as {p1, . . . , pk} ∩B(0, r). The extension f̄
is given by f̄ = g on B(0, r)\{q1, . . . , ql} and f̄(x) = g((r/‖x‖)x) on Rn\Int(B(0, r)).

Theorem 3.10. Let A be a compact set in Rn. Let (Ui)i∈I be the (at most countable)
family of bounded connected components in Rn\A. For each i ∈ I, we choose some point
xi ∈ Ui. Given any continuous map f : A → Sn−1, we can find a subfamily {xi1 , . . . , xik

} of
the family (xi)i∈I , and an extension to a continuous map f̄ : Rn\{xi1 , . . . , xik

} → Sn−1. In
particular, if Rn\A has no bounded component each map A → Sn−1 extends to Rn and is
therefore null homotopic.

Proof. By 3.9, there exists an extension g to Rn\{q1, . . . , ql}. Let Ui1 , . . . , Uik
be the finite

set of bounded connected components of Rn\A containing one of the qi, the rest of the
qi are contained in the unbounded connected components. For each Uij

, j = 1, . . . , k, let us
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choose a small ball Bj = B(xij
, rj) of radius rj and center xij

contained in Uij
(see figure

3.1). Let R be big enough so that B = B(0, R) contains A∪B1 ∪ · · · ∪Bk in its interior. By
the choices done, the connected components of Rn\A which contain some qi do intersect(
Rn\B

)
∪ Int(B1) ∪ · · · ∪ Int(Bk). Using theorem 2.4 in each one of these components and

piecing things together, we can find a homeomorphism h : Rn→̃Rn with compact support
contained in Rn\A such that h−1(qi) /∈ B\(Int(B1) ∪ · · · ∪ Int(Bk)), i = 1, . . . , k. The map
g′ = g ◦ h is well defined on B\(Int(B1) ∪ · · · ∪ Int(Bk)), it is an extension of f . Since
B\(Int(B1) ∪ · · · ∪ Int(Bk)) is a retract of Rn\{xi1 , . . . , xik

}, it suffices to compose g′ with
a retraction to obtain the desired result.

Figure 3.1

Putting together 3.5 and 3.10, we obtain the following theorem:

Theorem 3.11. Let A be a compact set in Rn. There exists a bounded connected component
in Rn\A if and only if there exists an essential map f : A → Sn−1. In particular, if n≥ 2,
then A disconnects Rn if and only if there exists an essential map A → Sn−1.

Corollary 3.12. If A and B are compact sets in Rn which have the same homotopy type,
then one of them disconnects Rn if and only if the other does.

This corollary is the fundamental result from which we are now going to deduce some of
the most important topological properties of Euclidean spaces.

4. Jordan’s separation theorem and the invariance of domain.

Theorem 4.1. (Jordan’s theorem). Let j : Sn−1 ↪→ Rn be a continuous injective map,
then j(Sn−1) disconnects Rn and no proper subset of j(Sn−1) disconnects Rn. In particular,
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the boundary in Rn of a connected component of Rn\j(Sn−1) is precisely j(Sn−1).

Proof. Since Sn−1 is compact, the map j is a homeomorphism onto j(Sn−1). It follows from
3.12, by considering the case of the standard inclusion Sn−1 ⊂ Rn, that j(Sn−1) disconnects
Rn and that no proper closed subset of j(Sn−1) disconnects Rn. If U is a connected
component of Rn\j(Sn−1), then its boundary in Rn is a closed subset of j(Sn−1) that
disconnects Rn; hence the boundary of U must be the whole of j(Sn−1). It remains to show
that if A is a proper not necessarily closed subset of j(Sn−1), then Rn\A is connected. If
U is a connected component of Rn\j(Sn−1), then U ∪ (j(Sn−1)\A) is connected, since it
is contained between the connected set U and its closure U ∪ j(Sn−1). Since j(Sn−1)\A is
non-empty and Rn\A is the union of connected sets of the form V ∪ (j(Sn−1)\A), where V
is a connected component of Rn\j(Sn−1), it follows that Rn\A is connected.

Remark 4.2. In fact, there is only one bounded connected component in Rn\j(Sn−1), but
our methods do not allow us to prove this fact. We will prove it for n= 2 in the next
chapter. Of course, for n= 1, it is a trivial fact.

Theorem 4.3. Let j : Sn−1 ↪→ Rn be a continuous injective map, and let a be a point in
Rn\j(Sn−1). Define the Borsuk map θa,j : Sn−1 → Sn−1, x 7→ (j(x) − a)/‖j(x) − a‖. The
point a is in a bounded connected component of Rn\j(Sn−1) if and only if θa,j is essential.
Moreover, if n≥ 2, two points are in the same connected component of Rn\j(Sn−1) if and
only if the corresponding Borsuk maps are homotopic.

Proof. This is particular case of 3.3 and 3.6.

Lemma 4.4. Let j : Bn ↪→ Rn be a continuous injective map. The only bounded connected
component of Rn\j(Sn−1) is j(Int(Bn)). In particular, the set j(Int(Bn)) is open in Rn.

Proof. Since Bn is compact, the map j is a homeomorphism onto j(Bn). By 1.4.5, the set
Rn\j(Bn) has only unbounded connected components. In particular, no bounded connected
component of Rn\j(Sn−1) can intersect Rn\j(Bn). It follows that j(Int(Bn)) contains the
union of the bounded connected components of Rn\j(Sn−1). Since j(Int(Bn)) is connected,
and by Jordan’s theorem 4.1 there exists a bounded connected component in Rn\j(Sn−1),
it follows that j(Int(Bn)) is the only bounded connected component of Rn\j(Sn−1).

Theorem 4.5. (Invariance of domain). If j : U ↪→ Rn is an injective continuous map,
where U is an open subset in Rn, then j is an open map. In particular j(U) is open in
Rn, and j is a homeomorphism of U on j(U).

Proof. By 4.4, if B is a small ball in U , then j(Int(B)) is open in Rn.

Corollary 4.6. (Invariance of dimension). For k<n, there does not exist an injective
continuous map of an open non empty subset of Rn into Rk. In particular, if an open subset
of Rk is homeomorphic to an open subset of Rn, then n = k.

Proof. Let U be an open non empty subset in Rn and j : U ↪→ Rk an injective continuous
map with k<n. Since for k<n, we have Rk ⊂ Rn, theorem 4.5 implies that j(U) is open
in Rn. This is impossible, since Rk has no interior in Rn.
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Corollary 4.7. Let X be a subset in Rn. If x is a point in X, the following conditions are
equivalent:

(i) x is in the interior of X with respect to Rn,
(ii) x is contained in a subset of X homeomorphic to Rn,
(iii) x is contained in a subset of X homeomorphic to an open subset in Rn,
(iv) x has a neighborhood in X homeomorphic to Rn,
(v) x has a neighborhood in X homeomorphic to an open subset of Rn.

Proof. This is a consequence of invariance of domain.

Definition 4.8. Let X be a space which is homeomorphic to a subset of Rn. Let k be
the maximum of all m∈ N such that X contains a subset homeomorphic to Rm (by 4.7
k≤n). We call the set PI(X) = {x ∈ X | x is contained in a subset homeomorphic to Rk}
the pseudo interior of X and we call the set ∂(X) = X\PI(X) the pseudo boundary (or
even sometimes boundary) of X.

The next two theorems are easy consequences of 4.7.

Theorem 4.9. Let A and B be two subsets of Rn. If h : A→̃B is a homeomorphism, then
h(PI(A)) = PI(B) and h(∂(A)) = ∂(B).

Theorem 4.10. Let A be a closed subset of Rn with non empty interior, then Int(A) = PI(A)
and ∂(A) is the frontier of A in Rn.

The following corollary is an immediate consequence of the last two theorems.

Corollary 4.11. Let A and B be two closed subsets in Rn. If h : A→̃B is a homeomorphism,
then h(Int(A)) = Int(B) and h(∂(A)) = ∂(B).

5. Accessibility.

Definition 5.1. Let A be a subset of X. A point x in X is accessible from A, if there
exists a path α : [0, 1] → X such that α([0, 1[) ⊂ A and α(1) = x.

Theorem 5.2. Let j : Sn−1 ↪→ Rn be an imbedding. If U is a connected component of
Rn\j(Sn−1), then the set of points of j(Sn−1) accessible from U is dense in j(Sn−1).

Proof. Let V ⊂ j(Sn−1) be an open non empty open subset of j(Sn−1). By Jordan’s theorem
4.1, the open subset Rn\[j(Sn−1)\V ] of Rn is connected. Since it contains U and V ,
we can find a path α : [0, 1] → Rn\[j(Sn−1)\V ] such that α(0) ∈ U and α(1) ∈ V . If
t0 = inf{t ∈ [0, 1] | α(t) ∈ j(Sn−1)}, then we have α(t0) ∈ V and α([0, t0[) ⊂ U . This shows
that V contains a point accessible from U .


