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5. Let P be the field of complex numbers, @ the subfield of rationals. Show
that tr. d. P/® = ¢ = | P|. Show that, if B is a transcendency basis of P/®,
then any 1-1 surjective mapping of B can be extended to an automorphism of
P/®. Hence show that P has as many automorphisms as 1-1 surjective map-

pings.
6. Prove that, if P is finitely generated over ®, then this holds for any subfield

E/®.

4. Liiroth’s theorem. The purely transcendental extensions
P = ®(&,, &, - - -, £) appear to be the simplest types of extension
fields. Nevertheless, it is easy to ask difficult questions about
such extensions, particularly about subfields of P/®if » > 1. If
r = 1 the situation is comparatively simple and we shall look at
this in this section.

Let P = ®(f), £ transcendental, and let 5 be an element of P
which is not contained in ®. We can write n = f(£)g(£) ™! where
f(£) and g(&) are polynomials in £ which we may assume have no
common factor of positive degree in {, We may write f(£) =
ayp + € +- -+ aat”, E(E) = 8p + B1f + -+ -+ BaE" where either
a, # Qor f, # 0, sonis the larger of the degrees of fand g. The

relation n = A(£)g(f) ™' gives f(§) — ng(8) = 0 and
0 = (ap — 90.)E" + (g — W) +-- -+ (a0 — 9B0)-
Moreover, a, — 78, # 0 since a, or 8, # 0 and » ¢ . Thus we

"
see that £is a root of the equation of degree n: 3, (a; — 98)x* = 0
0

with coefficients in ®(y). We proceed to show that > (o — 9Bt
(1]

is irreducible in ®(n)[x]. First, it is clear that 5 is transcendental
over &, since ¢ is algebraic over ®(n); hence g algebraic over ®
implies £ algebraic over ®, contrary to assumption. The ring
®[n, x] = ®[nllx] is the polynomial ring in two indeterminates 7, x
and we know that this ring 1s Gaussian, that is, the theorem on
unique factorization into irreducible elements holds in ®[n, x|
(Vol. I, p. 126). Werecall also that a polynomial in ®[n, x| of posi-
tive degree in x is irreducible in ®(y)[x] if it is irreducible in ®[x, x]
Now f(n, x) = Z(a; — 98:)x* = f(x) — ng(x) is of degree 1 in 7.
Hence if f(, ) is reducible in ®(»)[x], then it has a factor A(x)
of positive degree in x. This implies that f(x) and g(x) are divisible
by A(x) contrary to assumption. We have therefore shown that
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S(n, %) is irreducible in ®(g)[x]. Thus £ is algebraic of degree #
over &(y). This proves

Theorem 7. Let P = (%), & transcendental over ® and lot 7 be an
element of P not in d. Write n = f(£)g(£) " where S(&) and g(&)
are polynomials in & with no common factor of positive degree in E.
Let n = max (deg f, deg g). Then ¢ is algebraic over ®(n) and
[®(2):®(n)] = n. Moreover, flx,n) = f(x) — ng(x) is irreducible
in ®(n)[x].

This result enables us to determine the automorphisms of ®()
over ®. Such an automorphism is completely specified by the
image n of the generator £. For, if £ — 5, then u(Eo(t) ' —
#(n)v(n) " for u, v polynomials in £. It is clear also that, if 5 is the
image of £ under an automorphism, then ®() = ®(). If y =
S(&)g(£) 7 as above, then [®(£):®(3)] = # = max (deg f, deg g).
This shows that ®(3) = ®(£) if and only if max (deg f,degg) = 1.
Then we have

_at+ B

2 = ;
(2) 7 L

where a # 0 or v 0 and of + B, v&¢ + & have no common
factor of positive degree. It is easy to see that these conditions
are equivalent to the single condition:

(3) ad — By = 0.

If this condition holds, then &(y) = ®(¢) and the mapping
#(£)o(5) ™" — u(n)o(y) ' is an automorphism of P/®.
The condition (3) is equivalent to the requirement that the
matrix
a f3
4 ['r 6J

is non-singular, With each such matrix we associate the auto.
morphism of &(£) over ® such that ¢ — g given by (2). One veri
fies directly that the mapping of the non-singular matrix into the
corresponding automorphism is a group homomorphism. The

kernel is the set of matrices [a g} such that (af + ) (v + §) !
¥
=Eforaf+ 8= E&vt+ 8. This implies ¥y =0, 8 =0, a = 5.
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0

Hence the kernel is the set of scalar matrices [g } # 0. It

o
is now clear that the group of automorphisms of ®(£) is isomorphic
to the factor group of the group L{(®,2) of 2 X 2 non-singular
matrices relative to the subgroup of scalar matrices. This factor
group is called the projective group PL(®, 2).

We now consider an arbitrary subfield E of ®(£)/®. We may
assume I = ®. Then E contains an element 5 not in® so P =
®(£) 1s algebraic over ®(g) and hence is algebraic over E 2 ®(n).
Let the minimum polynomial of { over E be f(x) = x™ + v, x" ™!
4 -+ vn The %; have the form u(&)r:;(£) " where p;, v; are
polynomials in the transcendental element £ Multiplication of
f(x) by a suitable polynomial in £ will give a polynomial

(5) FE %) = g(B)x" a1 (D" + oot eall)

in ®[£, x], £, x indeterminates, which is a primitive polynomial in x
in the sense that the highest common factor of the ¢;(£) is 1. Also
we have v; = ¢;(£)eo(E) 7' & B and not all of these are in ® since
£ is transcendental over . Thus one of the v's has the form y =
g(OAE) ™" where g(£), A(£) have no common factor of positive
degree in £ and max (deg g, deg 4) = m > 0. We have seen before
that g(x) — yA(x) is irreducible in ®(y)[x] and [P:®(y)]= m.
Since E 2 ®(y) and [P:E] = #n, clearly m > ». We shall show
that 7 = » and this will prove that E = ®(y).

Since £ is a root of g(x) — yA(x) = 0 and the coefficients of this
polynomial are contained in E, we have g(x) — vA(x) = f(x)q(x)
in E[x]. We have v = g(£)A(£) ™" and we can replace the coef-
ficients of f and ¢ by their rational expressions in £ and then
multiply by a suitable polynomial in £ to obtain a relation in
P[L, x] of the form

(6) k(B)gx)AE) — gBAlx)] = A& x)q(§ %),

where f(£, x) is the primitive polynomial given in (5). It now
follows that k(Z) is a factor of g(£, x) and so cancelling this we may
assume the relation is

(7) gx)A(E) — gOA(x) = flE x)q(E, ).

Now the degree in ¢ of the left-hand side is at most m. Since
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y = g(£)A(¢)-1 with (£(€), (€)= 1 and max(deg g, deg ) = m,
the é-degree of f(¢, ) is at least m. It follows that it is exactly m
and g(¢, x) = g(x) € ®[x]. Then the right hand side of (7) is
primitive as a polynomial in x. This holds also for the left hand
side. By symmetry, the left hand side is primitive as a poly-
nomial in ¢ also, and this implies that ¢(*¥) = ¢ is a non-zero
element of ®.  Then (7) implies that the x-degree and £-degree
of f(¢, x) are the same. Thus m — 7 and F, — O(y). As we saw

before, E D @ implies that y is transcendental. We have
proved the following

Theorem 8 (Liiroth), Jf P = P(£), £ transcendental over ®, then
any subfield B2 is also a simple transcendental extension: E =
P(vy), v transcendental.

The theorem of Liiroth is not valid for purely transcendental
extensions P/® of transcendency degree » > 1. The best positive
result in this direction is a theorem of Castelnuovo-Zariski which
states that, if ® is algebraically closed and » = 2, then a subfield

E/®of tr. d. 2 such that P/E s separable is a purely transcendental
extension,*

EXERCISES
1. Show that, if P = &(£, 1) where £ is transcendental and 9 + £2 = 1, then P
is purely transcendental.

2. Let & be a finite field, |®] =g = p™ Determine the order of the Galois
group of $(£) /P, £ transcendental.

3. Give an example of a subalgebra of @[#], £ transcendental, which does not
have a single generator.,

5. Linear disjointness and separating transcendency bases.
Let ® be of characteristic 2 # 0 and let P = &(%, y) where £ is
transcendental and #” = & Then {£] is a transcendency basis
for P/® and P is inseparable over ®(£). On the other hand, P =
®(n) is separable over P. This simple example shows that certain
transcendency bases B for an extension may be preferable to
others in that P/®(B) is separable algebraic. We remark also
that such bases may not always exist, as is shown by the example

* See Q. Zariski, On Castelnuovs’s criterion of rationality py = Py = 0, Illinois Jour. of
Mas., Vol. 2 (1958), pp. 303-315.




