CHAPTER 1 BROUWER'S FIXED POINT THEOREM

In this chapter, we will prove Brouwer's fixed point theorem and draw some of its consequences.

1 Preliminaries on simplicial complexes.

We recall some notions of PL topology which will be useful later.
Definition 1.1.a. (Simplex in $\left.\mathbf{R}^{n}\right)$. Given $P_{0}, \ldots, P_{k}(k+1)$ affinely independent points in \mathbf{R}^{n}, we will denote by $\left.<P_{0}, \ldots, P_{k}\right\rangle$ the convex hull of these $(k+1)$ points. This set $<P_{0}, \ldots, P_{k}>$ is called the k-simplex generated by P_{0}, \ldots, P_{k}. More generally a k-simplex in \mathbf{R}^{n} is simply any set of the form described above. We will use the word simplex if we do not want to emphasize the dimension k of a k-simplex.
Definition 1.1.b. (Faces and boundary of a simplex). If σ is the k-simplex $<$ $P_{0}, \ldots, P_{k}>$, a face of σ is any simplex of the form $<P_{i_{0}}, \ldots, P_{i_{l}}>$, with $i_{j} \in\{0, \ldots, k\}, j=$ $0, \ldots, l$. If we want to precise the dimension of a face τ of σ we will use the term l-face. We use the notation $\tau \preceq \sigma$ to mean that τ is a face of σ; and the notation $\tau \prec \sigma$ to mean that τ is a face of σ which is not σ. The union $\cup\{\tau \mid \tau \prec \sigma\}$ is called the boundary of σ and is denoted by $\partial \sigma$.

Definition 1.1.c. (Simplicial complex in \mathbf{R}^{n}). A simplicial complex in \mathbf{R}^{n} is a finite collection K of simplexes such that:
(i) $\sigma \in K$ and $\sigma^{\prime} \preceq \sigma \Rightarrow \sigma^{\prime} \in K$,
(ii) $\sigma_{1}, \sigma_{2} \in K \Rightarrow \sigma_{1} \cup \sigma_{2} \preceq \sigma_{1}$ and $\sigma_{1} \cup \sigma_{2} \preceq \sigma_{2}$.

The dimension of K, noted $\operatorname{dim}(K)$, is the maximum of the dimensions of its simplexes. The size of K, noted $\operatorname{size}(K)$, is the maximum of the diameters of its simplexes. The geometric support of K, noted $|K|$, is the set $|K|=\cup\{\sigma \mid \sigma \in K\}$.

Definition 1.1.d. (Subdivision of a simplicial complex). A simplicial complex L is a subdivision of the simplicial complex K if we have the following conditions :
(i) $|L|=|K|$,
(ii) $\forall \tau \in L, \exists \sigma \in K$ with $\tau \subset \sigma$.

Exercise 1.2. If L is a subdivision of K, then $\operatorname{dim}(L)=\operatorname{dim}(K)$. (Hint: a k-simplex cannot be a union of simplexes of dimension $<k$.)
Exercise 1.3. If σ is a simplex show that $\Sigma=\{\tau \mid \tau \preceq \sigma\}$ is a simplicial complex. If L is a subdivision of Σ and σ^{\prime} is a face of σ, show that $M=\left\{\tau \in L \mid \tau \subset \sigma^{\prime}\right\}$ is a subdivision of $\Sigma^{\prime}=\left\{\tau \mid \tau \preceq \sigma^{\prime}\right\}$. (Hint: It suffices to consider the case $\operatorname{dim}\left(\sigma^{\prime}\right)=\operatorname{dim}(\sigma)-1$.)

Proposition 1.4. A given simplicial complex admits a subdivision with an arbitrarily small size.

To prove proposition 1.4, we will introduce the barycentric subdivision and study some of its properties.

If σ is the simplex $<P_{0}, \ldots, P_{l}>$, we will denote by $\mathrm{B}(\sigma)$ its barycenter $\left(P_{0}+\cdots+P_{l}\right) /(l+1)$. If $\sigma_{0} \prec \cdots \prec \sigma_{k}$ is a sequence, where each simplex is a strict face of the next one, the points $\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right)$ are affinely independent. This follows from the easily proven fact : if τ is a strict face of σ then $\mathrm{B}(\sigma)$ does not belong to the affine subspace generated by τ. In particular $<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right)>$ is a k-simplex if $\sigma_{0} \prec \cdots \prec \sigma_{k}$.

Definition 1.5. (Barycentric subdivision). The collection of simplexes $<\mathrm{B}\left(\sigma_{0}\right), \ldots$, $\mathrm{B}\left(\sigma_{k}\right)>$ where $\sigma_{0} \prec \cdots \prec \sigma_{k}$ are in the simplicial complex K, is called the barycentric subdivision of K and is denoted by K^{\prime}.

Lemma 1.6. The barycentric subdivision of simplicial complex is itself a simplicial complex.
Proof. It is easy to prove that condition (i) in the definition of a simplicial complex is satisfied by K^{\prime}. It remains to check that the intersection of two simplexes of K^{\prime} is a face of both. We will prove this by induction on the number of simplexes in K. If there is only one simplex in K, then it is reduced to a point and $K=K^{\prime}$. Suppose that we have proven the lemma for each simplicial complex having less simplexes than K. We choose a simplex $\sigma \in K$, with $\operatorname{dim}(\sigma)=\operatorname{dim}(K)$. It is easy to check that $K \backslash\{\sigma\}$ is a simplicial complex. By induction $K \backslash\{\sigma\}^{\prime}$ is also a simplicial complex. It is clear that the simplexes of $K \backslash\{\sigma\}^{\prime}$ are exactly the simplexes of K^{\prime} for which $\mathrm{B}(\sigma)$ is not a vertex. Let now τ_{1} and τ_{2} be two elements of K^{\prime}, and let us check that $\tau_{1} \cup \tau_{2}$ is a face of both. We consider three cases : First case. Neither τ_{1} nor τ_{2} admit $\mathrm{B}(\sigma)$ as a vertex, then τ_{1} and τ_{2} are in $K \backslash\{\sigma\}^{\prime}$ and this case is proven by induction.
Second case. Only τ_{1} admits $\mathrm{B}(\sigma)$ as a vertex. Let us write explicitly $\tau_{1}=<\mathrm{B}\left(\sigma_{0}\right), \ldots$, $\mathrm{B}\left(\sigma_{k}\right), \mathrm{B}(\sigma)>$ and $\tau_{2}=<\mathrm{B}\left(\sigma_{0}^{\prime}\right), \ldots, \mathrm{B}\left(\sigma_{l}^{\prime}\right)>$. Now $\tau_{1} \cap \tau_{2}$ is contained in $\sigma_{l}^{\prime} \cap \sigma$ which is
a strict face of σ, since σ is of maximal dimension in K and $\sigma_{l}^{\prime} \neq \sigma$. It follows that $\tau_{1} \cap \tau_{2}=<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right)>\cap \tau_{2}$ and we can use the first case.
Third case. $\tau_{1}=<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right), \mathrm{B}(\sigma)>$ and $\tau_{2}=<\mathrm{B}\left(\sigma_{0}^{\prime}\right), \ldots, \mathrm{B}\left(\sigma_{l}^{\prime}\right), \mathrm{B}(\sigma)>$. By induction $<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right)>\cap<\mathrm{B}\left(\sigma_{0}^{\prime}\right), \ldots, \mathrm{B}\left(\sigma_{l}^{\prime}\right)>=<\mathrm{B}\left(\sigma_{0}^{\prime \prime}\right), \ldots, \mathrm{B}\left(\sigma_{m}^{\prime \prime}\right)>$, where $\left\{\mathrm{B}\left(\sigma_{0}\right), \ldots\right.$, $\left.\mathrm{B}\left(\sigma_{k}\right)\right\} \cap\left\{\mathrm{B}\left(\sigma_{0}^{\prime}\right), \ldots, \mathrm{B}\left(\sigma_{l}^{\prime}\right)\right\}=\left\{\mathrm{B}\left(\sigma_{0}^{\prime \prime}\right), \ldots, \mathrm{B}\left(\sigma_{m}^{\prime \prime}\right)\right\}$. One can check that $\tau_{1} \cap \tau_{2}=<\mathrm{B}\left(\sigma_{0}^{\prime \prime}\right), \ldots$, $\mathrm{B}\left(\sigma_{l}^{\prime \prime}\right), \mathrm{B}(\sigma)>$, because for example, each point P of $\sigma \backslash\{\mathrm{B}(\sigma)\}$ can be written in a unique way as $P=\alpha \mathrm{B}(\sigma)+(1-\alpha) P^{\prime}$, with $\alpha \in[0,1]$ and P^{\prime} in the boundary of σ.
Lemma 1.7. The barycentric subdivision K^{\prime} of a simplicial complex K is a subdivision of K.

Proof. It is clear, by convexity of σ_{l} that we have $<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{l}\right)>\subset \sigma_{l}$. It remains to check that $|K| \subset\left|K^{\prime}\right|$. Let $x \in \sigma=<P_{0}, \ldots, P_{k}>$, where σ is a simplex in K. Without loss of generality, we can assume that $x=\sum_{i=0}^{k} \lambda_{i} P_{i}$, with $1 \geq \lambda_{0}, \geq \cdots \geq \lambda_{k} \geq 0$ and $\sum_{i=0}^{k} \lambda_{i}=1$. Define $\sigma_{i}=<P_{0}, \ldots, P_{i}>$, for $i=0, \ldots, k$, and $\lambda_{k+1}=0$, then we have $x=\sum_{i=0}^{k}\left(\lambda_{i}-\lambda_{i+1}\right)(i+1) \mathrm{B}\left(\sigma_{i}\right)$; from this relation we obtain that $x \in<\mathrm{B}\left(\sigma_{0}\right), \ldots, \mathrm{B}\left(\sigma_{k}\right)>$.

Lemma 1.8. We have $\operatorname{size}\left(K^{\prime}\right) \leq \frac{\operatorname{dim} K}{1+\operatorname{dim} K} \operatorname{size}(K)$.
This lemma is a trivial consequence of the next two sublemmas.
Sublemma 1.9. If $\sigma=<P_{0}, \ldots, P_{k}>$ is a simplex in \mathbf{R}^{n}, then:

$$
\operatorname{diam}(\sigma)=\max _{0 \leq i, j \leq k}\left\|P_{i}-P_{j}\right\|
$$

Proof. Let $R=\max _{0 \leq i, j \leq k}\left\|P_{i}-P_{j}\right\|$. The convexity of $B\left(P_{i}, R\right)$, the closed ball of radius R around P_{i} shows that $\sigma \subset B\left(P_{i}, R\right)$ since $P_{0}, \ldots, P_{k} \in B\left(P_{i}, R\right)$. In particular, if $P \in \sigma$, we have $P_{i} \in B(P, R)$ for $i=0, \ldots, k$; the convexity of $B(P, R)$ shows also that $\sigma \subset B(P, R)$. It follows that $\operatorname{diam}(\sigma)=R$.
Sublemma 1.10. If τ is a face of σ, then we have:

$$
\|\mathrm{B}(\tau)-\mathrm{B}(\sigma)\| \leq \frac{\operatorname{dim} \sigma}{1+\operatorname{dim} \sigma} \operatorname{diam}(\sigma)
$$

Proof. We can suppose that $\tau=<P_{0}, \ldots, P_{l}>$ and $\sigma=<P_{0}, \ldots, P_{l}, P_{l+1}, \ldots, P_{k}>$. We have $\mathrm{B}(\sigma)-\mathrm{B}(\tau)=\frac{1}{1+k} \sum_{i=0}^{k}\left(P_{i}-\mathrm{B}(\tau)\right)$. Since $\mathrm{B}(\tau)$ is the barycenter of P_{0}, \ldots, P_{l}, we have $\sum_{i=0}^{k}\left(P_{i}-\mathrm{B}(\tau)\right)=0$. This implies $\mathrm{B}(\sigma)-\mathrm{B}(\tau)=\frac{1}{1+k} \sum_{i=l+1}^{k}\left(P_{i}-\mathrm{B}(\tau)\right)$, hence $\|\mathrm{B}(\tau)-\mathrm{B}(\sigma)\| \leq \frac{k-l}{k+1} \operatorname{diam}(\sigma)$.

Proof of Proposition 1.4. Since $\operatorname{dim} K^{\prime}=\operatorname{dim} K$ (Exercise 1.2), we see by lemma 1.8 that if we take the n-th barycentric subdivision $K^{(n)}$, we have:

$$
\operatorname{size}\left(K^{(n)}\right) \leq\left(\frac{k}{k+1}\right)^{n} \operatorname{size}(K)
$$

where $k=\operatorname{dim} K$.

2. Sperner's lemma.

We consider Δ^{n} the convex hull of ($n+1$) affinely independant points P_{0}, \ldots, P_{n} in \mathbf{R}^{n}. We will also use the notation Δ^{n} for the simplicial complex defined by Δ^{n} together with all its faces.

Definition 2.1. (Sperner's labelling). If L is a subdivision of Δ^{n}, a Sperner's labelling is a map α from L^{0}, the set of vertices of L, to $\{0, \ldots, n\}$ such that if $v \in L^{0}$ belongs to the face $<P_{i_{0}}, \ldots, P_{i_{k}}>$ of Δ^{n}, then $\alpha(v) \in\left\{i_{0}, \ldots, i_{k}\right\}$. We will extend the map α to a map defined on L by sending a simplex to the set of labelling of its vertices, i.e. $\alpha\left(<v_{0}, \ldots, v_{k}>\right)=\left\{\alpha\left(v_{0}\right), \ldots, \alpha\left(v_{k}\right)\right\}$.

Lemma 2.2. (Sperner's lemma). Let L be a subdivision of Δ^{n}, and let $\alpha: L^{0} \rightarrow\{0, \ldots, n\}$ be a Sperner's labelling. There exists at least one n-simplex σ in L labelled $\{0, \ldots, n\}$, i.e. $\alpha(\sigma)=\{0, \ldots, n\}$.

We will prove Sperner's lemma by induction on n. We first need a sublemma.
Sublemma 2.3. Let L be a subdivision of Δ^{n}, and τ be an $(n-1)$-simplex of L, then one of the following two cases happens:
(i) $\tau \in \partial \Delta^{n}$ and τ is contained in exactly one n-simplex of L,
(ii) $\tau \notin \partial \Delta^{n}$, and τ is contained in exactly two n-simplexes of L.

The proof of this sublemma, left to the reader, rests essentially on the fact that an ($n-1$)-hyperplane of \mathbf{R}^{n} cuts a convex neighborhood of one of its points in exactly two pieces.

We will prove in fact lemma 2.2 in the following stronger form:
Lemma 2.4. Under the conditions of lemma 2.2, we have:

$$
\#\{\tau \in L \mid \alpha(\tau)=\{0, \ldots, n\}\} \equiv 1 \quad \bmod 2
$$

Proof. We proceed by induction on n. Denote by Δ^{n-1} the $(n-1)$-simplex $<P_{0}, \ldots, P_{n-1}>$ $\subset<P_{0}, \ldots, P_{n}>=\Delta^{n}$. The simplicial complex $L_{1}=\left\{\tau \in L \mid \tau \subset \Delta^{n-1}\right\} \quad$ is a subdivision of Δ^{n-1} (see exercise 1.3) and moreover $\alpha \mid L_{1}$ is a Sperner's labelling (with values in $\{0, \ldots, n-1\}$), hence by induction:

$$
\#\left\{\tau \in L^{\tau} \in \Delta^{n-1}, \alpha(\tau)=\{0, \ldots, n-1\}\right\} \equiv 1 \quad \bmod 2
$$

Let us now compute $N=\#\{\sigma \in L \mid \alpha(\sigma)=\{0, \ldots, n\}\} \bmod 2$. For σ an n-simplex in L define $N(\sigma)=\#\left\{\sigma^{\prime} \preceq \sigma \mid \sigma^{\prime}\right.$ an $(n-1)$-simplex with $\alpha\left(\sigma^{\prime}\right)=\{0,1, \ldots, n-1\}$. For an n-simplex σ in L, one of the following three cases happens:
(i) $\alpha(\sigma) \not \supset\{0, \ldots, n-1\}$ and $N(\sigma)=0$,
(ii) $\alpha(\sigma)=\{0, \ldots, n-1\}$ and $N(\sigma)=2$,
(iii) $\alpha(\sigma)=\{0, \ldots, n\}$ and $N(\sigma)=1$.

We obtain from this $N \equiv \sum_{\sigma} N(\sigma) \bmod 2$. By sublemma 2.3 , the sum $\sum_{\sigma} N(\sigma)$ is equal to the "number" of ($n-1$)-simplexes of L labelled $\{0,1, \ldots, n-1\}$, where such a simplex τ is counted once if it is included in $\partial \Delta^{n}$, and twice if it is not. In particular, $\sum_{\sigma} N(\sigma) \equiv\left\{\tau \in L \mid \tau \subset \partial \Delta^{n}, \alpha(\tau)=\{0,1, \ldots, n-1\}\right\} \bmod 2$. Since α is a Sperner's labelling, the conditions $\tau \subset \partial \Delta^{n}$ and $\alpha(\tau)=\{0,1, \ldots, n-1\}$ imply $\tau \subset \Delta^{n-1}$. So finally, we get $N \equiv \sum_{\sigma} N(\sigma) \equiv\left\{\tau \in L \mid \tau \subset \partial \Delta^{n}, \alpha(\tau)=\{0,1, \ldots, n-1\}\right\} \equiv 1 \bmod 2$.

The following geometric form of Sperner's lemma is due to Knaster, Kuratowski and Mazurkiewicz.

Lemma 2.5.(KKM Lemma). Let F_{0}, \ldots, F_{n} be $(n+1)$ closed subsets of the n-simplex $\Delta^{n}=<P_{0}, \ldots, P_{n}>$ verifying $<P_{i_{0}}, \ldots, P_{i_{k}}>\subset F_{i_{0}} \cup \cdots \cup F_{i_{k}}$ for each subset $\left\{i_{0}, \ldots, i_{k}\right\} \subset$ $\{0,1, \ldots, n-1\}$ (in particular $\Delta^{n}=F_{0} \cup \cdots \cup F_{n}$), then the intersection $\bigcap_{i=0}^{i=n} F_{i}$ is non-empty.

Proof. (By contradiction). Suppose $\bigcap_{i=0}^{i=n} F_{i}=\emptyset$. Let us denote by $V_{\delta}\left(F_{i}\right)$ the closed δ neighborhood of F_{i} in Δ^{n},i.e. $V_{\delta}\left(F_{i}\right)=\left\{x \in \Delta^{n} \mid d\left(x, F_{i}\right) \leq \delta\right\}$. Since the F_{i} 's are closed, we have:

$$
\bigcap_{\delta>0}\left(\bigcap_{i=0}^{i=n} V_{\delta}\left(F_{i}\right)\right)=\bigcap_{i=0}^{i=n}\left(\bigcap_{\delta>0} V_{\delta}\left(F_{i}\right)\right)=\bigcap_{i=0}^{i=n} F_{i}=\emptyset
$$

The compactness of Δ^{n} implies that there exists a $\delta>0$ such that $\bigcap_{i=0}^{i=n} V_{\delta}\left(F_{i}\right)=\emptyset$. In particular, a subset of Δ^{n} of diameter less than δ has to miss some F_{i}. Let now L be a subdivision of Δ^{n} of size less than δ (see 1.4). We construct a Sperner's labelling α, such that $v \in F_{\alpha(v)}$ for each vertex v of L. To construct such a labelling, for a vertex v we consider $<P_{i_{0}}, \ldots, P_{i_{k}}>$ the smallest face of Δ^{n} containing v. Since by hypothesis $<P_{i_{0}}, \ldots, P_{i_{k}}>\subset F_{i_{0}} \cup \cdots \cup F_{i_{k}}$, we can find $\alpha(v) \in\left\{i_{0}, \ldots, i_{k}\right\}$ such that $v \in F_{\alpha(v)}$. By Sperner's lemma, there exists a simplex τ in L labelled $\{0, \ldots, n\}$. Such a simplex τ has to meet each F_{i}-at least one vertex of τ is in F_{i}-but this is impossible by the choice of L.

3. Brouwer's fixed point theorem.

Theorem 3.1.(Brouwer's fixed point theorem). Any continuous self map $f: \Delta^{n} \rightarrow \Delta^{n}$ of the n-simplex has a fixed point.

Proof. Suppose $\Delta^{n}=<P_{0}, \ldots, P_{n}>$. We introduce the barycentric coordinates on Δ^{n} by the formula $x=\sum_{i=0}^{i=n} \lambda_{i}(x) P_{i}$, where $\lambda_{i} \in[0,1]$. The maps $\lambda_{0}, \ldots, \lambda_{n}: \Delta^{n} \rightarrow[0,1]$ are continuous. For each $i=0, \ldots, n$, the set $F_{i}=\left\{x \in \Delta^{n} \mid \lambda_{i}(f(x)) \leq \lambda_{i}(x)\right\}$ is closed. Moreover, the sets F_{0}, \ldots, F_{n} verify the conditions of the KKM lemma. In fact, if $x \in<P_{i_{0}}, \ldots, P_{i_{k}}>$ we cannot have $\lambda_{i}<\lambda_{i}(f(x))$ for each $i \in\left\{i_{0}, \ldots, i_{k}\right\}$, because this would imply the following inequalities: $1 \geq \sum_{i \in\left\{i_{0}, \ldots, i_{k}\right\}} \lambda_{i}(f(x))>\sum_{i \in\left\{i_{0}, \ldots, i_{k}\right\}} \lambda_{i}(x)=1$. By the KKM lemma, we have $\bigcap_{i=0}^{i=n} F_{i} \neq \emptyset$. But $\bigcap_{i=0}^{i=n} F_{i}$ is exactly the set of fixed points of f, since for each x in Δ^{n} we have: $\sum_{i=0}^{n} \lambda_{i}(f(x))=1=\sum_{i=0}^{n} \lambda_{i}(x)$.

Of course Brouwer's fixed point theorem is valid for any space homeomorphic to Δ^{n}, in particular it applies to the euclidean n-ball $\mathbf{B}^{n}=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq 1\right\}$, and more generally to any compact convex subset of \mathbf{R}^{n}, because such a set is homeomorphic to \mathbf{B}^{k} for some $k \leq n$.

4. Consequences.

Definition 4.1. (Retract). The subspace Y of X is called a retract of X if there exists a continuous map $r: X \rightarrow Y$ such that $r \mid Y$ is the identity. Such a map is called a retraction.

Theorem 4.2. (No retraction theorem). The sphere $\mathbf{S}^{n-1}=\left\{x \in \mathbf{R}^{n} \mid\|x\|=1\right\}$ is not a retract of the ball $\mathbf{B}^{n}=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq 1\right\}$.
Proof. (By contradiction). If $r: \mathbf{B}^{n} \rightarrow \mathbf{S}^{n-1}$ is a retraction, then $x \mapsto-r(x)$ is a self map of \mathbf{B}^{n} with no fixed point.

Corollary 4.3. If G is a bounded subset in \mathbf{R}^{n}, then $\mathbf{R}^{n} \backslash G$ is not a retract of \mathbf{R}^{n}.
Proof. (By contradiction). Without loss of generality, we can suppose that $0 \in G$. Let r be a retraction of \mathbf{R}^{n} on $\mathbf{R}^{n} \backslash G$. Since G is bounded, we can find $R>0$ such that G is contained in $B(0, R)=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq R\right\}$. It is easy to check that the map
$r: \mathbf{B}^{n} \rightarrow \mathbf{S}^{n-1}, x \mapsto r(R x) /\|r(R x)\|$ is a retraction. this is impossible by the no retraction theorem.

The next theorem is well known from general topology.
Theorem 4.4. (Tietze-Urysohn). Let X be a metric space and let F be a closed subset of X. Any continuous map $F \rightarrow \mathbf{I}^{k}=[0,1]^{k}$ can be extended to a continuous map $X \rightarrow \mathbf{I}^{k}$.

Corollary 4.5. If A is a compact subset in \mathbf{R}^{n} homeomorphic to \mathbf{B}^{k}, then $\mathbf{R}^{n} \backslash A$ has no bounded connected component. In particular, for $n \geq 2, \mathbf{R}^{n} \backslash A$ is connected.
Proof. (By contradiction). Suppose that $\mathbf{R}^{n} \backslash A$ has a bounded connected component G. We will show how to construct a retraction of \mathbf{R}^{n} on $\mathbf{R}^{n} \backslash G$, this will contradict corollary 4.3. Let $f: A \rightarrow \mathbf{I}^{k}$ be a homeomorphism (\mathbf{B}^{k} is homeomorphic to $\mathbf{I}^{k}!$); by 4.4, we can extend f to a continuous map $\bar{f}: \mathbf{R}^{n} \rightarrow \mathbf{I}^{k}$. We define our retraction r by $r \mid \mathbf{R}^{n} \backslash G=$ identity and $r \mid G \cup A=f^{-1} \circ \bar{f}(x)$. These two definitions agree on $\left(\mathbf{R}^{n} \backslash G\right) \cap(G \cup A)=A$ since $\bar{f}=f$ on A. It is clear that r restricted to each one of the two pieces $\mathbf{R}^{n} \backslash G$ and $G \cup A$ is continuous. Since A is closed, the connected components of $\mathbf{R}^{n} \backslash A$ are open; in particular $\mathbf{R}^{n} \backslash G$ and $G \cup A=\mathbf{R}^{n} \backslash \cup\left\{C \mid C\right.$ component of $\mathbf{R}^{n} \backslash A$, with $\left.C \neq G\right\}$ are closed. It follows from the previous facts that r is continuous.

If $n \geq 2$, the complement of a ball in \mathbf{R}^{n} is connected. This implies that the complementary of a bounded set can have only one unbounded component. In particular, if A is homeomorphic to \mathbf{I}^{k}, we obtain that $\mathbf{R}^{n} \backslash A$ is connected by the first part of the corollary.

