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ELEMENTARY PROPERTIES OF
HOLOMORPHIC FUNCTIONS

Complex Differentiation

We shall now study complex functions defined in subsets of the complex
plane. It will be convenient to adopt some standard notations which will be used
throughout the rest of this book,

10.1 Definitions 1f r = 0 and « is a complex number,

(1 Dar) ={z:lz—a| < B

is the open circular disc with center at a and radius r. Dia: ry 15 the closure of
Ma:r), and

(5] Difa;ry = {2:0 < |z —al < 1}

is the punctured disc with center at @ and radius r.
A set E in a topological space X is said to be not connected if E is the union
of two nonempty sets 4 and B such that

(2) ANB=@F=AnN B
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1f 4 and B are as above, and if ¥ and W are the complements of 4 and H,
respectively, it follows that 4 C W and B C V. Hence

3 EC VU W, EnN V=g, En W=+ @, Envn w=g.

Conversely. if open sets V and W exist such that (3) holds, il s easy 0 sce that
E is not connected, by taking 4 = £ N W, BE=EqN V.

If E is closed and not connected, then (2) shows that E is the union of two
disjoint nonempty closed sets: forif AC AU Band A N B =@, thend = A.

If £ is open and not connected, then (3) shows that E is the union of two
disjoint nonempty closed sets. namely E N Vand E N W.

Fach set consisting of a single point s obviously connected. If x € E, the
family 9, of all connected subsets of E that contamn x is therefore not empty. The
union of all members of @, is easily seen to he connected, and to be a maximal
connecied subset of E. These sels are called the components of E. Any two
components of E are thus disjoint, and E is the union of 1ts components,

By a region we shall mean a nonempty connected open subset of the complex
plane. Since each open sel () in the plane is a union of discs, and since all discs are
connected, each component of & is open. Every plane open set is thus a union of
disjoint regions. The letter { will from now on denote a plane open set.

10.2 Definition  Suppose [ is a complex function defined in . 1f z; € @ and if

() o J2) — fl)
iy LT Ig
exists, we denote this limit by f'(z,) and call it the derivative of fat zp. If f(zy) exists
for every z, € 4, we say that { is holomorphic (or analyticy in §. The class of all
holomaorphic functions in & will be denoted by H(il).
To be quite expheit. {'(zq) exists if to every € = 0 there corresponds a §>=0
such that

"”:}-_ {“”} filzp)| <€ for all z € D'{zg:8)

=2y

Thus f'(z,) s a complex number, obtained as a limit of quotients of complex
numbers. Note that f is a mapping of & into B? and that Definition 8.22 associates
with such mappings another kind of derivative, namely, a linear opeéralor on R*. In
our present situation, if (2) is satisfied, this linear operator turns out to be
multiplication by f'{zg) {regarding R? as the complex ficld), We leave it to the reader
to verify this,
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103 Remarks If f& H{2) and 2z € H($2), then also f+g £ H{2) and
fe = H(), so that H(§) is a ring: the usual differentiation rules apply.

More interesting is the fact that superpositions of holomorphic functions are
holomorphic: If f € H(&), if £y C Q. if g € H{tY) and if h = g e[ then
h & H(Q), and i can be computed by the chain rule

(1 Hizg) = 8'(flzoDf'(z0) (20 € &)
To prove this, fix zy € &, and pul wy = J(zp). Then

(2) f(2) — flzp) = 1f"(z0) + (2= — Z0)-

(3) g(w) — glwg) = [g'(wy) + (W)l (w — wa).

where e(z)} — 0 as z — zp and n(w) — 0 as w — wy. Put w = f{(z), and substitute (2)
into (33 1 = & zp.

) hiz) = hzg) _ [2'(f(ze)) + NS (z0) + elz)].

I = &p

The differentiability of f forces f to be continuous at . Hence (1} follows from {(4).

10.4 Examples Forn = 0,1, 2,....:"1s holomorphic in the whole plane. and the
came is true of every polynomial in z. One casily verifies directly that 1/z 15
holomorphic in {z:z ¥ 0}. Hence, laking g{w) = 1/wn the chain rule, we see that
if f; and f; are in H({) and & is an open subset of £ in which f, has no zero, then
i /f € H(t).

Another example of a [unction which is holomorphic in the whole plane {such
functions are called entire) is the exponential function defined in the Prologue. In
fact. we saw there that exp is differentiable everywhere, in the sense of Definition
10.2, and that exp’(z) = exp(z) for every complex z.

10.5 Power Series From the theory of power series we shall assume only one fact
as known, namely, that to each power series
]

(1) Bz —a)

a=l
there corresponds a number R € [0. x0] such that the series converges absolutely
and uniformly in D(a; 7). for every r <Z R, and diverges if z & D{a; R). The “radius
of convergence” R is given by the root test:

1/

@) % = Tt s

L]
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Let us say that a function f defined in £ is representable by power series in 8 if
to every disc air) C L there corresponds a series (1) which converges to fiz) for
all = € Ha;r).

10.6 Theorem If [ is representable by power series in Q. then f = H(Q) and |7 is also
representable by power series in 8. In fact, if

(1} fiz) g} oz — a)

for = € Dia;r), then for these z we also have

Ll

(2) iz = E] ne,(z — ay='.

=

prOOF  If the series (1) converges in D{a; r). the root test shows that the series
(2) also converges there. Take a = 0, without loss of generality, denote the
sum of the series (2) by g(z) fix w & Diair) and choose p so that
[w) << p << r I z # w, we have

(3} ﬂ'z%.‘ﬁ}ﬂ — glw) = 2 c,,[:' — :n - mu"'"]_
ol e

i

The expression in brackets is 0if n = 1. and is
=1

() (z — W) E kHJE—Izu—k—L
k=

if n > 2. 1f |z| < p, the absolute value of the sum in (4) 15 less than

(5) ain ﬂ o2

201

©) 110 _ g < 1z - Wl 3, il

=2

Since p <~ r. the last series converges. Hence the left side of (6) tends to 0 as
= —» w. This says that {(w) = g{w), and completes the proof, At

Corollary  Since ' is seen 1o satisfy the same hypothesis as [ does, the theorem

can be applied to [ It follows that [ has derivatives af all orders, that each
derivative is representable by power series in 8, and that

ﬁ;‘ .r'“{‘”? Eﬁ_"{ﬂ_”"'{ﬂ—k-l' ”‘-’.J.Z—a]"_*
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if (1) holds. Hence (1) implies that
£3) kle, = f%)a) k=012...)
se that for each a = L there is a unique sequence (e} for which (1) holds.

We now describe a process which manufactures functions that are representa-
ble by power series. Special cases will be of importance later,

10.7 Theorem  Suppose p is a complex (finite) measure on a measurahle space X, g is
a complex measuwrable function on X, § is an open set in the plane which does not
intersect (X ), and

i flz) = x‘-'IT?u}% {z € Q).

Then [ ix representable by power seriey in L.

PROCF  Suppose Da;r) C 4. Since

I=d

¢if)—a

for every z € D{u:r) and every § € X, the geometric series

(2) =

o n
{3} 2 {Z — a‘} =2 1
(@l§)—ar!  @lf) -z
converges uniformly on X, for every fixed z & D{u:r). Hence the series (3)
may be substituted into (1), and f(z) may be computed by interchanging
summation and integration. It follows that

(4) flz) = % c(z— ay" (z € Dla:r))
where

(5) s dp(i )

= Lem g 0=0L2..)

Note: The convergence of the series (4) in Dia; r) is a consequence of the
proof. We can also derive it from (3), sinee (5) shows that

X)

prtl i

(6) lea| < m=012...)
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Integration over Paths

Our first major objective in this chapter is the converse of Theorem 10.6: Every
f & H(R) is representable by power series in . The guickest route o this 15 via
Cauchy’s theorem which leads to an important integral representation of holomor-
phic functions. In this section the required integration theory will be developed: we
shall keep it as simple as possible, and shall regard it merely as a useful ool in the
investigation of properties of holomorphic functions.

10.8 Definitions If X is a topological space, a curve in X is a continuous mapping
v of a compact interval [a, f] © R' into X; here a < 8. We call [a, B] the parameier
interval of v and denote the range of ¥ by y*. Thus ¥ is a mapping. and y* is the set
of all points y(r), fora < ¢ < f5.

If the initial point y(a) of ¥ coincides with its end point y( #), we call y a closed
CUFLE.

A path is a piecewise continuously differentiable curve in the plane. More
explicitly, a path with parameter interval [« fi] is a continuous complex function y
on [a, fi]. such that the following holds: There are finitely many points s,
a =5y < 8§ < < 5 = B and the restriction of y to each interval [s;,_,.5;] has a
continuous derivative on [s;_,.5,]; however, at the points 5. .... 5, the left- and
right-hand derivatives of y may differ.

A closed path is a closed curve which is also a path.

Now suppose ¥ is a4 path, and fis a continuous function on y*. The integral of
fover y is defined as an integral over the parameter interval [a. 8] of y:

(1) [ ez = [ oo

Let ¢ be a continuously differentiable one-to-one mapping of an interval
[, i ] onto [, 8], such that gley) = o, () = B and put y, = y = q. Then v, is
a path with parameter interval [w. £ ]: the integral of f over v, is

[F fen@micod = [ sekaonvisood = [ s,

so that our “reparametrization” has not changed the integral:

(2) L Fydz = L F(z)dz.

Whenever (2) holds for a pair of paths v and v, (and for all f). we shall regard
v and v, as equivalent.

It is convenient to be able to replace a path by an equivalent one, ie., 10
choose parameter intervals at will. For instance, if the end point of y, coincides with
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the initial point of y;, we may locate their parameter intervals so that ; and v, join
to form one path v, with the property that

) fr=[1+] 1

for every continuous fon v* = % U v%.

However, suppose that [0,1] is the parameter interval of a path v, and
ity = vl —1)0 =<1t < 1. We call v, the path opposite to vy, for the following
reason: For any fcontinuous on y%§ = y*, we have

L rm@mi@d = = [ fo = )y (1 = 0de = ~ [ fees) ') ds,
so that
) L=~

From (1) we obtain the inequality

) [ s@rd] < 17t [ ol

where || |, is the maximum of |f| on y* and the last integral in {3} is (by definition)
the fengzth of .

10.9 Special Cases
(@) If @15 a complex number and » > 0, the path defined by
(1) ) = a + ret 0<t<2m
is called the pesitively oriented circle with center at @ and radius r; we have
2 = j . iy il
(2) J; f(2)dz = ir [ fa + re®)e? db,

and the length of v is 2ar. as expected.
If @ and & are complex numbers, the path +y given by

(3) vit) =a+{b—ap (D<1<1)

is the oriented interval [a. b]: its length is |b — a|, and

@ iy @Yz = (b~ a) LI fla + (b — a)]dr.
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If

a(ff— 1)+ bt — a)
=

we obtain an equivalent path, which we still denote by [a. £]. The path opposite

to fa. b] is [bal.

Let {a.b. ¢} be an ordered triple of complex numbers, let

©) n(t) =

<1< B)

A = Afa, b, c)

he the triangle with vertices at a. b, and ¢ (A is the smallest convex set which
contains a, b, and ¢), and define

(6} j;af=f[mf+j;k]f+ [mlf’

for any f continuous on the boundary of &, We may regard (6) as the definition
of its left side. Or we may regard 3A as a path obtained by joining [a, b] to [b. c]
1o [e, a], as outlined in Definition 10.8, in which case (6) is easily proved to be
true.

If {a. b, ¢} 15 permuted cychically, we see from (6} that the left side of (6)
is unaffected. If {a, b, ¢} is replaced by {a, c, b}, then the lefi side of (6) changes
sign.

We now come to a theorem which plays a very important role in function
theory.

10.10 Theorem Let v be a closed path, let @ be the complement of ¥* (relative to the
plane), and define

i1 Ind,(z) = ﬁ f%f_v (z = &)
iy z

Then Ind, is an integer-valued funciion on $ which is constant in each component of i
and which is O in the unbounded component of £L.

We call Ind,(z) the index of z with respect to y. Note that y* is compacl, hence
¥* lies in a bounded disc D whose complement D" is connected; thus 0D ligs in
some component of £, This shows that £ has precisely one unhounded component.

pROOF  Let [, B be the parameter interval of y. fix z € {1, then

T L
2) 1nd1;;;=ﬁj; ﬂg;:ﬂzds
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Since w/2wi is an integer if and only if ¢" = 1, the first assertion of the
theorem, namely, that Ind, () is an integer, is equivalent to the assertion that

@ ) = 1, where

(3) gi{t) = exp _FT}}T—?-;&} (o <1< B)

Differentiation of (3) shows that

(4) L . 1

iy yl) -z
except possibly on a finite set § where v is not differentiable. Therefore
@fly —2) is a continuous function on [o, B] whose derivative is zero in
[, B] — S. Since § is finite, /(v — z) 1s constant on [a, #]; and since gla) = 1,
we obtain

) —z

22 R = yla) = =z

(@ <1< B)

We now use the assumption that vy is a closed path, ie., that ¥ )
= yla); (3) shows that g #) = 1. and this, as we observed above, implies that
Ind (z) is an integer.

By Theorem 10.7, (1) shows that Ind, € H(f). The image of a connect-
ed set under a continuous mapping is connected (|26]. Theorem 4.22), and
since Ind, is an integer-valued function, Ind, must be constant on each
component of £

Finally, (2) shows that [Ind,(z)| < | if 2| is sufficiently large. This
implies that Ind, {(z) = 0 in the unbounded component of 2. et

Remark: If A(r) denotes the integral in (3), the preceding proof shows that
2q Ind, (z) is the net increase in the imaginary part of A{¢), as f runs from a to
£, and this is the same as the net increase of the argument of ¥7) — z, (We
have not defined “argument™ and will have no need for iL) If we divide this
increase by 2%, we obtain “the number of times that v winds around z,” and
this explains why the term “winding number” is frequently used for the index.
One virtue of the preceding proof is that it establishes the main properties of
the index without any reference to the (multiple-valued) argument of a
complex number.

10.11 Theorem  [If y is the positively oriented circle with center at a and radivs r, then

fi » 1 if |z—a| < n,
B = 0 iFlz—al >
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PROOF We take v as in Sec. 10.9(a). By Theorem 10.10, it is enough to
compute Ind (a). and 10.9(2) shows that this equals

| _dz

ih f:—lird_l
g [relyetat == L.

yz—a  2m)y

The Local Cauchy Theorem

There are several forms of Cauchy’s theorem. They all assert that if v 15 a
closed path or cycle in £, and if y and £ satisfy cerlain topological conditions, then
the integral of every f € H{§2) over yis 0. We shall first derive a simple local version
of this (Theorem 10.14) which is quite sufficient for many applications. A more
general global form will be established later.

10.12 Theorem Suppose F © H{() and F' is continuous in Q. Then
f Flizydz = 0
L

for cvery closed path y in i1

proor  IF [a, B] is the parameter interval of v, the fundamental theorem of
calculus shows that

j; Fizydz = J:E Friv())yy () dt = Fly(B)) — Flvla}) = 0,
since y{ #) = yla)

Corollary  Since " is the derivative of = i+ 1) for all integers 0 # —1, we
have

J;z"d: = ]

for every closed path ¥ ifn=0.1,2...., and for those closed paths v for which
O v*ifn==2,-3,-4.... Hf

The case n = —1 was dealt with in Theorem 100100

10.13 Cauchy’s Theorem for a Triangle  Suppose A is a closed rriangle in a plane open
set @, p € Q, fis continuous on 8, and [ € H{$ — { pl). Then

(1 [ feydz = 0.
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For the definition of 3A we refer to Sec. 10.9(c). We shall see later that our
hypothesis actually implies that f € H(&), i.c., that the exceplional point p is not
really exceptional. However, the above formulation of the theorem will be useful in
the proof of the Cauchy formula,

PROOE  We assume first that p & A. Let a, b, and ¢ be the vertices of A, let o',
b, and ¢ be the midpoints of [b,¢]. [c.a], and [a, b]. respectively. and consider
the four triangles &/ formed by the ordered triples

(2) fa.c'.B') that.c'). {e.b.a}. o', 8.c),

If J is the value of the integral (1), it follows from 10.9(6) that

4
(3) = 2)dz.
4 jgt fm" "r{ }d

The absolute value of at least one of the integrals on the right of (3) is
therefore at least /4. Call the corresponding triangle 4, . repeat the argument
with 4, in place of A, and so forth. This generates a sequence of triangles 4,
such that A 3 A, D 4; D -- -, such that the length of 84, is 27"L, if L is the
length of #4, and such that

) Ml < TU-Mf(z}dzl (i FLE b

There is a {unique) point z, which the triangles A, have in common. Since A
is compact, z; € A, so fis differentiable al z;.
Let € == 0 be given. There exists an r = 0 such that

(3) |f(z) = J(zo) — f2o)0z — 2p)| < €lz — 2ol

whenever |z — z4| < r. and there exists an n such that |z — zg| < r for all
z € A,. For this n we also have |z — 55| < 27"L for all z € A,. By the
Corollary to Theorem 10.12,

©) j;m_ﬁz}dz = J‘M_ [f(z) = fizg) — f'(z0){z — Zp)ldz,

s0 that (5) implies

) fio JGde] < @ Lp.

and now (4) shows that [J| < «[?. Hence J = 0if p & A.

Assume next that p is a vertex of A, say p = a. If a, b, and ¢ are collinear,
then (1) is trivial, for any continuous f. If not. choose points x £ [e, B] and
v € [a.¢], both close to @, and observe that the integral of fover d41s the sum
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of the integrals over the boundaries of the tnangles {a, x. ¥}, {x. by}, and
{b,c.p). The last two of these are 0, since these triangles do not contain p.
Hence the integral over 94 is the sum of the integrals over [a, x]. [x,v], and
| » a]. and since these intervals can be made arbitranly short and f1s bounded
on A, we again obtain (1)

Finally, il p is an arbitrary point of A, apply the preceding result to
fa, b, gt (b, pt, and {e.a. p} to complete the proof, A

10.14 Cauchy’s Theorem in a Convex Set  Suppose @ is a convex open set, p € 1,
fis continuous on @, and f € H( — { p}). Then f = F’ for some F € H(). Hence

(n J;f[z}dz =0

for every closed path y in &,

rroOF Fix a £ 1. Since £ is convex, £ contains the straight line interval
from a to z for every = £ Ll so we can define

2) Fe) = [ fE)dE ¢ ).

For any = and z, © £, the triangle with vertices at a. z,. and = lies in £2; hence
F(z) — Fizg) is the integral of f over [zy.z]. by Theorem 10,13, Fixing 24, we
thus ohtain

(3) Flz)— Flz) . |

[ L)~ Pl

L — Ip 3'_2&[

if z % z4. Given ¢ = 0, the continuity of f at z; shows that there isa § > 0
such that |f(£) — fizg)| < € if |£ — 23| <C 6; hence the absolute value of the
left side of (3) is less than € as soon as |z — 5| <7 8. This proves that f = F".
In particular, £ € H(f}). Mow (1) follows from Theorem 10.12. FEE

10.15 Cauchy’s Formula in a Convex Set  Suppose v is a closed path in a convex epen
set @, and f = H(R). Ifz € & and z & y*, then

() o) tndyge) = - [ £ELa

g2

£

The case of greatest interest is, of course, Ind (z) = 1.

prooF  Fix z so that the above conditions hold, and define
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t—=z
F(z) iEE -z,

(2) gl = {ﬂf’?—_ f) if¢e iz,

Then g satisfies the hypotheses of Theorem 10.14. Hence

1
3) Efx(ﬁ]d«i‘ -
T

If we substitute (2} into (3) we obtain {1). i

The theorem concerning the representability of holomorphic functions by
power series is an easy consequence of Theorem 10.15, if we take a cirele for v

10.16 Theorem  For every apen set 8 in the plane, every | &= H(i) is representable by
power series in 1.

PROOE Suppose f € H(RQ) and Dia:R) C Q. If vy is a positively oriented
circle with center al a and radius r <= R, the convexity of fa: R) allows us to
apply Theorem 10.15: by Theorem 10.11, we obtain

1
(1 Jzy = 5 ;{%d-f (z £ Na;r)).
,, z

But now we can apply Theorem 10.7, with X = [0.27]. ¢ = v, and
du(ty = flyle)yy'(1)dr, and we conclude that there is a sequence {c,} such that
=
@) f@) = 3 alz—ay  (z € Dlair)).

The uniqueness of {¢,} (see the Corollary to Theorem 10.6) shows that the
same power series is obtained for every r <7 R (as long as a is fixed). Hence
the representation (2) is valid for every z & Dia: By, and the proof is
complete, H
Corollary  If [ & H(L), then [* & H({l).

prooF  Comhbine Theorems 10.6 and 10.16,

The Cauchy theorem has a useful converse:

10.17 Morera's Theorem  Suppose [ is a continuous complex function in an open set £2
such that

[, fydz = 0
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for every closed triangle & C ©. Then f € H({).

prooF Let I be a convex open set in £ As in the proof of Theorem 10.14,
we can construct F € H(V) such that F’ = f. Since derivatives of holomor-
phic functions are holomorphic (Theorem 10.16), we have f € H(V). for every
convex open ¥ C I hence f € H(&). fES

The Power Serics Representation

The fact that every holomorphic function is locally the sum of a convergent
power series has a large number of interesting consequences. A few ol these are
developed in this section.

10.18 Theorem  Suppose @ is a region, [ & H{). and

i1 Zif) = {a € 2:flay = 0}.

Then either Z(f) = & or Z(f) has no limit point in . In the latier case there
corresponds to cach a € Z( [ ) a unigue positive integer m = mila) such that

{2} fiz) =z —a)"glz) (z €0)

where g = H(R) and glay 7 02 furthermore, Z{{ ) is at most countable.

{We recall that regions are connecled open sets.)

The integer m is called the order of the zero which f has at the point a. Clearly,
Z{fy =1 if and only if fis identically 0 in @, We call Z([) the zero ser of f
Analogous results hold of course for the set of a-points of f.i.e., the zero set of f — o
where « 15 any complex number.

prOOF  Let A be the set of all limit points of Z( f ) in &. Since fis CONLNIOLS,

7 I et

Fix a & Z(f). and choose r > 0 so that D{a;r) C 2. By Thecrem
10.16,
(3} fiz)y = Eﬂ ¢ (z — a)’ (z & D{a;r)).

There are now two possibilities. Either all ¢, are 0, in which case Dia:r) C A
and @ is an interior point of A, or there is a smallest integer m [necessarily
positive, since f(a) = 0] such that ¢, # 0. In that case. define

(z — a)y ™" f(2) (z € 2 — {a}),
ziz) = "

(z = a).

4)
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Then (2) holds. It is clear that g & H(2 — {a}). But (3) implies

5) 50 = 2 e —at @ € D)),

Hence g © H(D{a; r)), so actually g £ H(E).

Moreover. gia) # 0. and the continuity of g shows that there is a
neighborhood of @ in which g has no zero. Thus a is an isolated point of Z( 1),
by (2).

If a = A, the first case must therefore occur. 50 A is open. If B
— @ — A, it is clear from the definition of 4 as a set of limit points that B is
open. Thus £ is the union of the disjoint open sets 4 and B. Since 2 s
connected, we have either 4 = 8, in which case Z(f) = 2, or 4 = @&. In the
Jatter case, Z( f) has at most finitely many points in each compact subset of
1. and since @ is o-compact, Z( ) is at most countable. H

Corollary  If [ and g are holomorphic functions in a region (& and if f(z) = g{2)
Jor all z in some set which has a limit poini in Q. then f(z) = g(z) foraliz € &

In other words. a holomorphic function in a region £ is determined by
its values on any set which has a limit point in {. This is an important
uniqueness theorem.

Note: The theorem fails if we drop the assumption that € is connected:
If § = 2, U 2. and 2, and £, are disjoint open sets, put { = 0 in &, and
f=1linf.

10.19 Definition 1f @ & @ and f € H(2 — {a}). then fis said to have an isolated
singularity at the point a. If f can be so defined at « that the extended function is
holomorphic in £, the singularity is said to be removable.

10.20 Theorem  Suppose f € H(R — (a}) and f is bounded in D'(a; r), for some r = f).
Then [ has a removable singularity at a.

Recall that Di{a:r) = {2:0 < |z — &) < 1}

prooF Define hla) = 0, and h(z) = (z — a)*f(z) in & — {a}. Our bounded-
ness assumption shows that h'(a) = 0. Since h is evidently differentiable at
every other point of £, we have h € H(R2), so

hiz) = ij"z ¢z = a)’ {(z € Dia:r)).
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We obtain the desired holomorphic extension of f by setting fa) = ¢;. for
then

ftzy = gﬂ coale —aYyt (g€ Dlair))

1021 Theorem [fa € @ and f € H(Q — {a}), then one of the following three cases
sl ocenr?

(@) [ has a removable singularity at a.
(b)  There are complex numbers ¢, . ... O, Where mis a positive integer and ¢, 7 0,
such that

m

1T =

k=]

has a removable singularity ar a.
(¢} Ifr > Oand Dia;r) C 2, then f(D'(air)) is dense in the plane.

In case (A), [is said to have a pole of order m at a. The function

> alz—al™,
k=1

a polynomial in (z — a) ', is called the principal part of fat a It is clear in this
situation that |f(z)| — sc as z = a.

In case (c). fis said to have an essential singularily at a. A slatement equivalent
to (¢} is that to each complex number w there corresponds a sequence {z,} such that
z, — aand f(z,) - was n — o0,

pROOF  Suppose (¢) fails. Then there exist r 2> 0.8 = 0. and a complex
number w such that [f(z) — w| > & in D'(a:r). Let us write D for D{a:r) and
D for {a; r). Define

|
(1) glz) = ﬁ}}—_w (z & D).

Then g & H(I') and |g| < 1/8. By Theorem 10.20. z extends to a holomor-
phic function in £

If g(a) # 0, (1) shows that fis bounded in D(a:p) for some p = O
Hence (a) holds. by Theorem 10.20,

If £ has a zero of order m > | at a, Theorem 10,18 shows that

(2) gz = —a"gnlx) (D)
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where g, € H{D} and g(a) # 0. Also. g has no zero in £, by (1). Put
h = 1/g, in D. Then & & H(D), h has no zero in D, and

(3) JEI—w =iz —a"Mz) z.€ D)

But ki has an expansion of the form

(4) hiz) = i bz —a)" (£ €E D),

with by # 0. Now (3) shows that (b) holds, with ¢, = n de= 1w
This completes the proof. i

We shall now exploit the fact that the restriction of a power series
N .0z — a)* to a circle with center at « is a trigonometric series.

10.22 Theorem  {f

oo

(n M) = 3 ez —a)"  (z € D{a;R))

a={)
and if 0 < ¢ <7 R, then

(==

(2) > leafrtn = %L fla + re®)[ do.

r=i)

PROOE  We have
e
(3) fla+ re®) =5 o et
=i}
For r < R, the series (3) converges uniformly on |-, 7. Hence
i) O %f fla + re®)ein? 44 =012 _ .}
and (2) is seen to be a special case of Parseval's formula.
Here are some consequences:
10.23 Liowville’s Theorem  Every bounded entive function is constant.

Recall that a function is entire if it is holomorphic in the whole plane,

PROOF  Suppose f is entire, [f(z)| <C M for all z, and f(z) = ¥ ¢, 2" for all =.
By Thecrem 1022,
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2 |eafrim < M2
m=
for all », which is possible only if ¢, = O foralln > L i

10.24 The Maximum Modulus Theorem  Suppose L s a region, [ & H{), and
Dia;ry © S Then

v (@) < maxifla + re”).

Equality occurs in (1) if and only if [ is constant in .

Consequently, | /] has no local maximum at any point of £, unless fis constant.

prROOF  Assume that |[fla + re®) < |[fla) Tor all real 8. In the notation of
Theorem 10022 1t follows then that

“ﬁ:ﬂ eafr® < |f@f = |aof.

=
Hence ¢ = ¢; = ¢3 = --+ = 0, which implies that f(z) = fla) in Dia;r).
Since §1 is connected, Theorem 10,18 shows that fis constant in . i

10.25 Theorem If i is a positive integer and
P(z) =z"+a,z7" +---+az + a,

wiltere ay. . . .. a, | are complex wumbers, then P has precisely n zeros in the plane,

L.

Of course, these zeros are counted according to their multiplicities: A zero of
order ., say, is counted as m zeros. This theorem contains the fact that the complex
ficld is algebraically closed. i.e.. that every nonconstant polynomial with complex
cocfficients has at least one complex zero.

PrROOF Choose r = | + 2|ag| + lay| +--- +a.|- Then
|P{re®)| > |P(0)] 0 <8< 2m)

If P had no zeros. then the function f = 1/P would be entire and would
satisfy | f(0)] == |fire®) for all §, which contradicts the maximum modulus
theorem. Thus P(z ) = 0 for some z;. Consequently, there is a polynomial (0,
of degree n — 1, such that P(z) = {(z — z;)(Nz). The proof is completed by

induction on a. HA

10.26 Theorem (Cauchy’s Fstimates) [f [ € H(D{a: RB)) and [fl2)] << M for all
2 = Na; R). then
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o @ <2 = 1.23...)

pROOF  Foreach r << R, each term of the series 10.22(2) is bounded above by
M2 1

If we take a = 0, R = 1, and f(z) = 2", then M = |, F"{0Q) = n!, and we
see that (1) cannot be improved.

10.27 Definition A sequence { f;} of functions in & is said to converge to § uniformiy
on compact subsets of & 1if to every compact K C £ and to every € = 0 there
corresponds an N = N(K, ) such that [f{z) — f(z)| < eforallz: € Kifj > N.

For instance. the sequence {z"} converges to 0 uniformly on compact subsets
of I{0; 1), but the convergence is not uniform in X0; 1).

It is uniform convergence on compact subsets which arises most naturally in
connection with limit operations on holomorphic functions. The term “almost
uniform convergence™ is somelimes used for this concept.

10.28 Theorem Suppose f & H(Q), for j = 1,2.3 and f; — f uniformly on
compact subsets of 8. Then f & H(&), and [ — [ wniformly on compact subsets of 1.

PROOF Since the convergence is uniform on each compact disc in &, [ is
continuous. Let A be a triangle in £2. Then A 15 compact, so

[, feydz = Jim I Si)dz = 0.

by Cauchy’s theorem. Hence Morera’s theorem implies that f € H{2).

Let K be compact, K C §2. There exists an r 2> 0 such that the union E
of the closed dises D(z; r), for all z € K. is a compact subset of £, Applying
Theorem 10.26 to f = f., we have

f@=fi < -flle (= € K)

where || ]|z denotes the supremum of [f| on £. Since f; — funiformly on £, it
follows that f — [* uniformly on K. M

Corollary  Under the same hypothesis, [ — f' uniformly, asj —» oc. on every
compact sei K © 8, and for every positive integer n.

Compare this with the situation on the real line, where sequences of
infinitely differentiable functions can converge uniformly to nowhere differen-
tiable functions!
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The Open Mapping Theorem
If & is a region and [ © H{L), then f(52) is cither a region or a point.

This important property of holomorphic functions will be proved, in more
detailed form, in Theorem 10.32.

10.29 Lemma  [f f © H(i2) and g is defined in 1 % 8 by

{ ft2) = f(w)

if sk z,

if w=z,

then g ix continuous in £ % i1

rrROOE  The only points (z,w) € 2 X & at which the continuity of g is
possibly in doubt have z = w.

Fix 2 € £ Fix € > 0. There exists r = 0 such that D{a;r) C & and
[F(5Y—fla) < eforall § € Masr). If z and w are in Da; r) and if

ey = (1 — )z + 1w,

then {1}y & DHa; ey for 0 < ¢+ < 1, and

gz — gle.a) = [ 1 G@0) = [ d.

The absolute value of the integrand is <7 e for every r. Thus [g{z,w) — gla. a)|
< € This proves that g is continuous at {a, a). Y

10.30 Theorem Suppose ¢ € M), 2y € . and ¢'(zp) & 0. Then & contains a
neighborhood V' of =y such that

(a) o ix one-to-one in V)
by W = () is an open set, and
(¢} ifds W — ¥V is defined by JHgpl2)) = z, then 4 € H(W).

Thus q: ¥ — W has a holomorphic inverse.

PROOF  Lemma 10.29, applied to ¢ in place of f, shows that {} contains a
neighborhood V' of z; such that

1
0 #2) = @zl = 5190l 1 — 2

il zy € Fand =, € V. Thus (a) holds, and also
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(2) gz) = 0 (z € ¥

Ta prove (b), fix { € V. Choose r > 0 so that I({; ) C V. By (1) there
exists § = U such that

(3) lo(§ +re®) — @) > 28 (= <0 < 7).

Let o be a complex number which is not in f{F). Then h = 1/(a — @) 15
holomorphic in V. Since

26 < Jo = @(f)] + o — @i + re?)|

for all #, the maximum modulus theorem implies

_ !
— | i N T
iy < SEP.Mf it 28 — ja — (&)’

1
a = g({)]
Hence |a — of{) = &
This proves that (V) = D(g({ ); §). Since { was an arbitrary point of I,
@ '} is open.
To prove (c). fix wy € W, Then ¢{z,) = w, for a unique z € V. If
w = Wand J{w) = z & V. we have

(4) W —w) -y
w— 2) — iplz)’

By (1), z — z; when w — w. Hence (2) implies that '{(w) ) = 1/g'(z, ). Thus
¢ E H(W), it

10.31 Definition For m = 1,2, 3. ... . we denote the “m'™ power [unction™
Zo =4

Each w # 0 is m,(z) for precisely m distinet values of z: If w = re?, r = 0,
then 7, (z) = wif and only if z = plimeidediaym b | 0

Note also that each =, is an open mapping: I V is open and does not contain
0, then = (V) is open by Thecrem 10.30. On the other hand, = {D00:r))
= D{0; r™).

Compositions of open mappings are clearly open. In particular. T, @ i5 open,
by Theorem 1030, if ¢° has no zero. The following theorem {which contains the
more detailed version of the open mapping theorem that was mentioned prior to
Lemma 10.29) states a converse: Every nonconstant holomorphic function in a
region is locally of the form «, = ¢, except for an additive constant,

1032 Theorem Suppose £ is a region, f & H{). [ is not constant, Iy = 8, and
wy = flzp). Let m be the order of the zere which the Sunction § — wy has at 2.
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Then there exists a neighborhood V of zy, V © Q. and there exisis o = HiVY,
such that

(a) flz}) = wy + [p(2)]" forallz € V¥,
(B5) @ has ne zero in V and ¢ is an invertibile mapping of V ento a dise D{0; r).

Thus f = wy = =, o @ in V. It follows that fis an exactly m-to-1 mapping of
V= {zp} onto D'{wyir™). and that each wy £ f{2) is an interior point of f(§2).
Hence f(£) is open.

PROOF  Without loss of generality we may assume that @ is a convex
neighborhood of z; which is so small that f(z) = wy if 2 € 8 — {z}. Then

(1 f@y=wy=1(z—2)"2(z) (z€Q)

for some g € H(£) which has no zero in £2. Hence g'/g € H(2). By Theorem
10.14, g'/g = i for some h € H(2). The derivative of g - exp(—#)is 0in .
Il h is modified by the addition of a suitable constant. it follows that
£ = expih). Define

hiz)

(2) glz) = (z — zn}exp? (z = ).

Then (a) holds, for all z & 2.
Also, glzy) = 0 and ¢'(z,) # 0. The exisience of an open set V' that
satisfies (#) follows now from Theorem 10.30. This completes the proof. /7

The next theorem is really contained in the preceding results, but it seems
advisable to state 1t explicitly,

W33 Theorem  Suppose @ is a resion, f € HQ), and f is one-to-one in . Then
Fz) # 0 for every = € 12, and the inverse of f is holomorphic,

FROOF  IF f'(zy) were O for some z; & R, the hypotheses of Theorem 10.32
would hold with some m = 1, so that fwould be m-to-1 in some deleted
neighborhood of z,. Now apply part (¢) of Theorem 10.30. A

Note that the converse of Theorem 10.33 is false: If f(z) = ¢°, then Fiz) =0
for every z, but f is nol one-to-one in the whole complex plane.

The Global Cauchy Theorem

Before we state and prove this theorem, which will remove the restriction to
convex regions that was imposed in Theorem 10.14, it will be convenient to add a
little to the integration apparatus which was sufficient up to now. Essentially, it is a
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matter of no longer restricuing ourselves to integrals over single paths, but to
consider finite “sums™ of paths instead. A simple instance of this occurred already
in Sec. 10.9(c).

10.34 Chains and Cycles Suppose v,---, 7y, are paths in the plane, and put
K = %% U--- U v*. Each ¥, induces a linear functional %; on the vector space
(&), by the formula

(1) W = [ S
Define
2) =5 4+,

Explicitly, T'(f) = %(f) +--- +%(f) for all f € C(K ). The relation (2) suggests
that we introduce a “formal sum”™

(3) P gy Fswudbog
and define
@) [ fzrdz = T().

Then (3) is merely an abbreviation for the statement

5) foferds = 3 [ ford: (f € €

Mote that (5) serves as the definition of its left side.

The objects I' so defined are called chains.

If 2 is an open set, if v* € Qfor 1 < < n, and if [ is defined by (3), then
I is a chain in .

If (3) holds and each v, is a closed path, then 1" is called a eyele.

A chain may be represented as a sum of paths in many ways. To say that

pod et Eorky
means simply that

2 [ Jd: =3 | 1)

for every f that is continuous on y% U --- U % U 8% U --- U 8%. In particular,
a cycle may very well be represented as a sum of paths that are not closed.
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If (3) holds, we define
(6) el Tl

If Tis a cycle and o & ['*, we define the index of a with respect to I by

(7) T

] =
dmijrz— o

just as in Theorem 10.10. Obviously, (3) implies

(8) Indp(a) = é Ind, (o).
im=1

If each v, in (3) is replaced by its opposite path (see Sec. 10.8), the resulting
chain will be denoted by —I". Then

©) [ frdz = - [ fydz (S € CT*)).

In particular, Ind_p{a) = —Indp(a)if I' is a cycle and o & T*.

Finally, note that chains can be added and subtracted in the obvious way. by
adding or subtracting the corresponding functionals: The statement ' = [ + I
means

(10) Jotevds = [ ferdz + [ feydz

for every f € C(I'% L 'S}

10.35 Cauchy’s Theorem  Suppose f = H{2), where L is an arbitrary open set in the
complex plane. If T is a cyele in £ that satisfies

(1) Indp(a) = 0 for every o not in il

L[ fiw)

il : - -
P l-w—zd“ forz e Q=T

fi2) - Indp(z) =

[ reraz = 0.

If Ty and 1} are cycles in & such that

Indp (@) = Indg («)  for every a not in 2,
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then

(5) fi ey = [ )

prOOEF  The function g defined in £ > & by

s g {f—{w] — /@) if w == =z,

W =z

Fz) ifw =2,

(6)

is continuous in & % € (Lemma 10.29). Hence we can define

(7) Az} = ﬁﬁg(sz}dw (z € Q).

For z € £ — I'*, the Cauchy formula (2) is clearly equivalent to the assertion
that

(8) hz) = 0:

To prove (8). let us first prove that & € Hi{l). Note that g is uniformly
continuous on every compact subset of @ X . 1f 2 € 0,z = 8 and z, 2,
it follows that g(z,,w) —+ g(z.w) uniformly for w & ['* (a compact subset of
). Hence hiz,) — h(z). This proves that h is continuous in &, Let A he a
closed triangle in 2. Then

(9) J;} Kty = z]?fr (th[:,w}dz) i

For each w £ £, z — g(z.w) is holomorphic in £. (The singularity at z = w
is removable.) The inner integral on the right side of (9) is therctore O for every
w € [*. Morera’s theorem shows now that i € H(i2).

Next, we let €, be the set of all complex numbers = for which
Ind;(z) = 0, and we define

(10) e e A
T
If 2 & © 2. the definition of £, makes it clear that hyiz) = hiz). Hence
there is a function ¢ € H(R U £;) whose restriction to & is h and whose
restriction to 2, is Ay .
Our hypothesis (1) shows that £, contains the complement of i, Thus ¢
is an entire function. @, also contains the unbounded component of the

complement of ['*, since Indp(z) 15 O there. Hence
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{11) lim =) = lm Az} = Q.

fel-»o0
Liouville's theorem implies now that g{z) = 0 for every z. This proves (%), and
hence (2).
To deduce (3) from (2, pick @ £ & — ['* and define Fiz) = (z — a) flz).
Then

1 : l Fiz)
¥ = ¥ — - — [ . % =
(12 zm_.[__.l'{_}d._ 2-:."_[; e af.‘._ Fia) - Indpia) 0,
because Fila) 0,
Finally, (5} follows from (4) if (3) is applied to the eyele I' = I} — I,

This completes the proof.

10.36 Remarks

(er}

{f)

()

If v is a closed path in a convex region § and if & & &, an application of
Theorem 10.14 to f(z) = (z — a)~' shows that Ind,(a) = 0. Hypothesis (1) of
Theorem 10.35 is therefore satisfied by every cycle in £ if £ is convex. This
shows that Theorem 10.35 generalizes Theorems 10.14 and 10.15.

The last part of Theorem 10.35 shows under what circumstances integration
aver one cycle can be replaced by integration over another, without changing
the value of the integral. For example, let & be the plane with three disjoint
closed dises D, removed. IF I, v, 2. 72 are positively oriented circles in &
cuch that I surrounds D, U D; U D5 and v, surrounds D, but not D; for

4 == i, then

J;_j'[:}a": - .?::u J;r flz)ez

for every [ € H{).

In order to apply Theorem 10.35, it is desirable to have a reasonably efficient
method of finding the index of a point with respect 1o a closed path. The
following theorem does this for all paths that ocour in practice. [l says,
essentially, that the index increases by | when the path is crossed “from right
to left.” If we recall that Ind, {a) = 0 if o is in the unbounded component of
the complement W of ¥*, we can then successively determine Ind (o) in the
ather components of W, provided that W has only finitely many components
and that ¥ traverses no arc more than once,

1037 Theorem Suppose v is a closed path in the plane, with parameter interval [o. Bl
Suppose o < w < v < B, a and b are complex numbers, |bl = r > 0, and
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M v)y=a—5bylv)y=a+b
(i) |vis) —a| < rifand only if u < 5 < v,
(ii) |v(s) —al =rifandonly if s = wors = v

Assume furthermore that Dia; r) — v* i the union of two regions, D, and D_,
labeled so that a + bi & D, anda — bi € D_. Then

Ind (z) = | + Ind,(w)

ifz € D, andw e D_,
As y(t) traverses D{a;r) from a — b to a + b, D_1s “on the right” and D, is
“on the left™ of the path.

prooF  To simplify the writing, reparametrize y so that ¥ = 0 and v = o,
Define

C(s) = a — be" 0 < s < 2a)

Cis) D<s<a)
i — 1) = & = 2

e {*r(s} 5 <7

) =

Ci5) 2 2w}

&”_{vis} s<lorr<s<f)
T Ve £ <7

Since w(0) = C(0) and y(7) = Clw), f, g, and k are closed paths.

W EC Da;r), |§—al=r, and ¢ & E, then E lies in the disc
D{2a — {; 2r) which does not contain . Apply thisto E = g*. { = a — bi. o
see [from Remark 10.36(a)] that Ind (a2 — ki) = 0. Since D_ is connected and
D does not intersect g*, it follows that

(1) Ind (w) = 0 ifwe D .

The same reasoning shows that

(2) Ind{z) = 0 iz e D,.
We conclude that

Ind, (z}) = Ind,(z} = Ind,(w)
= Indq(w) + Ind (w) = | + Ind, (w).
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The first of these equalities follows from (2), since h = ¥y + f. The second
holds because = and w lie i D(a; r), a connected set which does not intersect
J*. The third follows from (1), since # +g = C + y. and the fourth is a
consequence of Theorem 10.11. This completes the proof. A

We now turn to a brief discussion of another topological concept that is
relevant Lo Cauchy’s theorem.

1038 Homotopy Suppose v and ¥, are closed curves in a lopological space X,
both with parameter interval 7 = [0. 1] We say that v and v, are X-homotopic if
there is a continuous mapping H of the unit square / ! = 3 JFinto X such that

(1) His.0) = yo(s),  Hs 1) =y, HO.0) = H(L1)

forall s = Jand ¢ € [. Put v,(s) = H(s,¢). Then (1) defines a one-parameter family
of closed curves , in X, which connects vy, and v, . Intuitively, this means that y; can
be continuously deformed Lo v, within X,

I v, is A-homotopic 1o a conslant mapping 7y, (i.e. if ¥} consists of just one
point), we say that vy is aull-homotopic in X. If X is connected and if every closed
curve in X is null-homotopic, X is said to be simply connecied.

For example, every convex region £ is simply connected. To see this, let yq be
a closed curve in 2, fix z, € {1, and define

(2) His. 1) = (1 — thvls) + 15 <s<1, B<r< )

Theorem 10.40 will show that condition (4) of Cauchy’s theorem 10,35 holds
whenever [ and T} are {}-homotopic closed paths. As a special case of this, note that
condition (1) of Theorem 1035 holds for every closed path T in @ if @ is simply
connecied.

10.39 Lemma [If vy and v, are closed paths with parameter interval [0, 1], if o is a
complex number. and if

(1 () — o) < la =) O=s<T)

then Ind, («) = Ind, (a).

prooF  Note first that (1) implies that & & 3 and a & 5. Hence one can
define y = (1, — @)/(yg — «). Then

G

2) T | ||
A i — & Yo &
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and |1 — ¥| < 1, by (1). Hence y* C D(1: 1), which implies that Ind (0) = 0.
Integration of (2) over [0,1] now gives the desired result. il

10.40 Theorem If I, and 1} are -homotopic closed paths in a region 4. and ifoa & 2,
then

(n Indy; (o) = Indp ().

proOF By definition, there is a continuous f: 1* — @ such that

(2) His, 0) = L(s) Hz 1) = Lis, H(0,1) = H(l,t).
Since I? is compact, so is H(/?). Hence there exists € > ) such that
(3) le — H(s,1)] >2 if (1) € P

Since H is uniformly continuous, there is a positive integer 7 such that
4y |Hiz, 1) — H(&, 1) < € if ls=s1+r=2| < Llin

Define polygonal closed paths vy

(5) ?k{.r}=H(£,%){m+ | —f}+H("_;—1,§),;;_m}

fi—1<ns<iandi=1 n. By (4) and (3),

(6) I (s) — His, k/m)| < e (h=10...., 0 5 1)
In particular, taking & = O and k = n,

(7) lvals) — B < & [ls) — L)l < e

By (6) and (3),

(&) b — ()| > ¢ =0n;ml <5 < 1)
On the other hand, (4) and (5) also give

(9) M) = )| <e  Ek=l...,m0<s< D

Now it follows from (7), (8), (9), and n + 2 applications of Lemma 10.39
that a has the same index with respect to each of the paths Ios tos 00000 Yo
I; . This proves the theorem. it
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Note: If T(s) = His, 1) in the preceding prool, then each [} is a closed curve,
but not necessarily a path, since H is not assumed to be differentiable. The paths
were introduced for this reason, Another (and perhaps more satisfactory) way to
circumvent this difficulty is to extend the definition of index to closed curves. This
is sketched in Exercise 28,

The Calculus of Residues

10.41 Definition A function [ is said 1o be meromorphic in an open set & if there 15
aset A C £ such that

{a} A has no limit point in &
by fe HQ— 4.
{¢) fhasa pole at cach point of A.

Note that the possibility 4 = @ is not excluded. Thus every [ & H{{) is
meromorphic in 4.

Mote also that {a) implies that no compact subset of £ contains infinitely many
points of 4, and that A is therefore at most countable.

If fand A are as above. if @ € 4, and if

[

(1) Oy =, ez —ay™"
¥

is the principal part of f at a, as defined in Theorem 1021 (ie., if f— @ has a
removable singularity a). then the number ¢, is called the vesidue of [ at a:

{2} v Res(f:a).

If Tis a cycle and @ & %, (1) implies

I
(3) 2-'.'."'" (Nz)dz = o Indp{a2) = Res(Q:a)lndy(a).
wi tp

This very special case of the following theorem will be used in its proof.

10.42 The Residue Theorem Suppose fis a meromorphic function in 8. Let A be the
ser of points in Q@ at which [ has poles. If U is a cvele in 82 — A such that

(1} Indpla) = 0 Jor all o & 0,

then

2-:',',1' JI..-”:ME = E Res( f a)tIndpla).

@A
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proOF Let B = {a € A:Indp(a) # 0}. Let W be the complement of T*.
Then Indy (z) is constant in each component ¥ of W.If Vis unbounded, or if
I intersects £°, (1) implies that Indp(z) = 0 for every z € V. Since A has no
limit point in £, we conclude that B is a finite set.

The sum in (2), though formally infinite, is therefore actually finite.

Letay, . - a, be the points of B, let ¢y, . ... 2, he the principal parts
of fat dyy.o a,and put g = f— (@ +---+@,). (If B=(J, a possibility
which is not excluded, then g = £} Put &, = & — (4 By, Since g has
removable singularities at a;, ..., d,, Theorem 10.35, applied to the function
# and the open set £, shows that

(3) JLetrdz = 0.

Hence

1 | - ;

and since [ and @, have the same residue at a,, we obtain {2). M

We conclude this chapter with two typical applications of the residue theorem.

The first one concerns zeros of holomorphic functions. the second is the evaluation
of a certain integral.

10.43 Theorem Suppose v is a closed path in a region L, such that Ind, (e) = O for
every o not in . Suppose also that Ind, () = D or 1 for every o & & — v*, and let i
be the set of all o with Ind,(a) = 1.

For amy [ € H(Q) let N; be the number of zeros of [in 1. counted according lo

their multiplicities. '

{af)

(b}

If f & H{) and f has no zeros on y* then

L iz

(1 .y e o

’ N =51 T = @
where T = fe .

If also g & H(E) and

(2) () — gl2)) < |f(2)| for glf.z & v*

then .-"v."N = .f"-}.
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Part (b) is usually called Rouché’s theorem. It says that two holomorphic

functions have the same number of zeros in &; if they are close together on the
boundary of &,. as specified by (2).

proor  Putg = f'/f. a meromorphic function in 2. [fa = & and fhas a zero
of order m = mia) at a, then f(z) = {z — ay"h(z), where h and 1/h are
holomorphic in some neighborhood V' of a. In V' — {a},

(3) [z i Hiz)

w2) = fiz) z—a % h(z)"
Thus
(4) Fes g a) i),

Let 4 = {a & & :fla) = 0} If our assumptions about the index of y are
combined with the residue theorem one obtains

- N Res(gra) = > mla) = Ny

5 ) 70
A Tod 4= aed aEA

This proves one half of (1). The other half is a matter of direct computation:

b e bR
[ndr(0) = 35 ﬁ z 2m£ 'ﬁg}“’*

L L) e o 1 ()
; Em'ﬁ o) T T ) T @

The parameter interval of y was here taken to be [0, 2=].
Mext, (2) shows that g has no zero on y*. Hence (1) holds with g in place
of f. Put I = g o y. Then it follows from (1), {2). and Lemma 10.3% that

Nx = Indu{[!} Ind-(0) = N;. M

10.44 Problem For real 1, find the liove, as A — oo, afl

(1)

!
510X
-y X

<oLUTION  Sinee z-! - sin z - €% is entire, its integral over |[— A, A] equals that
over the path [, obtaimed by going from —A to —1 along the real axis, from
—1 to 1 along the lower half of the unit circle, and from | to A along the real
axis. This follows from Cauchy’s theorem. T, avoids the ongin, and we may
therefore use the identity
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2isin z = & — 7"
to see that (1) equals g, (7 + 1) — g,(r — 1), where

I 1 e
2) i) = o fr A2
¥

Zz

Complete I, 1o a closed path in two ways: First, by the semicircle from
A to —Ai to —A: secondly, by the semicircle from A to Ai o — A. The function
&* /7 has a single pole, at z = 0, where its residue is 1. It follows that

L]
(3) %@,l{:} = l’l_wf explisde”)df

and

1 1 :
(4) —pals) = 1 - Z—WJ,; explisde® ) dil.
Mote that
(5) lexp(isde®)l = exp(—As sin #),

and that this is < 1 and tends to 0 as 4 — oo if 5 and sin # have the same
sign. The dominated convergence thearem shows therefore that the integral in
(3) tends to 0 if s <~ 0, and the one in {4) tends 10 0 if 5 = 0. Thus

_ a  ifs >0,
{ﬁ} JL“:: Pa [.S} - {ﬂ if 5 { ﬂ,

and if we apply (B tos = ¢+ land tos = 1 — |, we get

i Asinx W if_!.{l{.[,
1 ey =
(1) ,.ll’;la_f_d s {o if Jr] > 1.

Since g;,(0) = 772, the limit in (7) is 7/2 when ¢ = =1. /i

Note that (7) gives the Fourier transform of sin x/x. We leave it as an exercise

to check the result against the inversion theorem.

Exercises

1

The following fact was tacitly used in this chapter: If 4 and B are disjoint
subsets of the plane, if 4 is compact, and if B is closed, then there exists a
& = 0 such that |a — 8 > d forall @ £ 4 and B & B. Prove this, with an
arbitrary metric space in place of the plane.
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Al the end of Sec. 10.8 occurs a definition of the length of a path. Does this
agree with the definition given in Exercise 1), Chap. 87

Suppose [ and g are entire functions, and |f(z)| < |g(z)| for every z. What
conclusion can you draw?

Suppose [ is an entire function, and

fiz) < A + Blzf

for all z, where A, B, and & are positive numbers. Prove that f must be a
polynomial.

Suppose { f,1 s a uniformly hounded sequence of holomorphic functions in £
such that { {,(z)} converges for every z £ {1 Prove that the convergence is
uniform on every compact subset of £,

Hint: Apply the doeminated convergence theorem to the Cauchy formula for
b=t

There is a region £ such that exp(82) = £(1; I). Show that exp is one-to-one
in £, but that there are many such £. Fix one, and define log z, for

|z — 1| << 1, 1o be that w € & for which ¢* = z. Prove that log'(z) = 1/=.

Find the coefficients a, in

o

1 =D alz—1)

a={k

and hence find the coefficients ¢, in the expansion

logz =2 ¢ {z—1)"
L

In what other discs can this be done?
Il f = H{il), the Cauchy formula for the derivatives of [,

(n ”! .'r{gl} e
Fzy ;—J: E :}.-:-i-l'd:’ (n=1.23...)

2mi

is valid under certain conditions on z and I'. State these, and prove the
formula.

suppose P oand (2 are polynomials, the degree of @ exceeds that of P by at
least 2, and the rational Tunction 8 = P/¢ has no pole on the real axis. Prove
that the integral of R over (—oo, 2o} is 2%/ times the sum of the residues of R
in the upper hall plane. [Replace the integral over (—A4, 4) by one over a
suitable semicircle, and apply the residue theorem.] What is the analogous
statement for the lower half plane? Use this method to compute
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w2
——dx.
,[.,, 1+ x4

Compute [, ¢ /(1 + x*)dx for real ¢, by the method described in Exercise
8. Check vour answer against the inversion theorem for Fourier transforms.
Let v be the positively oriented unit circle, and compute

1 ef — g
. ]
2wi y: B

dz.

Suppose « is a complex number, la| # 1. and compute

iz tfﬂ __
o | —2acos# + ot

by integrating (z — a) '(z — 1/a)~" over the unit circle.

Compute
= Caina’y
f ( ) e dx  (for real ¢).
. -

Compute

e
dx
J; s = 234000

[For even n. the method of Exercise 8 can be used. However, a different path
can be chosen, which simplifies the computation and which also works for odd
n: from 0 to R to R exp(2wi/n) to 0.

Answer: (w/n)/ sin{w/n).

Suppose €, and £ are plane regions, f and g are nonconstant complex
functions defined in €, and £, respectively. and f({4) C . Puth =g = 1.
If f and g are holomorphic, we know that & is holomarphic. Suppose we know
that f and & are holomorphic. Can we conclude anything about g? What if we
know that g and h are holomorphic?

Suppose {1 is a region, ¢ € H(R), ¢’ has no zeroin &, f & H(g(l)) g = feq
zp, € @, and wy = @(zp). Prove that if f has a zero of order m al wy. then g also
has a zero of order m at z;. How is this modified if ¢/ has a zero of order i at
Iyt

Suppose p is a complex measure on a Measure space X, is an open set in the
plane, ¢ is a bounded function on € > X such that g{z.1) is a measurable
function of 7, for cach z € 2, and g{z, ¢} is holomorphic in Q, foreacht € X.
Define
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f(z) = ,I[,r @z, 1) dp(r)

for = € L. Prove that f & H(Q). Hint: Show that to every compact K C 12
there corresponds a constant M < oo such that

“F‘['- £) — lzg, £}

} < M (zand z; € K.t £ X))
— L

Determine the regions in which the following functions are defined and
holomorphic:

= _' : of e = &= I o
Fiz) —J; T glz) j{: 1 I—Iin"r. hlz) —fl T f—z-d{_

Hinr: Either use Exercise 16, or combine Morera's theorem with Fubini’s.
Suppose f & H(Q), Dia:r) © Q. v is the positively oriented circle with center
at @ and radius r, and f has no zero on y*. For p = [}, the integral

L I8 5 &
sz fey 2 %

15 equal to the number of zeros of fin Pa: r ). What is the value of this integral
(in terms of the zeros of f) for p = 1,2, 3,...7 What is the answer if =® s
replaced by any ¢ = ff(i2) 2

Suppose [ € H(U), g € H(U), and neither f nor g has a zero in &) If

i (1
—f(;)—E(”) {n —— LE.?L...J'

find another simple relation between f and g
Suppose 3 is a region, { & H(Q) for o | none of the functions f,
has a zero in £, and { f,} converges 1o f uniformly on compact subsets of 2.
Prove that either [ has no zero in 2 or f{z) = 0 for all = & .

If " is a region that contains every £(2), and if fis not constant. prove
that fi2) € &
Suppose [ £ H(), 2 contains the closed unit disc. and G2 << 1 if |z == 1
How many fixed points must f have in the disc? That is. hﬂw nmrw solutions

does the equation f{(z) = z have there?

Suppose [ € H(R), @ contains the closed unit disc. fiz) = 20f |z] =1, and
Ji0) = 1. Must fhave a zero in the unit digse?

Suppose B(z} = 1 + z/1' + -+ 42" /nl. G(2) = B(z)— 1. where n = 1,2
K [— What can you say about the location of the zeros of P £ and O, for ]grge

#? Be as specific as you can,
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24

Prove the following general form of Rouché’s theorem: Let & be the interior
of a compact set K in the plane. Suppose f and g are continuous on K and
holomorphic in @, and |f(z) — g(z)| <7 |f(z)| for all z € K — Q. Then fand g
have the same number of zeros in &,

Let A be the annulus {z:5 < |z| < n}, where 5 and r, are given positive
numbers.

()

()

(e}

i

Show that the Cauchy formula

o= gl f, + [, )i+

is valid under the following conditions: f & H(A).

Frelzf|l <n—¢

n() =+ e, Y2(t) = (1, — €)e” (Bl r < i)

Show by means of (a) that every f € H(4) can be decomposed into a
sum f = f, + f». where f; is holomorphic outside D(0:;4) and f
& H{D(0; r)); the decomposition is unique if we require that fj(z) — 0
aslz| = vo.

Use this decomposition to associate with each { © H(A) its so-called
“Laurent series”

A

which converges to fin A. Show that there is only one such series for
each f. Show that it converges to funiformly on compact subsets of A.

If f € H(A) and fis bounded in A, show that the components f, and f;
are also bounded.

How much of the foregoing can you extend to the case n = 0 (or
r = oo, or both)?

How much of the foregoing can you extend to regions bounded by
finitely many (more than two) circles?

26 It is required to expand the function
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in a series of the form ¥ ¢, z".

How many such ¢xpansions are there? In which region is each of them
valid? Find the coefficients ¢, explicitly for each of these expansions.
Suppose i is a horizontal strip, determined by the inequalities a < y < b, say.
Suppose f & H(), and f(z) = f(z + 1) for all z € 2. Prove that fhas a
Fourier expansion in 2,

1) = 3 e et

which converges uniformly in {z:a + ¢ < y < b — e}, for every € = 0. Hinr;
The map z — ¢ converts f to a function in an annulus.

Find the integral formulas by means of which the coefficients ¢, can be
computed from f
Suppose T'is a closed curve in the plane, with parameter interval [0.27]. Take
a & I'*. Approximate I uniformly by trigonometric polynomials I,. Show
that Tndy, (a) = Indy, (a) if m and » are sufficiently large. Define this common
value to be Indp (o). Prove that the result does not depend on the choice of
{IL}: prove that Lemma 10.39 is now true for closed curves, and use this to
give a different proof of Theorem 10.40.




