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RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS

FREDERIC FAURE, SEBASTIEN GOUEZEL AND ERWAN LANNEAU

ABSTRACT. The Ruelle resonances of a dynamical system are spectral data describing
the precise asymptotics of correlations. We classify them completely for a class of chaotic
two-dimensional maps, the linear pseudo-Anosov maps, in terms of the action of the map
on cohomology. As applications, we obtain a full description of the distributions which are
invariant under the linear flow in the stable direction of such a linear pseudo-Anosov map,
and we solve the cohomological equation for this flow.
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1. INTRODUCTION, STATEMENTS OF RESULTS

Ruelle resonances. Consider a map 7" on a smooth manifold X, preserving a probability
measure p. One feature that encapsulates a lot of information on its probabilistic behavior
is the speed of decay of correlations. Consider two smooth functions f and g. Then
one expects that [ f-goT™du converges to ([ fdu) - ([ gdp) if iterating the dynamics
creates more and more independence — if this is the case, T is said to be mixing for the
measure p. Often, one can say more than just the mere convergence to 0 of the correlations
[f-goT"du— ([ fdu) - (Jgdu), and this is important for applications. For instance,
the central limit theorem for the Birkhoff sums S5, f = Zz;é f oT* of a function f with 0
average often follows from the summability of the correlations between f and f o 1™.

When T is very chaotic, the correlations tend exponentially fast to 0. It is sometimes
possible to obtain the next few terms in their asymptotic expansion, in terms of the Ruelle
spectrum (or Ruelle resonances) of the map.

Definition 1.1. Let T be a map on a space X, preserving a probability measure . Consider
a space of bounded functions C on X. Let I be a finite or countable set, let A = (\;);er be
a set of complex numbers with |\;| € (0,1] such that for any € > 0 there are only finitely
many i with |\;| > €, and let (N;)ier be nonnegative integers. We say that T has the Ruelle
spectrum (\;)ier with Jordan blocks dimension (N;)icr on the space of functions C if, for
any f,g € C and for any € > 0, there is an asymptotic expansion

/ FrgoTdu= 3" Y Atwie(f0) + o),

[Xi|>e J<N;
where ¢; j(f,g) are bilinear functions of f and g, that we suppose finite rank but non zero.

In other words, there is an asymptotic expansion for the correlations of functions in C,
up to an arbitrarily small exponential error. With this definition, it is clear that the Ruelle
spectrum is an intrinsic object, only depending on 7', u and the space of functions C. In
general, one takes for C the space of C*° functions on a manifold.

As an example, assume that T is a C° uniformly expanding map on a manifold and
(4 is its unique invariant probability measure in the Lebesgue measure class. Then the
correlations of C” functions admit an asymptotic expansion up to an exponential term e,
where ¢, tends to 0 when r tends to infinity. Hence, Definition 1.1 is not satisfied for C = C",
but it is satisfied for C = C*°(M). The same holds for Anosov maps, when p is a Gibbs

measure.

The first question one may ask is if it makes sense to talk about the Ruelle spectrum,
i.e., if Definition 1.1 holds for some A = (\;);c;. Virtually all proofs of such an abstract
existence result follow from spectral considerations, exhibiting the \; as the spectrum of an
operator associated to T', acting on a Banach space or a scale of Banach spaces. General
spectral theorems taking advantage of compactness or quasi-compactness properties of this
operator then imply that there is some set A for which Definition 1.1 holds (and moreover
all elements of A have finite multiplicity), but without giving any information whatsoever
on A in addition to the fact that it is discrete and at most countable — in particular, it is not
guaranteed that A is not reduced to the eigenvalue 1, which is always a Ruelle resonance as
one can see by taking f = g = 1. Indeed, if T is the doubling map x — 2x mod 1 on the
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circle and C = C*(S!), then there is no other resonance. In the same way, there is no other
resonance for linear Anosov map of the torus (these facts are easy to check by computing the
correlations using Fourier series). That Definition 1.1 holds is notably known for uniformly
expanding and uniformly hyperbolic smooth maps, see [Rue90, BT07, GLO0S|.

Once the answer to this first question is positive, there is a whole range of questions
one may ask about A: is it reduced to {1}? is it infinite? are there asymptotics for
Card(AN{|z| = e}) (possibly counted with multiplicities) when ¢ tends to 07 is it possible to
describe explicitly A? The answers to these questions depend on the map under consideration.
Let us only mention the results of Naud [Naul2| (for generic analytic expanding maps, there
is nontrivial Ruelle spectrum, with density at 0 bounded below explicitly), Adam [Adal7] (the
spectrum is generically non-empty for hyperbolic maps), Bandtlow-Jenkinson [BJ08] (upper
bound for the density of Ruelle resonances at 0 in analytic expanding maps, extending
previous results of Fried), Bandtlow-Just-Slipantschuk [BJS13, BJS17| (construction of
expanding or hyperbolic maps for which the Ruelle spectrum is completely explicit), Dyatlov-
Faure-Guillarmou [DFG15| (classification of the Ruelle resonances for the geodesic flow on
compact hyperbolic manifolds in any dimension).

Our goal in this article is to investigate these questions for a class of maps of geometric
origin, namely linear pseudo-Anosov maps. They are analogues of linear Anosov maps of
the two-dimensional torus, but on higher genus surfaces. The difference with the torus
case is that the expanding and contracting foliations have singularities. Apart from these
singularities, the local picture is exactly the same as for linear Anosov maps of the torus
(in particular, it is the same everywhere in the manifold). We will obtain a complete
description of the Ruelle spectrum of linear pseudo-Anosov map. Then, using the philosophy
of Giulietti-Liverani [GL14] that Ruelle resonances contain information on the translation
flow along the stable manifold on the map, we will discuss consequences of these results
on the vertical translation flow in translation surfaces supporting a pseudo-Anosov map.
We will in particular obtain complete results on the set of distributions which are invariant
under the vertical flow, and on smooth solutions to the cohomological equation, recovering
in this case results due to Forni on generic translation surfaces [For97, For02, For07].

Linear pseudo-Anosov maps. There are several equivalent definitions of pseudo-Anosov
maps (especially in terms of foliations carrying a transverse measure). We will use the
following one in which the foliations have already been straightened (i.e., we use coordinates
where the foliations are horizontal and vertical), in terms of half-translation surfaces (see
e.g. [Zor06] for a nice survey on half-translation surfaces).

Definition 1.2. Let M be a compact connected surface and let 32 be a finite subset of M. A
half-translation structure on (M,X) is an atlas on M — X for which the coordinate changes
have the form x — x +v or x — —x + v. Moreover, we require that around each point of 3
the half translation surface is isomorphic to a finite ramified cover of R? /+1d around 0.

A half-translation surface carries a canonical complex structure: it is just the canonical
complex structure in the charts away from X, which extends to the singularities. In particular,
it also has a C*° structure, and it is orientable.

In a half-translation structure, the horizontal and vertical lines in the charts define two
foliations of M — X, called the horizontal and vertical foliations. Of particular importance



RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS 4

to us will be the case where the coordinate changes are of the form z — x + v. In this case,
we say that M is a translation surface. Singularities are then finite ramified cover of R?
around 0. Moreover, the horizontal and vertical foliations carry a canonical orientation.

Definition 1.3. Consider a half-translation structure on (M,%). A homeomorphism T :
M — M is a linear pseudo-Anosov map for this structure if T(X) = X and there exists

A > 1 such that, for any x € M — %, one has in half-translation charts around x and Tx the

equality Ty = (j%/\ i£,1> y, where the choice of signs depends on the choice of coordinate

charts. We say that A is the expansion factor of T

In other words, T" sends horizontal segments to horizontal segments and vertical segments
to vertical segments, expanding by A in the horizontal direction and contracting by A in the
vertical direction. In particular, Lebesgue measure is invariant under 7.

When M is a translation surface, there are two global signs €5, and ¢, saying if T preserves
or reverses the orientation of the horizontal and vertical foliations. The simplest case is
when ¢;, = ¢, = 1. In this case, T preserves the orientation of both foliations, and can be
written in local charts as (6\ )\91 )

While we obtain a complete description of the Ruelle spectrum in all situations (orientable
foliations or not, €, and €, equal to 1 or —1), it is easier to explain in the simplest case of
translation surfaces with ¢, = e, = 1. We will refer to this case as linear pseudo-Anosov
maps preserving orientations. We will focus on this case in this introduction and most of
the paper, and refer to Section 6 for the general situation (that we will deduce from the case
of linear pseudo-Anosov maps preserving orientations).

In the definition of Ruelle resonances, there is a subtlety related to the choice of the
space of functions C for which we want asymptotic expansions of the correlations. While
it is clear that we want C*° functions away from the singularities, the requirements at the
singularities are less obvious. Denote by C2°(M — X) the space of C* functions that vanish
on a neighborhood of the singularities. This is the space we will use for definiteness.

Let T be a linear pseudo-Anosov map, preserving orientations, on a genus g translation
surface M. Let A be its expansion factor. As the local picture for T is the same everywhere,
it should not be surprising that the only data influencing the Ruelle spectrum are of global
nature, related to the action of 7' on the first cohomology group H'(M) (a vector space of
dimension 2g). By Thurston [Thu88|, A and A~! are two simple eigenvalues of T* : H'(M) —
HY(M) (the corresponding eigenvectors are the cohomology classes of the horizontal and the
vertical foliations). The orthogonal subspace to these two cohomology classes has dimension
2g—2, it is invariant under 7, and the spectrum = = {1, ..., ag—2} of T on this subspace
is made of eigenvalues satisfying A=! < |u;| < A for all i.

Here is our main theorem when T" preserves orientations.

Theorem 1.4. Let T be a linear pseudo-Anosov map preserving orientations on a genus
g compact surface M, with expansion factor A and singularity set 3. Then T has a Ruelle
spectrum on C = C(M — %) given as follows. Flirst, there is a simple eigenvalue at 1.
Denote by = = {1, ..., pag—2} the spectrum of T* on the orthogonal subspace to the classes
of the horizontal and vertical foliations in H'(M). Then, for any i and for any integer
n = 1, there is a Ruelle resonance at \™"u; of multiplicity n.
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Note that a complex number z may sometimes be written in different ways as A™"u; (for
instance if the spectrum of 7™ is not simple, i.e., if there is ¢ # j with p; = p; — but it can
also happen that there is i # j with g; = A™!;, which will lead to more superpositions). In
this case, to get the multiplicity of z, one should add all the multiplicities from the theorem
corresponding to the different possible decompositions.

Let us note that some nonzero functions can be orthogonal to all Ruelle resonances. For
instance, if T' lifts a linear Anosov map of the torus to a higher genus surface covering the
torus, then the correlations of any two smooth functions lifted from the torus tend to 0
faster than any exponential, as this is the case in the torus.

A quick sketch of the proof. Before we discuss further results, we should explain briefly
the strategy to prove Theorem 1.4. First, we want to show that Ruelle resonances make
sense as in Definition 1.1. This part is classical. We introduce a scale of Banach spaces
of distributions, denoted by B~*»Fv which behaves well under the composition operator
T : f+ foT. The elements of B~FnFv are objects that can be integrated along horizon-
tal segments against C*»-functions, and moreover have k, vertical derivatives: this is an
anisotropic Banach space, taking advantage of the contraction of 7" in the vertical direction
and of its expansion in the horizontal direction, as is customary in the study of hyperbolic
dynamics. On the technical level, the definition of B~*r*v is less involved than in many
articles on hyperbolic dynamics (see for instance [GL08, BT07]), as we may take advantage
of the fact that the stable and unstable directions are smooth — in this respect, it is closer
to |[Bal05, AG13|. The only additional difficulty compared to the literature is the singulari-
ties, but it turns out that they do not play any role in this part. Hence, we can prove that
the essential spectral radius of 7 on B~ *nkv is at most A~ ™in(kn:kv) - The existence of Ruelle
resonances in the sense of Definition 1.1 readily follows. One important point we want to
stress here is that, since we are interested in Ruelle resonances for functions in C°(M — %),
we take for B~*m*v the closure of C%°(M — X)) for an anisotropic norm as described above.
In particular, smooth functions are dense in B~*nFv,

The second step in the proof is to show that the elements described in Theorem 1.4
belong to the set of Ruelle resonances or, equivalently, to the spectrum of 7 on B~ Fnkv
when kj, and k, are large enough. It is rather easy to show that 1 and A\~'x; belong to the
spectrum, by considering a smooth 1-form w = w, dz 4+ w, dy whose cohomology class is an
eigenfunction for the iteration of 7%, and looking at the asymptotics of 7"w, to obtain an
element f € B~*nkv with 7f = A~'p;f. Then, one deduces that A~"; also belongs to the
spectrum, as LZfl f is an eigenfunction for this eigenvalue, where Lj denotes the derivative
in the horizontal direction.

The most interesting part of the proof is to show that there is no other eigenvalue, and
that the multiplicities are as stated in the theorem. For this, start from an eigenfunction
f € B7Fnkv for an eigenvalue p. Denote by L, the derivative in the vertical direction.
Then L7 f is an eigenfunction for the eigenvalue A\"p. Since all eigenvalues have modulus
at most 1, we deduce that LI'f = 0 for large enough n. Consider the last index n where
L7 f #0, and write g = L f. It is an eigenfunction, and L,g = 0. If we can prove that the
corresponding eigenvalue has the form A% ; for some k and 4, then we get p = A= ("% 4, as
desired. To summarize, it is enough to understand eigenfunctions that, additionally, satisfy
L,g = 0. For this, we introduce a cohomological interpretation of elements of B~*»**Nker L,,.
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Heuristically, elements of B~*»*> can be integrated along horizontal segments by definition,
so what really matters is not the distribution g, but the 1-current g dz. (In the language of
Forni [For02], elements g of B~%»*> Nker L, are the vertically invariant distributions, see his
Definition 6.4, while g dzx is the corresponding basic current on M.) Formally, its differential
is

d(gdz) = (0z9dx + 0ygdy) Ade = —L,gdz Ady.

Hence, elements of B~*wkv 0 ker L, give rise to closed currents, and have an associated
cohomology class in H'(M) by de Rham Theorem (in fact, we do not use de Rham theorem
directly, but a custom version suited for our needs that deals more carefully with the
singularities). From the equality 7g = pyg one deduces that this class is an eigenfunction
for T* acting on H'(M), for the eigenvalue Apg. If the class is nonzero, we get that Ap,
is one of the y;, and p, = A"'p; as desired. If the class is zero, this means that gdz is
itself the differential of a O-current g. It turns out that g belongs to our scale of Banach
spaces, and is an eigenfunction for the eigenvalue Ap,. One can then argue in this way by
induction to show that all eigenvalues are of the form claimed in Theorem 1.4. There are
additional difficulties related to the eigenvalue A~! of T* : H'(M) — H'(M): it does not
show up in the statement of Theorem 1.4, but this does not follow from the sketch we have
just given. Moreover, getting the precise multiplicities requires further arguments, based on
duality arguments and beyond this introduction.

Here is the precise description we get in the end, illustrated on Figure 1, assuming to
simplify that p; is simple for 7% : HY(M) — H'(M) and that A\~'j; is not an eigenvalue
of T*. Then the eigenvalue A\~'y; for 7 is simple, and realized by a distribution f; which
is annihilated by L, (i.e., it is invariant under vertical translation) and such that the
cohomology class of f; dx is the eigenfunction in H'(M) under T*, for the eigenvalue ;.
Denoting by E, the generalized eigenspace associated to the eigenvalue «, then L, is onto
from Ey-n-1,, to Ey-n,,, and its kernel is one-dimensional, equal to L} Ey-1,,. Therefore,
there is a flag decomposition

(1.1) {0} C LpEy-1,, C Ly 'Ey-2,, C -+ C LiEx-nt1,, C LypEy-n,, C Ex-n-1,,,

in which the k-th term LZH*]“E/\?;% has dimension k, and is equal to Ey-n-1,, N ker Lk
This decomposition shows that the elements of Fy-n-1,,, behave like polynomials of degree n
when one moves along the vertical direction. Moreover, the decomposition (1.1) is invariant
under the transfer operator 77, which is thus in upper triangular form with A=, on the
diagonal. We do not know if there are genuine Jordan blocks, or a choice of basis for which
T is diagonal. In particular, we do not identify in Theorem 1.4 the Jordan blocks dimension
of the Ruelle resonances, in the sense of Definition 1.1. The decomposition (1.1) can also
be interpreted in terms of the operator N = Ly L,, which is nilpotent of order n + 1 on the

n + 1-dimension space Ey-n-1,,: the k-th term is the kernel of N k and also the image of
Nn+1fk)'

Invariant distributions for the vertical flow. The above description is a first step into
the direction of classifying all distributions on M — ¥ which are invariant under the vertical
flow. We will call such distributions vertically invariant, or L,-annihilated, or sometimes
Ly-invariant. It turns out that there is another family of such L,-annihilated distributions,
which do not show up in the Ruelle resonances and correspond to relative homology. They



RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS 7

Eigenspace E,_,

g n:kz+ky

FIGURE 1. For a given eigenvalue u; of T% (u; € (A™1,\)), each black
point of the lattice (kz,ky)x,>1.k,>0 represents an independent Ruelle dis-
tribution w(, r,). In particular f; = u(; ). The eigenvalues of the trans-
fer operator 7 are A™"u; with n > 1 and the associated eigenspace is
E\-n,, = Span {ukz,ky, ky + ky = n} with dimension n and represented by
a diagonal red line. The operator Ly = 0, maps u, k,) 10 U, 41,k,) and
L, = 9y maps u, r,) t0 Uk, r,—1)- In particular the space kerL, is repre-
sented by the first horizontal blue line k, = 0.

belong to an extended space B;wlih’k” defined like B—*n*> above, except that we do not restrict
to the closure of the set of smooth functions. (In the language of Forni [For02|, elements

g of B_Fnkv A ker L, are the vertically quasi-invariant distributions, see his Definition 6.4,

ext
while gdx is the corresponding basic current on M — ¥). An example of an element of
Be_x]ffh’k“ \ B~Fwkv is as follows: consider a vertical segment I', ending at a singularity o, a

function p on this segment which is equal to 1 on a neighborhood of the singularity and to
0 on a neighborhood of the other endpoint of the segment, and define a distribution 5((,0) by
( f,‘”, f) = frg p(y)f(y)dy. In other words, the corresponding distribution on a horizontal
segment [ is equal to p(xr)dy, if I intersects I', at a point x7, and 0 otherwise. It turns
out that these are essentially the only elements of Be_ﬁh’k“ \ B~Fnkv: the latter has (almost)
finite codimension in the former (see Proposition 4.4 for a precise statement). Note that if
one chooses another vertical segment I, ending on the same singularity, then the difference
of the two distributions associated to I',; and I, belongs to B~*»v when kj, > 1. The same
happens if one replaces p by another function p’. Hence, modulo B~F»Fv the distribution
&(70) is canonically defined and depends only on o.
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Proposition 1.5. Let ky,k, > 3. For o € X, there exists a distribution &, € Be_x’ih’k’”

such that & — 5((70) € B~Fwkv and L,&, is the constant distribution equal to 1/ Leb(M).
Therefore, the distributions £, —&,+ span a subspace of dimension Card X —1 of L,-annihilated
distributions.

The full description of L,-annihilated distributions is given in the next theorem. It
states that all such distributions come from the distributions associated to Ruelle resonances
described in Theorem 1.4, and additional spurious distributions coming from the singularities
as in Proposition 1.5.

To give a precise statement, we have to deal carefully with the exceptional situation
when there is an eigenvalue i/ of T* such that u = A~'/ is also an eigenvalue of T*: then
LpEy-1,, is contained in Fy-1,, and there are some formal difficulties.

For each eigenvalue y € = = {y1,. .., p2g—2}, there is a map f — [f] from Ey-1, Nker L,
to H'(M), whose image is the generalized eigenspace associated to the eigenvalue p of
T*. It is an isomorphism except in the exceptional situation above where it is onto, with
a kernel equal to LpFEy-1,,. Denote by Ef\q,lu a subspace of F)-1, N ker L, which is sent

isomorphically to the generalized eigenspace of T™ for the eigenvalue p, i.e., Ef\q,lu = Ey-1,,

except in the exceptional case above where E/{I,lu is a vector complement to LpEy-1,,/ in
Ey-1, Nker L,.

Theorem 1.6. Let T be a linear pseudo-Anosov map preserving orientations on a genus
g compact surface M, with expansion factor \ and singularity set X. Let L, denote the
differentiation in the vertical direction. Then the space of distributions in the kernel of L, is
exactly given by the direct sum of the constant functions, of the spaces LZE/{{1M forn >0
andi=1,...,2g9 — 2, of the multiples of the distributions &, — &, for 0,0’ € X, and of the
multiples of L}é forn > 1 and o € X, where &, is defined in Proposition 1.5.

In particular, the space of L,-annihilated distributions of order > — N is finite-dimensional
for any N, and its dimension grows like (29 — 2 + Card ¥)N when N — oo. This is an
analogue of [For02, Theorem 7.7(i)] in our context (see Remark 4.8 for a further cohomological
description). If one restricts to L,-annihilated distributions coming from B~*»Fv  one
should remove the distributions & — &, and L}&,. Their dimension grows like (29 — 2)N,
corresponding to [For02, Theorem 7.7(ii)].

Bufetov has also studied vertically invariant distributions of the vertical foliation of a linear
pseudo-Anosov map in [Bufl4a|. In this article, the author is only interested in distributions
of small order, which can be integrated against characteristic functions of intervals. He
obtains a full description of such distributions, by more combinatorial means, and gets
further properties such as their local Hélder behavior. These distributions correspond
exactly to the elements of U|a‘>)\_1 E,.

Solving the cohomological equation for the vertical flow. One of the main motiva-
tions to study L,-annihilated distributions is that they are related to the cohomological
equation for the vertical flow. Indeed, if one wants to write a function f as L,F for some
function F' with some smoothness, then one should have for any distribution w in the kernel
of L, the equality

(12) <w7f> = <waLvF> = _<LUW7F> =0,
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at least if I’ is more smooth than the order of w and if L, is antiselfadjoint on the relevant
distributions (note that, in general, F' will not be supported away from the singularities,
so the fact the (w, F') or (L,w, F') are well defined is not obvious, and neither is the formal
equality (w, L,F) = —(Lyw, F')). Such necessary conditions to have a coboundary are
also often sufficient. In this direction, we obtain the following statement. The philosophy
that results on the coboundary equation should follow from results on Ruelle resonances
comes from Giulietti-Liverani [GL14]. Note that the converse is also true: in a resent work,
Forni [For18|] studied Ruelle resonances and obstructions to the existence of solution to the
cohomological equation. In particular his work independently reproves some of the results
of our paper (with very different methods). The cohomological equation was first solved for
a large class of interval exchange maps (including the ones corresponding to pseudo-Anosov
maps) in [?]. The proof we give of the next theorem also owes a lot to the techniques
of [GL14] (although the local affine structure makes many arguments simpler compared to
their article, but the presence of singularities creates new difficulties, as usual).

Theorem 1.7. In the setting of Theorem 1.6, consider a C*° function f with compact
support in M — X. Assume that (w, f) =0 for all w € U‘a|>)\—k—1 E.,Nker L,. Then there

exists a function F on M which is C* whose k derivatives are bounded and continuous on
M, such that f = L,F on M — 3.

The fact that f is C°° and compactly supported in M — 3 is for the simplicity of the
statement. Indeed, the theorem also holds if f is continuous on M — ¥ and C**2 along
horizontal lines, with LiL f uniformly bounded for any j < k + 2, see the more precise
Theorem 5.9 below (in this case, the primitive F' is C* along horizontal lines). Even more,
C*+1+¢ along horizontal lines would suffice, for any ¢ > 0. So, the loss of derivatives in
the above theorem is really 1 + ¢ (which is optimal). Moreover, the k-th derivative of the
solution of the coboundary equation is automatically Hélder continuous. This corresponds
in our context respectively to the results of [For07] and [MY16].

It is not surprising that distributions in F, N ker L, show up as conditions to solve the
cohomological equation, as explained before the theorem. The main outcome of Theorem 1.7
is that there are finitely many obstructions to be a C*¥ coboundary. The number of such
obstructions grows like (2g — 2)k when k — oo, by the classification of the Ruelle spectrum
given in Theorem 1.4 and the following discussion. This answers the problem raised by
Forni at the end of [For97|, where a similar theorem is proved for the vertical flow on generic
translation surfaces, using different methods based on the Laplacian.

Note that the distributions that appear in Theorem 1.7 only come from the Ruelle
spectrum. The other L,-annihilated distributions from Theorem 1.6 do not play a role. The
reason is that the formal computation in (1.2) does not work for these distributions, as F' is
not compactly supported away from Y. These distributions would appear if one were trying
to find a vertical primitive of f which, additionally, vanishes at all singularities.

Trace formula. In finite dimension, the trace of an operator is the sum of its eigenvalues.
This does not hold in general in infinite dimension (sometimes for lack of a good notion of
trace, or for lack of summability of the eigenvalues), but it sometimes does for well behaved
operators. In the dynamical world, this often holds for analytic maps (for which the transfer
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operator can be interpreted as a nuclear operator on a suitable space), but it fails most of
the time outside of this class, see [Jéz17| and references therein.

In our case, it is easy to investigate this question, as we have a full description of the
Ruelle spectrum. One should also define a suitable trace of the composition operator 7. On
smooth manifolds, one can define the flat trace of a composition operator as the limit of
the integral along the diagonal of the Schwartz kernel of a smoothed version of 7, when the
smoothing parameter tends to 0. When T is a diffeomorphism with isolated fixed points,
this reduces to a sum over the fixed points of 1/|det(Id —DT(x))|, as follows from an easy
computation involving the change of variables y = x — T'z.

In our case, the determinant is (1 —\)(1 — A~!) everywhere, but one should also deal with
the singularities, where the smoothing procedure is not clear (one can not convolve with a
kernel because of the singularity). We recall the notion of Lefschetz index of an isolated
fixed point = of a homeomorphism 7" in two dimensions (see for instance [HK95, Section
8.4]): it is the number

indr(x) = deg(p — (p — Tp)/|lp — Tpl)),

where the degree is computed on a small curve around z, identified with S'. If one could
make sense of a smoothing at the singularity o, then its contribution to the flat trace would
be indr o /((1 — A)(1 —A71)), as follows from the same formal computation with the change
of variables y = x — T'z (the index comes from the number of branches of this map, giving a
multiplicity when one computes the integral). Thus, to have a sound definition independent
of an unclear smoothing procedure, we define the flat trace of 7" as

0 _ indyn
W= 2 i

If 7™ is smooth at a fixed point x, then its index is —1 and we recover the usual contribution
of x to the flat trace. More generally, if T" is such that det(I — DT') has a limit at all fixed
points of T' (regular or singular) then one defines its flat trace as the sum over all fixed
points z of indp x/(lim, det(I — DT)).

Theorem 1.8. Let T be a linear pseudo-Anosov map preserving orientations on a compact
surface M. Then, for all n,

(1.3) 02" (T") = daa™,

where the sum is over all Ruelle resonances o of T', and d, denotes the multiplicity of a.

Proof. The Lefschetz fixed-point formula (see [HK95, Theorem 8.6.2]) gives

> indpn 2 = te((T™) o)) — (T any) + (T 2 (ar)

Trer=x
29—2
=1- <)\"+)\‘"+ Zﬁ) +1,

i=1

where {y1,...,p2g—2} denote the eigenvalues of T* on the subspace of H!(M) orthogonal
to [dz] and [dy], as in the statement of Theorem 1.4. We can also compute the right hand
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side of (1.3), using the description of Ruelle resonances: 1 has multiplicity one, and A%,
has multiplicity k for & > 1. As Y ka* =z/(1 —2)2 = —1/((1 — 2)(1 — z7)), we get

29—2 oo 29—2 ,U,n
doo” =1 AT =1 - :
Z “ +ZZ H Z(l—)\—n)(l—)\")
« =1 k=1 =1
n -n 29—2 n
B S (D I el T (A AT ﬂi)
(1—=A")(1—A") B (1—=A")(1—A")

Combining the two formulas with the definition of the flat trace, we get the conclusion of
the theorem. O

Organization of the paper. In Section 2, we define the anisotropic Banach spaces B~ *n-*v
we will use to understand the spectrum of the composition operator 7. The construction
works in any translation surface. We prove the basic properties of these Banach spaces,
including notably compact inclusion statements, a duality result, and a cohomological
interpretation of elements of the space which are vertically invariant. All these tools are put
to good use in Section 3, where we describe the Ruelle spectrum of a linear pseudo-Anosov
map preserving orientations, proving Theorem 1.4. Then, we use (and extend) this theorem
in Section 4 to classify all vertically invariant distributions (proving Theorem 1.6), and in
Section 5 to find smooth solutions to the cohomological equation (proving Theorem 1.7).
Finally, Section 6 is devoted to the discussion of the Ruelle spectrum for linear pseudo-Anosov
maps which do not preserve orientations.

2. FUNCTIONAL SPACES ON TRANSLATION SURFACES

2.1. Anisotropic Banach spaces on translation surfaces. In this section, we consider
a translation surface (M, ). We wish to define anisotropic Banach spaces of distributions
on such a surface, i.e., spaces of distributions which are smooth along the vertical direction,
and dual of smooth along the horizontal direction. Indeed, this is the kind of space on
which the transfer operator associated to a pseudo-Anosov map will be well behaved, leading
ultimately to the existence of Ruelle spectrum for such a map, and to its explicit description.
The definition we use below is of geometric nature: we will require that the objects in our
space can be integrated along horizontal segments when multiplied by smooth functions, and
that they have vertical derivatives with the same property. This simple-minded definition
in the spirit of [GL08, AG13] is very well suited for the constructions we have in mind
below (especially for the cohomological interpretation in Paragraph 2.4 below) and makes it
possible to deal transparently with the singularities. However, it is probably possible to use
other approaches as explained in [Ball7| and references therein.

Let V" be the unit norm positively oriented horizontal vector field, i.e., the vector field
equal to 1 € C in the translation charts. It is C*° on M — 3, but singular at . In particular,
the derivation L; given by this vector field acts on C*°(M — X). In the same way, the
vertical vector field V¥ (equal to i in the complex translation charts) is C* on M — X, and
the corresponding derivation L, acts on C°°(M — X). On this space, the two derivations L,
and Lj commute, as this is the case in C.
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Choose two real numbers £ > 0 and 8 > 0. Denote by Ig the set of horizontal segments
of length 3 in M — . For I € Z%, denote by C¥(I) the set of C* functions on I which vanish

on a neighborhood of the boundary of I, endowed with the C* norm (when & is not an
integer, this is the set of functions of class C'¥) whose | k|-th derivative is Holder continuous
with exponent k — [k]).

When kp, > 0 is a nonnegative real number, and &, > 0 is an integer, we define a seminorm
on C(M —X) by

@ - (Lv)kvfdm

Hf”/—kh,ku,ﬁ = sup sup .

h k
1€Z5 peC: (D) |l ok, <1

Essentially, this seminorm measures k, derivatives in the vertical direction, and —kj, deriva-
tives in the horizontal direction (as one is integrating against a function with kj;, derivatives).
Hence, it is indeed a norm of anisotropic type. One could define many such norms, but
this one is arguably the simplest one: it takes advantage of the fact that the horizontal and
vertical foliations are smooth, and even affine.

Proposition 2.1. If 8 is smaller than the length of the shortest horizontal saddle connection,
then this seminorm does not really depend on B: if B1 is another such number, then there
exists a constant C' = C(B, p1, kn, kv) such that , for any f € C(M — X)),

CileHLkh,kv,,Bl < ”f”/fkh,kv,ﬂ < C”f”/—kh,kv,ﬂl‘

We recall that a horizontal saddle connection is a horizontal segment connecting two
singularities. There is no horizontal saddle connection in a surface carrying a pseudo-Anosov
map: otherwise, iterating the inverse of the map (which contracts uniformly the horizontal
segments), we would deduce the existence of arbitrarily short horizontal saddle connections,
a contradiction.

Proof. Assume for instance 81 > 3. The inequality HfHI—kh,ksv,ﬁ < HfHI—kh,kv,m is clear: an
interval I € Ig is contained in an interval I; in Igl as 1 is smaller than the length of any
horizontal saddle connection. Moreover, a compactly supported test function ¢ on I can be
extended by 0 to outside of I to get a test function on I;. The result follows readily.
Conversely, consider a smooth partition of unity (p;);es on [0, 1] by C* functions whose
support has length at most 5 (we do not require that the functions vanish at 0 or ;. Using
this partition of unity, for I; € Igl, one may decompose a test function ¢ € C’(’fh (I1) as the

sum of the functions ¢ - p;, which are all compactly supported on intervals belonging to Ig.

Moreover, their C*» norms are controlled by the C*» norm of ¢. It follows that the integrals
defining || f H/—k;ukv, 5, are controlled by finitely many integrals that appear in the definition

of |’f”Lkh,kv,g7 giving the inequality HfH/—kh,kv,ﬁl < CHf”/—kh,kv,B' O

By the above proposition, we may use any small enough 5. For definiteness, let us choose
once and for all 5 = By much smaller than the distance between any two singularities. This
implies that, in all the local discussions, we will have to consider at most one singularity.
From this point on, we will keep 5y implicit, unless there is an ambiguity.

The seminorms ||| ky &, A€ 1Ot norms in general on C°(M —X). For instance, if there is
a cylinder made of closed vertical leaves, then one may find a function which is constant on
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each vertical leaf, vanishes close to the singularities, and is nevertheless not everywhere zero.
Then L,f = 0, so that HfHI—kh,k;v = 01if k, > 0, but still f # 0. This is not the case when
there is no vertical connection: in this case, all vertical leaves are dense, hence a function
which is constant along vertical leaves and vanishes on a neighborhood of the singularities
has to vanish everywhere. In general, this remark indicates that the above seminorms do
not behave very well by themselves. On the other hand, the following norm is much nicer:

/cp-L{}fdx

(2.1) 1=, e, = sUPIFII-y, ; = sup sup sup i

< 1< h k
Ik ISk IET" oeceh (1) Jlell ry, <1

This is obviously a norm on C2°(M —¥). Indeed, if a function f is not identically zero, then
it is nonzero at some point x. Taking a horizontal interval I around z and a test function
¢ on I supported on a small neighborhood of z, one gets [ ;fdr # 0, and therefore
111k, o, > O

Then, let us define the space B—*»*+ as the (abstract) completion of C2°(M — ) for this
norm. Note that all the linear forms ¢; , ; : f fI gp-L{',f dz, initially defined on C2°(M —¥),
extend by continuity to B~*»kv (for I € I" and ¢ € C¥(I) and j < k,). Heuristically,
an element in B~*»*v can be differentiated in the vertical direction, and integrated in the
horizontal direction. Moreover, the norm of an element in B~*n*v is

(2.2) 11—k, &, = sup sup sup [€1,0,5 ()]
dshe IETY pecg™ (1), gk, <1

This follows directly from the definition of the norm on C2°(M —¥) and from the construction
of B~Fnkv as its completion.

Remark 2.2. In the spaces B~*r*> we have just defined, the parameter kj, of horizontal
regularity can be any nonnegative real, but the parameter k, of vertical regularity has to be
an integer, as it counts a number of derivatives. One could also use a non-integer vertical
parameter k,, requiring additionally the following control: if k, = k4 where k is an integer
and r € (0,1), then we require the boundedness of

/ goOLﬁfdx — / ngLf}fda:
Ip I

bt

3

when Ij is a horizontal interval of length By, g is a compactly supported C*» function on Iy
with norm at most 1, ¢ € [0, 5y] is such that one can translate vertically the interval [ into
an interval I, without hitting any singularity, and . is the push-forward of ¢y on I. using
the vertical translation. In other words, we are requiring that L¥ f is Holder continuous of
order r vertically, in the distributional sense. All the results that follow are true for such a
norm, but the proofs become more cumbersome while the results are not essentially stronger,
so we will only consider integer k, for the sake of simplicity.

Let ¢ be a C*° function on M, and denote by dLeb the flat Lebesgue measure on M.
Then 4, : f — [ fedLeb is a linear form on C2°(M — X). Contrary to the previous linear
forms, £, does not extend to a linear form on B~ kb because of the singularities: from
the point of view of the C'° structure, horizontals and verticals close to the singularity
have a lot of curvature, so that the restriction of ¢ to I € I" is C*, but with a large C*
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norm (larger when I is closer to the singularity). This prevents the extension of ¢, to
B~Fnkv - On the other hand, if ¢ is supported by M — B(X,4), then one has a control of
the form [€,(f)] < C(S)llellam I fI g, 4, SO that £y, extends continuously to B~Fnke More
precisely, denote by D> (M — X) the set of distributions on M — X, i.e., the dual space of
C°(M — X) with its natural topology. Then the above argument shows that there is a map
i : B7Fnkv — D®(M — %), extending the canonical inclusion C°(M — X) — D>®(M — %)
given by (i(f), ) = [ feodLeb. Locally, if ¢ is supported by a small rectangle foliated by
horizontal segments I; € Z" (where t is an arc-length parametrization along the vertical
direction), one has the explicit description

(23) (11,00 = [ b1 o).

Indeed, this formula holds when f is C*°, and extends by uniform limit to all elements of
Bfkhvkv_

Proposition 2.3. The map i : B~*wkv — D®(M — X)) is injective. Therefore, one can
identify B~*n*e with a space of distributions on M — 3.

Proof. Consider I € I and ¢ € C*»(I). For small enough ¢, one can shift vertically I by ¢,
and obtain a new interval I; € 7", as well as a function ¢; : I; = R (equal to the composition
of the vertical projection from I; to I, and of ¢). For any f € C°(M — X)), the function
t L1, o, 0(f) is C*, with successive derivatives t — €1, ,, ;(f). An element f € B~*nkv can
be written as a limit of a Cauchy sequence of smooth functions. Then ¢y, ., ;(f,) converges
uniformly to £, ,, j(f). Passing to the limit in n, we deduce that ¢ — ¢y, ,, o(f) is C*, with
successive derivatives t — £y, o, j(f).

Consider a nonzero f € B~F»*» with norm ¢ > 0. By (2.2), there exist I, ¢ and j such
that |¢7,;(f)] = ¢/2. Let us shift I vertically as above. The function ¢t — 7, ,, o(f) has a
j-th derivative which is nonzero at 0, hence it is not locally constant. In particular, it does
not vanish at some parameter tg. Consider § such that it is almost constant on the interval
[to — d,tp + d] by continuity. Let ¢ be a smooth function with positive integral, supported
by [to — 0,t0 + d]. In local coordinates, let us finally write ((x,y) = p(z)y(y). It satisfies
(i(f),C) # 0 thanks to the explicit description (2.3) for i(f). O

It follows that one can think of elements of B~*»v as objects that can be integrated
along horizontal segments, or after an additional vertical integration as distributions. Even
better, since the elements of B~*»* are designed to be integrated horizontally, the natural
object to consider is rather f dz. This is a current, i.e., a differential form with distributional
coefficients, but it is nicer than general currents as it can really be integrated along horizontal
segments (i.e., it is regular in the vertical direction). The process that associates to such an
object a global distribution is simply the exterior product with dy. Going back and forth
like that between O-currents and 1-currents will be an essential feature of the forthcoming
arguments.

The next lemma makes it possible to use partitions of unity, to decompose an element of
B~Fnkv into a sum of elements supported in arbitrarily small balls.
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Lemma 2.4. Let ¢ € C°(M) be constant in the neighborhood of each singularity. Then

the map f v+ Y f, initially defined on C°(M — %), extends continuously to a linear map on
B_khyk’u'

Proof. We have to bound [ JZ L (¢0f) dx when [ is a horizontal interval, ¢ a compactly
supported C*» function on I, and j < k,. We have L}, (¢ f) = Zkgj (i) L{,_kw -L¥f, hence

this integral can be decomposed as a sum of integrals of L¥ f against the functions ¢ - L%_kw
which are C*» and compactly supported on I. This concludes the proof, by definition of
B—Fknko 0

One may wonder how rich the space B~%»*v is, and if the choice to take the closure of
the set of functions vanishing on a neighborhood of the singularities really matters. Other
functions are natural, for instance the constants, or more generally the smooth functions
that factorize through the covering projection 7 : z +— 2P around each singularity of angle
27rp. The largest natural class is the space of functions f which are C"*° on M — ¥ and such
that, for all indices ap and a,, the function L L3" f is bounded. The next lemma asserts
that starting from any of these classes of functions would not make any difference, as our
space B~Fn*v ig already rich enough to contain all of them.

Lemma 2.5. Consider a function f on M which is C** on every vertical segment and such
that LEf is bounded and continuous on M — ¥ for any k < k,. Then the function f (or
rather the corresponding distribution i(f)) belongs to B=*»F for any k;, > 0. This is in
particular the case of the constant function f = 1.

Proof. First, if f is supported away from the singularities, one shows that f € B~*r*v by
convolving it with a smooth kernel p.: the sequence f. = f % p. thus constructed is C'*
and forms a Cauchy sequence in B~*»kv_hence it converges in this space to a limit. As it
converges to f in the distributional sense, this shows f € B~Fnkv,

To handle the general case, by taking a partition of unity, it suffices to treat the case of a
function f supported in a small neighborhood of a singularity, such that L¥ f is continuous
and bounded for any k < k,. Let 7 denote the covering projection, defined on a neighborhood
of this singularity. Let u be a real function, equal to 1 on a neighborhood of 0, supported
in [-1,1]. Let N > 0 be large enough. For 6 > 0, we define a function ps(x + iy) =
u(z /6N )u(y/d), supported on the neighborhood [V, V] +i[—4,d] of 0 in C.

We claim that, if N > k,, then in C one has ||ps||_, ,, — 0 when § — 0, where by
[l -k, %, We mean the formal expression (2.1), which makes sense for any function but could

be infinite. To prove this, consider a horizontal interval I of length /3y, a function ¢ € C*» (1)
with norm at most 1, and a differentiation order j < k,. Then

/tp - Lips da /@ ~u(a /6N )u (y/6) dw
I I

<67 ellcollullcollut o Leb([=6", 5V)).

This quantity tends to 0 if N > j, as claimed.
The same computation, taking moreover into account the fact that the vertical derivatives
of f are bounded, shows that || f-psonl|_; . — 0whend — 0. It follows that the sequence

=¢§J

fo = f(1 = p1y, o) is a Cauchy sequence in B~Fkrke made of functions in Ck (M — ¥)
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(which is indeed included in B=*»Fv by the first step). It converges (in L!, and therefore in
the sense of distributions) to f, which has therefore to coincide with its limit in B=%»*», [

In particular, if 3 contains an artificial singularity o (i.e., around which the angle is equal
to 27r), then one gets the same space B~*»*v by using the singularity sets ¥ or ¥ — {o}.

The horizontal and vertical derivations Lj, and L, act on C2°(M — X). By duality, they
also act on D>®°(M — ¥). In view of Proposition 2.3 asserting that B=*»*v is a space of
distributions, it makes sense to ask if they stabilize these spaces, or if they send one into
the other.

Proposition 2.6. The derivation Ly, maps continuously B=*n*e to B=Fn=1ke and it satis-
fies U1 o i (Linf) = —Emljj(f) for every I € T", pE th+1(l), j<kyand fe B knkw

The derivation L, maps continuously B~Fwkv to B=knke=1 if I > 0, and it satisfies
Ul (Lof) = Lrpji1(f) for every I € ", @ € CEn(I), j <k, — 1 and f € B~Fnkv.

Proof. The formulas (7, ;j(Lyf) = =1, j(f) and £1 o j(Ly f) = €14 j+1(f) are obvious when
f is a smooth function. The general result follows by density. O

Lemma 2.7. Assume that there is no horizontal saddle connection in M. Let f € B~ Fnkv
satisfy Lpf = 0. Then f is a constant function.

Proof. As Ly, f =0, one has £ o(f) = 0 for any smooth function ¢ on a horizontal interval
I. Denoting by 7, the translation by h, one gets ¢1,0(f) = {10, 0(f) if ¢ and p o7,
both have their support in I. It follows that the distribution induced by f on a bi-infinite
horizontal leaf is invariant by translation. Therefore, it is a multiple cdLeb of Lebesgue
measure. Since there is no horizontal saddle connection by assumption, the horizontal flow
is minimal by Keane’s Criterion. In particular, the above bi-infinite horizontal leaf is dense.
At the quantities {1, o(f) vary continuously when one moves I vertically, it follows that f
is equal to cdLeb on all horizontal intervals. O

We want to stress that Lemma 2.7 is wrong for L,. A measure p which is invariant for the
vertical flow can locally be written as v ® dy, where v is a measure along horizontal leaves,
invariant under vertical holonomy. Writing v as a limit of measures which are equivalent to
Lebesgue and with smooth densities, one checks that u belongs to B~*»* and moreover
it satisfies L,y = 0. In a translation surface in which the vertical flow is minimal but not
uniquely ergodic, one can find such examples where 1 is not Lebesgue measure.

In the case of surfaces associated to pseudo-Anosov maps, the vertical flow is uniquely
ergodic, so this argument does not apply. However, we will see later that there are still
many nonconstant distributions f in B~*»*v which satisfy L, f = 0.

It is enlightening to try to prove that f € B~*»* with L, f = 0 has to be constant, and
see where the argument fails. The problem stems from the fact that f is a distribution on
horizontal segments. Let F' be a dense vertical leaf, let I; be a small horizontal interval
around the point at height ¢t on F', and let ¢ be a function on Iy that we push vertically to a
function on I; (still denoted ) while this is possible. Then we get [; ¢fdv = [, ¢fdx as
L, f = 0. If this were true for all real ¢, then we would deduce that f is constant. However,
the support of ¢ has positive length. Hence, when we push it vertically, we will encounter a
singularity in finite time, and the argument is void afterwards. We could say something on
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a longer time interval if we used a function ¢ with smaller support, but the same problem
will happen again. The key point is a competition between the speed at which F' fills the
surface, and how close to singularities it passes. The existence of non-constant distributions
f with L, f = 0 is a manifestation of the fact that F' is often too close to singularities.

A related but more detailed discussion is made before the proof of Theorem 3.11, where
we study the existence of primitives under L, of some eigendistributions, not only 0.

2.2. Compact inclusions. In this paragraph, we prove the following proposition, ensuring
that there is inclusion (resp. compact inclusion) in the family of spaces B=*»F if one requires
less (resp. strictly less) regularity in all directions. This corresponds to the usual intuitions.

Proposition 2.8. Consider kj with —kj < —ky, (i.e., k), > ky) and k|, with kj, < k,. Then
there is a continuous inclusion B~ knkv C B Fnke

inclusion is compact.

If the two inequalities are strict, this

Proof. The inclusion B~*n-kv C B~Fuku when kj, > kp, and k;, < k, is obvious, as one uses
less linear forms in the second space than in the first space to define the norm.

For the compact inclusion, we will use the following criterion. Let B C C be two Banach
spaces. Assume that, for every ¢ > 0, there exist finitely many continuous linear forms
l1,...,fp on B such that, for any = € B,

(2.4) lzlle < elllls + Y1)
p<P
Then the inclusion of B in C is compact.

To prove the criterion, suppose its assumptions are satisfied, and consider a sequence
Tn € B of elements with norm at most 1. Extracting a subsequence, one can ensure that
all the sequences ¢;(x,) converge, for i < P. We deduce from the above inequality that
im sup,, o0 [|Tm —Znllo < 2¢. By a diagonal argument, one can then extract a subsequence
of x,, which is a Cauchy sequence in C, and therefore converges

Let us now apply the criterion to B = B, kh’k” and C = Bﬁo ok with k) > kp, and k], < k,,.
We take larger intervals in the first space than in the second space for technlcal convenience,
but this is irrelevant for the result as the spaces do not depend on [, see Proposition 2.1.

Let us first fix a finite family of intervals (J, )<y in Igﬁo such that any interval in Igo
can be translated vertically by at most /2, without hitting a singularity, and end up in one
of the J,, or even better in its central part denoted by J,,[B0,4/5o]. Such a family exists by
compactness, and the singularities do not cre&/mte any problem there. Then, on each J,, let
us fix finitely many functions (¢p i )r<k in cr "(Jp) with norm at most 1 such that, for any
function ¢ € C’k;L(Jn) with C*t norm at most 1 and with support included in JnlBo, 450],
there exists k such that || — @y k|| ok, < €/2. Their existence follows from the compactness
of the inclusion of C*» in C*». We will use the linear forms bk = E‘]n’gomk’j for n < N,
k < K and j < k, to apply the criterion (2.4).

Let us fix f € B_kh’k“ We want to bound its norm in B_k;“k/” By density, it is enough
to do it for f € COO(M Y)) — this does not change anythlng to the following argument,

but it is comforting. Consider thus I € Ih ,and ¢ € C. h( ) with norm at most 1, and
< kI, < ky. Let (It)o<i<s be vertical shlfts of I, parameterized by the vertical length ¢,
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with Is included in an interval J,[5p,45o] and § < £/2. Denote by ¢; the push-forward of ¢
on I;. Integrating by parts, one gets

1
/go-Lgfda::/ go(;.Lg;fdx—/ </ gotL{;“fdx)dt.
1o Is 0 I

The integrals on each I; are bounded by || f[|_j, ;. asj <k, < k,. Hence, the last term is at
most 6| f[| _y, ., < (€/2)[[fIl_, ,- In the first term, choose k such that ||os—on kllor, < /2.
Then this integral is bounded by (e/2)|f||_4, &, + [¢nk;(f)]. We have proved that

I gy gy < ENF g e, + max|lo k()]
v n,k,j

This shows that the compactness criterion (2.4) applies, and concludes the proof. O

2.3. Duality. Let us define the spaces B~ % just like the spaces B~%»Fv but exchanging
horizontals and verticals. Hence, k, quantifies the regularity of a test function in the vertical
direction, and kj; the number of permitted derivatives in the horizontal direction. The
derivations L, and Lj, still act on B, as in Proposition 2.6, but their roles are swapped
compared to B.

Some of the arguments later to identify the spectrum and the multiplicities of a pseudo-
Anosov map rely on a duality argument, exchanging the roles of the horizontal and vertical
directions. To carry out this argument, we need to show that there is a duality between the
spaces B~*nkv and BFn—kv when the global regularity is positive enough in every direction,
i.e., when —kp+kp, > 2and ky—Fk, >0 (or conversely, as one can exchange the two directions
— it is possible that the duality holds if kp — kp, > 0 and k, — k, > 0, but our proof requires
a little bit more). This is not surprising: g € B*» % has essentially kj, derivatives along
horizontals, and f € B~*wkv can be integrated along horizontals against C*» functions,
so if k;, > kj, one expects that one can integrate the product fg along horizontals, and
therefore globally. This argument is wrong since the horizontal regularity of g is only in the
distributional sense, so we will also have to take advantage of the vertical smoothness of f.
Using a computation based on suitable integrations by parts, it is easy to make this argument
rigorous away from singularities. However, as it is often the case, the proof is much more
delicate close to singularities, as integrations by parts can not cross the singularity, giving
rise to additional boundary terms that can a priori not be controlled, unless one proceeds in
a roundabout way as in the following proof. The technical difficulty of this proof is probably
related to our choice of Banach spaces: it is possible that another choice of Banach space
makes this proposition essentially trivial. This proof can be skipped on first reading.

Proposition 2.9. Assume —kj, + kp, > 2 and ky, — ky > 0. Then there exists C > 0 such
that, for any f,g € C°(M — X), one has

‘ / fgdLeb

Therefore, the map (f,g) — [ fgdLeb extends by continuity to a bilinear map on B Fnkv
BFr=ke that we denote by (f, g).

< Cllllg=rn o - 9l oy
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The proof will rely on a decomposition of f into basic pieces for which all the above
integrals can be controlled. We will denote by H the set of local half-planes around all
singularities, bounded by horizontal or vertical lines. Specifically, if ¢ is a singularity of
angle 27k with covering projection 7, these sets are the x components of 771{z : Rz > 0}
in a neighborhood of o, intersected with a small disk around o, and similarly for the upper
half-planes, lower half-planes and left half-planes, giving rise to 4« half-planes around o.

Lemma 2.10. Fiz k;, and k,. There exist N, C, and rectangles (R;)i<n away from the
singularities with the following property. For any f € C*(M —X), there is a decomposition

(2.5) f= Zfz‘FZfa-FZfH

oen HeH

where all the f; and f, and fg are C’k“ functions with compact support in M — X. They
belong to B~*»kv and have norm at most C||f|_ k- Moreover, each f; is supported in R;,
each fg is supported in H, and each f, is supported mn a small disk D, around o and is
constant on the fibers of the covering projection © around o.

Proof. Multiplying f by a partition of unity, we can assume that f is supported in a small
disk around a singularity o with angle 27k (the terms away from the singularities will give
rise to the terms f; in the decomposition (2.5)). We have to construct a decomposition

(2.6) f=fot S

HeHs
as in the statement of the lemma, where H, denotes the set of half-planes around o. We
assume || f||_, , <1 for definiteness.

Let m = 7, be the covering projection, sending o to 0. We may assume that 7! ([—a, a]?)
only contains o as a singularity, and that f is supported in 77 !([—~a/2,a/2]?). Denote by
w = €27/ the fundamental k- th root of unity. Let R be the rotation by 27 around o. For
q € Z/KZ, let fu(z) = k71 >0 Y w9 f(RIz). This is the component of f that is multiplied
by w? when one turns by 27 around . We have f =) f, by construction, and each f, is
C®°, compactly supported, and satisfies || fq|| 3-#,.», < 1 since this is the case for f.

The function fy is constant along the fibers of w. It will be the function f, in the
decomposition of f. Consider now ¢ # 0. We will first work in a chart U sent by « on
[—a,a]? —[0,00), i.e., a chart cut along the positive real axis. When one crosses this axis
from top to bottom, the function f; is multiplied by w?. We will use the canonical complex
coordinates on U.

Let us first show the following: for ¢ € C*»([—a,a]) and j < k,, one has

(2.7) ] / U Lifydr

The interest of this estimate is that ¢ is a priori not compactly supported in [—a, 0], so that
this integral can not be controlled directly using || fgl| _, 4, -
For small y > 0 and € € {—1,1}, the interval [—a, a] + ciy is included in U. Therefore,

(2.8) ’/a x) fq(x + eiy) do

< Cllgllgmn-

”SOHC’%
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Let y tend to 0. For z < 0, f,(z + €iy) tends to fy(x). On the other hand, for z > 0, the
limit depends on e: one gets f,(z") for e =1 and f,(z7) = wif,(zT) for e = —1. Hence,

0

o(x) fg(r —iy)dz — (1 —w™9) / o(x) fo(z) da.

—a

a

| e@iite+ e —w [

—a —a

Combined with the control (2.8), this proves (2.7) for j = 0 (for C = 2/|1 —w™?|). The
argument is the same for j > 0.

Consider a C™ function ps which is equal to 1 on [—a/2,a/2]? and vanishes outside of
[—a,a]®. We define a function fy on U by fy(z +iy) = le<op2(z + iy) > i<k, YL, fo ().
This is a C*° function, compactly supported in M — 3 (we recall that f, and therefore f,,
vanishes in a neighborhood of o, so that f,(x) = 0 for = close to 0 in the chart U). This
function is supported by U. Its interest is that its germ along [—a, 0] is the same as that
of f,. Moreover, it follows from (2.7) that the norm of fy; in B~ Fnkv is uniformly bounded.
This function is supported in the left half-plane H € H contained in U. Let us denote it by
fq.m- It will be part of the term fx in the decomposition (2.6).

For each horizontal segment 7 coming out of the singularity o, one can consider a chart
U as above cut along 7 (with the difference that [—a, a]? can be cut along either the positive
real axis, or the negative real axis, depending on 7), and then the associated function fi;.
Let fq = fq— >y fu. This function is bounded by a constant in B~knkv  Tts interest is that
it vanishes along every horizontal segment coming out of o, and moreover all its vertical
derivatives up to order k, also vanish there. In particular, the restriction of fq to any upper
half-plane or lower half-plane H € H is still C** and it can be extended to the rest of the
manifold by zero. Denote this extended function by f, i. It belongs to B~ Fnke and has a
bounded norm in this space, and it is supported in H.

Finally, the decomposition (2.6) of f is obtained by letting f, = fo and fg = >_ 420 Ja.H-

O

Proof of Proposition 2.9. Decomposing f as in Lemma 2.9, it suffices to show the inequality
J fgdLeb < C < Cfllg-rnro - 9/l 5,5, When f is:

(1) supported away from the singularities,

(2) or supported on a small neighborhood of a singularity, and constant on the fibers of
the covering projection,

(3) or supported in a half-plane close to a singularity.

For definiteness, we will also assume || f|| z-x,.# <1 and ||| 5,2, < 1.

Let us first handle the case where f is supported in a small rectangle [—a, a]? away from
the singularities. We can even assume that f is supported in [—a/4,a/4]%. Multiplying g by
a cutoff function, we can assume that it is also supported in [—a/2,a/2]?.

Using a local chart, we may work in C. Along the horizontal interval [—a,a] + iy, the

successive primitives of Fy = f vanishing at —a + iy are given by

xT

(2.9) Fi(z +1iy) = ft+iy)(z —t)* 1/ (k- 1) dt,

—a
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as one checks easily by induction over k. Let us take k = kj + 2. With k integrations by
parts, one gets

(2.10) / fgdx = (—1)’“/ Fy, - Ligdz.
[—a,a]+iy [—a,al+iy
Let us consider a function p(x) equal to 1 for z > —a/2 and vanishing on a neighborhood
of —a. As f is supported by [—a/2,a/2]?, one has
a

Fx+iy) = [ flt+iy) - p(t)lica(e — )"/ (k= 1)l dt.

—a

The function
(2.11) t = p(t) L (x — )71/ (k — 1)!

is of class C*~2 on [—a, a], with a bounded C*~2 norm: Its singularity at z is a zero of order
k — 1 to the left of z, and of infinite order to the right of x, so that everything matches in
C*~2 topology. Therefore, by the definition of B~*»*v and the choice k = kj, + 2, one has
|Fi(xz +1iy)| < C as || f||[g-#y.ke < 1. In the same way, the vertical derivatives of F}, involve
vertical derivatives of f, which can be integrated against C*» functions along horizontals.

We get, for all j < k, and all 2 +iy € [—a, a]?, the inequality ‘L%Fk(x—kiy)‘ < C. Therefore,

along any vertical segment of the form z + i[—a, a], the function F is C** with bounded
norm, and it is compactly supported as it vanishes for |y| > a/2 (as f is supported by
[~a/2,a/2]).

Let us integrate the equality (2.10) with respect to y. We get

(2.12) /fgdLeb = (-1)’“/ (/ Fk-Ligdy> dz.
z€[—a,a] \ Y/ z+i[—a,a]

When z is fixed, every integral fx - by - LZg dy is the integral against a C** function

a,al
with bounded norm of the function Lflg, with k£ < kj, and k, > k, by assumption. By
definition, this integral is bounded by [|Fi||cw, |9l gr,, 5, < C. Integrating in z, we obtain

the desired inequality ‘ [ fg dLeb} < C.

We still have to consider the case where f is supported in the neighborhood of a singularity
o with angle 27rk. Multiplying g by a cutoff function, we can assume that g is also supported
there. Write m for the corresponding covering projection, sending o to 0. We may assume
that 7=1([~a,a]?) only contains o as a singularity, and that f and g are supported by
7 ([~a/2,a/2)?). We would like to carry out the same argument as before, but the function
F}. one obtains by integrating along a horizontal line is smooth along vertical lines to the
left of the singularity, but it is discontinuous on vertical lines on the right of the singularity,
breaking the argument.

Assume first that f is invariant under the covering projection 7. Denote by w = 27/ the
fundamental k-th root of unity. Let R be the rotation by 27 around o. For q € Z/KZ, let
gq(z) =71 Z?;é w¥g(R7z). This is the component of g that is multiplied by w? when one
turns by 27 around o. For ¢ # 0, the function fg, is multiplied by w? when one turns around
the singularity. Therefore, [ fg,dLeb = w? [ fg, dLeb, which implies [ fg,dLeb = 0 (this
is just the classical fact that two functions living in different irreducible representations are
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orthogonal). Let us now handle 9o- The functions f and gg are both R-invariant. They can
be written as for and jor where f and § are functions on C supported by [—a/2,a/2]?. The
norms of these functions (in B7%»*> and B*»~*v respectively) are bounded by 1. The case of

functions away from singularities, that we have already treated, shows that ‘ Ik fg dLeb’ <C
This gives the same estimate for [ fgo dLeb.

Assume now that f is supported in a vertical half-plane H, to the left of o for instance.
Let us show that

(2.13) ‘/fgdLeb < C.

We proceed like in the proof away from singularities, making integrations by parts along
horizontals. Let F}; be the j-th primitive of f along horizontals, vanishing at —a +iy. It
is given by the formula (2.9). Then, we do k = kj, + 2 integrations by parts along each
horizontal line, to get

/ fgdz = (_1)k/ Fp-Lygda + Y (—1) Fia(iy)Ljg(iy).
[—a,0]+iy [—a,0]+iy

i<k

The difference with (2.10) is the boundary terms, due to the fact that g does not vanish on
the line = 0. Integrating in y, we obtain
(2.14)

/ fgdLeb = (—1)F / ( / F- LEgdy) dz+) (-1) ( / Fiy-Lig dy>.
z€[—a,0] \ J z+i[—a,a] ; i[—a,a]

i<k

The first term is controlled as in the case away from singularities, as the function Fj is
bounded and C*v along vertical segments since k = kj, +2. On the other hand, the boundary
terms are more delicate. The difficulty is that, a priori, Fji;(iy) is not bounded just in
terms of || f||z—#p.ke: The function (2.11) (with k replaced by j and = = 0) is not C*» for
j < k because of its singularity at 0. Nevertheless, as the distribution f is supported in H,
we may replace the function in (2.11) by another function which coincides with it on [—a, 0]
and is C*» with bounded norm on [—a, a], without changing the value of the integral. It
follows that in fact Fj(iy) is bounded in terms of || f{|z-#, k.. In the same way, its vertical

derivatives are also bounded. As g € BFr—kv has norm at most 1, we obtain (integrating on
a segment with horizontal coordinate —z with = small to avoid the singularity)

a .
</ Fiq(iy) - L] g(—x + iy) dy> <C.
—a

Letting = tend to 0, we obtain that the second term in (2.14) is uniformly bounded. This
proves (2.13).

Finally, assume that f is supported in a horizontal half-plane H, for instance an upper
half plane above o. We proceed exactly as in the case without singularities, integrating
by parts along horizontal segments. Let F}; be the j-th primitive of f that vanishes on
—a +1(0,a]. The only difference is at the end of the argument: the analog of (2.12) in our
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/f-gdLeb:(l)k/ / Fy - L¥gdy | daz.
H z€[—a,ad] z+i(0,a]

The function Fj, is still smooth along vertical segments, with uniformly bounded derivatives.
However, it is not compactly supported in x + i[0, a], which prevents us from writing.

/ Fy.- Ligdy
z+i(0,a]

On the other hand, F) vanishes on [—a,al, as well as its successive derivatives. Indeed, f
is supported in H and smooth vertically, so by approximating the left and half parts of the
boundary of H from below one obtains this vanishing property. Therefore, we may extend
F}, by 0 for points with negative imaginary part. This extension is still C** along vertical
lines. This justifies the inequality (2.15). Integrating in x, we obtain the desired inequality
[ f-gdLeb| < C. O

case is

(2.15) < Cligll grn, ko -

Lemma 2.11. We have the following duality formulas for f € B~*nkv and g € BFn ko .

(216) <thag> = _<f7 th>7 <L”Uf7 g> = _<f7 ng>

Proof. Tt is enough to check these formulas for functions in C2°(M — ¥), as they extend
by density to the whole spaces thanks to Proposition 2.9. The function fg vanishes on a
neighborhood of the singularities. Denote by €2 the complement of a union of small disks
around the singularities such that fg = 0 outside of 2. We have

| mtrgazndy= [ atoan) =~ [ sgay=o.

Hence, [ Ly f-gdLeb+ [ f - LpgdLeb = 0. This proves the first identity in (2.16). The
second one is identical, upon exchanging the roles of x and y. O

2.4. Cohomological interpretation. In the study of the Ruelle spectrum of pseudo-
Anosov maps, a special role will be played by the elements of B~*»*» N ker L,. Heuristically,
the relevant object associated to f € B~*n*v is the current fdxz. When f satisfies addition-
ally L, f = 0, then the formal derivative of this current is d(f dz) = (0, f do + Jy f dy) A dx.
The term dx A dz vanishes. When L, f = 0, one has 9,f = 0, and one gets d(fdxz) = 0.
Therefore, the current fdx is closed. It defines a cohomology class in H'(M — ). We will
give a more explicit description of this cohomology class, and show that it even belongs to
H'(M) (i.e., it vanishes if one integrates it along a small path around a singularity).

Let v be a continuous closed loop in M — ¥ and let f € B~*wkv N ker L,. We define
the integral of f along 7y, denoted by fv fdz, as follows. Deforming  slightly, we can first
transform it into a loop made of finitely many horizontal and vertical segments. In fv fdzx,
the vertical components of v do not appear. For a horizontal component I, we would like
it to contribute by [ ; fdz, but this does not make sense since f can only be integrated
against smooth functions, which is not the case for the characteristic function of I. Let us
smoothen this function by adding to the end of I a smooth function going from 1 to 0. In
the next horizontal interval J, that follows I in «y, on the contrary, we subtract ¢ (pushed
forward by the vertical translation from I to J) to the characteristic function y s of J — this
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process changes it to the function yj — ¢, which is smooth. In this way, we obtain integrals
that are well defined. As f is invariant under vertical holonomy by the assumption L, f = 0,
it follows that the result is independent of the choice of ¢, and of the choice of the initial
deformation of «v in M — ¥. This concludes the definition of f7 fdx. This construction is
reminiscent of [Bufl4b, Paragraph 1.3], although the fact that our distributions can not
be integrated against characteristic functions enforces an additional smoothing step in the
definition above.

Proposition 2.12. Let f € B~*wk> Nker L,. Then the integral f,y fdx only depends on the
homology class of v in Hy(M). Therefore, the map v — f,y fdx defines a linear map from
Hi(M) to R, i.e., a cohomology class in H*(M) which we denote by [f] or [f dz].

Proof. The fact that fy f dx only depends on the homology class of v in M — X follows
directly from the definitions. The only assertion that remains to be checked is that this
integral is not modified when one crosses a singularity. Equivalently, we have to show that
fv fdx =0 when ~ is a positive path around a singularity o.

Let 7 be the covering projection around o, well defined on a neighborhood of size § €
(0, 8p/10). Let us fix a function ¢ on R equal to 1 around 0, with support included in [—4, J].
For y > 0, we may construct a path v around ¢ by considering I?j = 7 Y([~4,6] + iy)
(a union of k horizontal segments, where x is the degree of ), crossed negatively, and
I =7 1([-6,6] —iy) (a union of « horizontal segments), crossed positively, as well as the
corresponding vertical segments. Then

(2.17) Lfdm:/[ Lp(x)fdx—/+cp(x)fda:

Y Iy
for any y > 0, by definition.
Let € > 0. By definition of B=*»** we may choose g € C°(M —¥) with 1f =gl _, &, <&
When y tends to 0, we have fI* g dx—fl+ pgdz — 0 as the horizontal segments compensate
Yy Y

each other, and the singularity does not contribute as g vanishes close to 0. We can in
particular choose y for which this quantity is less than €. We have

/gpgdx—/ pfdx
I I

Yy Yy

< Kllpllornllg = Fl gy 0, < Ce,

as the integral along each of the s horizontal segments composing I is bounded by

lellernllg — Fll g, x,- The same holds on I7. Finally, we get UI; of dz — flj gpfdx‘ <
(2C + 1)e. This concludes the proof thanks to (2.17).

By definition of cohomology, a closed current of degree 1 vanishes in cohomology if and
only if it is the differential of a current of degree 0. In the case of currents in B~*»*» Nker L,,
we will see that this primitive is of the same type in the next proposition. The primitive of
the current f dz is obtained by integrating f along horizontal leaves. We will have to see
that this makes sense, and that the primitive thus defined has all the required regularity
properties. Equivalently, the primitive g has to satisfy Lpg = f.
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Proposition 2.13. Assume that there is no horizontal saddle connection. Consider [ €
B~Fnkv A ker L, such that [f] =0 € HY(M), with k, > 0. Then there exists g € B~*n+1ken
ker L, such that f = Lyg.

Proof. Let xg be a basepoint, and F' a horizontal half-line starting at xg, positively oriented,
which does not end at a singularity. Since we assume there is no horizontal saddle connection,
it is dense. We identify it with [0, 00). We will denote by z; the point of F' at horizontal
distance t of xg. Choose on F' a function py equal to 1 in a neighborhood of z(, and to 0
on [0/2,+00), where 0 is small enough that there is no singularity in the ball of radius 10§
around xzg.

Let ¢ be a C*»~! function on F with compact support. Let ® be its unique primitive
that vanishes at x¢. It is constant after some time T, equal to [ ¢. Choose a time t > T
such that z; belongs to the vertical segment of size ¢ through z¢ (it exists as the half-line F
is dense). Consider then the function ®; equal to ® on [0,¢], to ([ ¢) - po on [t,t + &] (where
po is pushed vertically to [z, 2,15]), and to 0 further on. This is a function of class C*»
with compact support in F, so that || 7 @¢f dx is well defined. Then we define formally an
object g by the formula

(2.18) /cp-gd:c: /(I)t-fd:c.

Let us first notice that this quantity does not depend on t. Indeed, if we choose another
time s > ¢ such that zs also belongs to the vertical segment of size § through xg, then the
difference between these two quantities is given by ([ ¢) f7 fdx, where ~y is the union of the
piece of F' between x; and x,, and a subsegment of the vertical segment through xg. As
[f] = 0, this integral vanishes. Note that, for now, g is only a distribution along F'.

The interest of this definition is the following. If we prove that g defines a genuine element
of B~FntLkv e will have by definition of L, that, for any function ¢ with compact support

on a segment I C F,
/@-thdx:—/@’-gdx:/\llt'fdac,
I I I

where W, is the primitive of ¢’ vanishing at z(, extended to the right by ([ ¢)po = 0. Hence,
W, = ¢. This formula shows that Lyg = f, at least along subintervals of F'. As we will see
later that ¢ is invariant under vertical holonomy, we will obtain L;g = f everywhere, as
desired.

The same argument using [f] = 0 shows that, if two segments I and J of F' are obtained
one from the other by a vertical translation in a small chart without singularity, and if ¢f
is a function on I, then fI prgde = fJ wjgdx, where ¢ is the push-forward to J of ¢; by
vertical translation. This makes it possible to define | ; g dz for any horizontal segment [
and any ¢ € Ck»~1(I), by using the integral on a small vertical translate of I included in F'.
By the above, it does not depend on the choice of the translate.

Let 6 > 0 be such that any horizontal segment of length By can be translated vertically, in
the positive or negative direction, by at least 0. If T is large enough, then F[0, 7] is J-dense
in M. This implies that, to compute [; pgdz for any interval I of length Sy, one can first
translate it vertically to reduce the computation to an interval included in F[0,T + [y}, and
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then use a time ¢ independent of I. The function ®; obtained in this way has a C*» norm
which is bounded by C/||¢|| ok, -1. This shows that, uniformly in I € 7",

oo
1

Moreover, as g is locally invariant under vertical translations, we have | f L%g dz =0

for all j > 0. Therefore, g satisfies all the inequalities that are satisfied by the elements of
Bfk;fi»l,kv .

< Cllgllgn-1-

However, this is not enough to conclude that ¢ is indeed an element of B~*rT1Lkv  We
should come back to the definition of this space as the closure of C2°(M — X), and show
that ¢ is a limit of smooth functions with compact support. This is the hardest part
of the proof, as one may not regularize g blindly by convolving it with a smooth kernel
along horizontal segments: this fails for segments that hit the singularity. We prove the
statement locally, as one can then extend it using a partition of unity. We treat the harder
case of the neighborhood of a singularity o, the case away from singularities is easier. Let
7w : U — C be the covering projection of a neighborhood U of ¢ in C, sending o to 0. We
write U, = 7= 1([—7r,7] + i[-7,7]). Let a > 0 be small enough. We fix a smooth function p
that is equal to 1 on Uy, and vanishes outside of Us,.

By assumption, f itself is the limit in B=*»Fv of a sequence of functions f, € C*P(M-%).
Let us consider around o the function g0 which is a primitive of f,, along every horizontal
segment, and vanishes on the vertical segments going through o. Then pgl € C°(M — X).
However, g9 will not converge in general to g, as one has to adjust integration constants.
The difficulty is that, if we adjust the integration constant by considering what happens to
the left of o in complex charts (i.e., on the set of points whose image under 7 has negative
real part), then this integration constant will behave nicely along vertical segments to the
left of o, but it will be discontinuous along vertical segments to the right of o. The converse
problem shows up if we fix the integration constant by using what happens to the right of
0. The idea will be to have two integration constants, coming from the left and from the
right, and to show that they are necessarily close.

Let 7 be a nonnegative C'*° function on R with support in [0, a] and with integral 1. We
will write 7 for n(- —t), whose support is contained in [t, ¢+ a]. Given a point y on a vertical
segment through o, we write

cr(y) = / M6ag dz — / M6agn A,
[6a,7a)+iy [6a,Ta)+iy

Cn () = / N-7a9 dz — / 1-7agp dz
[—Ta,—6a]+iy [—T7a,—6a]+iy

(where we used the local complex coordinates given by 7). These functions are uniformly
bounded. As g is invariant under vertical shift and as ¢° is C°, they are smooth along
vertical segments. More precisely, ¢ is C* along vertical segments on the right of the
singularity (in the chart =), while ¢, is C° along vertical segments to the left of the
singularity.
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We claim that, for y as above, for any function ¢ € C*»~1([~3a, 3a] + iy) with norm at
most 1, and for any sign s = +,

(2.19) ‘/P@9d$ - /pwgg dz — </p90>cqi(y)' S COIf = fall g, ks

where C' does not depend on n. Let us prove this for s = + for instance. By density of F
and by continuity of all the objects under consideration, it suffices to prove it if y € F. The
function pp — ([ pp)nee has a vanishing integral on [—3a, 7a] + iy. Its primitive ® vanishing
at —3a + iy also vanishes at 7a + iy. The definition of g entails

for- (fop=— o
[lor- (o= [z =~ = o

Taking the difference between these two equations and using the definition of ¢ (y) yields

/psog—/psogg— (/pw)c}f(y):/@fn—/fbﬁ

Thanks to the definition of the norm, this proves (2.19) since ® is C*» with norm and
support uniformly bounded.

Let us now consider a function ¢ supported by [—3a, 3a] with integral 1. We have [ pp =1
if |y| < 3a by definition of p. Using the inequalities (2.19) with the signs + and — and
taking their differences, we get in particular

(2.20) e () = e W < CNF = fall gy o

Let h,, be a smooth function on R equal to 0 in a neighborhood of 0 and to 1 for |z| > 1/n.
We define g, by gn(z + iy) = ¢ (x + iy) + &2 “(y)h,(z). This is a C™ function on Us,,
vanishing in a neighborhood of ¢. Let p be a smooth function equal to 1 on U,, vanishing
outside of Us,. Let us show that pg, converges to pg in B—*n+1*v to conclude the proof.

We first control what happens without vertical derivatives. Let I be a horizontal interval.
We may assume that it is close to o, at height y with |y| < 2a, otherwise p vanishes on I
and everything is trivial. Consider also ¢ € C¥»~1(I). Then

Moreover,

/Icp-pgdw—/lcp-pgndw—/Ip-pso-gdx—/lp-pso-ggdw—/Ip-psDCZg”(y)hn(m)dx

~([r5e)ci = [ oo Whale) o + O = full s, )
where the first equality comes from the definition of g,, and the second one from (2.19). In

the last integral, if one replaces ¢, (y) by ¢} (y), one makes a mistake which is bounded by
Cllf = fall _g, ,» thanks to (2.20). We are left with

cH(y) - / p o (1= (@) dz+ O(f = Fall s, 0.)
I
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Since 1—h,, is supported in an interval of length 2/n and since the function p- gy is uniformly
bounded, as well as ¢}, this quantity is bounded by C/n +C|f — fal_y, 1, which tends to
0 with n. We have therefore proved that [|pgn — pg|l _y, 110 — 0

Let us then consider what happens with successive derivatives in the vertical direction.
In L) (pg), if one differentiates p, then the number of derivatives of g is less than j, and one
concludes by induction. We are left with proving the convergence to 0 of

/Iso-pLz;gdx—/lso-pL{gndx.

As the vertical derivative of g vanishes, the first term is 0. For the second term, the vertical
derivatives of f,, integrated against a smooth function, are small since they are close to the
corresponding term for f, which vanishes as L, f = 0. Integrating horizontally, we deduce
that the vertical derivatives of gg are small in the distributional sense. As a consequence, the
vertical derivatives of ¢, and ¢, are also small. The same is true for the vertical derivatives
of g,. This concludes the proof. O

The following lemma will be very important for us, to show that the eigenvalue A~! of a
pseudo-Anosov map acting on H'(M) does not show up in its Ruelle spectrum.

Lemma 2.14. There is no f € B~*»F N ker L, with [f] = [dy].

Proof. We argue by contradiction, assuming that f € B~*»* 0 ker L, satisfies [f] = [dy].
Increasing kj, (which only makes the space larger), we can assume kj, > 1. Since f is in the
kernel of L,, its vertical smoothness is infinite, so we can also assume k, > 3. We claim
that, in this case, there exists g € B~*+15 with Lyg = f and L,g = 1.

We follow the construction in Proposition 2.13 to construct the primitive g of f. Let
us use all the notations of the corresponding proof. In particular, let F' be a half-infinite
horizontal leaf starting at a point xg, and let x; be the point at distance ¢ of zy in F', and
let pg be a function on F' which is equal to 1 on a neighborhood of zy and to 0 on [§/2, +0o0],
where § is small enough.

Let ¢ be a C*»~1 function on F, with compact support. Denote by ® its primitive that
vanishes at 0. It is eventually constant and equal to [ ¢ after some time 7. Choose t > T
such that z; belongs to the vertical segment of size § through xg (such a time exists as the
half-leaf F' is dense), at a vertical distance y(z;). Let us consider the function ®; equal to
® on [0,t], to ([ ¢) - po on [t,t + &] (where pg is pushed vertically to [z, x445]), and to 0
afterwards. This is a compactly support C*» function on F. Therefore, J @i f dr is well
defined. Let us define formally

(2.21) /so-gdw=—/<1>t-fdx—y(wt)~/so-

The last term is the only difference with (2.18).
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This quantity does not depend on t. Indeed, choose s > ¢ such that x is also on the
vertical leaf of size § through zg. Then

(- Jor s o)~ (- for-sasui- [0
:_</¢) ([{fdery(ars)—y(%))a

where ~ is the union of the piece of F' between x; and x4, and of the small vertical segment
between zs and x;. As [f] = [dy], we have fv fdx = y(z;) — y(zs). Therefore, the above
difference vanishes.

Let Iy be a subsegment of F', let ¢ be a compactly supported function on Iy, let I. be a
vertical translate of Iy by a small parameter ¢ so that there is no singularity in between and
so that I, is also included in F'. Then we have

(2.22) /Iecp-gdm—/logo-gdx:</gp>e.

Indeed, let us use in Definition (2.21) a time ¢ which is large enough to work as well for I
and I.. The difference between the primitives of ¢ on Iy and I, is then supported on the
subsegment of F' between Iy and I, and is equal to | ¢ except in the boundaries Iy and I..

We obtain
/@-gdx—/ so-gdx——</so>/fdx,
I Iy ~

where v is made of a horizontal piece of F' and of the vertical segment between the left
endpoints of I. and Iy, with length . As [f] = [dy], we have fv fdx = fv dy = —e. This
proves (2.22).

We can then extend by continuity g to all horizontal segments, ensuring that (2.22) is
always satisfied. Then, by definition, L,g = 1 in the distributional sense. It remains to check
that g belongs to B~*t1Lkv  The argument is completely identical to the corresponding
argument in the proof of Proposition 2.13.

We have obtained g € B~*»+1kv with L,g = 1. With the duality from Lemma 2.11, we
get

LebM = (1,1) = (Lyg,1) = — (g, Ly1) = 0.
This is a contradiction, concluding the proof of the lemma. O

3. THE RUELLE SPECTRUM OF PSEUDO-ANOSOV MAPS WITH ORIENTABLE FOLIATIONS

Let T be a pseudo-Anosov map preserving orientations, on a translation surface (M, ).
This section is devoted to the description of its Ruelle spectrum, culminating with the proof
of Theorem 1.4.

3.1. Quasi-compactness of the transfer operator. In this paragraph, we show that
the operator 7 of composition with T acts on B~*r*» and is quasi-compact with a small
essential spectral radius. Namely:

Theorem 3.1. The operator T acting on B~*w* has a spectral radius bounded by 1, and
an essential spectral radius bounded by A\~ ™n(kn.kv)
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The proof will use a Lasota-Yorke inequality given in the next proposition.

Proof of Theorem 8.1 assuming Proposition 3.2. This follows readily from Hennion’s The-
orem |[Hen93|, from the compact embedding proposition 2.8 and from the Lasota-Yorke
inequality given in Proposition 3.2. ]

Proposition 3.2. Let kp,l, > 0. The operator T : f — f o T, initially defined for
[ € CX(M —X), extends to a continuous linear operator on B~ knkv whose iterates are
uniformly bounded. Moreover, it satisfies the inequality

(3.1) 1T Fll gy, < CNTEREI £l Coll Il =1 g1

where C' and C,, are constants that do not depend on f. (When k, = 0, the last term should
be omitted).

Proof. Assume that we can prove the inequality (3.1) for f € C°(M — X). Then, it extends
to B~Fnkv by density, and proves that 7 acts continuously on this space thanks to the
inclusion B knkv C B=kn—1lko—1

Let us now prove (3.1) for smooth f. In the course of the proof, we will also establish
the boundedness of the iterates of 7 on B~*»»  First, we estimate the contribution of
1T g, i, tO I T fl g, 1, Consider I € I" and ¢ € Cf#(I) with norm at most 1, and
compute

/so Ly (foTh)de = “”"/eo Ly f) o T da = A7 A"/ poT " Livfda.
I T "I

Let us then introduce a partition of unity p, on T™I into smooth functions with supports of
size < By and bounded intersection multiplicity. Thus, we decompose T™[ as a union of at
most CA" intervals in Z". On each of these intervals, the integral is bounded by C|| f HLkh ko

as the function p o T7" - p, has a C*n-norm which is uniformly bounded (this is the case
for ¢ and pp, and the map T~" only makes things better as it is a uniform contraction by
A™"™). Summing over p, we get a bound C)\_k””HfH/_kh k- Hence,

(3.2) 177 £y e, < CAT NS g -

If we use the same argument with a norm involving j < k, stable derivatives, we get a
weaker gain A/, Summing over j, this shows that the iterates of 7~ are uniformly bounded
on B~Fnkv but this is not enough to prove (3.1). To prove it, we will take advantage of the
expansion in the horizontal direction, which we have not used yet. We can extend [ in one
of the two horizontal directions without meeting a singularity, for instance to its right, to
an interval I’ € Igﬁo' Let . = ¢ x 0. where 6. is a kernel supported on [0, €], and € < [y is
a small parameter that will be chosen later on, depending on n. (If the interval I had been
extended to its left, we would have taken the support of 6. in [—¢,0]). Then ¢, is compactly
supported in I’ if ¢ < 3y, and it satisfies

(3:3) lp = wellorn— < Ce, lwellor <O, lwellgr < C/e.
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Let us compute as above, introducing a partition of unity p, on T"I'. We get

/cp'L{,(foT")daz:)\_j”')\_nZ/ (p—¢e)oT ™™ pp-Lif dz
1 1,
P p

—i—)\j"-)\”Z/I 00T p,- LI fdz.
P P

In the second sum, the test function ¢, o T™" - p, has a C*n+1 norm which is bounded
by C/e. As the number j of derivatives we consider is < k,, we deduce that this term
is bounded by C’)\_j”es_leH_kh_Lkv_l < Cle,n)||fll g, —1 4,1 In the first sum, the first
kn — 1 derivatives of (¢ — p.) o T~™ are bounded by Ce, as this already holds for ¢ — .
by (3.3). The kj,-th derivative of ¢ — ¢, is only bounded by a constant. As 7™ contracts by
A", the kj,-th derivative of (¢ — ¢.) o T~™ is therefore bounded by CA~%»". Hence, taking
e= X"k we get ||(p— @) o T ok < CA™Fn™. Multiplying by p, (whose derivatives are
all bounded) and then integrating and summing, we find that the first sum is bounded by
C)\f(ﬁkh)n”fokh,kv < C)\fkhan‘Lkh,kv'
Finally, we have proved that, for j < k,,

—k
1T 1y < O b + Coll FIl iy 11
Together with the inequality (3.2), we get the conclusion of the proposition. Il

Theorem 3.1 shows that the spectrum of 7 acting on B~*»*v is discrete in {z : |z| >
AT mi“(kh’k“)}, made of at most countably many eigenvalues which are all discrete and of
finite multiplicity. A priori, the spectrum could depend on the space B~*»*> we consider.
However, all these spaces contain the dense subspace C°(M — X)) and they are all continu-
ously embedded in the distribution space D*(M — X). A theorem of Baladi-Tsujii [BT08,
Lemma A.1] then ensures that the spectrum (and even the eigenspaces, considered as sub-
spaces of the space of distributions) do not depend on the space one considers, if one is
beyond the essential spectral radius. Hence, it makes sense to talk about the spectrum of
T, independently of the space B~*r*>. We have proved the existence of a Ruelle spectrum
for T in the sense of Definition 1.1. To complete the proof of Theorem 1.4, we still have to
identify this spectrum.

For a # 0, let us denote by E((Xl) the eigenspace corresponding to the eigenvalue «, and by
E, the corresponding generalized eigenspace (containing the eigenvectors and more generally
the generalized eigenvectors, i.e., such that (7 — al)¥f = 0 for some k& > 0). They are
included in B=*»*» when |a| > A~ minkn ko),

3.2. Description of the spectrum. To describe the spectrum, we will rely crucially on
the action of the operators Ly and L,.

Proposition 3.3. We have T o L, = AL, o T on C°(M — X). This equality still holds
on all spaces to which these operators extend continuously, in particular as operators from
B Fnke to B=knke=1 ywhen k, > 0.

In the same way, T o L, = XLy oT on C°(M — X). This equality still holds on all

spaces to which these operators extend continuously, in particular as operators from B~ kv
to B~ kn—Lko,
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Proof. We compute: (T o L,)(f) = (Lyf) o T, and (L, o T)(f) = Ly(f o T) = XY (Lyf) o T
as T contracts by A~! in the vertical direction. This proves the desired equality for L,. The
argument is the same for Ly,. O

Corollary 3.4. The operator L, sends Ey to Ex,. The operator Ly sends E, to Ey-1,.

Proof. A generalized eigendistribution f for a satisfies (7 — aI)¥f = 0 for large enough
k. Moreover, we have (T — Aal) o L, = AL, o (T — al) by Proposition 3.3. By induction,
(T —Xal)f o L, = N¥L,, o (T — aI)k. Therefore, (T — Aal)* (L, f) = \eL,((T — ad)* f) = 0.
This shows that L, maps F, to E),. The argument is the same for L. [l

Corollary 3.5. For f € E,, we have LFf = 0 when k is large enough, more specifically
when \¥|a| > 1.

Proof. We have L¥f € E,,. This space is trivial if [\Fa| > 1 as the iterates of 7 are
bounded on B~*n*» by Proposition 3.2. O

If we start from a nonzero generalized eigendistribution, we can consider the smallest k
such that L¥f = 0. Then LF~'f is a generalized eigendistribution for 7, and it satisfies
L,f = 0. Such elements are the main building blocks to describe the spectrum of 7.
We will take advantage of the cohomological description of such objects we have given in
Paragraph 2.4 to go further in the description of the spectrum.

Let us now try to see if any cohomology class can be realized by elements in B~*»*>nker L,
— and if the class is a (generalized) eigenfunction for the action of 7" on cohomology we will
try to realize it by a (generalized) eigendistribution for 7, for the same eigenvalue. This is
not always possible: if one considers the action of a linear Anosov matrix on the torus, then
the cohomology has dimension 2, but the spectrum of 7T is reduced to {1}: it is not possible
to realize in this way the cohomology class corresponding to the stable foliation. We will see
that this is the only obstruction: all the other eigenvectors in cohomology (which correspond
to eigenvalues in (A~%, A]) can be realized.

Theorem 3.6. Let h € H'(M) be a cohomology class which is a generalized eigenfunction
for the linear action of T on cohomology: we have (T* — p)’h = 0 for some J > 1 and some
p with |] € [N"Y ] (where u = X if and only if h is a multiple of the class of the horizontal
foliation dz, and = \"1 if and only if h is a multiple of the class of the vertical foliation
dy). We assume u# A7, i.e., we exclude multiples of dy.

Then, for min(kp, k,) > 3, there exists f € B~** N ker L, in the generalized eigenspace
Ey-1, whose cohomology class [f] is equal to h. In particular, if h # 0, the eigenspace is
nontrivial.

Proof. Let w be a closed 1-form with compact support in M — ¥ such that [w] = h, i.e.,
fvw = (h,~) for any closed curve ~. It is possible to choose such an w which vanishes on a

neighborhood of ¥ as part of the long exact sequence in cohomology reads H}(M — ¥) —
H}(M) — HX(X). As the last term is 0, the previous arrow is onto.
Let us write w = w, dz + wy dy where w, and w, belong to C°(M — X). Then we have

(T™)*'w = X" (T"wg) de + A" (T"wy) dy,
as T expands horizontally by A and contracts vertically by A.
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Consider a closed path v made of horizontal and vertical segments, away from the sin-
gularities. Denote by < the same path but shifted horizontally by ¢. If ¢ is small enough,
it does not meet any singularity either. Let ¥ = ftn(t)’}’t where 7 is a smooth function
whose support is small enough to ensure that this is well defined. This integral should be
understood in the weak sense, i.e., for any form w the integral of w on % is by definition
Jin()( f% w). Then ¥ is made of horizontal segments weighted by a C'*° compactly supported
function — we denote this part by 7, — and of vertical parts that we denote by 7,. Then

A (T"wy) dz = /\‘”A(T")*w — )\_2”/@ (T"w,) dy.

The last integral is uniformly bounded as w, is a bounded function. Hence, its contribution
is O(A72"). In the first term, as (7T™)*w is closed, it is equivalent to integrate just on +.
This only depends on the homology class h of w, which is a generalized eigenvector for T*.
By Jordan’s decomposition, we may write
(T™)*h = pu” Z nhj,
i<J
with hg = h. We get

(3.4 [ e =( [n) -0 S w ) + 00
g j<J
In B~Fnkv we can write
T w, = Z Z "1 f, i + R,
[r|=A—25<C
where 7 runs along the eigenvalues of modulus > A2 of T, the fr,j belong to £, and R, is a

remainder term which decays faster than A=2". Identifying the terms in the asymptotic (3.4)
thanks to the assumption |g| > A~! and using hg = h, we obtain for f = Sr-1,,0 the equality

(3.5) . fdr = </ 17> (hs ).

Let us show that f satisfies L, f = 0. Consider a horizontal interval Iy = [0, ¢], a small
vertical translate I. = Iy + ic of this interval (in a chart away from singularities), and a
compactly supported test function g on Iy. We want to show that [ Io #0 fdz = [ 1. ¥e fdx
where @, is the vertical push-forward of ¢y on I.. To do this, denote by ~; the path from 0
to ¢ then to ic +¢ then to ie then to 0. 0. Let also n(t) = —¢f(t). In 5 = [ n(t)y dt, a point
z € [0, ¢] is counted with a weight fte[x,q} n(t) dt = —po(q) + po(x) = po(x). One can argue
similarly along I.. Therefore, by definition, |’ 1, pof dz — i) L pefdr = f?h f dz. This integral
vanishes by (3.5) as [ 7 = 0. This shows that f is invariant under vertical translation, i.e.,
L,f =0.

rJlt“he cohomology class [f] is then well defined by Proposition 2.12, as well as fv fdx
for any closed path. By definition of this integral, it coincides with f% fdz when 7 is a
smoothing of v as above and 7 has integral 1. We deduce from (3.5) that f,y fdz = (h,7)
for any closed path 7. By definition, this shows that [f] = h. O
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We can use this statement to show that the spectrum of 7' contains the set mentioned in
Theorem 1.4:

Corollary 3.7. The Ruelle spectrum of T contains all the A\™"u forn > 1 and u € 2, where
E is the spectrum of T* on the subspace of H'(M) made of 1-forms which are orthogonal to
dx and dy, as in the statement of Theorem 1.4.

Proof. Theorem 3.6 ensures that A~!j belongs to the Ruelle spectrum of 7. The map Ly, is
injective on the generalized eigenspace F\-1, by Lemma 2.7, as the kernel of Ly, is included
in Fy. It sends it to Ey—2, by Corollary 3.4, hence this space is nontrivial. By induction,
one proves in the same way that all the spaces Ey-», are nontrivial. (Il

Proposition 3.8. For any o # 0, the operator Ly is onto from E, Nker L, to Ey-1, N
ker L, Nker[-]. It is bijective for o # 1.

Proof. First, Ly sends E, to Ey-1, by Corollary 3.4. As it commutes with L,, it even
sends E, Nker L, to Ey-1, Nker L,. Let us show that its image is contained in ker|[-]. Let
f € ker L,,, we have to see that [Ly, f] = 0. Consider a path v made of horizontal and vertical
segments. We compute fv Ly fdx by coming back to its definition. Informally, we have
fv Lyfdx =37, [; Lpf dz where the sum is over horizontal parts of . With an integration
by parts, fv Lpfdx =73 ;(f(yr) — f(xr)) where y; and xy are the endpoints of I. As 7 is a
closed path and f is invariant vertically each f(yr) cancels out with —f(z ;) where J is the
horizontal interval following I in v. We are left with fy Lpfdx=0.

This computation is not rigorous as f can not be integrated against characteristic functions,
and f(yr) makes no sense (f is only a distribution). This is why fv Ly, f dz is defined in
Paragraph 2.4 by using a regularization of the characteristic function of I. The above
argument works with the regularization. As f is vertically invariant, the contribution of
the end of the interval I to fv Ly, f dx compensates exactly with the contribution of the
beginning of the next interval, and we are left with fv Ly f =0 as desired.

It remains to show that Lj : E, Nker L, — E\-1, Nker L, N ker[-] is surjective (its
bijectivity for av # 1 follows directly as Ly, is injective away from constants by Lemma 2.7).
Fix f € F\-1, Nker L, N ker[:]. By Proposition 2.13, if k;, and k, are large enough, there
exists g € B~Fnt1* such that L,g = 0 and L,g = f. The question is whether one can take
g€ E,.

Consider j such that (7 — A1a)/f = 0. We have (T — A"'a) o Ly, = AL, o (T — a)’
by Proposition 3.3. Therefore, L;,((T — a)’g) = 0, i.e., there exists a constant ¢ such that
(T —a)/g = c by Lemma 2.7. If a # 1, we have then (T —a)’(g—c/(1—a)?) = 0. Therefore,
G =g—c/(1 —a) satisfies § € E, Nker L, and L,§ = f, as announced. If a = 1, then
(T —a)iTlg = (T —1)c =0, so g itself already belongs to E,. O

There are two possible spectral values, corresponding to the eigenvalues A and A~! of
T*: HY(M) — H'(M), i.e., to dzr and dy. They have a special status in Theorem 1.4: the
first one is simple and does not interact with the rest of the spectrum, while the second one
does not belong to the Ruelle spectrum. Let us now give the specific results about these
values that we will need to classify the Ruelle spectrum.

Lemma 3.9. The generalized eigenspace F1 is one-dimensional, made of constants.
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Proof. The generalized eigenspace E7 contains the constants as the function 1 belongs to
B~Fnkv by Lemma 2.5. Moreover, any element f of E satisfies L,f = 0 (as L,f belongs
to Ey by Corollary 3.4, and this space is trivial by Theorem 3.1). Therefore, there is a
linear map f ~ [f] from E; to H'(M), taking its values in the generalized eigenspace
for the eigenvalue \ of T*. This space has dimension 1. To conclude, it suffices to show
that this map is injective, i.e., if f € Fj satisfies [f] = 0 then f vanishes. When [f] = 0,
Proposition 3.8 shows that f can be written as Lpg with g € E). As this space is trivial, we
get g =0 and then f = 0. ]

We have almost all the tools to show that the Ruelle spectrum of T' is given exactly by
the set described in Theorem 1.4. More precisely, we can already show the following partial
result.

Proposition 3.10. The Ruelle spectrum of T is given exactly by the set described in Theo-
rem 1.4, i.e., it is made of 1 and of the numbers A"y with n > 1 and p € =.

Proof. On the one hand, 1 belongs to the spectrum by Lemma 3.9. On the other hand, for
p € = and n > 1, then Ey-n, is nontrivial by Corollary 3.7. This shows one inclusion in the
proposition.

For the converse, consider o # 0 such that E, is nontrivial, and take a nonzero f € E,.
Let k£ > 0 be the integer such that LFf # 0 and LFt'f = 0. It exists by Corollary 3.5.
The function f; = L¥f belongs to E,«, by Corollary 3.5, and to ker L, by construction. If
[fx] = 0, Proposition 3.8 shows that there exists fy11 € Eyx+1, Nker L, with Ly, fr11 = f.
If [fx+1] = 0, we can iterate the same process. It has to stop at some point as E\kin, is
trivial for n large. Therefore, we get an integer n and a distribution fxi,, € E\x+n, Nker L,
with L} fiin = fi and [fr4n] # 0. The cohomology class [fi4,] belongs to the generalized
eigenspace for T* : HY(M) — H'(M) for the eigenvalue o/ = \¥+"*+1a. We have o/ # A7,
since otherwise the corresponding cohomology class would be a nonzero multiple of [dy],
contradicting Lemma 2.14. Hence, o/ € Z or o/ = \. If &/ € Z, we have written a as Ao/
with p > 1, in accordance with the claim of the proposition. If o/ = A, then f,, € E1. By
Lemma 3.9, fri, is constant. As L} fr1, = fi # 0, we deduce n = 0. Then LEf=frisa
nonzero constant c¢. Using the duality formula from Lemma 2.11, we get

cLeb M = (f,1) = (LEf,1) = —(f, LE1).
If k& were nonzero, then Lﬁl would vanish and we would get a contradiction. Therefore,
k = 0. Finally, & = 1, again in accordance with the claim. O
The conclusion of the proof of Theorem 1.4 relies on the following statement.
Theorem 3.11. Let o ¢ {0,1}. Then L, : Ex-1, = Eq is onto.

Before proving the theorem, let us show how we can conclude the proof of Theorem 1.4.

Proof of Theorem 1.4 using Theorem 3.11. To simplify the notations, we will assume that
for € = then A™'i ¢ = (otherwise, there is a superposition phenomenon as explained after
the statement of Theorem 1.4, which makes things more complicated to write but does not
change anything to the proof).

In Proposition 3.10, we have described exactly the spectrum of T', and moreover we have
shown how the generalized eigenspaces were constructed. On the one hand, there is the
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space E7, which is one-dimensional by Lemma 3.9. On the other hand, for y € =, the space
Ey-1,, is in bijection with the generalized eigenspace for the action of 7% on H L(M) and the
eigenvalue p, with dimension d,,.

Finally, By, 1s made of elements sent by L, to Ey-»,, and of elements in Ey @iy, N
ker L,. Proposition 3.8 shows that Lj, is a bijection between E)-», Nker L, and Ey-min, N
ker L, (as, on the second space, the condition [f] = 0 is always satisfied thanks to our
non-superposition assumption). Therefore, by induction, all these spaces have dimension d,,.
As L, : Ey-m+1,, = Ex-n, is onto by Theorem 3.11, we get

dim E (1), = dim E)-n, + dim E (n41), Nker Ly = dim Ey-n, 4 dj,.

By induction, we obtain dim Ey-», = nd,,. In fact, we have even proved the flag decompo-
sition expressed in (1.1). O

We recall that L, sends F-1, to E, by Corollary 3.4. To prove Theorem 3.11, the
most natural approach would be to start from an element of E, with o ¢ {0,1} and to
construct a preimage under L,,, by integrating along vertical lines as we did in the proof of
Proposition 2.13. But we have no cohomological condition to use, and moreover we only
have a distributional object for which the meaning of vertical integration is not clear. If one
thinks about it, the result of the theorem is even counterintuitive.

Let us try to prove the opposite of Theorem 3.11, to see the subtlety. Assume for instance
that f € F, is nonzero and satisfies L, f = 0, and that we can find a vertical primitive g of f,
i.e., one has L,g = f. Let us try to prove that f = 0. We should not succeed (this would be a
contradiction with Theorem 3.11), but we will see that there is a strong nonrigorous argument
in favor of the equality f = 0. Consider an embedded rectangle with horizontal sides Iy and
I and very long vertical sides of length R. Fix a smooth compactly supported function ¢
on Iy, and push it vertically to Ir. We should have fIR pgdx — ffo pgdx = Rflo pfdz. As
the left hand side is bounded, we obtain

/I of dz = O(|l¢]l o /R).

Letting R tend to infinity, we can almost deduce that f vanishes, except that this argument
is not correct as one can not take R arbitrarily large because of the singularities. If one tries
to cut Iy into smaller pieces for which one can increase R, then we will use a partition of
unity with a large C*» norm, so that we will improve the bound at the level of 1/R, but lose
at the level of ||¢||x, . Therefore, we can not prove in this way that f vanishes, so there is
hope that Theorem 3.11 is true. But this shows that this theorem is non-trivial, and follows
from a subtle balance.

The proof we will give of Theorem 3.11 will not follow the constructive approach we
sketched above. Instead, it will follow from an indirect duality argument: we will show that
the adjoint of L, is injective. To do this, let us define the operator T which extends to
BFr-—kv the operator f +— foT~! initially defined on C2°(M —X). As T~ is a pseudo-Anosov
map, all the results of the previous paragraphs apply to 7. In particular, one can talk about
its Ruelle spectrum. We will write E,, for the generalized eigenspace of T associated to the
eigenvalue o, on any space BFv—Fv with |a| > A~ min(knk)
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From this point on, we will only consider non-negative integers kp, ky, kj, and k, that
satisfy the conditions of the duality Proposition 2.9, i.e., —kp + kp > 2 and ky — ky > 0
(or conversely). If we are dealing with an eigenvalue a, we will moreover choose them
with |o > A\~ ™nknk) and |af > A\~ min(kn.ko) to ensure that the correspondmg generalized
eigenspaces for 7 and 7 are included respectively in B~F»F» and BFr—kv  This implies in
particular that the duality is well defined on E, x E. for all a, o/ # 0.

In addition to the duality formulas for L, and L, given in Lemma 2.11, we will also use

the following one: For f € B~Fnkv and ¢ € BFni— k“

(3.6) (Tfg) ={fTg).

It follows readily from the definitions and the fact that T" preserves Lebesgue measure.

Lemma 3.12. We have (f,g) = 0 for f € E, and g € Ey with a # o. Moreover,
(f,9) — (f,g) is a perfect duality on Eq X E,, i.e., it identifies E, with the dual of Ey, and
conversely.

Proof. Take f € E,. Then T"f = ZJSJ a™n f; for some f; € E,, with fo = f. In the same
way, for g € E,/, we have T"g = ngJ(a’)"njgj for some g; € E, with go = g. Using the
duality (3.6), we obtain for all n

Yo (fi9) =(T"f.9) = (£, T"g) =D ()" (f,g;).

When a # o, one gets by identifying the asymptotics that (f;,g) = 0 for all j. In particular,
for 7 = 0, this gives (f,g) = 0 and shows that E, and E,s are orthogonal.

To prove that there is a perfect duality between E, and E,, we have to show that the
duality is nondegenerate: for any f € E,, we have to find g € E, with (f,g) # 0 (and
conversely, but the argument is the same). As f is a distribution, there exists a function
h € C*(M — X) with (f,h) # 0. We think of h as an element of BFr—kvand we write
its spectral decomposition for 7: we have T"h = Do Ih;; + O(e™) where € < |a| and

hij € E,,. As above, using (3.6), we find

S amnd(fy, by = (T"f.h) = (£, 77R) = 3 afnd (f, hig) + O(").
2%
In the sum on the left, there is the term o"(fy, h) with (fo,h) = (f,h) # 0. Therefore,
there also has to be a term in o™ on the right hand side. This entails that one of the «;

equals «, and the corresponding function g = h; o belongs to E,, and satisfies (f,g) # 0, as
desired. O

Proof of Theorem 3.11. Let o ¢ {0,1}. We want to show that L, : E\-1, — E, is onto.
Equivalently, we want to show that its adjoint, from Ej, to E}_, , is injective. These spaces
are identified respectively with E, and E\-1,, by the duality of Lemma 3.12, and the adjoint
of L, is —L, by (2.16). Hence, it is enough to show that L, : E, — E\-1, is injective. This
follows from Lemma 2.7 (we recall that L, plays in B the same role as Ly, in B). O
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4. VERTICALLY INVARIANT DISTRIBUTIONS

Let (M,Y) be a translation surface, and T a linear pseudo-Anosov map on (M, ),
preserving orientations. Theorem 1.4 and its proof give a whole set of distributions which
are annihilated by L,,. Indeed, this is the case of the constant distribution, of the distributions
in Ey-1,, Nker Ly, and of their images under Ly. These are the only distributions in B~k
which are vertically invariant:

Lemma 4.1. Any distribution in B~*r*> N ker L, belongs to the linear span of the constant

distributions and of the spaces L} (Ex-1,, Nker Ly) fori=1,...,29 —2 and n > 0.

Proof. This follows from the same inductive strategy used to classify Ruelle resonances.
We show that any w € B~*w* N ker L, belongs to the space F' spanned by the constant
distributions and the spaces L} (-1, Nker L,) fori = 1,...,2g—2 and n > 0, by induction
on the order of w.

The constant distributions and the distributions in Fy-1,, N ker L, have cohomology
classes which span all the classes without any [dy] components, i.e., the orthogonal to [dz].
Therefore, there exists @ in F' such that [w — @] is a multiple of [dy]. By Lemma 2.14, we
have in fact [w — @] = 0. Therefore, by Proposition 2.13, there exists n € B~*»+1F Nker L,
(and therefore in B~*»*» N ker L,) such that w — & = Lyn. The order of n being strictly
smaller than the order of w, the induction assumption ensures that n € F. As F is stable
under Ly, we get w=w + Lpn € F.

We should also check the initial step of the induction, when w is of order 0. With the
same construction as above, 7 is a continuous function. As it is vertically invariant, we
deduce that it is constant by minimality of the vertical flow. In particular, it belongs to F,
and so does w. O

However, there are some distributions that are not seen with this point of view, as they

are not in the closure of C°(M — X). To describe them, we will follow the same route as

kn, _kh 7k’v

kv by an extended space B,

above, but replacing our Banach space B~
We define an element w of B;Blih’k” to be a family of distributions w; of order at most kj,

on all horizontal segments I in Z", with the following conditions:

(1) Compatibility: if two segments I, I’ € Z" intersect, then the corresponding distribu-
tions coincide on functions supported in I NI,

(2) Smoothness in the vertical direction: for any interval I € Z, and any test function
pE C’fh(I) with norm at most 1, denote by I; the vertical translation by ¢ of I for
small enough ¢, and by ¢; the vertical push-forward of ¢ on I;. Then we require

that ¢ — [ 1, Prwr, 1s C* | with all derivatives bounded by a constant C' independent

of I or . The best such C is by definition the norm of w in Be_x’ih’k”.

(3) Extension to the singularity: if (1), (o, is a family of vertical translates of a hori-
zontal segment, parameterized by height, such that the limit Iy contains a singularity,
then we require that wy, and all its k, vertical derivatives extend continuously up to
Iy.

The first two conditions are very natural, and reproduce directly what we have imposed in
the construction of B~*»*v in Paragraph 2.1. The third condition is to exclude pathological
behaviour such as in the following example. Consider a vertical segment I" = (0, €] ending
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on a singularity at 0, a function p on I' with support in [0, /2] that oscillates like sin(1/t)
at 0, and define wy to be equal to p(z1)d,, if I intersects I'y at a point z;, and 0 otherwise.
Then this would be an element of our extended space without the third condition. Recall
that B, " £ B~*nkv (see the example on Page 7).

ext
With this definition, many of the results of the previous sections extend readily. We

indicate in the next proposition all the results for which the statements and the proofs do
not need any modification.

Proposition 4.2. The spaces Be_ﬁh’k“ have the following properties:
(1) The space B~Fr*v is a closed subspace of B fnk,

ext

(2) The space Be_ﬁh’k” s canonically a space of distributions, as in Proposition 2.3.

(3) Multiplication by C* functions which are constant on a neighborhood of the singulari-
ties, or more generally by C*n kv _functions on M —% with LZng uniformly bounded

for a < kp and b < k,, maps B_ ke

ot U into itself continuously, as in Lemma 2.4.
(4) The derivation Ly maps continuously B

—kp,ko to B*khflyk‘v

ot ot . The derivation L, maps

_kh:kv _kh,kv_l
ext to Bezt

(5) As there is no horizontal saddle connection, an element in B;ﬁh’k“ satisfying Lpf =0
is constant, as in Lemma 2.7.

(6) The space B, is continuously included in B~*no if kj, > ky and k;, < k. This

ext
inclusion is compact if both inequalities are strict, as in Proposition 2.8.
h:kv

continuously B if ky = 1, as in Proposition 2.6.

(7) The composition operator T acts continuously on B;ﬁ , and it satisfies a Lasota-
Yorke inequality (3.1). Therefore, its spectral radius is bounded by 1, and its essential
spectral radius is at most X\~ ™ Enke) g in Theorem 3.1.

(8) We have T oLy = ALy, oT and T o Ly, = A" Ly o T, as in Proposition 3.3.

The space B;gh’k” is relevant to study vertically invariant distributions, as all such

distributions belong to these spaces:

Lemma 4.3. Assume that w is an L,-annihilated distribution. Then for large enough ky,
7kh7k'u

and for any k, one has w € B_,;

Proof. Let w be an Ly-annihilated distribution. For an interval I € Z", define a distribution
nr on I by the equality [;o(z)nr(z) = [@(x)p(y)w(z,y), where p is a smooth function
supported in [—d,d] (where § is small enough so that I x [—d,0] does not contain any
singularity) with [ p = 1. We claim that this quantity does not depend on p. Indeed, if p is
another such function, then (z,y) — ¢(x)(p(y) — p(y)) has zero average along every vertical

segment through I x [—¢, ], hence it can be written as L, f for some function f supported
in I x [—4,d]. Then

0= (Low, ) = —{w, Lo f) = (w,p(x)p(y)) — (w, p(x)p(y))-
This shows that n; is well defined. It is a finite order distribution on any interval I. Moreover,
as w is vertically invariant, one has n;, = ny if I; is a vertical family of horizontal segments
through 1.
By compactness of the manifold, there is a finite family of horizontal segments such that
any horizontal segment can be obtained as a subinterval of a vertical translate of one interval
in the finite family. If follows that the order of all the distributions 7; is uniformly bounded,
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independently of I € Z". By vertical invariance, it follows that the family 7; defines an
element n € Bemlih’ v if ky, is large enough.
Let us finally prove that w = 7 as distributions. Consider a smooth function ¢ supported

by a rectangle I x [—4, ] away from singularities. Then

o= [ fpstetm = [ f o= ([ stenar)o
:/(/H <x,t>dt) )tz )

where the last equality is the definition of n7. Since the integrals of ( ft sz, ) dt) (y)

and ¢ are the same along all vertical segments, this is equal to [ ¢w thanks to the vertical
invariance of w as we have explained above.

We have proved that (1, ¢) = (w, ¢) for any smooth function ¢ with compact support in
a rectangle away from the singularities. As any ¢ € C°(M — X) can be decomposed as a
finite sum of such functions, we obtain 7 = w as desired. O

Since the space C2°(M —X) is not dense in Beﬁh’ v, we can not use the theorem of Baladi-
Tsujii to claim that the eigenspaces beyond the essential spectral radius do not depend on
kp, or k,. Nevertheless, we will show that this is the case, by describing explicitly the new
eigenvalues compared to B—Fnkv

For o € ¥ and 1,1, > 0, we define a distribution f((joi)h ;, as follows. Choose a vertical
segment I, ending on ¢ and whose image under the covering projection is in the negative
half-plane, choose a function p on this segment which is equal to 1 on a neighborhood of

the singularity and to 0 on a neighborhood of the other endpoint of the segment, and define

a distribution fU iy € B;ﬁh’k” by (& Mh it fl“a )yt Lk f(y) dy. In other words, the
corresponding distribution on a horizontal Segment I is equal to p(yj)yl“ 5( i) §f T intersects
khvku

I'; at a point z; = (x1,yr), and 0 otherwise. This is clearly an element of 5_,, if 75, < kp,.

khykv
ext

~ 0
(41) w=w -+ Z Z Ca,ih,ivgg—,gh,iva

ceX ip<kn,iv<ky

Proposition 4.4. An element w of B_, can be written uniquely as

with @ € B~kn=1ko Bm’zh’k”. Moreover, this decomposition depends continuously on w.

The reason we have @ € B~ =Lk and not @ € B~*n* in the statement is that a
distribution of order &y, is not well approximated in (C*»)* by a regularization by convolution:
one needs to use smoother test functions, in C*»*1 to get uniform norm controls.

Proof. Let us first prove the uniqueness in the decomposition (4.1). Consider a singularity
o, of angle 27tk. There are x half-planes above o, and « half-planes below o. Along any of
these half-planes U, consider horizontal intervals I; which are all vertical translates of an

interval Iy = Ip(U) through the singularity o, identified with [—4, ] C C by the covering
kh7

k .
oot ", the corresponding

projection sending o to 0. By Condition (3) in the definition of B_,
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distributions wy, converge to wy, ). Consider now the distribution on [, ] defined by

Wo -= wao(U+) - ZWIO(U‘)

where the first sum is over all half-planes above o, and the second sum is over all half-planes
below o. By vertical continuity to the left and to the right of the singularity, there are
many cancellations in the definition of w,, so that this distribution on [—4d, ] is in fact
supported at 0. Therefore, it is a linear combination of derivatives of Dirac masses [H6r03,

Theorem 2.3.4], of the form ., cié(()i). Let us do the same construction with the term
on the right of (4.1). For functions f € C°(M — ¥), the distribution f, is obviously 0.
By density, this extends to B~*»~1Lkv hence @, = 0. In the same way, the singularities

different from ¢ do not contribute, and the functions 5 contribute only when ¢, = 0,

Oyih,to
with a distribution §(»). Identifying the coefficients, we get that Co.iy,0 = C; is uniquely
defined by w. In the same way, we can identify ¢, ;, ;, from w by the same process after
iy vertical differentiations. This shows that the decomposition (4.1) is unique. Moreover,
the continuity of the decomposition follows from the continuity of all the coefficients ¢4, s, ,
which is obvious from the construction.

For the existence, let us decompose w as

w—sz+Zwa+ > wh

oen HeH

as in Lemma 2.10, where w; is supported in a rectangle R; away from the singularities, and
wy is supported in a small disk around the singularity ¢ and is constant along fibers of the

covering projection m,, and wg is supported in a local half-plane H based at a singularity.
7kh7k'u

ot . We will show that each term in

Indeed, the proof of Lemma 2.10 goes through in 5
this decomposition can be written as in (4.1).
We start with w;. Let p.(z) be a real C*>® approximation of the identity. For z = (x,y) in

a chart, define
f(2) = wi * pel2) = / wile — hy)pe(h) dh.

This is an integral of w; along a small horizontal interval against a C2° function, hence it
is well defined. Moreover, f. is C* along the horizontal direction, C** along the vertical
direction, and compactly supported away from the singularities. By Lemma 2.5, f. €
B~kn=Lkv  Moreover, f. converges in B~*»~1Lkv to w; thanks to the fact that w; is of order
kj, and to the fact that we are using C*» 1 test functions: standard properties of convolutions
ensure that their difference is bounded by O(e) in norm. It follows that w; € B~*n—1kv,
This gives the decomposition (4.1) for w;, just taking © = w; and the other terms equal to 0.

Let us now consider wy. Its push-forward n = m.w, under the covering projection 7 is
almost in B_ kv (C), except for the fact that the horizontal distributions do not have to

ext
match when one reaches 0 frorn above and from below. The difference is exactly given by a

sum of the form ZZh i Cip vao i, 88 constructed above. In other words, we have
v bl

_ 0
n=mn-+ Z Cimivf((),i)h,iu’

Thsly
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with 7 € B, (C). The case away from singularities shows that 7j € B~*»—1Lkv(C). Lifting

everything with m, we get

= (0)
We =MOMT=1nO0T+ E Cinyin€0,iy, iy © T

ihsylo

The first term 7 o  belongs to B~*»~Lkv_ For the other terms, f(()?i)h,iv o7 is not equal to
é«(r(,)i)h,iv as the latter is supported on one single vertical segment ending on ¢ while the former
is supported on all x such segments. We claim that the difference belongs to B—F»—1kv,
which will conclude the proof.

To prove this, consider a vertical half-plane H with ¢ in its boundary, and denote by '
and I'_ the two components of its boundary, above and below ¢. Define a distribution ag =

Jr 80 p(y) dy + fF+ y™8Un) p(y) dy where p is smooth and equal to 1 on a neighborhood

of 0. This distribution belongs to B~*»~Lkv as it is the limit of a smooth function supported
in the interior of H, constructed by approximating inside H the derivative of the Dirac mass
with a smooth function. Consider now two consecutive half-planes H and H' sharing the
same I'y. Taking the difference between oy and ap/, we deduce that

/ y' 6 p(y) dy — /F y" 6 p(y) dy € B~Fn=1kv,

Iterating the argument using a sequence of half-planes, we deduce that the same holds for
any vertical segments I'_ and I ending at o. This concludes the proof of the decomposition
for w,.

Let us now consider wg where H is a local vertical half-plane with a singularity o in its
boundary. This case is easy: as in the case away from singularities, one can smoothen w; by
convolving it with a kernel p., with the additional condition that p. is supported in [e, 2¢]
if H is to the right of o, and in [—2e, —¢] if H is to the left of o: this ensures that w; * p.
is supported in H and everything matches vertically. In fact, the resulting distribution will
not be smooth vertically if there is a discrepancy between what happens on the boundaries
'y and I'_ of H above and below o. This discrepancy is handled as in the case of w,, by
first subtracting a distribution supported on I'_ to make sure there is no discrepancy, and
then arguing that this distribution supported on I'_ can be written in the form (4.1).

Finally, let us consider wy where H is a local horizontal half-plane with a singularity o
in its boundary. Subtracting if necessary a distribution 7 supported in the vertical segment
inside H ending on o, we can assume that the distribution induced by wp on the boundary
of H vanishes, as well as all its vertical derivatives up to order k,. The distribution 7 is
handled as in the two previous cases. Let us then smoothen wgy by convolving with a kernel
pe in the horizontal direction. Inside H, we get a smooth function. On the boundary of
H, this function vanishes, as well as its vertical derivatives up to order k,. Hence, if one
extends this function by 0 outside of H, we get a C* function, which belongs to B~*r—1kv
by Lemma 2.5. It approximates wy in the B;Elih’k” norm, showing that wy € B Fn—1kv,
This concludes the proof. O
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Corollary 4.5. The spectrum of T on Be_x’ih’k’” in {z 1 |z| > \mmintknk)Y s given by

the spectrum of T on B~kwke ip this region as described in Theorem 1.4, and additionally
j Card X eigenvalues of modulus \=7 for any j > 1 with j < min(kp, ky).

One can be more specific about the additional eigenvalues. If T" stabilizes pointwise each
singularity, then A7/ itself is an eigenvalue of multiplicity j Card ¥. Otherwise, there are
cycles of singularities, and each cycle of length p gives rise to eigenvalues e2#7/PX\=J with
multiplicity j for k =0,...,p— 1.

We can also formulate the results in terms of the action of T™ on relative cohomology
group H'(M, X, C) (the eigenvalues of T* are then A, \™!, y; for i = 1,...,2¢g — 2 and roots
of unity e2#7/? for some p corresponding to cycles of singularities of length p).

Proof. Define E = B~Fn—Lkv B Fkv anq p = B_Fwkv j(g=kn—Lko o g_knk ) The space E
is closed and the space F' is finite-dimensional, isomorphic to the span of f for ip, < kp,
and 7, < ky,, by Proposition 4.4.

The space E is stable under 7, and the essential spectral radius of 7 on this space is
< A~ mintknko) as this is the case on the whole space Bexli’“ by Proposition 4.2(7). Since
C°(M — %) is dense in E, it follows from the theorem of Baladi-Tsujii that the spectrum
of T on E beyond A~ ™n(knke) jg the same as on B~F»*». Moreover, since T stabilizes E,
its spectrum on the whole space is the union of its spectrum on F and on F'. To conclude,
we should thus describe the spectrum of T on F.

The image under 7 of fm i gT Lo, yiv

bution in B~F»—1k N B_kh’k“ Indeed, this follows readily from the definition if the vertical
segment I'p—1, is sent by T to I';. In general, it is sent to another vertical segment ending
on o, but Proposition 4.4 shows that changing the choice of the vertical segment results in a
difference in B~Fkn—1kv Be_ﬁh’k“ This shows that the matrix of 7 on the finite-dimensional
space F' is a union of permutation matrices multiplied by A7 for j = 1 + i), + i,. The
spectrum of such a permutation matrix, along a cycle of length p, is made of the eigenvalues
eZkT/P for k= 0,...,p—1. Hence, the spectrum of 7 on F' is made of eigenvalues of modulus

A7, and the number of such eigenvalues is

Card{(ip,iy) : in < kp,iy < ky, j=ip+iv+ 1} CardX.

Oyih,ty

is equal to the sum of \~17i and of a distri-

For j < min(kp, k), this is equal to j Card X. O

The description of the spectrum of 7 on F' in this proof is reminiscent of the description
of the spectrum of 7 on B~Fwkv but in a simpler situation. Assume to simplify the
discussion that T" acts as the 1dent1ty on X. Then there are some basic eigenfunctions for the

eigenvalue A~!, which are the classes of the functions &5 o _ 500 0= fF J - p(y) dy modulo
Bkn=Lko B kh’k”. The other eigenfunctions are given by §U i fFo‘ Y oln) - p(y) dy.

ext
They are obtained by differentiating the original function ¢ times in the horizontal direction,
and integrating it i, times in the vertical direction. To obtain the eigenvalue A=/, the total
number of such operations iy + i, should be equal to j — 1, giving j choices.
It follows from the above corollary that one can define the generalized eigenspace Eq ¢qt

associated to the eigenvalue o of 7~ acting on B~*»-*v for large enough kj, and k,. This space
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of distributions does not depend on kj and k, if they are large enough. Moreover, L, maps
Eo ext 0 Exg,ext and Ly maps Eq ext 10 Ex-14 ¢q¢ as in Corollary 3.4.
To proceed, we will need some mgredlents of duahty In general, there is no canonical way

to define a pairing between B, and Bk . Indeed, consider a distribution ¢ on [—1, 1]

ext ext
for which f—1 1y<0p(y) does not make sense, and define a distribution w € Bexlih’k“ which

is equal to ¢ on each vertical leaf around a singularity o, multlphed by a cutoff function

0)

to extend it by 0 elsewhere. Then one can not make sense of (5 5.0,0° ). However, there is
no difficulty to define (w, 1) by integrating a partition of unity along horizontal segments,
and then summing over the partition of unity. When w belongs to B~ kn:ko this coincides
with the duality between B~Fn kv and Bk’“_k defined in Proposition 2.9 if one considers the
distribution 1 as an element of B ~*»_ The main property of this linear form we will use is
the following.

kh 7kv
ext

Lemma 4.6. Letw € B_, . Consider its decomposition given by Proposition 4.4. Then

le ZCUOO

Proof. We should show that (L.@,1) = 0, and that (L,&® 1) = 1if i = i, = 0

[ XT

and 0 otherwise. First, (L,w,1) = —(©, L,1) = 0 by Lemma 2.11. The fact that L, is
antiselfadjoint does not apply to f 0

g Zh iy
does integrations by parts (contrary to the case of elements of B~*»Fv which are in the
closure of compactly supported functions and for which there is therefore no boundary term).
These boundary terms are responsible for the formula in the lemma, as we will see in the

following computation.

We show that <Lv£((7?())’0, 1) = 1, the other case is similar. Write fc(r(,)()),o = f;:ﬂ; P(Y)0 () dy
as in its definition, where we are integrating on a vertical segment ending at a singularity
and p vanishes on a neighborhood of —¢ and is equal to 1 on a neighborhood of 0. Then

vaz(;[,)()),o = f;:ﬂ; P’ (¥)0(z,y) dy. Therefore,

as additional boundary terms show up when one

0
(Lot t) = | )y = pl0) = p(=8) = 1. 0

We can now prove Proposition 1.5, asserting that 5((70) =¢ c(r(,)()),O can be modified by adding

an element of B~Fn*» to obtain a distribution which is mapped by L, to the constant
distribution 1/ Leb M. As in the statement of the proposition, we will denote this modified
distribution by &, or £5,0,0-

Proof of Proposztwn 1.5. We work in Bext . On this space, the essential spectral radius of
T is < A72 < A~L. Replacing T by a power of T if necessary, we can assume without loss of
generality that o is fixed by T. Then ,7.&(70) =\l o 4 n where n € E = B~3* 0 Bext

as explained in the proof of Corollary 4.5. Since the essential spectral radius of 7 on F is
< A2 (see again the proof of Corollary 4.5), we can decompose 1 = 1; + 12 where 7 is in
the generalized eigenspace associated to A~!, and 7 belongs to its spectral complement, on
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which 7 — A~! is invertible. Therefore, we can write 7y = —(7 — A~ H)w for some w € E.
Finally, we have

(T=ANEP +w) =n—m=mn.
Since 7, is a generalized eigenvector for the eigenvalue A~!, we have (T — A~1)Nn; =0 for

large enough N. Hence, (T — A\~ )N+1(§(°) + w) = 0. This shows that 500 + w belongs to
2,2

the generalized eigenspace Fy-1 ., associated to the eigenvalue A\~ L of T acting on B_7".

Moreover, as min(ky, k,) > 3, we have w € B~Fnkv

To conclude the proof, it remains to show that Lv(fc(,o) +w) =1/Leb M. Since §((,0) +we
Ey-1 ¢q, we have Lv(&(,o) + w) € Ejcp. The description of the spectrum in Corollary 4.5
shows that this space is just £1. By Lemma 3.9, it is made of constants. We get the existence

of a constant ¢ such that L,( 04 w) =c.
To identify ¢, we compute

cLeb M = (¢, 1) = (Ly(§”) +w), 1) = 1,
thanks to Lemma 4.6. This proves that ¢ = 1/ Leb M. O
Lemma 4.7. Let kp, k, > 3. Then all L,-annihilated distributions in B,_, kv gre of the

ext
form described in Theorem 1.6, i.e., they are linear combinations of distributions £, — g

for o,0" € ¥, of L}, wzthn>1anda€2 of 1, andofL”E)\1 with n > 0 and
i=1,...,2g —2.

Proof. Define a distribution &5, ;, = Lzhfmo,o ifi, =0and &5, i, = E((T?Z-)h’iv otherwise. Then
we have
Bk = (Bt n gty g (B R,

ext ext
in<kp,iv<ko

by Proposition 4.4 and the fact that &, i, — 5(0-) € Bkn—Lke o BERRY  White this

T,h, iy ext
decomposition as Be_ml;h’k“ =FE®F. On Be_ﬁh’k” /E, the operator L, maps &y, i, 10 £5ip in—1
if 4, > 0, and to 0 if 4, = 0. Therefore, a distribution w with L,w = 0 must have zero
components on &y, i, for 4, > 0: it can be written as @ + >, <. €5, &oiy,0- Moreover,
L,w =0.
By Lemma 4.6, we have

0— le ZCUO

This shows that w — @ belongs to the vector space generated by the &, — &, over o,0’, and
by all the L3¢, for n > 0. Moreover, Lemma 4.1 shows that & belongs to the span of the
constant distribution and of L’,?LEf,l ~withn>0andi=1,...,29 — 2. This concludes the
proof. [l

Since all L,-invariant distributions belong to some space Be_ﬁh’k“ by Lemma 4.3, Theo-
rem 1.6 giving the classification of all vertically invariant distributions follows directly from

Lemma 4.7.

Remark 4.8. Although it is not needed for the above proof, it is enlightening to describe
a cohomological interpretation for all the elements of Bex]‘;h’k“ ker L, i.e., for all vertically
invariant distributions.
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If v is a continuous closed loop in M — ¥ and w € Be_x’ih’k” N ker L,,, one can define the
integral fvw just like for elements in B~*»kv N ker L, (see the discussion before Proposi-
tion 2.12). This integral only depends on 7 up to deformation in M —¥.. Therefore, it defines
an element of H'(M —¥), that we denote by [w]es¢. Contrary to the case of B~F»kv Nker L,
however, the integral f% w along a small loop 7, around a singularity ¢ does not have to
vanish, so that [w]es is not an element of H'(M) in general. Indeed, if one considers two
different singularities o and o/, then &, — £/ is annihilated by L,, but the corresponding
cohomology class integrates to 1 along a small positive loop around o, and to —1 along a
small positive loop around ¢’. This is a direct consequence of the definition of f((fo), with a
Dirac mass along a vertical segment ending at o, that will be intersected once by a small

—kp ko
ot Nker L,, one has

(42) / [W]ext = 60—7070((,(}),

o

loop around o. In general, for w € B

where c,0,0 is defined in the decomposition of Proposition 4.4. Indeed, 5((7?()),0 contributes
by 1 to the integral along a small loop around o, while the contribution of all the other
terms tends to 0 when the loop tends to o. In fact, the map w — ¢50,0(w) corresponds to
the boundary operator of [MY16] (it does not appear in the case of Ruelle resonances as all
our functions are continuous in this setting).

If a distribution w € Be_ﬁh’k“ Nker L, satisfies [f]ezt = 0, then one proves as in Proposi-

tion 2.13 that it can be written as w = Lyn for some 1 € Be_ﬁhﬂ’k” Nker L,. Indeed, the
proof of this proposition goes through, and it is in fact easier as one does not need to show
that the resulting object one constructs by horizontal integration belongs to the closure of
C°(M — X)), which is the hard part in Proposition 2.13.

With (4.2) and Lemma 4.6, one has

Z/ [W]ext = ZQ?,O,O(UJ) = <va, 1> =0.

This corresponds to the fact that, in the homology of M — X, one has > [y,] = 0.

The cohomology classes one can get in this way are all cohomology classes without any
[dy] component, i.e., orthogonal to [dz], as one can realize all such classes in H'(M) using
B~knkv and one can account for the additional Card ¥ — 1 dimensions in H*(M — %) by
using the £, — &,7. It turns out that one can also recover the class [dy]. Indeed, start from
£5,0,0 and consider a path v made of horizontal and vertical segments. As d, o is exact,
one may compute formally

1
OZ/dfa,o,o = /Lhﬁa,o,o d$+/Lv§a,o,O dy = /Lhﬁa,o,o do + /dy7
v v v v Leb M J,

where the last equality follows from Proposition 1.5. It follows that the element — Leb M -
L1&5,0,0, which belongs to Be_x]ih’k” Nker L,, has a cohomology class whose integral along any
path coincides with the integral of dy along this path, i.e., [~Leb M - Lp&50.0]ext = [dy].
The above formal computation can be made rigorous by smoothing the path ~ horizontally,

as we did to define the cohomology classes. This shows that, for kp, k, > 3, the map from
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B_Emkv A ker L, to HY(M — %) is onto. This is the analogue of [For02, Theorem 7.1(ii)] in

ext
our setting.

5. SOLVING THE COHOMOLOGICAL EQUATION

Consider a C'*° function f which is compactly supported away from the singularity set
Y on a translation surface M. Solving the cohomological equation for the vertical flow on
M amounts to finding a function F', which is smooth along vertical lines, and satisfies the
equality L,F = f. In general, the function F' will not be compactly supported on M — 3,
but it will hopefully be continuous on M. More generally, one may ask how smooth the
solution F' can be chosen.

A direct obstruction to solve the cohomological equation with a smooth solution is given
by distributions in the kernel of L,: if L,w = 0, then

(w, f) = {w, Ly F) = —(Lyw, F) =0,

where the last equalities make sense if F' belongs to the space on which w acts. Indeed, in
general, a distribution w € D*°(M — X)) is in the dual of C°(M — X), so that (w, F') does
not make sense if F' is not C'° or not compactly supported away from Y. However, many
distributions act on larger classes of functions, so an important question in the discussion
below will be to see if (w, F') is meaningful.

The Gottschalk-Hedlund theorem states that, for a minimal continuous flow on a compact
manifold, a continuous function is a continuous coboundary if and only if its Birkhoff integrals
fOT f(gix) dt are bounded independently of z and 7. We will use a variation around this
result due to Giulietti-Liverani [GL14]. Its interest is that it gives an explicit formula for
the coboundary, which we will use to study its smoothness.

In this section, we fix once and for all a C*° function x : R — [0, 1] which is equal to 1
on a neighborhood of (—o0, 0] and to 0 on a neighborhood of [1, 00).

Lemma 5.1. Consider a semiflow g; on a space X, and a function f : X — R for which
there exist C' > 0 and € > 0 and r € N with the following property: for any x € X, for any
T > 1, for any function ¢ which is compactly supported on (0,1),

(5.1)

-
| etmnsam) ] < Clelion /7
Then f is a coboundary: there exists a function F such that [] f(gwx)dt = F(z) — F(grx)
forallxz € X and all 7 > 0.

More specifically, F' can be constructed as follows. Fiz A > 1. Define a function F,(x) =
ftA:nO X(t/N") f(gex) dt. Then F, converges uniformly to a function F as above. Moreover,
|Fo(x) — F(x)] < CA™" where C does not depend on x or n.

In fact, one can even prove that [,” x(t/7)f(gix)dt converges to F(x) at a uniform
rate O(1/7¢) when 7 — oo, without having to restrict to the subsequence A", with a small
modification of the following proof. We will not need this more precise version of the lemma.

Proof. This is essentially a reformulation of [GL14, Lemmas 1.4 and 3.1].
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Define ¢(t) = x(t) — x(At). This is a C*° function with compact support on (0,1).
Moreover,

Frar(z) — Folz) = / (et N = x(8/A™) f (gr) dt = / (/N f(gi) dt,

=0 =0

Under the assumptions of the lemma, this is bounded by C/()/A\("*+1De. This shows that F},(x)

is a Cauchy sequence, converging uniformly to a limit F(x) with |F,(z) — F(x)| < CA™™.
To conclude, we should show that F' solves the cohomological equation. Let us fix = and

7. We have

+ /0 " flgw) dt — Fo(a)

Antl An+1

AT T A
- / X((t = 7)/A) f (ge) + /0 X((t = )/ A" F(ge) i — /0 X (E/A™) f(ger) dt

AT
- /0 o (/" + 7)) f(gr) dt,

where

onr(s) = X((A" +7)s = 7)/A") = x((A" +7)s/A").
The function ¢, » has compact support in (0, 1) and uniformly bounded C" norm when n
tends to infinity. By (5.1) applied to ¢y r, we deduce that F, (ng) + [y f(gix) dt — Fp(x)
tends to 0. Passing to the limit, we get F(g-z) + [, f(g:xz) — F(z) = 0. 0

We will denote by C’,_f the space of functions M — R which are C* along the horizontal
direction and such that L¢ f is continuous and bounded on M — X for i < k. Elements of
C’,]f belong to B*? by Lemma 2.5. To formulate the assumptions of our theorems, we will
use the following fact:

(5.2) (w, f) makes sense for f € Ck+2 and w € E, with |a| > \7F7L,

Indeed, elements of F, for |a| = A7%~! belong to B~¥=2*+2 as the essential spectral radius
of T on this space is < A™*"2 < \™*~1. Therefore, since f € B*¥*20, the coupling (w, f)
is well defined by Proposition 2.9 (exchanging the roles of the horizontal and the vertical
direction to make sure that the inequalities on the exponents are satisfied). One could even
weaken slightly more the conditions, by requiring only f € C,]erHe for € > 0, by exploring
the route alluded to in Remark 2.2 if one were striving for minimal assumptions.

We will apply the previous lemma in the setting of the vertical flow on a translation
surface endowed with a pseudo-Anosov map preserving orientations, with expansion factorA\.
We obtain the following criterion to have a continuous coboundary.

Theorem 5.2. Let T be a linear pseudo-Anosov map preserving orientations on a translation
surface (M, X). Denote by g¢ the vertical flow on this surface. Consider a function f on M
mn C}%. Assume that, for any w € U|a\>>r1 E,, one has (w, f) =0. Then f is a continuous
coboundary: there exists a continuous function F on M such that, for any x and any 7 such
that gix is well defined for t € [0, 7], holds

(5.3) / f(gex) dt = F(z) - Fgrz).
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The assumptions of the theorem make sense by (5.2). The distributions appearing in the
statement of the theorem have been completely classified in Theorem 1.4 and its proof. In
particular, they are all vertically invariant.

To prove this theorem, let us first check that the assumptions of the Giulietti-Liverani
criterion of Lemma 5.1 are satisfied.

Lemma 5.3. Under the assumptions of Theorem 5.2, there exists € > 0 such that the
inequality }f;o o(t/7) f(gex) dt| < Cllgll /7 in (5.1) holds, with r = 2.

Proof. 1t suffices to prove the estimate for 7 of the form A", as the case of a general 7 follows
by using n such that 7 € [A\"~!, A\"]. Fix x and . We have

An 1 1
(5.4) /0 ot/ A" f(ge) dt = X /O o(3) (T (gu(T72))) ds = A /0 o(5)T" f(gsy) ds,

for 4y = T™x. The integral is the integral of 7" f € B%>~2 along a vertical manifold against a
C? smooth function. Therefore, this is bounded by A" ||| c2 |7 f || 2.2

On this space, the essential spectral radius of T is < A2 < A1, by Theorem 3.1. Let
us decompose f as > fo + f, where a runs among the (finitely many) eigenvalues of T of
modulus > A2, and f, is the component of f on the corresponding generalized eigenspace
E,. By assumption, (w, f) = 0 for any w € E, with |a] > A~!. Thanks to the perfect
duality statement given in Lemma 3.12, this gives f, = 0 for all such a. Let v < A~! be
such that all eigenvalues of modulus < A~! have in fact modulus < 7. We deduce that
|77 £l g2.—2 grows at most like Cy". Together with (5.4), this gives

N
/0 Pt/ (1) dt| < Ol )™

As Ay < 1, one may write Ay = A7¢ for some ¢ > 0. Then this bound is of the form
Cllellgz/(A)%, as requested. -

There is a difficulty to apply Lemma 5.1 due to the singularities, which imply that the
flow is not defined everywhere for all times. One can circumvent the difficulty by going to a
bigger space in which trajectories ending on a singularity are split into two trajectories going
on both sides of the singularity. This results in a compact space with a Cantor transverse
structure and a minimal flow, to which Lemma 5.1 applies. This classical strategy works well
for continuous coboundary results, but there are difficulties in higher smoothness. Instead,
we will use a strategy which avoids the use of such an extension, and works also for higher
smoothness. The idea is to iterate the flow in forward time or backward time depending on
the point one considers.

Proof of Theorem 5.2. Let M;; C M Dbe the set of points for which the vertical flow is
defined for all times in [0, A"], and let M+ = (), M., i.e., the set of points that do not reach
a singularity in finite positive time. In the same way, but using backward time, we define
M, and M~. Then M —¥ = M+ UM~ as there is no vertical saddle connection.

Let us define functions F,f (z) on M;I and F,7 on M, by

A" AT
T(x) = " wx) dt, “(x) = — " _x) dt.
F(z) /O (/A fgiz) b, Fy (x) /0 (/A fg—r) dt
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For x € M,F N M, , the difference F, (z) — F,, (x) can be written as

n

A"
FH@ = Fir@ = [ ()
where x(t) = x(|t|). By Lemma 5.3, this tends to 0 like C'(x)/(2A\™)c.

Lemma 5.1 applied to the semiflow g; on M, and to the semiflow g_; on M~, shows
that Ff(x) converges uniformly to a function F*(z) on M, and that F, (z) converges
uniformly to a function F~(x) on M~. From the fact that the difference between F, and
F~ is small where defined, we deduce that F* = F~ on MT™NM~. Let us define a function

n

FonM-—1X,equal to F™ on M* and to F~ on M~. By the above, we have
(5.5) |FF(z) — F(z)| < C/X" for x € M,S, |F, (z) — F(x)| < C/\" for v € M,, .

n

Moreover, the function F satisfies the coboundary equation (5.3), as F'* and F~ satisfy it
respectively on M+ and M~ by Lemma 5.1.

Let us show that F is continuous on M — ¥. Take x € M — X, for instance in M ™. Let
d > 0. Let n be large. The function F is well defined and continuous on a neighborhood
of x. In particular, it oscillates by at most ¢ on a neighborhood of z. As F' differs from F,’
by C/A\", we deduce that F oscillates by at most 6 + C/A" on a neighborhood of z. This
proves the continuity of F' at z.

Finally, let us show that F' extends continuously to 3. It suffices to show that it is
uniformly continuous on M — Y. For this, it suffices to show that it is uniformly continuous
on small horizontal segments close to a singularity, as uniform continuity along vertical
segments follows from the coboundary equation. Let (It)ic(0,s be a family of vertical
translates of horizontal segments such that Iy contains a singularity. For z,y € Iy, we have
F(x) — F(y) = F(giz) — F(qiy) + f(f(f(gsx) — f(gsy)) ds. Thanks to the boundedness of
Ly f, the last integral is small if z and y are close and ¢ is small, while the first difference is
small if z and y are close enough thanks to the continuity of F' on I;. Hence, F(z) — F(y)
itself is small. This concludes the proof. O

To get further smoothness results, one needs to assume more cancellations for f. The
next theorem gives such conditions ensuring that F is C.

Theorem 5.4. Under the assumptions of Theorem 5.2, assume additionally that f € C3.
Assume moreover that, for any w € U, zr-2 Ea Nker Ly, one has (w, f) = 0. Then the
function F solving the cohomological equation (5.3) is C* along the horizontal direction, and
Ly F extends continuously to M.

The assumptions of the theorem make sense by (5.2). The distributions appearing in the
statement of the theorem have been completely classified in Theorem 1.4 and its proof.
Let us start with a preliminary reduction.

Lemma 5.5. To prove Theorem 5.4, it is sufficient to prove it assuming the stronger
condition that {w, f) =0 for all w € U|a‘>)\_2 E,.

The difference with the assumptions in Theorem 5.4 is that our new assumption is not
restricted only to the vertically invariant distributions.
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Proof. Consider a function f € C3 such that (w, f) =0 for allw € Ujajzr—2 Ea Nker Ly, We
can not deduce from the assumptions of the lemma that f is a smooth coboundary, as there
might exist distributions w € E, — ker L,, with (w, f) # 0. We will bring these quantities
back to 0 by subtracting from f a suitable coboundary. The additional distributions we have
to handle belong to Ey-2,, for some y; with |u;] € [1,X). Denote by F; a subspace of Ey-»
sent isomorphically by L, to Ey-1,,. Then Ey-2, = F; ® (E)-2,, Nker L,), see (1.1).
Consider on Ga\mle[l,)\) Ey-1,, the linear form w (Ly'w, f), where by L;'w we mean

Hi

the unique @ € @ F; with L,& = w. As B~*»*v is a space of distributions, any linear form
on a finite-dimensional subspace can be realized by a smooth function. Hence, there exists
go € C°(M — X) such that, for any w € €D, 1ep1,0) Ea-1p;» then (Ly'w, f) = (w, go). Hence,
for @ € € F;, applying the previous equality to w = L,@, we have

<('D>f> = <Lv“~1a.§70> = _<@7Lv90>'

This shows that the function f = f + L,go vanishes against any distribution in PF. It
also vanishes against any distribution on U‘ a|>A-2 E, Nker L,, as this is the case of f by
assumption, and of L,gg. Hence, it vanishes against all distributions in U| alzA-2 E,. Under

the assumptions of the lemma, it follows that f + L,go can be written as L,F for some
function F € C}. Then f = L,(F — go), concluding the proof. O

From this point on, we will assume that f satisfies the strengthened assumptions of
Lemma 5.5. To prove the theorem, we start with a stronger version of Lemma 5.3.

Lemma 5.6. Under the assumptions of Lemma 5.5, there exists € > 0 such that the
inequality }f;o o(t/7) f(gex) dt| < Cllgllca /T in (5.1) holds, with r = 3.

Proof. The proof is the same as for Lemma 5.6, with the difference that the additional
vanishing conditions in Lemma 5.5 give more vanishing terms in the spectral decomposition
of f, and thus a faster decay of 7" f. O

Let us now prove that the function F' given by Theorem 5.2 is Lipschitz along horizontal
segments. This is the main step of the proof.

Lemma 5.7. Under the assumptions of Lemma 5.5, there exists C' such that, for any points
x,y on the same horizontal segment, one has |F(z) — F(y)| < Cd(z,y).

Proof. It suffices to prove the result for nearby points. Let § > 0 be such that any horizontal
segment of size < J can be completed above or below to form a rectangle of vertical size
1, not containing any singularity. We will show the statement when d = d(x,y) belongs to
(0,5/X).

Let n > 1 be the integer such that A\"d € (§/A, ]. Let I be the horizontal interval between
x and y. Assume for instance that T™I (which is of length < §) can be completed above
by a rectangle of height 1 (otherwise, it can be completed below, and the argument is the
same but using F), instead of F,}). In particular, there is no singularity in the rectangle of
height \™ above I. Note first that

1
B @) = Bt )l = | [ x0(o) = flom) e
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As Ly f is bounded by assumption and ¢;x and g;y are at distance d along a horizontal
segment, we get

(5.6) R () - Ff ()] < €

Ak
Next, for 0 < k < n, we have F}/ (z) — F;\ [(z) = [ @t/ \*)f(gix)dt where o(t) =
x(t) — x(At). Taking the difference, we get
Ak
(B (@) = KL (@) — (F (y) - B, () = /t_o p(t/N)(f(gew) = flgry)) dt
1
=3 [ o) ) = T o)) s,

for z;, = T*x and y, = T"y, as in (5.4). Since the points gszx and gsyx are on the same
horizontal segment of length A\*d, we can integrate by parts and get

Tp 1 .
() = A — () — () = 3 [ < / so(s)Lthf(gsu)ds) du.

U=Yg =0
Each integral over s is an integral over a vertical segment, against a smooth function ¢. By
the definition of B, it is bounded by C'||¢]|¢s || T f|l gs,—s. Moreover, the vanishing conditions
on f in the assumptions of Theorem 5.4 ensure that || 7% f|| 55— decays like CA=(2T9)k for
some € > 0. We get

(B (@) = 73 () = (B () = By ()] < OX e — g A7 CF9E = OAF - AR A= (0"
= Cd\~°F.
As the geometric series A\~°% is summable, we get starting from (5.6) and summing over k
from 1 to n the inequality
(5.7 B ()~ B ()] < Cd.
Moreover, by (5.5) (but with € replaced by 1 + ¢ thanks to Lemma 5.6), we have
|Ff(z) — F(z)] < 0/AUTI" < OA™" < O(Ad)9),
thanks to the inequality A™d > §/). This is bounded by Cd. In the same way, |F, (y) —
F(y)| < Cd. Together with (5.7), this gives |F(x) — F(y)| < Cd. O

Remark 5.8. Under the weaker assumptions of Theorem 5.2, then the same proof goes
through to prove that |F(x) — F(y)| < Cd(z,y), where € comes from Lemma 5.3. Hence,
the solution F' to the cohomological equation is automatically Hélder continuous, without
any further assumption. This corresponds in a different setting to the main result of [MY16].

Proof of Theorem 5.4. Consider a function f satisfying the assumptions of Lemma 5.5. We
have to show that it is a C' coboundary. Let F be the solution to the coboundary equation
given by Theorem 5.2. By Lemma 5.7, along any horizontal segment, it is differentiable
almost everywhere, and equal to the primitive of its derivative. We get a bounded measurable
function F} such that, for every horizontal interval I, for every x,y € I, one has

(5.8) Fly) — Flz) = / ’ Fu(u) du.
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The difficulty is that we do not know if F}, is continuous and well defined everywhere.

The function Ly, f belongs to C}QL. Moreover, it satisfies (w, L f) = 0 for w € U|a|>/\,1 E,,
as this is equal to —(Lpw, f), which vanishes under the assumptions of Lemma 5.5 as
Lyw e U| al>A-2 FE,. It follows that Lj f satisfies all the assumptions of Theorem 5.2. Hence,

there exists a continuous function G on M such that [ Ly f(g:x) = G(x) — G(gra) for all
x and 7.

Consider two points x and y on a small horizontal interval, and 7 > 0 so that there is no
singularity between the orbits (gsz)s<r and (gsy)s<r. Then one can compute

[ (G- B)~(G - F(gru) du

=z

= /y: /OT Lnf(geu)dtdu — (F(y) — F(x)) + (F(g-y) — F(g-2))

- /0 " flaw) — Flgi) dt — (F(y) — F(2)) + (F(gry) — Flgrz)) = 0.

Since this also holds along any subsegment [z, 3] of [z, y], it follows that (G — F)(u) — (G —
Fp,)(gru) vanishes almost everywhere on the segment [z,y]. One deduces that, for almost
every 7 > 0 and almost every v € M, one has (G — F)(g-u) = (G — Fy)(u). By ergodicity
of the vertical flow, it follows that G — F}, is almost everywhere constant, and we can even
assume that this constant vanishes by subtracting it from G if necessary.

By Fubini, for almost every horizontal interval I one has Fj, = G almost everywhere on
I. On such an interval, we deduce from (5.8) the equality F(y) — F(z) = [? G(u) du. By
continuity of F' and G, this equality extends to all horizontal intervals. It follows from
this formula that F' is differentiable in the horizontal direction, with derivative G. As G is
continuous on M, this concludes the proof of the theorem. O

The following theorem is the precise version of Theorem 1.7 on C* solutions to the
cohomological equation.

Theorem 5.9. Under the assumptions of Theorem 5.2, assume additionally that f € C’;erQ.
Assume moreover that, for any w € U\(XI?)\”“’l E, Nker Ly, one has (w, f) = 0. Then the

function F solving the cohomological equation (5.3) is C* along the horizontal direction, and
L%F extends continuously to M for all j < k.

The assumptions of the theorem make sense by (5.2). As explained after that equation,
the assumptions of the theorem could even be weakened to f € C;f““. The loss of 1 + ¢
derivatives corresponds in this setting to the result of Forni on the regularity loss in the
cohomological equation on almost every translation surface [For07|. The conclusion can also
be strengthened as the k-th derivative is also Hélder continuous for some small exponent,
see Remark 5.8.

Proof. We argue by induction on k, the cases kK = 0 and £ = 1 being true thanks to
Theorems 5.2 and 5.4. Assume k > 2. By Theorem 5.4, there exists a function F' solving the
cohomological equation for f, such that Ly F is well defined and continuous. Differentiating
horizontally, one gets that Ly F is a continuous function, solving the cohomological equation
for Ly, f.
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Moreover, the function Ly, f satisfies all the assumptions of the theorem for the smoothness
degree k—1. By the inductive assumption, there exists a function G solving the cohomological
equation for Ly f, such that L;LG is well defined for ¢ < k — 1. The functions G and LpF
solve the same cohomological equation. Hence, G — L, F' is constant along orbits of the
vertical flow. As this flow is minimal, it follows that G — Ly F' is constant. Therefore, L, F
has k£ — 1 continuous horizontal derivatives. This concludes the proof. O

6. WHEN ORIENTATIONS ARE NOT PRESERVED

6.1. Orientable foliations whose orientations are not preserved. Consider a trans-
lation surface (M, ), and a linear pseudo-Anosov map 7 on M which does not necessarily
preserve the orientations of the horizontal and vertical foliations. There are two global signs
ep and €, indicating respectively if T preserves the orientations of the horizontal and the
vertical foliations. Then the spectrum of T* on H!(M) is given by e\, by ,A~1, and by
E = {u1,...,pa9—2} with ;| € (A"}, A) (where this last property follows from the same
result for the map 72, which preserves orientations). One can describe the Ruelle spectrum
exactly as we did in the orientations preserving case, with the only difference that the
commutation relations between the composition operator 7 and the horizontal and vertical
derivatives are not the same: Proposition 3.3 should be replaced by the equalities

ToLy,=¢eALyoT, Tolp= Eh)\_th o

on appropriate spaces. On the other hand, the definition of the Banach spaces B~Fnkv
need not be changed (their very definition in Section 2 is independent of the existence of a
pseudo-Anosov map on the surface).

The largest eigenvalues of 7, in addition to 1, are given by e,A"'y;. Then, to build
new eigenfunctions from such an eigenfunction, one can either differentiate in the horizontal
direction, or integrate in the vertical direction. When ¢, # €, this gives rise to two different
eigenvalues, while when they coincide one obtains the same eigenvalue again. In general,
choosing to apply k — 1 horizontal derivatives and /¢ vertical integrations (with & > 1 and
¢ > 0) gives an eigenfunction for the eigenvalue Eﬁsﬁ)\_k_eui. Hence, one obtains the
following description of the spectrum:

Theorem 6.1. Let T be a linear pseudo-Anosov map on a translation surface of genus g, with
orientable horizontal and vertical foliations. Denoting by A > 1 its expansion factor, then
the spectrum of T* on H*(M) has the form {ep\, exA™Y 1, ..., pag—2} with |u;| € (A7 N)
foralli=1,...,2g —2. Then T has a Ruelle spectrum on C = CX(M — %), given (with
multiplicities) by

29—2

po U U Ut ™).

i=1 k>1£>0

For ¢, = ¢, = 1, one recovers Theorem 1.4.

One can also obtain a full description of the vertically invariant distributions, and solve
the cohomological equation for the vertical flow. However, the simplest way to do this
is certainly to apply the results of the previous sections to the map 72, which preserves
orientations, so we will not discuss these results any further.
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It is more interesting to check that the trace formula of Theorem 1.8 still holds in this
more general context.

Theorem 6.2. Let T be a linear pseudo-Anosov map on a compact surface with orientable
horizontal and vertical foliations. Then, for all n,

(6.1) tr’(T™) = Zdaa”,

where the sum is over all Ruelle resonances o of T', and d, denotes the multiplicity of o.

Proof. We follow the proof of Theorem 1.8, with appropriate modifications. The Lefschetz
fixed-point formula gives

> indpn 2 = tr((T™) o)) — (T any) + (T2 (ar)

Trx=x

2g—2
=1- (agA” +eEIATT Y u?) +ene,

i=1
where {41, ..., u2g—2} denote the eigenvalues of T* on the subspace of H'(M) orthogonal
to [dz] and [dy], as in the statement of Theorem 1.4. The last term e}e}} is equal to 1 if T™
preserves orientation, —1 if it reverses orientation.

We can also compute the right hand side of (6.1), using the description of Ruelle resonances:

By Theorem 6.1, > d,a™ is given by

29—2 oo oo 29—2

ky—k\n/  y—0\n, n __ 82)‘_” 1 n
L4 D D D @A N ) =14 Y e
i=1 k=1 4¢=0 i=1 h v
L Z e (A (L—ea ) = e
= (A —epAn)- (1 —epA™) (1 —epAn)- (L —epA=)

L= (A + A + ) + efen
(1 —epAn)- (1 —enA—")

Combining the two formulas with the definition of the flat trace, we get the conclusion of
the theorem. 0

6.2. Non-orientable foliations. Consider a pseudo-Anosov map T on a half-translation
surface M, but such that the horizontal and vertical foliations are not orientable. Note
that, with our Definition 1.2, a half-translation surface is always orientable as x — —zx
preserves orientation in R?. Hence, if the horizontal foliation is not orientable, then neither
is the vertical foliation, and conversely. In this case, one can not argue directly in M as the
differentiation operators Lj; and L, do not make sense anymore: there is a sign ambiguity
regarding the direction of differentiation. (On the other hand, the squares L? and L? of
these operators are well defined.)

Let M be the two fold orientation (ramified) covering of M: away from singularities, an
element of M is a pair (z,v) where x € M — X and v is an orientation of the horizontal
foliation at = (equivalently, it is a horizontal unit-norm vector). Let @ : M — M be the



RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS 56

covering projection, and write ¥ = 771(X). Then (M,Y) is a translation surface. Let
i : M — M be the involution i(x,v) = (2, —v). It is a homeomorphism of M.

T lifts to two pseudo-Anosov maps T and i0T of M and the homeomorphism i commutes
with 7. Let us consider €, &, where €,,¢, € {£1} indicate whether T fixes or reverses the
orientation in the horizontal (resp. vertical) direction, as in Paragraph 6.1. Obviously the
corresponding pair associated to the other lift i o T is (—¢&p, —&y).

The action of i* gives rise to a splitting of H'(M) as the direct sum of the two subspaces
HY(M)={h € H'(M) : i*h = £h}. The invariant part H} (M) corresponds to classes that
are lifts of classes in H'(M). On the other hand, [dz] and [dy] belong to the anti-invariant
part. If f is a function on M, then f o x-dx if also anti-invariant.

The spectrum of T* on Hi (M) is equal to the spectrum of T on H'(M), given by 2g
eigenvalues that we denote by uf, ey u;g. Let us denote the spectrum of 7% on H! (M)

by ep), epA71 and g, ..., Hog —o- The Ruelle spectrum of T is expressed in terms of all
these data as in Theorem 6.1, but the Ruelle spectrum of T is a strict subset of the Ruelle
spectrum of T as one should only consider those distributions in the spectrum that do not
vanish on functions coming from the basis.

Theorem 6.3. In this setting, T has a Ruelle spectrum on C = C°(M — X)), given (with
multiplicities) by

2g 2g-—2
k_ly—k—t, 6 + k_ly—k—t, —
{1} U U U {ehE’UA My }U U U {Ehgv)‘ My }
i=1 k>1,0>0 i=1 k>14>0
k+{ even k-+£4 odd

It is remarkable that, in this theorem only mentioning the correlations of functions in
M, all the eigenvalues of T* appear: both the invariant and anti-invariant parts of the
cohomology can be read off the correlations of functions in M.

This statement does not depend on the choice of the lift of T'. Indeed, if one chooses the
other lift i o T of T, then the uj do not change, but ¢, €, and p; are replaced by their
opposites, so that the above spectrum is not modified.

Proof. Among the distributions constructed in the proof of Theorem 6.1, one should under-
stand which are orthogonal to functions from the basis, and which come from the basis. First,
for the cohomology classes, one writes them as h = f dx for some f in the Banach space
B~Fknke - As dx is anti-invariant, it follows that f is invariant if and only if h is anti-invariant.
Hence, the eigenvalues p; give rise to distributions coming from the base, for the eigenvalue
et t; - On the other hand, the eigendistributions for epA! MT are anti-invariant, and do
not appear in the Ruelle spectrum of 7. Then, in M, differentiating with respect to Lj, or
integrating with respect to L, exchanges the invariant and anti-invariant subspaces. The
full description of the spectrum follows. O

In this context, the trace formula of Theorem 1.8 still holds.

Theorem 6.4. Let T be a linear pseudo-Anosov map. Then, for all n,

(6.2) 2 (T") =) daa”,

where the sum is over all Ruelle resonances o of T', and d, denotes the multiplicity of o.
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Proof. We have already proved this result when the foliations are orientable, in Theorem 6.2.
Hence, we can assume that the foliations are not orientable. In this case, the Ruelle spectrum
is given in Theorem 6.3.

Let = be a fixed point of T". Denote by z1 and x9 its two lifts. They are either fixed or
exchanged by T™. We say that x is positively fixed if its lifts are fixed by 7™, and negatively
fixed if they are exchanged by T", i.e., fixed by i o T™. Let Fix"(7™) and Fix~ (7™) denote
respectively the set of positively and negatively fixed points of 7". Around a positively
fixed point, the local picture of T" is the same as the local picture of T™ around the lifts.
In particular, det(I — DT™) is equal to (1 — e} A")(1 — epA™). If x is negatively fixed,
on the other hand, the local picture of T is the same as that of i o T™, hence locally
det(I — DT™) = (1 + e A")(1 + £} A™). With the definition of the flat trace, we get

indTn €T indTn T
(63) trb(Tn) = Z nAn n\—n + Z nan n\—n
z€Fixt(T™) (=AM = ega™) 2€Fix~ (T") (1+epA") (1 +epA=")

To proceed, we note that to one point in Fix™(T™) correspond two fixed points of 7™, with
the same Lefschetz index. Therefore,

2 Z indyn(z) = Z indgn (y).

x€Fixt(Tn) Try=y

We can apply Lefschetz index formula for T™ to the last sum, yielding

2 S indn (@) = (T o) — (T i) + (T s i)
zeFixt(T™)

2g 2g_—2
=1- (e}%” AT D () D Gy )“) +efen
=1

i=1
2g 2g-—2
= (L= g AL —egA™) = > ()" = D ()™
i=1 i=1

A point in Fix™ (T™) corresponds to two fixed points of i o T". Applying the Lefschetz
formula to i o T™, we get in the same way

2g 2g_—2
2 ) indpe(x) = (14 epA")(L+epA™) =) ()" + > ()",
zeFix™ (T™) i=1 =1

as the eigenvalues of i0T™ in cohomology are —eP A", —eA"™, (u)™ and —(p; ). Combining
these two formulas with (6.3), we obtain
1
brn § +\n
v () 2 () ((1 —epAn)

1 —\n
—52 ) ((1 — )

—_

1
T—epa ™) T @+t sw—w)

—~

(6.4)

—_

1
1—emA ) (1+ EPAT) (1 +epA—m) )

—~
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Let us expand
1 e 1 1
(L—epAm)(1—epA—n) "7 1—egpdn 1—gn)n

= AT DDEATE ] [ oA
k=0 k>0

—— % ety
E>1,620

and analogously
1

_ Yk gk o\ —k—tyn
(1 + efAm) (1 + ena—n) (FUT e A

E>1,020

Therefore, when one computes the terms in (6.4), there comes out a factor (1 + (—1)¥*¢)/2
on the first line, which is 1 when & + £ is even and 0 otherwise, and a factor (1 — (—1)*+¢)/2
on the second line, which is 1 when k + ¢ is odd and 0 otherwise. We finally get

2g 29_—2
b k_ly—k—{ k_€y—k—tL
WI =143 3 (G Y Y (e
i=1 k>1,620 i=1 k>1,6>0
k+¢ even k+¢ odd
In view of the expression for the Ruelle spectrum given in Theorem 6.3, this is the desired
result. Il
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