
CHAPTER 1

BROUWER’S FIXED POINT THEOREM

In this chapter, we will prove Brouwer’s fixed point theorem and draw some of its
consequences.

1 Preliminaries on simplicial complexes.

We recall some notions of PL topology which will be useful later.

Definition 1.1.a. (Simplex in Rn). Given P0, . . . , Pk (k + 1) affinely independent points
in Rn, we will denote by < P0, . . . , Pk > the convex hull of these (k + 1) points. This set
< P0, . . . , Pk > is called the k-simplex generated by P0, . . . , Pk. More generally a k-simplex
in Rn is simply any set of the form described above. We will use the word simplex if we
do not want to emphasize the dimension k of a k-simplex.

Definition 1.1.b. (Faces and boundary of a simplex). If σ is the k-simplex <
P0, . . . , Pk >, a face of σ is any simplex of the form < Pi0 , . . . , Pil

>, with ij ∈ {0, . . . , k}, j =
0, . . . , l. If we want to precise the dimension of a face τ of σ we will use the term l-face.
We use the notation τ � σ to mean that τ is a face of σ; and the notation τ ≺ σ to mean
that τ is a face of σ which is not σ. The union ∪{τ |τ ≺ σ} is called the boundary of σ
and is denoted by ∂σ.

Definition 1.1.c. (Simplicial complex in Rn). A simplicial complex in Rn is a finite
collection K of simplexes such that:

(i) σ ∈ K and σ′ � σ ⇒ σ′ ∈ K,
1
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(ii) σ1, σ2 ∈ K ⇒ σ1 ∪ σ2 � σ1 and σ1 ∪ σ2 � σ2.
The dimension of K, noted dim(K), is the maximum of the dimensions of its simplexes. The
size of K, noted size(K), is the maximum of the diameters of its simplexes. The geometric
support of K, noted |K|, is the set |K| = ∪{σ|σ ∈ K}.

Definition 1.1.d. (Subdivision of a simplicial complex). A simplicial complex L is a
subdivision of the simplicial complex K if we have the following conditions :

(i) |L| = |K|,
(ii) ∀τ ∈ L,∃σ ∈ K with τ ⊂ σ.

Exercise 1.2. If L is a subdivision of K, then dim(L)=dim(K). (Hint: a k-simplex cannot
be a union of simplexes of dimension < k.)

Exercise 1.3. If σ is a simplex show that Σ = {τ |τ � σ} is a simplicial complex. If L is a
subdivision of Σ and σ′ is a face of σ, show that M = {τ ∈ L|τ ⊂ σ′} is a subdivision of
Σ′ = {τ |τ � σ′}. (Hint: It suffices to consider the case dim(σ′) = dim(σ)− 1.)

Proposition 1.4. A given simplicial complex admits a subdivision with an arbitrarily small
size.

To prove proposition 1.4, we will introduce the barycentric subdivision and study some
of its properties.

If σ is the simplex < P0, . . . , Pl >, we will denote by B(σ) its barycenter (P0+· · ·+Pl)/(l+1).
If σ0 ≺ · · · ≺ σk is a sequence, where each simplex is a strict face of the next one, the points
B(σ0), . . . , B(σk) are affinely independent. This follows from the easily proven fact : if τ
is a strict face of σ then B(σ) does not belong to the affine subspace generated by τ . In
particular <B(σ0), . . . ,B(σk)> is a k-simplex if σ0 ≺ · · · ≺ σk.

Definition 1.5. (Barycentric subdivision). The collection of simplexes < B(σ0), . . . ,
B(σk) > where σ0 ≺ · · · ≺ σk are in the simplicial complex K, is called the barycentric
subdivision of K and is denoted by K ′.

Lemma 1.6. The barycentric subdivision of simplicial complex is itself a simplicial complex.

Proof. It is easy to prove that condition (i) in the definition of a simplicial complex is
satisfied by K ′. It remains to check that the intersection of two simplexes of K ′ is a face
of both. We will prove this by induction on the number of simplexes in K. If there is only
one simplex in K, then it is reduced to a point and K = K ′. Suppose that we have proven
the lemma for each simplicial complex having less simplexes than K. We choose a simplex
σ ∈ K, with dim(σ)=dim(K). It is easy to check that K\{σ} is a simplicial complex. By
induction K\{σ}′ is also a simplicial complex. It is clear that the simplexes of K\{σ}′ are
exactly the simplexes of K ′ for which B(σ) is not a vertex. Let now τ1 and τ2 be two
elements of K ′, and let us check that τ1 ∪ τ2 is a face of both. We consider three cases :
First case . Neither τ1 nor τ2 admit B(σ) as a vertex, then τ1 and τ2 are in K\{σ}′ and
this case is proven by induction.
Second case . Only τ1 admits B(σ) as a vertex. Let us write explicitly τ1 =< B(σ0), . . . ,
B(σk),B(σ) > and τ2 =< B(σ′0), . . . ,B(σ′l) >. Now τ1 ∩ τ2 is contained in σ′l ∩ σ which is
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a strict face of σ, since σ is of maximal dimension in K and σ′l 6= σ. It follows that
τ1 ∩ τ2 =< B(σ0), . . . ,B(σk) > ∩τ2 and we can use the first case.
Third case . τ1 =< B(σ0), . . . ,B(σk),B(σ) > and τ2 =< B(σ′0), . . . ,B(σ′l),B(σ) >. By induc-
tion < B(σ0), . . . ,B(σk) > ∩ < B(σ′0), . . . ,B(σ′l) >=< B(σ′′0 ), . . . ,B(σ′′m) >, where {B(σ0), . . . ,
B(σk)} ∩ {B(σ′0), . . . ,B(σ′l)} = {B(σ′′0 ), . . . ,B(σ′′m)}. One can check that τ1 ∩ τ2 =< B(σ′′0 ), . . . ,
B(σ′′l ),B(σ) >, because for example, each point P of σ\{B(σ)} can be written in a unique
way as P = α B(σ) + (1− α)P ′, with α ∈ [0, 1] and P ′ in the boundary of σ.

Lemma 1.7. The barycentric subdivision K ′ of a simplicial complex K is a subdivision of
K.

Proof. It is clear, by convexity of σl that we have < B(σ0), . . . ,B(σl) >⊂ σl. It remains to
check that |K| ⊂ |K ′|. Let x ∈ σ =< P0, . . . , Pk >, where σ is a simplex in K. Without
loss of generality, we can assume that x =

∑k
i=0 λiPi, with 1 ≥ λ0,≥ · · · ≥ λk ≥ 0 and∑k

i=0 λi = 1. Define σi =< P0, . . . , Pi >, for i = 0, . . . , k, and λk+1 = 0, then we have
x =

∑k
i=0(λi − λi+1)(i + 1) B(σi); from this relation we obtain that x ∈< B(σ0), . . . ,B(σk) >.

Lemma 1.8. We have size(K ′) ≤ dim K

1 + dim K
size(K).

This lemma is a trivial consequence of the next two sublemmas.

Sublemma 1.9. If σ =< P0, . . . , Pk > is a simplex in Rn, then:

diam(σ) = max
0≤i,j≤k

||Pi − Pj ||.

Proof. Let R = max0≤i,j≤k ||Pi −Pj ||. The convexity of B(Pi, R), the closed ball of radius R
around Pi shows that σ ⊂ B(Pi, R) since P0, . . . , Pk ∈ B(Pi, R). In particular, if P ∈ σ, we
have Pi ∈ B(P,R) for i = 0, . . . , k; the convexity of B(P,R) shows also that σ ⊂ B(P,R). It
follows that diam(σ) = R.

Sublemma 1.10. If τ is a face of σ, then we have:

||B(τ)− B(σ)|| ≤ dim σ

1 + dim σ
diam(σ).

Proof. We can suppose that τ =< P0, . . . , Pl > and σ =< P0, . . . , Pl, Pl+1, . . . , Pk >. We
have B(σ) − B(τ) = 1

1+k

∑k
i=0(Pi − B(τ)). Since B(τ) is the barycenter of P0, . . . , Pl, we

have
∑k

i=0(Pi − B(τ)) = 0. This implies B(σ) − B(τ) = 1
1+k

∑k
i=l+1(Pi − B(τ)), hence

||B(τ)− B(σ)|| ≤ k − l

k + 1
diam(σ).

Proof of Proposition 1.4. Since dimK ′=dimK (Exercise 1.2), we see by lemma 1.8 that if
we take the n-th barycentric subdivision K(n), we have:

size
(
K(n)

)
≤
(

k

k + 1

)n

size(K)
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where k = dim K.

2. Sperner’s lemma.

We consider ∆n the convex hull of (n + 1) affinely independant points P0, . . . , Pn in Rn.
We will also use the notation ∆n for the simplicial complex defined by ∆n together with
all its faces.

Definition 2.1. (Sperner’s labelling). If L is a subdivision of ∆n, a Sperner’s labelling
is a map α from L0, the set of vertices of L, to {0, . . . , n} such that if v ∈ L0 belongs
to the face < Pi0 , . . . , Pik

> of ∆n, then α(v) ∈ {i0, . . . , ik}. We will extend the map α
to a map defined on L by sending a simplex to the set of labelling of its vertices, i.e.
α(< v0, . . . , vk >) = {α(v0), . . . , α(vk)}.

Lemma 2.2. (Sperner’s lemma). Let L be a subdivision of ∆n, and let α : L0 → {0, . . . , n}
be a Sperner’s labelling . There exists at least one n-simplex σ in L labelled {0, . . . , n}, i.e.
α(σ) = {0, . . . , n}.

We will prove Sperner’s lemma by induction on n. We first need a sublemma.

Sublemma 2.3. Let L be a subdivision of ∆n , and τ be an (n− 1)-simplex of L, then one
of the following two cases happens:

(i) τ ∈ ∂∆n and τ is contained in exactly one n-simplex of L,
(ii) τ /∈ ∂∆n, and τ is contained in exactly two n-simplexes of L.

The proof of this sublemma, left to the reader, rests essentially on the fact that an
(n − 1)-hyperplane of Rn cuts a convex neighborhood of one of its points in exactly two
pieces.

We will prove in fact lemma 2.2 in the following stronger form:

Lemma 2.4. Under the conditions of lemma 2.2, we have:

#{τ ∈ L|α(τ) = {0, . . . , n}} ≡ 1 mod 2

Proof. We proceed by induction on n. Denote by ∆n−1 the (n−1)-simplex < P0, . . . , Pn−1 >
⊂< P0, . . . , Pn >= ∆n. The simplicial complex L1 = {τ ∈ L|τ ⊂ ∆n−1} is a subdivision
of ∆n−1 (see exercise 1.3) and moreover α|L1 is a Sperner’s labelling (with values in
{0, . . . , n− 1}), hence by induction:

#{τ ∈ Lτ ∈ ∆n−1, α(τ) = {0, . . . , n− 1}} ≡ 1 mod 2
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Let us now compute N = #{σ ∈ L|α(σ) = {0, . . . , n}} mod 2. For σ an n-simplex in L
define N(σ) = #{σ′ � σ|σ′ an (n−1)-simplex with α(σ′) = {0, 1, . . . , n−1}. For an n-simplex
σ in L, one of the following three cases happens:

(i) α(σ) 6⊃ {0, . . . , n− 1} and N(σ) = 0,
(ii) α(σ) = {0, . . . , n− 1} and N(σ) = 2,
(iii) α(σ) = {0, . . . , n} and N(σ) = 1.

We obtain from this N ≡
∑

σ N(σ) mod 2. By sublemma 2.3, the sum
∑

σ N(σ) is
equal to the “number” of (n − 1)-simplexes of L labelled {0, 1, . . . , n − 1}, where such a
simplex τ is counted once if it is included in ∂∆n, and twice if it is not. In particular,∑

σ N(σ) ≡ {τ ∈ L|τ ⊂ ∂∆n, α(τ) = {0, 1, . . . , n−1}} mod 2. Since α is a Sperner’s labelling,
the conditions τ ⊂ ∂∆n and α(τ) = {0, 1, . . . , n − 1} imply τ ⊂ ∆n−1. So finally, we get
N ≡

∑
σ N(σ) ≡ {τ ∈ L|τ ⊂ ∂∆n, α(τ) = {0, 1, . . . , n− 1}} ≡ 1 mod 2.

The following geometric form of Sperner’s lemma is due to Knaster, Kuratowski and
Mazurkiewicz.

Lemma 2.5.(KKM Lemma). Let F0, . . . , Fn be (n + 1) closed subsets of the n-simplex
∆n =< P0, . . . , Pn > verifying < Pi0 , . . . , Pik

>⊂ Fi0 ∪ · · · ∪ Fik
for each subset {i0, . . . , ik} ⊂

{0, 1, . . . , n−1} (in particular ∆n = F0∪· · ·∪Fn), then the intersection
⋂i=n

i=0 Fi is non-empty.

Proof. (By contradiction). Suppose
⋂i=n

i=0 Fi = ∅. Let us denote by Vδ(Fi) the closed δ-
neighborhood of Fi in ∆n,i.e. Vδ(Fi) = {x ∈ ∆n|d(x, Fi) ≤ δ}. Since the Fi’s are closed, we
have:

⋂
δ>0

(
i=n⋂
i=0

Vδ(Fi)

)
=

i=n⋂
i=0

(⋂
δ>0

Vδ(Fi)

)
=

i=n⋂
i=0

Fi = ∅.

The compactness of ∆n implies that there exists a δ > 0 such that
⋂i=n

i=0 Vδ(Fi) = ∅. In
particular, a subset of ∆n of diameter less than δ has to miss some Fi. Let now L be
a subdivision of ∆n of size less than δ (see 1.4). We construct a Sperner’s labelling α,
such that v ∈ Fα(v) for each vertex v of L. To construct such a labelling, for a vertex
v we consider < Pi0 , . . . , Pik

> the smallest face of ∆n containing v. Since by hypothesis
< Pi0 , . . . , Pik

>⊂ Fi0 ∪ · · · ∪ Fik
, we can find α(v) ∈ {i0, . . . , ik} such that v ∈ Fα(v). By

Sperner’s lemma, there exists a simplex τ in L labelled {0, . . . , n}. Such a simplex τ has to
meet each Fi—at least one vertex of τ is in Fi—but this is impossible by the choice of L.
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3. Brouwer’s fixed point theorem.

Theorem 3.1.(Brouwer’s fixed point theorem). Any continuous self map f : ∆n → ∆n

of the n-simplex has a fixed point.

Proof. Suppose ∆n =< P0, . . . , Pn >. We introduce the barycentric coordinates on ∆n by the
formula x =

∑i=n
i=0 λi(x)Pi, where λi ∈ [0, 1]. The maps λ0, . . . , λn : ∆n → [0, 1] are continuous.

For each i = 0, . . . , n, the set Fi = {x ∈ ∆n|λi(f(x)) ≤ λi(x)} is closed. Moreover, the sets
F0, . . . , Fn verify the conditions of the KKM lemma. In fact, if x ∈< Pi0 , . . . , Pik

> we
cannot have λi < λi(f(x)) for each i ∈ {i0, . . . , ik}, because this would imply the following
inequalities: 1 ≥

∑
i∈{i0,...,ik} λi(f(x)) >

∑
i∈{i0,...,ik} λi(x) = 1. By the KKM lemma, we have⋂i=n

i=0 Fi 6= ∅. But
⋂i=n

i=0 Fi is exactly the set of fixed points of f , since for each x in ∆n we
have:

∑n
i=0 λi(f(x)) = 1 =

∑n
i=0 λi(x).

Of course Brouwer’s fixed point theorem is valid for any space homeomorphic to ∆n, in
particular it applies to the euclidean n-ball Bn = {x ∈ Rn|‖x‖ ≤ 1}, and more generally to
any compact convex subset of Rn, because such a set is homeomorphic to Bk for some
k ≤ n.

4. Consequences.

Definition 4.1. (Retract). The subspace Y of X is called a retract of X if there exists a
continuous map r : X → Y such that r|Y is the identity. Such a map is called a retraction.

Theorem 4.2. (No retraction theorem). The sphere Sn−1 = {x ∈ Rn|‖x‖ = 1} is not a
retract of the ball Bn = {x ∈ Rn|‖x‖ ≤ 1}.

Proof. (By contradiction). If r : Bn → Sn−1 is a retraction, then x 7→ −r(x) is a self map
of Bn with no fixed point.

Corollary 4.3. If G is a bounded subset in Rn, then Rn\G is not a retract of Rn.

Proof. (By contradiction). Without loss of generality, we can suppose that 0 ∈ G. Let
r be a retraction of Rn on Rn\G. Since G is bounded, we can find R > 0 such that
G is contained in B(0, R) = {x ∈ Rn|‖x‖ ≤ R}. It is easy to check that the map
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r : Bn → Sn−1, x 7→ r(Rx)/‖r(Rx)‖ is a retraction. this is impossible by the no retraction
theorem.

The next theorem is well known from general topology.

Theorem 4.4. (Tietze-Urysohn). Let X be a metric space and let F be a closed subset
of X. Any continuous map F → Ik = [0, 1]k can be extended to a continuous map X → Ik.

Corollary 4.5. If A is a compact subset in Rn homeomorphic to Bk, then Rn\A has no
bounded connected component. In particular, for n ≥ 2, Rn\A is connected.

Proof. (By contradiction). Suppose that Rn\A has a bounded connected component G. We
will show how to construct a retraction of Rn on Rn\G, this will contradict corollary 4.3.
Let f : A → Ik be a homeomorphism (Bk is homeomorphic to Ik !); by 4.4, we can extend
f to a continuous map f̄ : Rn → Ik. We define our retraction r by r|Rn\G =identity and
r|G ∪A = f−1 ◦ f̄(x). These two definitions agree on (Rn\G) ∩ (G ∪A) = A since f̄ = f on
A. It is clear that r restricted to each one of the two pieces Rn\G and G∪A is continuous.
Since A is closed, the connected components of Rn\A are open; in particular Rn\G and
G ∪ A = Rn\ ∪ {C|C component of Rn\A, with C 6= G} are closed. It follows from the
previous facts that r is continuous.

If n ≥ 2, the complement of a ball in Rn is connected. This implies that the complementary
of a bounded set can have only one unbounded component. In particular, if A is homeomorphic
to Ik, we obtain that Rn\A is connected by the first part of the corollary.


