
TELL ME A PSEUDO-ANOSOV†

ERWAN LANNEAU

Anosov linear homeomorphisms, and more generally Anosov flows as
well as their hyperbolic analogues, have played an important role in the
theory of dynamical systems [Ano67, Sma67, Arn80] 1.

Their cousins, the pseudo-Anosov homeomorphisms, although interest-
ing and important as well, seem to be less well known. In opposite to the
theory of Anosov flows, for which we know their contours rather well, there
are several fundamental questions about pseudo-Anosov homeomorphisms
that remains widely open so far.

1. AN INSTRUCTIVE EXAMPLE

Let us start with a naive example that is, in some sense, more than an ex-
ample. Any matrix A ∈ SL(2,Z) acts linearly on the plane R2. The induced
dynamics is not very interesting (the orbits are either circles or escape to
infinity). A way of getting it richer is to “pass to the quotient”: since A bi-
jectively preserves the Z2 lattice, that is A(Z2) =Z2, it induces a diffeomor-
phism ψ of the torus T 2 = R2/Z2 given by ψ((x,y)+Z2) = A(x,y)+Z2.

The dynamics of ψ is governed by the eigenvalues λ,λ−1 of A. There are
three possibilities:

(1) λ and λ−1 are complex conjugate (λ 6=±1): ψ is of finite order.
(2) λ = λ−1 =±1: ψ is reducible, that is: it preserves a closed curve on

the torus.
(3) λ and λ−1 are distinct irrationals numbers: ψ is of Anosov type.

The second case (parabolic) implies that ψ arises from a map on a simpler
surface (in this case an annulus).

The last case (hyperbolic) is by far the one having a richer dynamics (ψ
has many periodic points, many points of dense orbits, etc.) The cat map
A =

(
2 1
1 1

)
, for which λ = (3+

√
5)/2, is a nice illustration of this situation

(see [Ghy94]). These maps, although very simple, capture many properties
of elements in an open subset of the set of diffeomorphisms of the torus T 2:
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this is the famous Anosov [Ano67] result on structural stability. It states that
any diffeomorphism φ sufficiently close to an hyperbolic diffeomorphism ψ

in the C1 topology is topologically conjugated to ψ: there exists a homeo-
morphism h ∈Homeo(T 2) such that φ = h◦ψ◦h−1. Hence φ and ψ are the
same up to a change of coordinates.

Thus, these Anosov diffeomorphisms provide important informations on
large open subsets of the group Diff+(T 2). Their hyperbolic counterparts
have since then occupied mathematicians: they are the main actors of Diff+(Sg),
the group of diffeomorphisms of a genus g surface Sg.

These Anosov diffeomorphisms are so important that they are also the
actors of another family of groups: the modular groups. In the 1970s,
Thurston [Thu88] generalized to the case of compact surfaces the analy-
sis done on a torus, thus extending the notion of Anosov maps to that of
pseudo-Anosov ones.

2. FOLIATIONS AND PSEUDO-ANOSOV HOMEOMORPHISMS

2.1. Measured foliation. An important feature of a linear Anosov of the
torus is that it leaves invariant the two foliations F u and F s of “straight
lines” of constant slopes (parallel to the directions of the eigenvectors asso-
ciated to λ and λ−1). These foliations also come with an additional struc-
ture: they are integrable in the sense that we can define them globally as the
kernel of a closed 1-form dν.

Hence, we have a measure µs defined on arcs α transverse to the leaves of
F s, measuring the total variation of α in the orthogonal direction: µs(α) =∫

α
dνs.
The measure is invariant in the sense that if we change the extremities

of α in the same leaf, the measure remains unchanged. The data (F s,µs)
is a measured foliation. Of course our Anosov preserves these leaves and
expands/contracts the measures: we can think that ψ expand by a factor λ

in the direction of F u and contracts by the same factor in the direction of
F s.

On a surface of higher genus the notion of measured foliations also exists
but the Gauß–Bonnet formula forces us to extend them to singular folia-
tions. For pairs of transverse measured foliations there is a very elegant
way of doing this with the help of half-translation structures.

If Σ ⊂ Sg is a finite set, a half-translation structure on (Sg,Σ) is an atlas
of charts ω = (Uα,zα) of S\Σ for which the changes of charts are of the
form z 7→ ±z+ const and such that each point of Σ has a neighbourhood
isometric to a finite cover of R2\{0}. The pullback of the horizontal and
vertical leaves of R2 thus defines a pair of transverse measured foliations
on Sg (the measure are dy and dx, respectively).
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FIGURE 1. Triple cover of the standard torus: surface with
three tiles.
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FIGURE 2. Measured foliation on a surface of genus two
with four singularities (according to Hubbard–Masur).

Example 2.1. Figure 1 represents, on the left, a half-translation structure
on the surface S2: we glue together the sides having the same label. We
can verify that the vertices of the L shaped polygon represent a single point
in S2, which is singular. It has two obvious measured foliations (horizontal
and vertical) with transverse measures dy and dx, respectively.

Warning! There are measured foliations that are not arising from this
construction (and so not admitting a transverse measured foliation). In the
following example (after Hubbard-Masur), we glue two cylinders, foliated
by cercles, according to Figure 2: the boundaries of the first cylinder are
the arcs γ1,γ2 and γ1,γ3,γ4,γ6 and those of the second cylinder are γ5,γ6 and
γ2,γ3,γ4,γ5. The transverse measure is given by the “height function”. We
can observe that a transverse foliation does not exist otherwise the cylinders
would have boundaries with equal lengths, but this does not occur since the
linear system {

|γ1|+ |γ2| = |γ1|+ |γ3|+ |γ4|+ |γ6|
|γ5|+ |γ6| = |γ2|+ |γ3|+ |γ4|+ |γ5|

does not admit any strictly positive solutions.
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2.2. Pseudo-Anosov homeomorphisms. A homeomorphism ψ : S→ S is
a pseudo-Anosov homeomorphism if there exist a pair of measured trans-
verse foliations (F u,µu) and (F s,µs) on Sg, called unstable and stable, re-
spectively, and a number λ > 1 (the expansion factor of ψ) such that

ψ · (F u,µu) = (F u,λ ·µu), and
ψ · (F s,µs) = (F s,λ−1 ·µs).

An equivalent way to formulate this is to say that ψ is an affine diffeomor-
phism on S\Σ for the euclidian metric defined above and that its differential
Dψ =

(
±λ 0
0 ±λ−1

)
is hyperbolic, that is |tr(Dψ)| > 2 (in general ψ is not

differentiable at the points of Σ). The group formed by all differentials Dψ

with ψ affine for the atlas ω is called the Veech group SL(S,ω)⊂ PSL(2,R).
Although rather natural, it is not an easy task to construct examples satis-

fying this definition (at least in genus different from 1). A way of achieving
it is to lift linear Anosov maps on the torus to coverings.

Example 2.2. The linear Anosov on the torus ψ : T 2→ T 2, with differential
A =

(
5 2
2 1

)
=
(

1 2
0 1
)(

1 0
2 1

)
, lifts (see Example 2.1) to a pseudo-Anosov ψ̃ :

S2→ S2 such that Dψ̃ = A, as we will explain in Section 4.

3. MODULAR GROUP

The pseudo-Anosov homeomorphisms are the elementary bricks for the
study of modular groups of surfaces. The group in question is always the
group Diff+(Sg), but this time up to continuous deformation (we shall say
up to isotopy). More precisely, the modular group is the quotient group
Diff+(Sg) by the group Diff(Sg)0 of diffeomorphisms isotopic to the iden-
tity: Mod(Sg) = Diff+(Sg)/Diff(Sg)0.

Sometimes, definitions differ from one source to another: group of dif-
feomorphisms, group of homeomorphisms. It does not matter: the quotient
groups are all isomorphic (even if the groups Diff+(Sg) and Homeo+(Sg)
are very different!).

3.1. Nielsen–Thurston classification. We are now able to state the clas-
sification theorem of surface homeomorphisms, which is very close to the
one on the torus. Any f ∈ Homeo+(Sg) is, up to isotopy, either:

(1) periodic: there exists m such that f m = Id.
(2) reducible: f preserves a family of simple closed curves.
(3) a pseudo-Anosov map.

In the second case some iterate of f preserves a subsurface (with bound-
aries). As we can again apply the theorem to this subsurface, the third case
is by far the most interesting one!
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FIGURE 3. Dehn twist along a curve.

3.2. Classical modular groups. The modular group of the closed disk is
rather simple to describe (here our surface has a boundary: we require the
homeomorphism to be the identity map on the boundary).

Such a map φ defined on D(0,1) can easily be deformed by an isotopy
acting like φ on the small disk of radius t < 1 and being the identity outside.
In coordinates this is

F(z, t) =
{

tφ(z/t), if z ∈ D(0, t) and t 6= 0
z, otherwise.

We have F(·,0) = Id and F(·,1) = ψ. With this idea we easily prove that
the modular groups of the disk and of the sphere are trivial.

Although somewhat simplistic, this approach is fundamental: Magnus
remarked in 1934 that the action of the isotopies on the punctures allows to
connect two a priori distinct groups: the modular group on the disk with n
punctures and the braid group on n strands.

The first non trivial example of modular group is the one of the flat cylin-
der C . If γ is an oriented simple closed curve linking the two components
of the boundary of C , then the homeomorphism Tγ that twist the cylinder
along γ is nontrivial in Mod(C ) = 〈Tγ〉 ' Z. The homeomorphism Tγ has a
very simple expression in the parametrization C = R/wZ× [0;h]:

Tγ(x,y) = (x+w/h · y,y) = (x+µ−1y,y)

where µ = h/w is the modulus of the cylinder C . It is actually a diffeomor-
phism and DTγ =

(
1 µ−1

0 1

)
.

Furthermore, since any surface Sg contains an annulus C , we can define
by analogy Tγ ∈ Mod(Sg) along a simple closed curve γ (since Tγ is the
identity on the boundary of the annulus). These elements take an important
place in the study of the modular group: we call them Dehn twists.
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3.3. Modular group of the torus. Writing T 2 = R/Z×R/Z we can de-
fine two Dehn twists along the two curves α=(1,0) and β=(0,1): this pro-
vides a “large” subgroup of Mod(T 2): 〈Tα,Tγ〉= 〈

(
1 1
0 1
)
,
(

1 0
1 1

)
〉= SL(2,Z)

(we identify here a Dehn twist with its differential).
In fact, by letting a homeomorphism of T 2 acting on the homology H1(T 2,Z)=

〈α,β〉 ' Z2 we obtain an isomorphism

Mod(T 2)' SL(2,Z) = Aut(Z2)

that provide us with a rather precise description of the modular group of
genus one surfaces.

3.4. Modular group of a surface. Like we understand Mod(T 2) with the
help of action on curves, we can study Mod(Sg) through the action of
Diff+(Sg) on simple closed curves of Sg. This time this is more compli-
cated than it seems because such a curve can be extremely complicated.

By letting the homeomorphisms acting on the homology H1(Sg,Z), we
obtain a first “linear” approach of the modular group (choosing a symplectic
basis for the intersection form):

Mod(Sg)→ Sp(2g,Z).

This homeomorphism is onto (in fact, every element of Sp(2g,Z) can be
realized by a pseudo-Anosov map, even if we not always know how to
characterize those which fix an orientable measured foliation). On the other
hand, if g≥ 2 its kernel (the Torelli group) is rather large.

We end this section with a result analogous to the well known fact that
SL(n,Z) is generated by transvection matrices:
The group Mod(Sg) is generated by a finite number of Dehn twists (Dehn,

1922).
The (optimal) number of generators is 2g+1 (Humphries, 1977).

4. SEVERAL CONSTRUCTIONS

It is not an easy task to construct pseudo-Anosov homeomorphisms.
Let us give a simple and fruitful idea. An affine Dehn twist Tγ possesses

a parabolic differential, |tr(DTγ)|= 2. By applying the motto
“a product of parabolic elements is ‘generally’ an hyperbolic element”,

it is possible to show, for well chosen curves γ and η, that |tr(DTγTη)|> 2,
that is Tγ ◦Tη is pseudo-Anosov. This is the Thurston–Veech construction,
popularized on the occasion of a talk by John Hubbard at C.I.R.M. in Mar-
seille in 2003. Since then this construction is sometimes called the bouill-
abaisse construction.
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FIGURE 4. Bouillabaisse construction.

Example 4.1. In Example 2.1 the left surface S2 is horizontally cut along
two cylinders of height 1 having cores α1,α2, with lengths 1 and 2. Thus
DTα1 =

(
1 1
0 1
)

and DTα2 =
(

1 2
0 1
)
. Since each Dehn twist Tαi is equal to the

identity on the boundaries of the cylinders, the “multi-twist” Th = T 2
α1
◦Tα2

is a diffeomorphism on S2\Σ whose differential is constant and equal to(
1 2
0 1
)
. By symmetry reasons, the vertical multi-twist Tv = Tβ1 ◦T 2

β2
is also

affine and has a differential equals to
(

1 0
2 1

)
.

We then check that D(Th ◦Tv) =
(

5 2
2 1

)
. This is our Example 2.2 which is

pseudo-Anosov!

Example 4.2 (A more subtle example). Let us consider on a genus 2 sur-
face the multi-curves α = {2a1,a2,c1} and β = {b1,b2} (represented in
Figure 4). The product of the two multi-twists Tα ◦Tβ where

Tα = T 2
a1
◦Ta2 ◦Tc1 and Tβ = Tb1 ◦Tb2

is an element ψ of pseudo-Anosov type. Its expansion factor λ(ψ) is the
largest real root (' 1.72) of the polynomial X4−X3−X2−X +1.

This idea produces a lot of pseudo-Anosov diffeomorphisms. A beautiful
theorem of A. Fathi gives a quantitative version of this motto. Let us con-
sider a family of distinct curves (up to isotopy) {γ1, . . . ,γn} filling S (S\∪i γi
is a union of disks). Then

∃N ∈ N,∀(n1, . . . ,nk) ∈ Zk, if |ni| ≥ N,∀i then
Tγ1 ◦ · · · ◦Tγk is isotopic to a pseudo-Anosov map.

A surprising corollary is that if ψ is a pseudo-Anosov and γ is a simple
closed curve then T n

γ ◦ψ is isotopic to a pseudo-Anosov, for any non neg-
ative integer n, with the possible exception of at most 7 consecutive values
of n!

There are other constructions, that we do not have time to explain, which
are algorithmic and, in certain cases, allow us to describe all the pseudo-
Anosov maps. Here are a few of them:

(1) Train track induction.
(2) The Rauzy–Veech induction.
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(3) Sections of flows on hyperbolic 3-manifolds.
The first induction has been extensively studied by Papadopoulos and Pen-
ner.

5. ABUNDANCE

We are tempted to say that most of elements of Mod(Sg) are of pseudo-
Anosov type. This intuition arises from what happens in genus 1: if we
choose a “random” matrix in Mod(S1) = SL(2,Z), it has a strong prob-
ability to be hyperbolic (the absolute value of its trace is larger than 2).
However, we need to precisely formulate the word “random” since all these
groups are discrete groups.

A reasonable way to define this is to fix a set of generators of Mod(Sg)
(for instance: the Dehn twists) and to look at bounded length words (or a
ball of radius N centered at the identity in the Cayley graph).

For some modular groups, and some generating sets, we can show that
the proportion of pseudo-Anosov elements in the ball of radius N tends
exponentially fast to 1 as N tends to infinity (see the work by Caruso-Wiest).
There are also versions of this result using the tool of random walks.

6. COUNTING

Another way to show the abundance of pseudo-Anosov diffeomorphisms
is to count them. Let us introduce

Gg(T ) = {conjugation classes of ψ |
ψ is pseudo-Anosov and log(λ(ψ))< T} .

Veech was the first to study the asymptotic behavior of |Gg(T )| as T tends
to infinity. His work, started in 1986, eventually culminated with the Eskin–
Mirzakhani formula:

|Gg(T )| ∼T→∞

e(6g−6)T

(6g−6)T
.

This formula has been generalized later by Eskin-Mirzakhani-Rafi and Hamen-
städt. The dynamical techniques that were employed used properties of the
geodesic flow on the moduli space Mg, inspired by the work of Margulis.

The key point is to make a parallel between the conjugacy class of ψ and
a closed curve on Mg; the number log(λ(ψ)) being then the length of this
curve for some metric (the Teichmüller metric).

7. EXPANSION FACTORS

Surprisingly, we do not know much about the expansion factors of pseudo-
Anosov homeomorphisms.
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7.1. Realisations of algebraic numbers as expansion factors. Looking
at the action on homology (for a suitable cover), we easily deduce that λ is
an eigenvalue of a matrix with integer entries. It is thus an algebraic number
(that is, the root of an irreducible polynomial P ∈Q[X ]) of degree bounded
by 3g−3. In fact, Thurston has shown that it is a bi-Perron number:

∀α 6= λ,λ−1, P(α) = 0 =⇒ λ
−1 < α < λ.

The converse (that is, if a bi-Perron number is an expansion factor) is an
open problem.
This is the subject of one of the last manuscripts of Thurston [Thu08].

7.2. Minimization. There are plenty of conjectures on this topic. The eas-
iest ones to state are often about λ. For a fixed g, an easy argument that
relates roots and coefficients shows that the set

Specg =
{

λ(ψ), ψ : Sg→ Sg is pseudo-Anosov
}
⊂ R

is a discrete subset. What is its smallest element

δg = min(Specg)?

This is also an open problem! We know that δ1 =
3+
√

5
2 and δ2 = the largest

root of X4−X3−X2−X +1' 1.72 (compare with Example 4.2), but com-
puting δ3 is already an open problem. It is not difficult to get an upper
bound for δg (finding an example is sufficient). It is a little more subtle to
get a lower bound. For all g≥ 2:

(1)
log(2)

6
≤ |χ(Sg)| · log(δg)≤ 2 · log(

3+
√

5
2

)

where χ(Sg) = 2−2g. We easily deduce that

limsup
g→∞

g log(δg)≤ log(
3+
√

5
2

).

McMullen conjectured that (g log(δg))g converges, but so far there is no
proof of this. For a positive answer, one needs a better lower bound (on
g log(δg)) than (1).

We present a recent result on matrices that goes in this direction and,
surprisingly, that was not known before. McMullen [McM14] has shown
that, for all g≥ 1, the smallest possible value of the spectral radius ρ(A) of
a primitive matrix A ∈ Sp2g(Z) (that is, one for which there exists n such
that all entries of An are strictly positive) is given by the largest root of the
polynomial

X2g−Xg(1+X +X−1)+1.
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In particular ρ(A)g ≥ 3+
√

5
2 . Even if this problem is closely related to the

previous one, it does not (yet) provide a positive solution to the problem. . .
The discussions in the previous sections evoke a connection between

these problems, of geometric nature, and the problem of minimizing the
eigenvalues of a matrix, of algebraic nature.

7.3. Eigendirections of pseudo-Anosov homeomorphisms. All the above
questions are about eigenvalues of matrices (the expansion factor λ). What
about the eigendirections associated to the eigenvectors? This is a very
short section since we know almost nothing about it! It seems very difficult
to characterize these directions at the moment, even if there are some partial
results for genus 2 surfaces and Prym surfaces.

8. LONELY GUY CONJECTURE

If we choose a “random” flat metric ω on a surface Sg (with respect to
some probability measure on the moduli spaces) what kind of group of sym-
metries SL(Sg,ω) could we expect? The answer that we guess is the trivial
group. This is indeed the case (except perhaps if the surface has obvious
non-trivial symmetry such as the hyperelliptic involution).

And now if we again choose a “random” flat metric ω among surfaces
already having a symmetry? Again the answer we expect is that generically
the Veech group is cyclic. Surprisingly this is not the case if the genus of Sg
is two! McMullen gave a quantitative version of this: the group SL(Sg,ω)
is very large. Its limit set is the full circle at infinity.

What about when the genus g is larger than three? This question is widely
open. We conjecture that in general the group is (virtually) cyclic...

9. SUSPENSIONS AND VOLUMES

There is a remarkable connection between the dynamics of pseudo-Anosov
homeomorphisms in dimension two and the geometry in dimension three.
The relation is given by the (very general) construction of suspension. To
each f : Sg→ Sg we associate the 3 dimensional object

M f = Sg× [0,1]/(1,x)∼ (0, f (x)).

Another famous theorem of Thurston states that f = ψ is pseudo-Anosov if
and only if Mψ is an hyperbolic 3-manifold. Thus it has a volume, although
it is very hard to express it in terms of ψ. Kojima and McShane have re-
cently established this beautiful inequality relating dynamic and geometric
complexities:

log(λ(ψ))≥ 1
3π|χ(Sg)|

vol(Mψ),

where χ(Sg) = 2−2g.
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10. TO LEARN MORE ABOUT PSEUDO-ANOSOV MAPS

The book by Fathi-Laudenbach-Poenaru [FLP79] is a very good intro-
duction to the topic, containing numerous details. It is based on the work of
Thurston [Thu88] on surface homeomorphisms. This book is also available
in English.

The book by Farb–Margalit [FM11] is a more modern introduction to the
modular group. It contains all prerequisites and details of its study.

If one wants to learn more about pseudo-Anosov maps, the literature is
rather vast. The recent works by Agol, Hironaka, Leininger, Margalit pro-
vide a nice “state of the art” and propose new approaches to the different
problems alluded to above.
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