Contrôle continu

Sans documents ni calculatrices

[Le barême tiend compte de la clareté de la rédaction, ne reportez sur la copie que des calculs et des raisonnements aboutis.]

1) Question de cours [sur 4 points]

Soit
$$P = \sum_{k=0}^{m} a_k X^k$$
, $Q = \sum_{l=0}^{n} b_l X^l \in \mathbb{Z}[X]$ deux polynômes à coefficients entiers.

- (a) Donner la définition du produit $P \cdot Q$ de P et de Q
- (b) Enoncer la formule de Leibniz calculant la dérivée de $P \cdot Q$.
- (c) Démontrer cette formule de Leibniz.
- **2)** [sur 1 point]

Calculer la dérivée de la fonction qui à t associe : $\frac{1}{2} \text{Log}(8t + 3 + 4\sqrt{5 + 3t + 4t^2})$

3) [sur 2 points]

Calculer les intégrales :

(a)
$$\int_0^{2\sqrt{3}} \frac{1}{36+t^2} dt$$

(b)
$$\int_0^3 \frac{1}{\sqrt{36-t^2}} dt$$

4) [sur 3 points] Décomposer en éléments simples sur $\mathbb R$ la fraction rationnelle

$$\frac{T^3 + 3T^2 + 3T + 3}{T^4 + 2T^3 + 2T^2 + 2T + 1}$$

5) [sur 5 points]

Soit $n \in \mathbb{N}$ un entier naturel.

- (a) Il y a-t-il un polynôme $D_n \in \mathbb{Z}[X]$ tel que $1 + X^{2^{n+1}} = (1 X) \cdot D_n$, si oui expliciter le.
- (b) Il y a-t-il un polynôme $E_n \in \mathbb{Z}[X]$ tel que $1 X^{2^{n+1}} = (1 X) \cdot E_n$, si oui expliciter le.

On définit la suite de polynômes $P_n \in \mathbb{Z}[X]$ à coefficients entiers par : $P_0 = 1 + X$ et la relation de récurrence $P_{n+1} = P_n \cdot (1 + X^{2^n})$

- (c) Calculer P_1, P_2, P_3 et $(1 X) \cdot P_1, (1 X) \cdot P_2, (1 X) \cdot P_3$
- (d) Déterminer $Q_n = (1 X) \cdot P_n$, la réponse sera justifiée par un raisonnement par récurrence.
- (e) Déduire de **5b** et du calcul **5d** précédent la valeur de P_n .
- 6) [sur 5 points]
 - (a) Donner la définition de la fonction Arctg arctangente et, si $t \in \mathbb{R}$ comparer t et Arctg(t).
 - (b) Calculer la dérivée de la fonction qui à $\theta \in \mathbb{R}$ associe $\frac{\sin(\theta)}{2 + \cos(\theta)}$.
 - (c) Soit $\alpha \in \mathbb{R}$. Calculer $\int_0^\alpha \frac{2\cos(\theta) + 1}{(2 + \cos(\theta))^2} d\theta$ et exprimer le résultat en fonction de $t = \operatorname{tg}(\alpha)$.
 - (d) Déterminer le signe de $1 3\frac{2\cos(\theta) + 1}{(2 + \cos(\theta))^2}$.
 - (e) Déduire de ce qui précède pour tout $t \in]0, +\infty[$ l'encadrement

$$\frac{3t}{1 + 2\sqrt{1 + t^2}} < \text{Arctg}(t) < t$$