
GL+(2,R)-ORBITS IN PRYM EIGENFORM LOCI

ERWAN LANNEAU AND DUC-MANH NGUYEN

ABSTRACT. This paper is devoted to the classification of GL+(2,R)-orbit closures of surfaces in the
intersection of the Prym eigenform locus with various strata of Abelian differentials. We show that the
following dichotomy holds: an orbit is either closed or dense in a connected component of the Prym
eigenform locus.

The proof uses several topological properties of Prym eigenforms, in particular the tools and the
proof are independent of the recent results of Eskin-Mirzakhani-Mohammadi.

As an application we obtain a finiteness result for the number of closed GL+(2,R)-orbits (not neces-
sarily primitive) in the Prym eigenform locus ΩED(2, 2) for any fixed D that is not a square.

1. INTRODUCTION

For any g ≥ 1 and any integer partition κ = (κ1, . . . , κr) of 2g − 2 we denote by H(κ) a stratum of
the moduli space of pairs (X, ω), where X is a Riemann surface of genus g and ω is a holomorphic
1-form having r zeros with prescribed multiplicities κ1, . . . , κr. Analogously, one defines the strata
of the moduli space of quadratic differentials Q(κ′) having zeros and simple poles of multiplicities
κ′1, . . . , κ

′
s with

∑s
i=1 κ

′
s = 4g − 4 (simple poles correspond to zeros of multiplicity −1).

The 1-form ω defines a canonical flat metric on X with conical singularities at the zeros of ω.
Therefore we will refer to points of H(κ) as flat surfaces or translation surfaces. The strata admit a
natural action of the group GL+(2,R) that can be viewed as a generalization of the GL+(2,R) action on
the space GL+(2,R)/SL(2,Z) of flat tori. For an introduction to this subject, we refer to the excellent
surveys [MT02, Zor06].

It has been discovered that many topological and dynamical properties of a translation surface can
be revealed by its GL+(2,R)−orbit closure. The most spectacular example of this phenomenon is the
case of Veech surfaces, or lattice surfaces, that is surfaces whose GL+(2,R)-orbit is a closed subset in
its stratum; for such surfaces, the famous Veech dichotomy holds: the linear flow in any direction is
either periodic or uniquely ergodic.

It follows from the foundation results of Masur and Veech that most of GL+(2,R) orbits are dense
in their stratum. However, in any stratum there always exist surfaces whose orbits are closed: e.g.
coverings of the standard flat torus and are commonly known as square-tiled surfaces.

During the past three decades, much effort has been made in order to obtain the list of possible
GL+(2,R)-orbit closures and to understand their structure as subsets of strata. So far, such a list is
only known in genus two by the work of McMullen [McM07], but the problem is wide open in higher
genus, even though some breakthroughs have been achieved recently (see below).
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In genus two the complex dimensions of the connected strataH(2) andH(1, 1) are, respectively, 4
and 5. In this situation, McMullen proved that if a GL+(2,R)-orbit is not dense, then it belongs to a
Prym eigenform locus, which is a submanifold of complex dimension 3. In this case, the orbit is either
closed or dense in the whole Prym eigenform locus. These (closed) invariant submanifolds, that we
denote by ΩED, where D is a discriminant (that is D ∈ N, D ≡ 0, 1 mod 4), are characterized by the
following properties:

(1) Every surface (X, ω) ∈ ΩED has a holomorphic involution τ : X → X, and
(2) The Prym variety Prym(X, τ) = (Ω−(X, τ))∗/H1(X,Z)− admits a real multiplication by some

quadratic order OD := Z[x]/(x2 + bx + c), b, c ∈ Z, b2 − 4c = D.
(where Ω−(X, τ) = {η ∈ Ω(X) : τ∗η = −η}).

Later, these properties were extended to higher genera (up to genus five) by McMullen (see [McM03a,
McM06, LN13] for more details).

Recently, Eskin-Mirzakhani-Mohammadi [EMi13, EMiMo13] have announced a proof of the con-
jecture that any GL+(2,R)-orbit closure is an affine invariant submanifold of H(κ). This result is
of great importance in view of the classification of orbit closures as it provides some very important
characterizations of such subsets. However a priori this result does not allow us to construct explicitly
such invariant submanifolds.

So far, most of GL+(2,R)-invariant submanifolds of a stratum are obtained from coverings of trans-
lation surfaces of lower genera. The only known examples of invariant submanifolds not arising from
this construction belong to one of the following families:

(1) Primitive Teichmüller curves (closed orbits), and
(2) Prym eigenforms.

This paper is concerned with the classification of GL+(2,R)−orbit closures in the space of Prym
eigenforms. To be more precise, for any non empty stratum Q(κ′), there is a (local) affine map φ :
Qg′(κ′) → Hg(κ) given by the orientating double covering (the indices g and g′ are the genus of
the corresponding Riemann surfaces). When g − g′ = 2, following McMullen [McM06] we call the
image of φ a Prym locus and denote it by Prym(κ). Those Prym loci contain GL+(2,R)-invariant
suborbifolds denoted by ΩED(κ) (see Section 2 for more precise definitions). We will investigate the
GL+(2,R)-orbit closures in ΩED(κ). The first main theorem of this paper is the following.

Theorem 1.1. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform, where ΩED(κ) has complex dimension 3
(i.e. ΩED(κ) is contained in one of the Prym loci in Table 1). We denote byO its orbit under GL+(2,R).
Then

(1) Either O is closed (i.e. (X, ω) is a Veech surface), or
(2) O is a connected component of ΩED(κ).

Observe that the case κ = (1, 1) is part of McMullen’s classification in genus two, which is
obtained via decompositions of translation surfaces of genus two into connected sums of two tori
(see [McM07]).

Remark 1.2. The classification of connected components of ΩED(2, 2) and ΩED(1, 1, 2) will be ad-
dressed in a forthcoming paper [LN13c] (see also [LN13] for related work). The statement is the
following: for any discriminant D ≥ 8 and κ ∈ {(2, 2), (1, 1, 2)}, the locus ΩED(κ) is non-empty if and
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Q(κ′) Prym(κ) g(X)
Q0(−16, 2) Prym(1, 1) ' H(1, 1) 2
Q1(−13, 1, 2) Prym(1, 1, 2) 3
Q1(−14, 4) Prym(2, 2)odd 3
Q2(−12, 6) Prym(3, 3) ' H(1, 1) 4

Q(κ′) Prym(κ) g(X)
Q2(12, 2) Prym(12, 22) ' H(02, 2) 4
Q2(−1, 2, 3) Prym(1, 1, 4) 4
Q2(−1, 1, 4) Prym(2, 2, 2)even 4
Q3(8) Prym(4, 4)even 5

TABLE 1. Prym loci for which the corresponding stratum of quadratic differentials
has (complex) dimension 5. The Prym eigenform locus ΩED(κ) has complex dimen-
sion 3. Observe that the stratumH(1, 1) in genus 2 is a particular case of Prym locus.

only if D ≡ 0, 1, 4 mod 8, and it is connected if D ≡ 0, 4 mod 8, and has two connected components
otherwise.

Even though Theorem 1.1 is a particular case of the recent results of Eskin-Mirzakhani and Eskin-
Mirzakhani-Mohammadi [EMi13, EMiMo13], our proof is independent from these works. It is based
on the geometry of the kernel foliation on the space of Prym eigenforms. It is also likely to us that
the method introduced here can be generalized to yield Eskin-Mirzakhani-Mohammadi’s result in
invariant submanifolds which possess the complete periodic property (see Section 2.3).

We will also prove a finiteness result for Teichmüller curves in the locus ΩED(2, 2)odd; this is our
second main result:

Theorem 1.3. If D is not a square then there exist only finitely many closed GL+(2,R)-orbits in
ΩED(2, 2)odd.

We end with a few remarks on Theorem 1.3.

Remark 1.4.
• To the authors’ knowledge, such finiteness result is not a direct consequence of the work by

Eskin-Mirzakhani-Mohammadi.
• In Prym(1, 1) a stronger statement holds: there exist only finitely many GL+(2,R)-closed or-

bits in t
D not a square

ΩED(1, 1) (see [McM05b, McM06a]). The same result holds for Prym(1, 1, 2):

this is proved in a forthcoming paper by the first author and M. Möller [LMöl13]. However,
this is no longer true in Prym(2, 2)odd as we will see in Theorem A.1.
• Other finiteness results on Teichmüller curves have been obtained in other situations by dif-

ferent methods, see for instance [Möl08, BaMöl12, MaWri13].

Outline of the paper. We end this section with a sketch of the proofs of Theorem 1.1 and The-
orem 1.3. Before going into the details, we single out the relevant properties of ΩED(κ) for our
purpose. In what follows (X, ω) will denote a surface in ΩED(κ) (sometimes we will simply use X
when there is no confusion).

(1) Each locus is preserved by the kernel foliation, that is, (X, ω) + v is well defined for any
sufficiently small vector v ∈ R2 (see Section 3). Up to action of GL+(2,R), there exists ε > 0
such that a neighborhood of (X, ω) in ΩED(κ) can be identified with the set

{(X, ω) + v, |v| < ε} .
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(2) Every surface in ΩED(κ) is completely periodic in the sense of Calta: any direction of a simple
closed geodesic is actually completely periodic, which means that the surface is decomposed
into cylinders in this direction. The number of cylinders is bounded from above by g + |κ| − 1,
where |κ| is the number of zeros of ω (see Section 2).

(3) Assume that (X, ω) decomposes into cylinders in the horizontal direction, then the moduli of
those cylinders are related by some equations with rational coefficients (see Proposition 4.12).

(4) The cylinder decomposition in a completely periodic direction is said to be stable if there
is no saddle connection connecting two different zeros in this direction. The stable periodic
directions are generic for the kernel foliation in the following sense: if the horizontal direction
is stable for (X, ω), then there exists ε > 0 such that for any v ∈ R2 with |v| < ε, the horizontal
direction is also periodic and stable on X + v. If the horizontal direction is unstable then there
exists ε > 0 such that for any v = (x, y) with |v| < ε and y , 0 the horizontal direction is
periodic and stable on X + v.

The properties (1)-(2)-(3) are explained in [LN13a] (see Section 3.1 and Corollary 3.2, Theo-
rem 1.5, Theorem 7.2, respectively). We will give more details on Property (4) in Section 4.

We now give a sketch of the proof of our results. The first part of the paper (Sections 3-6) is devoted
to the proof of Theorem 1.1, while the second part (Sections 7-11) is concerned with Theorem 1.3.

Sketch of proof of Theorem 1.1. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform and let O := GL+(2,R) ·
(X, ω) be the corresponding GL+(2,R)−orbit. We will show that if O is not a closed subset in ΩED(κ)
then it is dense in a connected component of ΩED(κ).

We first prove a weaker version of Theorem 1.1 (see Section 5) under the additional condition that
there exists a completely periodic direction θ on (X, ω) that is not parabolic. We start by applying the
horocycle flow in that periodic direction, and use the classical Kronecker’s theorem to show that the
orbit closure contains the set (X, ω) + x~v, where ~v is the unit vector in direction θ, and x ∈ (−ε, ε) with
ε > 0 small enough. Then we apply the same argument to the surfaces (X, ω) + x~v in another periodic
direction that is transverse to θ. It follows that O contains a neighborhood of (X, ω), and hence for
any g ∈ GL+(2,R), O contains a neighborhood of g · (X, ω). Using this fact, we show that for any
(Y, η) ∈ O \ O, the closure O also contains a neighborhood of (Y, η), from which we deduce that O is
an open subset of ΩED(κ). Hence O must be a connected component of ΩED(κ).

In full generality, (see Section 6) we show that if the orbit is not closed and all the periodic di-
rections are parabolic, then it is also dense in a component of ΩED(κ). For this, we consider a
surface (Y, η) ∈ O \ O for which the horizontal direction is periodic. From Property (1), we see
that there is a sequence ((Xn, ωn))n∈N of surfaces in O converging to (Y, η) such that we can write
(Xn, ωn) = (Y, η) + (xn, yn), where (xn, yn) −→ (0, 0). Property (4) then implies that the horizontal
direction is periodic for (Xn, ωn). Moreover, we can assume that the corresponding cylinder decom-
position in (Xn, ωn) is stable (for n large enough).

For any x ∈ (−ε, ε), where ε > 0 is small enough, we show that (up to taking a subsequence) the
orbit of the horocycle flow though (Xn, ωn) contains a surface (Xn, ωn) + (xn, 0) such that the sequence
(xn) converges to x. As a consequence, we see that O contains (Y, η) + (x, 0) for every x ∈ (−ε, ε). We
can now conclude that O is a component of ΩED(κ) by the weaker version of Theorem 1.1.
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Sketch of proof of Theorem 1.3. We first show a finiteness result up to the (real) kernel foliation for
surfaces in ΩED(2, 2)odd (see Theorem 11.2): If D is not a square then there exists a finite family
PD ⊂ ΩED(2, 2)odd such that for any (X, ω) ∈ ΩED(2, 2)odd with an unstable cylinder decomposition,
up to rescaling by GL+(2,R), we have the following

(X, ω) = (Xk, ωk) + (x, 0) for some (Xk, ωk) ∈ PD.

Compare to [McM05a, LN13] where a similar result is established.
Now let us assume that there exists an infinite family, say Y =

⋃
i∈I GL+(2,R) · (Xi, ωi), of closed

GL+(2,R)-orbits, generated by Veech surfaces (Xi, ωi), i ∈ I.
By previous finiteness result, up to taking a subsequence, we assume that (Xi, ωi) = (X, ω) + (xi, 0)

for some (X, ω) ∈ PD, where xi belongs to a finite open interval (a, b) which is independent of i (see
Theorem 8.1). Up to taking a subsequence, one can assume that the sequence (xi) converges to some
x ∈ [a, b]. Hence the sequence (Xi, ωi) = (X, ω) + (xi, 0) converges to (Y, η) := (X, ω) + (x, 0).
If x ∈ (a, b) then (Y, η) belongs to ΩED(2, 2)odd, otherwise, that is x ∈ {a, b}, (Y, η) belongs to one of
the following loci ΩED(0, 0, 0),ΩED(4), or ΩED′(2)∗, with D′ ∈ {D,D/4} (see Section 8). Then by
using a by-product of the proof of Theorem 1.1, replacing O byY (see Theorem 6.2 and Theorem 9.4)
we obtain that Y is dense in a component of ΩED(2, 2)odd. We conclude with Theorem 10.1 which
asserts that the set of closed GL+(2,R)−orbits is not dense in any component of ΩED(2, 2)odd when D
is not a square.

Acknowledgments. We would like to thank Corentin Boissy, Pascal Hubert, John Smillie, and Barak
Weiss for useful discussions. We would also like to thank the Université de Bordeaux and Institut
Fourier in Grenoble for the hospitality during the preparation of this work. Some of the research visits
which made this collaboration possible were supported by the ANR Project GeoDyM. The authors
are partially supported by the ANR Project GeoDyM.

2. BACKGROUND

For an introduction to translation surfaces, and a nice survey on this topic, see e.g. [MT02, Zor06].
In this section we recall necessary background and relevant properties of ΩED(κ) for our purpose. For
a general reference on Prym eigenforms, see [McM06].

We will use the following notations along the paper:
B(ε) = {v ∈ R2, |v| < ε}, B(M, ε) = {A ∈ GL+(2,R), ||A − M|| < ε} and
ω(γ) :=

∫
γ
ω, for any γ ∈ H1(X,Z),

where |.| is the Euclidean norm on R2, and ||.|| is some norm on M(2,R).

2.1. Prym loci and Prym eigenforms. Let X be a compact Riemann surface, and τ : X → X be a
holomorphic involution of X. We define the Prym variety of X:

Prym(X, τ) = (Ω−(X, τ))∗/H1(X,Z)−,

where Ω−(X, τ) = {η ∈ Ω(X) : τ∗η = −η}. It is a sub-Abelian variety of the Jacobian variety
Jac(X) := Ω(X)∗/H1(X,Z).

For any integer vector κ = (k1, . . . , kn) with nonnegative entries, we denote by Prym(κ) ⊂ H(κ)
the subset of pairs (X, ω) such that there exists an involution τ : X → X satisfying τ∗ω = −ω, and
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dimCΩ−(X, τ) = 2. Following McMullen [McM06], we will call an element of Prym(κ) a Prym form.
For instance, in genus two, one has Prym(2) ' H(2) and Prym(1, 1) ' H(1, 1) (the Prym involution
being the hyperelliptic involution).

Let Y be the quotient of X by the Prym involution (here g(Y) = g(X) − 2) and π the corresponding
(possibly ramified) double covering from X to Y . By push forward, there exists a meromorphic qua-
dratic differential q on Y (with at most simple poles) so that π∗q = ω2. Let κ′ be the integer vector
that records the orders of the zeros and poles of q. Then there is a GL+(2,R)-equivariant bijection
between Q(κ′) and Prym(κ) [L04, p. 6].

All the strata of quadratic differentials of dimension 5 are recorded in Table 1. It turns out that
the corresponding Prym varieties have complex dimension two (i.e if (X, ω) is the orientating double
covering of (Y, q) then g(X) − g(Y) = 2).

We now give the definition of Prym eigenforms. Recall that a quadratic order is a ring isomorphic
to OD = Z[X]/(X2 + bX + c), where D = b2 − 4c > 0 (quadratic orders being classified by their
discriminant D).

Definition 2.1 (Real multiplication). Let A be an Abelian variety of dimension 2. We say that A admits
a real multiplication by OD if there exists an injective homomorphism i : OD → End(A), such that
i(OD) is a self-adjoint, proper subring of End(A) (i.e. for any f ∈ End(A), if there exists n ∈ Z\{0}
such that n f ∈ i(OD) then f ∈ i(OD)).

Definition 2.2 (Prym eigenform). For any quadratic discriminant D > 0, we denote by ΩED(κ) the
set of (X, ω) ∈ Prym(κ) such that dimC Prym(X, τ) = 2, Prym(X, τ) admits a multiplication by OD, and
ω is an eigenvector of OD. Surfaces in ΩED(κ) are called Prym eigenforms.

Prym eigenforms do exist in each Prym locus described in Table 1, as real multiplications arise
naturally with pseudo-Anosov homeomorphisms commuting with τ (see [McM06]).

2.2. Periodic directions and Cylinder decompositions. We collect here several results concerning
surfaces having a decomposition into periodic cylinders.

Let (X, ω) be a translation surface. A cylinder is a topological annulus embedded in X, isometric to
a flat cylinder R/wZ × (0, h). In what follows all cylinders are supposed to be maximal, that is, they
are not properly contained in a larger one. If g ≥ 2, the boundary of a maximal cylinder is a finite
union of saddle connections. If C is a cylinder, we will denote by w(C), h(C), µ(C) the width, height,
and modulus of C respectively (µ(C) = h(C)/w(C)).

Another important parameter of a cylinder is its twist t(C). Note that we only define t(C) when C is a
horizontal cylinder. For that, we first mark a pair of oriented saddle connections on the bottom and the
top boundaries of C. This allows us to define a saddle connection contained in C joining the origins
of the marked saddle connections. This gives us a twist vector, its vertical component equals h(C)
and its horizontal component is t(C). We emphasis that t(C) depends on the marking (see [HLM06,
Section 3]). However, the choice of the marking is irrelevant for our arguments throughout this paper.
Therefore, we will refer to t(C) as the twist associated to any marking.

A direction θ is completely periodic or simply periodic on X if all regular geodesics in this direction
are closed. This means that X is the closure of a finite number of cylinders in direction θ, we will say
that X admits a cylinder decomposition in this direction.
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We can associate to any cylinder decomposition a separatrix diagram which encodes the way the
cylinders are glued together, see [KZ03]). Given such a diagram, one can reconstruct the surface
(X, ω) (up to a rotation) from the widths, heights, and twists of the cylinders (see Section 4).

2.3. Complete periodicity. A translation surface (X, ω) is said to be completely periodic if it satisfies
the following property: let θ ∈ RP1 be a direction, if the linear flow Fθ in the direction θ has a regular
closed orbit on X, then θ is a periodic direction. Flat tori and their ramified coverings are completely
periodic, as well as Veech surfaces.

It turns out that, if the genus is at least two, the set of surfaces having this property has measure zero.
Indeed complete periodicity is locally expressed via proportionality of a non-empty set of relative
periods, and thus is defined by some quadratic equations in the period coordinates. This property has
been initiated by Calta [C04] (see also [CS07]) where she proved that any surface in ΩED(2) and
ΩED(1, 1) is completely periodic. Later the authors extended this property to any Prym eigenform
given by Table 1. This property is also proved by A. Wright [Wri13] by a different argument.

Theorem 2.3 ([C04, LN13a, Wri13]). Any Prym eigenform in the loci ΩED(κ) ⊂ Prym(κ) of Table 1
is completely periodic.

3. KERNEL FOLIATION ON PRYM LOCI

We briefly recall the kernel foliation for Prym loci (see [EMZ03, MZ08, C04, MW08] and [Zor06,
§9.6] for related constructions). We refer to [LN13a, Section 3.1] for details. This notion was intro-
duced by Eskin-Masur-Zorich, and was certainly known to Kontsevich.

Let (X, ω) ∈ H(κ) be a translation surface with several distinct zeros. Using the period mapping,
we can identify a neighborhood of (X, ω) inH(κ) with an open subset U ⊂ Cd, where d = dimH(κ).
We have a foliation of U by subsets consisting of surfaces having the same absolute periods. The
set of surfaces in this neighborhood that have the same absolute coordinates as X corresponds to the
intersection of U with an affine subspace of dimension |κ| − 1. Therefore the leaves of this foliation
have dimension |κ| −1. It is not difficult to see that this foliation is invariant by the coordinate changes
of the period mappings. Thus we have a foliation defined globally inH(κ), this is the kernel foliation.

It turns out that the kernel foliation also exists in Prym(κ) and ΩED(κ), for all κ in Table 1. In
particular, the leaves of the kernel foliation in ΩED(κ) have dimension one. We refer to [LN13a,
Section 3.1] for a description of this foliation in ΩED(κ) with more details.

Since the leaves of the kernel foliation in ΩED(κ) have dimension one, we have a local action of C
on ΩED(κ) as follows: for any Prym eigenform (X, ω) and w ∈ C with |w| small enough, (X′, ω′) :=
(X, ω) + w is the unique surface in the neighborhood of (X, ω) (in ΩED(κ)) such that ω′ has the same
absolute periods asω, and for a chosen relative relative cycle c ∈ H1(X,Σ,Z), we haveω′(c) = ω(c)+w
(Σ is the set of zeros of ω). An explicit construction for (X, ω) + w will be given in Section 4.3.

have
It is worth noticing that we do not have a global action of C on each leaf of the kernel foliation,

i.e even (X, ω) + w1 and (X, ω) + w2 exist, (X, ω) + w1 + w2 may not be well defined. Nevertheless,
there still exists a local action of C in a neighborhood of (X, ω) on which a local chart (by period
mappings) can be defined. In particular, if |w1| and |w2| are small enough then (X, ω) + (w1 + w2) =

((X, ω) + w1) + w2 = ((X, ω) + w2) + w1.
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Convention : Throughout this paper, we only consider the intersection of kernel foliation leaves with
a neighborhood of (X, ω) on which this local action of C is well-defined, and by (X, ω) + w we will
mean the surface obtained from (X, ω) by the construction described above.

The relative periods of (X′, ω′) := (X, ω)+w are characterized by the following lemma (see Figure 1
for an example in Prym(1, 1, 2)).

Lemma 3.1. Let c be a path on X joining two zeros of ω, and c′ be the corresponding path on X′.
Then

(1) If the two endpoints of c are exchanged by τ then ω′(c′) − ω(c) = ±w.
(2) If one endpoint of c is fixed by τ, but the other is not, then ω′(c′) − ω(c) = ±w/2.

The sign of the difference is determined by the orientation of c.

C2

C3

τ(C3)

C1

τ(C1)

C
C

B

B

A

A

(X, ω)

C2

C3

τ(C3)

C1

τ(C1)

C
C

B

B

A

A

(X, ω) + (s, t)

FIGURE 1. Decomposition of a surface (X, ω) ∈ Prym(1, 1, 2). The cylinder C2 is
fixed by the Prym involution τ, while the cylinders Ci and τ(Ci) are exchanged for
i = 1, 3. Along a kernel foliation leaf (X, ω) + (s, t) the twists and heights change as
follows: t1(s) = t1 − s, t2(s) = t2, t3(s) = t3 + s/2 and h1(t) = h1 − t, h2(t) = h2,
h3(t) = h3 + t/2. We emphasis that the formula for the twists does not depend on the
choice of the marking.

We end this section by a description of a neighborhood of a Prym eigenform: up to the action of
GL+(2,R) a neighborhood of a point (X, ω) in ΩED(κ) can be identified with the ball {(X, ω) + w, |w| < ε}.

Proposition 3.2 ([LN13a]). For any (X, ω) ∈ ΩED(κ), if (X′, ω′) is a Prym eigenform in ΩED(κ) close
enough to (X, ω), then there exists a unique pair (g,w), where g ∈ GL+(2,R) close to Id, and w ∈ R2

with |w| small, such that (X′, ω′) = g · ((X, ω) + w).

Proof. For completeness we include the proof here (see [LN13a, Section 3.2]).
Let (Y, η) = (X, ω)+w, with |w| small, be a surface in the leaf of the kernel foliation through (X, ω). We
denote by [ω] and [η] the classes of ω and η in H1(X,Σ;C)−. Let ρ : H1(X,Σ;C)− → H1(X,C)− be the
natural projection. We then have [η] − [ω] ∈ ker ρ. On the other hand, the action of g ∈ GL+(2,R) on
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H1(X,Σ;C)− satisfies ρ(g · [ω]) = g · ρ([ω]). Therefore the leaves of the kernel foliation and the orbits
of GL+(2,R) are transversal. Since their dimensions are complementary, the proposition follows. �

4. STABLE AND UNSTABLE CYLINDER DECOMPOSITIONS

4.1. Cylinder decompositions. A separatrix is a geodesic ray emanating from a zero of ω. It is a
well-known fact that a direction is periodic if and only if all the separatrices in this direction are saddle
connections. In this case the surface decomposes into finitely many cylinders in this direction. Since
the Prym involution τ preserves the set of cylinders, it naturally induces an equivalence relation on
this set. We will often use the term “number of cylinders up to Prym involution” for the number of
τ-equivalence classes of cylinders.

Definition 4.1. A cylinder decomposition of (X, ω) is said to be stable if every separatrix joins a zero
of ω to itself. The decomposition is said to be unstable otherwise.

Lemma 4.2. Let θ be a periodic direction for (X, ω) ∈ H(κ) and g be the genus of g. If X has g+ |κ|−1
cylinders in the direction θ, then the cylinder decomposition in this direction is stable (|κ| is the number
of zeros of ω).

Proof. Let C1, . . . ,Cn be the cylinders in the direction θ of X. For i = 1, . . . , n, let ci be a core curve
of Ci. Cutting X along ci we obtain r compact surfaces with boundary denoted by X1, . . . , Xr. Note
that each of Xi must contain at least a zero of ω. Therefore we have r ≤ |κ|. Let ni be the number of
boundary components of Xi. Remark that we have

∑
1≤i≤r ni = 2n, and χ(Xi) ≤ 2 − ni, where χ(.) is

the Euler characteristic. By construction, we have

2 − 2g = χ(X) =

r∑
i=1

χ(Xi) ≤
r∑

i=1

(2 − ni) = 2r −
r∑

i=1

ni = 2r − 2n.

It follows immediately that
n ≤ g + r − 1 ≤ g + |κ| − 1.

From the previous inequalities, we see that the equality n = g + |κ| − 1 is realized if and only if r = |κ|
and each Xi has genus zero. In particular, if n = g + |κ| − 1, then each component Xi contains a unique
zero of ω. If there is a saddle connection joining two distinct zeros of ω, then these two zeros must
belong to the same Xi, and we have a contradiction. Therefore, the cylinder decomposition must be
stable. �

Remark 4.3. InH(1, 1) the maximal number of cylinders in a cylinder decomposition is three, and a
cylinder decomposition is stable if and only if this maximal number is attained. In higher genus, there
are stable cylinder decompositions with less than n + |κ| − 1 cylinders.

Lemma 4.4. Let (X, ω) ∈ Prym(κ) be a surface in one of the strata given by Table 1. If the horizontal
direction is periodic for (X, ω) then the number n of horizontal cylinders, counted up to the Prym
involution, satisfies n ≤ 3. Moreover, if κ , (1, 1, 2, 2) and n = 3 then the cylinder decomposition in
the horizontal direction is stable.

Remark 4.5. Observe that Lemma 4.4 is false for the stratum Prym(1, 1, 2, 2). However, using the
identification Prym(1, 1, 2, 2) ' H(0, 0, 2) the statement becomes true with the convention that a
cylinder decomposition of (X, ω) ∈ Prym(1, 1, 2, 2) is stable if and only if the decomposition of the
corresponding surface inH(0, 0, 2) is.
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Proof. Let us assume that the horizontal direction is completely periodic. We first show that the
number n of horizontal cylinders, counted up to the Prym involution, satisfies n ≤ 3. Let n f be the
number of fixed cylinders (by the Prym involution) and let 2 · np be the number of non-invariant
cylinders. Obviously n = n f + np.

The next observation is that each fixed cylinder contains exactly two regular fixed points of the
Prym involution, which project to simple poles of the corresponding quadratic differential. Hence if
Prym(κ) is the covering of Q(−1p, k1, . . . , kn) where ki ≥ 0 then n f ≤ bp/2c. Now since the number of
cylinders is at most g + |κ| − 1, we get np ≤ b(g + |κ| − 1 − n f )/2c. Hence

n = n f + np ≤ b(g + |κ| − 1 + n f )/2c.

The values of g + |κ| − 1 for the different cases of Table 1 are the following:

Q(κ′) Prym(κ) g + |κ| − 1
Q0(−16, 2) Prym(1, 1) 3
Q1(−13, 1, 2) Prym(1, 1, 2) 5
Q1(−14, 4) Prym(2, 2)odd 4
Q2(−12, 6) Prym(3, 3) 5

Q(κ′) Prym(κ) g + |κ| − 1
Q2(12, 2) Prym(12, 22) 7
Q2(−1, 2, 3) Prym(1, 1, 4) 6
Q2(−1, 1, 4) Prym(2, 2, 2)even 6
Q3(8) Prym(4, 4)even 6

On the right table, the inequality p ≤ 1 holds for all cases, thus n f = 0. Therefore n ≤ b7/2c = 3.
For all the other cases on the left table, one has, respectively:

(1) If κ = (1, 1) then n f ≤ 3 and n ≤ b(3 + n f )/2c ≤ 3.
(2) If κ = (1, 1, 2) then n f ≤ 1 and n ≤ b(5 + n f )/2c ≤ 3.
(3) If κ = (2, 2) then n f ≤ 2 and n ≤ b(4 + n f )/2c ≤ 3.
(4) If κ = (3, 3) then n f ≤ 1 and n ≤ b(5 + n f )/2c ≤ 3.

The first statement of the lemma is proved. Now we notice that if n = 3 then in every case, but
κ = (1, 1, 2, 2), one has n f + 2 · np = g + |κ| − 1. Hence by Lemma 4.2 the horizontal direction is
stable. �

4.2. Combinatorial data. Let (X, ω) be a surface for which the horizontal direction is completely
periodic. Since each saddle connection is contained in the upper (respectively, lower) boundary of a
unique cylinder, we can associate to the cylinder decomposition the following data:

• two partitions of the set of saddle connections into k subsets, where k is the number of cylin-
ders, each subset in these partitions is equipped with a cyclic ordering, and
• a pairing of subsets in these two partitions.

We will call these data the combinatorial data or topological model of the cylinder decomposition.
Note that while there exists only one topological model for cylinder decompositions with maximal
number of cylinders in Prym(1, 1), in general, there are several topological models for such decompo-
sitions in other Prym loci in Table 1.

4.3. Kernel foliation and stable decomposition. We will now carefully investigate the kernel foli-
ation leaf nearby a surface (X, ω) for which the horizontal direction is periodic. In what follows, we
only consider the intersection of the kernel foliation leaves with a neighborhood of (X, ω) on which a
local chart by the period mapping is defined. This restriction means that the surfaces in the same leaf
as (X, ω) can be written as (X, ω) + v, with |v| small enough. Remark that for all Prym loci in Table 1,
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ω has either 2 or 3 zeros, two of them are permuted by the Prym involution, the third one (if exist) is
fixed. To keep the exposition easy to follow, let us assume that ω has two zeros, denoted by P and Q.

By assumption, X is decomposed into cylinders in the horizontal direction. Let h be the minimal
height among the heights of the cylinders, and ` be the length of the shortest horizontal saddle con-
nection. For any ε > 0 such that ε < 1/2 min{h, `}, the sets D(P, ε) := {x ∈ X, d(x, P) < ε} and
D(Q, ε) := {x ∈ X, d(x,Q) < ε} are two disjoint embedded disks in X. In what follows, we fix an
ε < 1/2 min{h, `} such that a neighborhood of (X, ω) in its stratum can be identified (via the period
mapping) with an open subset of Cd which contains the ball of radius ε centered at (X, ω). For any
vector v ∈ R2, |v| < ε, there is a unique surface (X′, ω′) in this neighborhood such that ω′ has the same
absolute periods as ω, and ω′(c) − ω(c) = v, where c is fixed a relative cycle. We denote (X′, ω′) by
(X, ω) + v. Remark that we have (X, ω) + (v1 + v2) = ((X, ω) + v1) + v2 as long as |v1| < ε, |v2| < ε, and
|v1| + |v2| < ε.

We now construct a surface (X, ω) + v from surgeries inside the discs D(P, ε) and D(Q, ε). Let D(ε)
denote the disc of radius ε centered at (0, 0) in R2. We will denote the center of D(ε) by c, and let a, b
denote respectively the bottom and top endpoints of its vertical diameter. Let D−(ε) and D+(ε) denote
respectively the left and right half-disks of D(ε) that are cut out by the diameter ab.

Since P and Q are permuted by the Prym involution, their cone angles are the same and equal to
2πm, m ∈ N. The disk D(P, ε) (resp. D(Q, ε)) can be constructed from m copies of D+(ε) and m
copies of D−(ε) glued together following a circular fashion. Denote the copies of D+(ε) and D−(ε) in
D(P, ε) (resp. in D(Q, ε)) respectively by DP

i+ and DP
i− (resp. DQ

i+ and DQ
i−) with i = 1, . . . ,m. For each

copy Dα
i±, we denote by aαi±, b

α
i±, c

α
i±, the points corresponding to a, b, c respectively. The labeling of

the half-discs is chosen so that Dα
i+ is glued to Dα

i− along the segment bc, and Dα
i− is glued to Dα

(i+1)+
along the segment ca, for α ∈ {P,Q} (here we identify DP

i+ and DP
i− with D+(ε) and D−(ε), and use the

convention m + 1 = 1). Note that by construction, all the points cP
i± are identified with P, all the points

cQ
i± are identified with Q, aαi− is identified with aα(i+1)+ and bαi− is identified with bαi+.

We call a ray in direction (1, 0) a positive horizontal ray, and a ray in direction (−1, 0) a negative
horizontal ray. Since the horizontal direction is periodic, any horizontal ray from a zero of ω must
end in another zero. Observe that a positive horizontal saddle connection must start in a copy of D+

and end in a copy of D−, hence it joins a point cαi+ to a point cβj−. Therefore, the horizontal saddle
connections of X provide us with a bijection

π : {cαk+, α ∈ {P,Q}, k = 1, . . . ,m} → {cαk−, α ∈ {P,Q}, k = 1, . . . ,m}.

Consider a horizontal saddle connection starting in the half-disk Dα
i+ and ending in the half-disk

Dβ
j−. Using the developing map, we see that the horizontal positive ray starting from aαi+ passes

through aβj−. By the gluing rules, we know that aβj− is identified with aβ( j+1)+, thus we have a horizontal

segment from aαi+ to aβ( j+1)+. We can now encode this information in a permutation σa of the set

{aαk+
, k = 1, . . . ,m, α ∈ {P,Q}} by defining σa(aαi+) = aβ( j+1)+.

Similarly, we also have a horizontal segment joining bαi+ to bβj+, which induces a permutation σb on
the set {bαk+

, k = 1, . . . ,m, α ∈ {P,Q}}. Remark that we have a bijection between the set of horizontal
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cylinders in X and the cycles of σa (resp. σb). Thus the map π and the pair of permutations (σa, σb)
completely determine the combinatorial data of the cylinder decomposition of X.

We first observe

Lemma 4.6. Let v be a vector in R2 such that |v| < ε. If v is horizontal then the cylinder decom-
positions of (X, ω) + v and (X, ω) have the same combinatorial data. Moreover, the corresponding
cylinders have the same width.

Proof. If v is horizontal then clearly all the horizontal saddle connections in (X, ω) persist in (X, ω)+v
(the lengths of some of them may be changed), hence (X, ω) + v also has a cylinder decomposition
in the horizontal direction with the same combinatorial as (X, ω). Remark that the widths of the
corresponding cylinders must be the same since they are absolute periods of ω. �

We now describe the surgery inside D(P, ε) and D(Q, ε) to obtain (X, ω) + (0, t), with |t| < ε. Let us
assume that t > 0 (the case t < 0 is completely similar). Let a′ and b′ denote respectively the points
(0,−t/2) and (0, t/2) in D(ε). Let a′αi± and b′αi± be the corresponding points in the boundary of Dα

i±. To
obtain (X, ω) + (0, t) we glue the copies of D+(ε) and D−(ε) as follows:

• In D(P, ε), DP
i+ is glued to DP

i− along the segment corresponding to a′b, and DP
i− is glued to

DP
(i+1)+ along the segment corresponding to aa′.

• In D(Q, ε), DQ
i+ is glued to DQ

i− along the segment corresponding to b′b, and DQ
i− is glued to

DQ
(i+1)+ along the segment corresponding to ab′.

From this construction, observe that we have
(i) All the points a′Pi± are identified to give a point P′ with cone angle 2πm.

(ii) All the points b′Qi± are identified to give a point Q′ with cone angle 2πm.
(iii) cP

i− is identified with cP
i+, but cQ

i− is identified with cQ
(i+1)+, and those identifications give regular

points in the new surface.
(iv) If π(cαi+) = cβj−, then there is a (positive) horizontal segment from a′αi+ to a′βj−, and a horizontal

segment from b′αi+ to b′βj−.

(v) b′Pi− is identified with b′Pi+, and a′Qi− is identified with a′Q(i+1)+.
Since this surgery does not change the flat metric outside of D(P, ε) and D(Q, ε), it is not difficult

to see that the new surface is (X, ω) + (0, t) (see [LN13a]).
We are now ready to prove the following two propositions which will play an important role in the

sequel.

Proposition 4.7. Let (X, ω) ∈ ΩED(κ), where κ is one of the strata in Table 1. If (X, ω) admits a
stable cylinder decomposition in the horizontal direction then there exists ε′ > 0 such that for every
v ∈ (−ε′, ε′) × (−ε′, ε′) ⊂ R2, (X, ω) + v admits a stable cylinder decomposition (in the horizontal
direction) with the same combinatorial data and the same widths of cylinders.

Remark 4.8. Observe that if the horizontal direction on (X, ω) is stable then the horizontal kernel
foliation is well defined for all time s ∈ R (see Section 4.4).

Proof. We only give the proof for the case where ω has two zeros P and Q permuted by the Prym
involution since the arguments for the other cases are completely similar. We choose ε′ > 0 small
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enough so that for any point (s, t) in the square (−ε′, ε′) × (−ε′, ε′), the disk of radius ε/2 centered at
(s, t) is included in the disk D(ε).

Suppose that v is vertical, that is v = (0, t) with |t| < ε′. The assumption that the cylinder de-
composition is stable means that the bijection π maps {cP

i+, i = 1, . . . ,m} to {cP
i−, i = 1, . . . ,m}, and

{cQ
i+, i = 1, . . . ,m} to {cQ

i−, i = 1, . . . ,m}. It follows from the property (iv) above that any positive
horizontal ray emanating from P′ ends in P′, and any horizontal ray from Q′ also ends in Q′. Thus
(X, ω) + v also admit a stable cylinder decomposition in the horizontal direction. Moreover, we have a
bijection between the sets of horizontal saddle connections of (X, ω) and (X, ω) + v. Since the sets of
cylinders of (X, ω) and (X, ω) + v are in bijection with the cycles of σa and σb, we conclude that the
cylinder decomposition of (X, ω) + v has the same combinatorial data as the one of (X, ω).

For the general case v = (s, t) ∈ (−ε′, ε′)× (−ε′, ε′), we write (X, ω)+ (s, t) = ((X, ω)+ (0, t))+ (s, 0),
the proposition then follows from the case v is vertical, and Lemma 4.6. �

Proposition 4.9. Let (X, ω) ∈ ΩED(κ), where κ is one of the strata in Table 1. If (X, ω) admits an
unstable cylinder decomposition in the horizontal direction, then there exists ε′ > 0 such that for
every v = (s, t) ∈ (−ε′, ε′) × (−ε′, ε′), with t , 0, (X, ω) + v admits a stable cylinder decomposition in
the horizontal direction. Moreover, the combinatorial data of the decomposition and the widths of the
cylinders depend only on the sign of t.

Proof. Again, we only give the proof for the case ω only has two zeros permuted by the Prym invo-
lution. We also choose ε′ > 0 such that for every (s, t) ∈ (−ε′, ε′) × (−ε′, ε′), the disk of radius ε/2
centered at (s, t) is included in D(ε), and keep the same notations as in the proof of Proposition 4.7.
By Lemma 4.6, we only need to consider the case s = 0. Let us assume that t > 0. The condition that
the cylinder decomposition is unstable means that there exist i, j ∈ {1, . . . ,m} such that π(cP

i+) = cQ
j−.

We first claim that any positive horizontal ray emanating from P′ ends in P′. By construction, such
a ray starts at a point a′Pi+, from property (iv) this ray passes through a point a′βi′−, where β and i′

satisfy π(cP
i+) = cβi′−. If β = P, then we have a saddle connection joining P′ to itself. Otherwise, we

have β = Q, in this case a′Qi′− is identified with a′Q(i′+1)+ (property (v)), thus the ray can be continued
and passes through another point a′γi′′− where γ and i′′ are determined by π.

Continuing this procedure, we see that this ray must end at a point a′Pj−, and we get a saddle
connection joining P′ to itself (see Figure 2). Note that the index j can be determined from σa by the
following rule: there is a unique sequence (α0, i0), . . . , (αk, ik), where αr ∈ {P,Q} and ir ∈ {1, . . . ,m},
such that

• α0 = αk = P, α1 = · · · = αk−1 = Q,
• i0 = i, ik = j, and σa(aαr

ir+
) = aαr+1

ir+1+
.

It follows from the same arguments that any horizontal ray emanating from Q′ ends in Q′, and
those saddle connections are encoded in σb. We can then conclude that (X, ω) + (0, t) admits a stable
cylinder decomposition in the horizontal direction.

We will now show that the combinatorial data of this decomposition are encoded in π, σa, σb, which
implies that those data only depend on the sign of t. There are two kinds of horizontal cylinders in
(X, ω) + (0, t), the ones that already exist in (X, ω) (recall that the central core curve of any cylinder in
X does not intersect D(P, ε) t D(Q, ε) thus remains in (X, ω) + (0, t)), and the new ones that contain
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. . . . . .
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aP
i+

bP
i+

a′Pi+ = P′

cP
i+

b′Pi+1

aQ
i1−

= aQ
(i1+1)+

bQ
i1−

bQ
(i1+1)+

Q′

cQ
i1−

cQ
(i1+1)+

a′Qi1− a′Q(i1+1)+

aP
j−

bP
j−

a′Pj− = P′

cP
j−

b′Pj−

FIGURE 2. Horizontal saddle connection from P′ to itself

some of the points cαi±. Cylinders in the first family are encoded by cycles of σa and σb. Cylinders in
the second family are encoded by cycles in a permutation σc of {cαi+, α ∈ {P,Q}, i = 1, . . . ,m} which
is defined as follows: for any cαi+ there is a horizontal segment joining cαi+ to cβj−, where cβj− = π(cαi+).
From property (iii), if β = P, then cP

j− is identified with cP
j+, and we define σc(cαi+) = cP

j+. Otherwise, if

β = Q then cQ
j− is identified with cQ

( j+1)+, and we define σc(cαi+) = cQ
( j+1)+. It is clear from the definition

that the set of cycles of σc is in bijection with the set of cylinders that contain some of the points cαi±.
Since the definition of σc only depends on the sign of t, we derive that the combinatorial data of the
cylinder decomposition of (X, ω) + (0, t) only depends on the sign of t. �

4.4. Action of the kernel foliation on cylinders.

4.4.1. Horizontal kernel foliation. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform with κ in Table 1. The
kernel foliation in those Prym egeinform loci implies that there exist a maximal interval 0 ∈ I ⊂ R,
and a continuous map ϕ : I → ΩED(κ), s 7→ (Xs, ωs) such that

• (X0, ω0) = (X, ω),
• for all s ∈ I, ωs has the same absolute periods as ω,
• for a fixed relative homology class c ∈ H(X,Σ,Z), where Σ is the set of zeros of ω, and for all

s1, s2 ∈ I, ωs1(c) − ωs2(c) = s1 − s2.
We will call the set {(Xs, ωs), s ∈ I} the leaf of the horizontal (or real) kernel foliation through (X, ω),
and write (X, ω) + (s, 0) = (Xs, ωs). If I = R, we say that (X, ω) + (s, 0) is defined for all s.

Assume that (X, ω) admits a stable horizontal cylinder decomposition, then (X, ω)+ (s, 0) is defined
for all s ∈ R. Moreover, (X, ω) + (s, 0) also admits a stable cylinder decomposition in the horizontal
direction with the same combinatorial data. Let Ci, i = 1, . . . , k, be the horizontal cylinders in X, and
wi, hi, ti be respectively the width, height, and twist of Ci. The cylinder in (X, ω)+ (s, 0) corresponding
to Ci will be denoted by Ci(s, 0). Let w(Ci(s, 0)), h(Ci(s, 0)), t(Ci(s, 0)) denote the width, height, and
twist of Ci(s, 0). Since the cylinder decomposition is stable, the upper (resp. lower) boundary of Ci
contains only one zero of ω. By construction, we have{

w(Ci(s, 0)) = w(Ci) = wi,
h(Ci(s, 0)) = h(Ci) = hi,
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for any s. However, in general t(Ci(s, 0)) is a non-constant function of s.

Lemma 4.10. We have t(Ci(s, 0)) = ti + αis, where

αi =


0 if the zeros in the upper and lower boundaries of Ci are the same,
±1 if the zeros are exchanged by the Prym involution,
±1/2 if one zero is fixed, the other is mapped to the third one by the Prym involution.

Again we emphasis that the formula does not depend on the marking (even if the twists depend on
the marking).

4.4.2. Vertical kernel foliation. Again, assume that (X, ω) admits a stable cylinder decomposition in
the horizontal directions with cylinders denoted by C1, . . . ,Ck. If v = (0, t), then by Proposition 4.7,
(X, ω) + (0, t) is well defined whenever |t| is small enough. Let Ci(0, t) denote the cylinder in (X, ω) +

(0, t) that corresponds to Ci. The widths (as they are absolute periods) and the twists of the cylinders
Ci(0, t) are unchanged, only their heights vary. Namely,

Lemma 4.11. We have h(Ci(0, t)) = hi + αit, where

αi =


0 if the zeros in the upper and lower boundaries are the same,
±1 if the zeros are exchanged by the Prym involution,
±1/2 if one zero is fixed, the other is mapped to the third one by the Prym involution.

The proofs of Lemma 4.10 and Lemma 4.11 are elementary and left to the reader.

4.5. Action of the horizontal horocycle flow on cylinders. The (horizontal) horocycle flow is de-
fined as the action of the one parameter subgroup U = {us, s ∈ R} of GL+(2,R), where us =(

1 s
0 1

)
. If the horizontal direction on (X, ω) is completely periodic, then obviously the action of us

on (X, ω) preserves the cylinder decomposition topologically. Moreover each cylinder Ci with param-
eters (wi, hi, ti mod wi) is mapped to a cylinder Ci(s) := us(Ci) of us · (X, ω) with the same width and
height, while the twist is given by

(1) t(Ci(s)) = ti + shi mod wi.

4.6. Cylinders decomposition: relation of moduli. The aim of this section is to establish the fol-
lowing result:

Proposition 4.12. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform with κ in Table 1 such that the horizontal
direction is periodic. Let n be the number of τ-equivalence classes of horizontal cylinders (recall that
n ≤ 3), and C1, . . . ,Cn be a family of cylinders representing the n equivalence classes. Then we have

(a) If n = 3 then there exists (r1, r2, r3) ∈ Q3 \ {0} such that

(2) r1µ1 + rµ2 + r3µ3 = 0.

Moreover, let αi ∈ {0,±1/2,±1} be the coefficient given by Lemmas 4.10 and 4.11 associated
to Ci, then (r1, r2, r3) satisfies

(3) r1
α1

w1
+ r2

α2

w2
+ r3

α3

w3
= 0.

(b) If the cylinder decomposition is unstable then the horizontal direction is parabolic.
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We first recall the following result when D is not a square.

Theorem 4.13 (McMullen [McM03b]). Let K = Q(
√

D) ⊂ R be a real quadratic field and let (X, ω) ∈
ΩED(κ) be a Prym eigenform such that all the absolute periods of ω belong to K(ı). Assume that the
horizontal direction is periodic with k cylinders, then we have

k∑
i=1

w′ihi = 0,

where wi, hi are respectively the width and the height of the i-th cylinder, and w′i is the Galois conjugate
of wi in K.

Sketch of proof. A remarkable property of Prym eigenform is that the complex flux vanishes. Namely
(see [McM03b, Theorem 9.7]) ∫

X
ω ∧ ω′ =

∫
X
ω ∧ ω′ = 0.

Here ω and ω′ are respectively the complex conjugate and the Galois conjugate of ω. The argument
is as follows: let T be a generator of the order OD, we have a pair of 2-dimensional eigenspaces
S ⊕ S ′ = H1(X,R)− on which T acts by multiplication by a scalar, where S is spanned by Re(ω) and
Im(ω), and S ′ is spanned by Re(ω′) and Im(ω′). Since T is self-adjoint, S and S ′ are orthogonal with
respect to the cup product. This shows the equalities above. Now we have∫

Ci

Im(ω) ∧ Re(ω′) = w′ihi,

where C1, . . . ,Ck are the horizontal cylinders in X. Since the surface X is covered by those cylinders,
it follows

k∑
i=1

w′ihi =

k∑
i=1

∫
Ci

Im(ω) ∧ Re(ω′) =

∫
X

Im(ω) ∧ Re(ω′) =
1
4ı

∫
X

(ω − ω) ∧ (ω′ + ω′) = 0.

Theorem 4.13 is proved. �

4.6.1. Proof of Proposition 4.12: case D is not a square.

Proof. Let βi ∈ {1, 2} be the number of cylinders in the τ-equivalence class of Ci (βi = 1 if Ci is fixed
by τ, βi = 2 if Ci is exchanged with another cylinder). Set ri = βiwiw′i ∈ Q.

For the case n = 3, the first equality follows directly from Theorem 4.13. Namely,

0 =

k∑
i=1

w′ihi =

3∑
i=1

βi(wiw′i)µi =

3∑
i=1

riµi.

When n = 3, Lemma 4.4 implies that the cylinder decomposition is stable. Thus we can associate
to each cylinder Ci a coefficient αi ∈ {0,±1/2,±1} (by Lemmas 4.10 and 4.11). Observe that moving
in the leaves of the kernel foliation does not change the area of the surface, therefore

Area(X, ω) = Area((X, ω) + (0, s)) ⇒

k∑
i=1

wihi =

k∑
i=1

wi(hi + αis)
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which implies

(4)
k∑

i=1

αiwi =

3∑
i=1

αiβiwi = 0.

Thus, one has
3∑

i=1

ri
αi

wi
=

3∑
i=1

βiαiw′i =

 3∑
i=1

αiβiwi


′

= 0,

and (3) is proved.

Consider now the case the cylinder decomposition is unstable, which means that n ≤ 2. If n = 1
then X has either a unique horizontal cylinder, or two horizontal cylinders which are exchanged by τ.
In both cases, the horizontal direction is clearly parabolic. If n = 2, then Theorem 4.13 implies that
the ratio µ1/µ2 is rational, which means that the horizontal is also parabolic. Proposition 4.12 is then
proved for the case D is not a square. �

We end this section with the discussion when D is a square.

Lemma 4.14. For every i ∈ {1, . . . , k} either hi is an absolute period, or there exists j , i and
some integers xi, x j ∈ {1, 2} such that xihi + x jh j is an absolute period. Moreover, if the cylinder
decomposition is stable, and αi, α j are the coefficients associated to Ci and C j (by Lemmas 4.10
and 4.11) then xiαi + x jα j = 0.

Proof. If there is a zero of ω that is contained in both the top and bottom borders of Ci, then hi is an
absolute period. Let us assume that this does not occur. There are two cases.
First case. ω has two zeros P1, P2. Note that in this case P1 and P2 are exchanged by the Prym
involution τ. We can assume that the bottom border of Ci contains P1, and its top border contains
P2. By connectedness of X, there must exist a cylinder C j whose bottom border contains P2 and top
border contains P1. Remark that we must have i , j otherwise P1 is contained in both top and bottom
borders of Ci. Let σi and σ j be respectively some saddle connections in Ci and C j which join P1 to
P2. Then c = σi ∪ σ j is a simple closed curve in X, and we have h1 + h2 = Imω(c).

Second case. ω has 3 zeros. In this case two zeros are permuted by τ, we denote them by P1, P2, the
third one is fixed by τ, let us denote this one by Q. We can always assume that P1 is contained in the
bottom border of Ci, but not in the top border of Ci.

Assume that the top border of Ci contains P2, and let σi be a saddle connection in Ci which joins
P1 to P2. If there exists another cylinder whose bottom border contains P2 and top border contains P1
then we are done. Otherwise, there must exists a cylinder C j whose bottom border contains P2 and
top border contains Q. Let C j′ be the cylinder which is permuted with C j by τ, then the top border of
C j′ contains P1 and the bottom border of C j′ contains Q. In particular, we have C j′ , Ci.

If C j′ = C j, then the top border of C j contains P1 contradicting our hypothesis. Thus we have
C j′ , C j. Let σ j be a saddle connection in C j which joins P2 to Q, then τ(σ j) is a saddle connection
in C j′ that joins Q to P1. Consequently, c := τ(σ j) ∪ σ j ∪ σi is a simple closed curve in X, and
Imω(c) = hi + h j + h j′ = hi + 2h j.

We are left with the case where the top border of Ci contains Q. Let Ci′ be the cylinder which is
permuted with Ci by τ. Then the top border of Ci′ contains P2 and the bottom border contains Q. By
assumption, we have Ci′ , Ci. By connectedness of X, there exists a cylinder C j , Ci which contains
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P1 in the top border, and P2 or Q in the bottom border. If P2 is contained in the bottom border of C j
then h j + hi + hi′ = h j + 2hi is an absolute period. If Q is an contained in the bottom border of C j
then hi + h j is an absolute period. Since xihi + x jh j is an absolute period, it is unchanged by the kernel
foliation, Lemma 4.11 then implies that xiαi + x jα j = 0. �

4.6.2. Proof of Proposition 4.12 when D is a square.

Proof. We first consider the case n = 3. Since D is a square, one can normalize, using GL+(2,R),
so that all the absolute periods of ω belong to Q(ı). By Lemma 4.14, one can find (x1, x2, x3) and
(y1, y2, y3) with xi, yi ∈ {0, 1, 2} such that x1h1 + x2h2 + x3h3 and y1h1 + y2h2 + y3h3 are absolute
periods. The vectors (x1, x2, x3) and (y1, y2, y3) are chosen so that they are not collinear. Since all the
absolute periods are in Q, there exists r ∈ Q, r > 0, such that

x1h1 + x2h2 + x3h3 = r(y1h1 + y2h2 + y3h3) ⇔

3∑
i=1

(xi − ryi)hi = 0.

Set ri := (xi − ryi)wi, we get
3∑

i=1

riµi = 0.

From Lemma 4.14, we also have α1x1 + α2x2 + α3x3 = α1y1 + α2y2 + α3y3 = 0. Thus we have
3∑

i=1

(xi − ryi)αi =

3∑
i=1

ri
αi

wi
= 0.

Now let us assume that the horizontal direction is unstable (hence n ≤ 2). We will show that the
horizontal direction is parabolic. Obviously, we only need to consider the case n = 2. Recall that we
can normalize so that all the absolute periods of ω are in Q(ı). In particular, w1,w2 ∈ Q. We will show
that both h1, h2 are also absolute periods.

First case: ω has two zeros P1, P2. Since the cylinder decomposition is unstable, there exists a
horizontal saddle connections γ from P2 to P1. We can assume that P1 is contained in the bottom
border of C1. If the top border of C1 also contains P1, then h1 is an absolute period. Otherwise, let
σ be a saddle connection joining P1 to P2 which is contained in C1. Since c := γ ∪ σ is a closed
curve and h1 = Imω(c), we conclude that h1 ∈ Q. The same arguments show that h2 ∈ Q, hence the
horizontal direction is parabolic.

Second case: ω has 3 zeros. Let P1, P2 denote the zeros which are permuted, and Q be the zero
fixed by τ. We first observe that there exists a path from P1 and P2 which is a union of horizontal
saddle connection. Indeed, by assumption there exists a horizontal saddle connection γ which joins
two different zeros. If γ joins P1 to P2 then we are done. Otherwise, γ joins Q to either P1 or P2. In
both case cases, the union of γ and τ(γ) is the desired path. Let us denote this path by η.

Let us assume that P1 is contained in the bottom border of C1 but not in the top border. If the top
border of C1 contains P2, then the union of η and a saddle connection in C1 joining P1 to P2 is a
closed curve c such that Imω(c) = h1, which implies h1 ∈ Q. If the top border of C1 contains Q, then
let C3 be the cylinder which is permuted with C1 by τ. Note that the bottom border of C3 contains Q,
and the top border contains P2. Let σ1 be a saddle connection in C1 joining P1 to Q, and σ3 be the
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image of σ1 by τ in C3. The union c := η ∪ σ3 ∪ σ1 is then a closed curve such that Imω(c) = 2h1,
hence h1 ∈ Q. Similar arguments show that h2 ∈ Q. The horizontal direction is then parabolic. �

5. PROOF OF A WEAKER VERSION OF THEOREM 1.1

In this section, we prove a weaker version of Theorem 1.1. We say that (X, ω) is not a Veech surface
(or the orbit is not closed) for “the most obvious reason” if there exists a periodic direction on (X, ω)
that is not parabolic (it is a theorem of Veech [Vee89] that on a Veech surface any periodic direction
is parabolic). We will prove Theorem 1.1 under this additional assumption.

Theorem 5.1. Let (X, ω) ∈ ΩED(κ) and let us denote by O its GL+(2,R)-orbit. If O is not closed for
the most obvious reason then O is a connected component of ΩED(κ).

We begin with the following key lemma. The proof is classical, but is included here for complete-
ness.

Lemma 5.2. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform. We assume that the horizontal direction is
completely periodic but not parabolic. Then for all s ∈ R, the surface (X, ω) + (s, 0) is well defined,
and one has:

(X, ω) + (s, 0) ∈ U · (X, ω).

Before proving the lemma, let us state the following corollary:

Corollary 5.3. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform. We assume that there exists (Y, η) ∈
GL+(2,R) · (X, ω) and ε > 0 such that (Y, η) + (s, 0) ∈ GL+(2,R) · (X, ω) for all s ∈ R with |s| < ε.
Then there exists ε′ > 0 such that

(Y, η) + v ∈ GL+(2,R) · (X, ω)

for any v ∈ R2 such that |v| < ε′.

Proof of Lemma 5.2. Let C1, . . . ,Ck be the horizontal cylinders in X. Let n be the number of equiv-
alence classes of cylinders that are permuted by the Prym involution τ. Recall that for all the cases
in Table 1, we have n ≤ 3. Assume that {C1, . . . ,Cn} is a representative family for the τ-equivalence
classes of cylinders.

Let us consider the case n = 3. Lemma 4.4 implies in particular that the cylinder decomposition is
stable. The surface is encoded by the topological gluings of the cylinders Ci, and the width, height,
and twist of Ci (which will be denoted by wi, hi, ti respectively).

The set of surfaces admitting a cylinder decomposition in the horizontal direction with the same
topological gluings, and the same widths and heights of the cylinders as X, is parameterized by the
three dimensional torus

X = N(R) × N(R) × N(R)/N(w1Z) × N(w2Z) × N(w3Z),

where N(A) = {us; s ∈ A}.
The horocycle flow us preserves the topological decomposition as well as all the parameters, but

the twists ti. The new twists t̃i are given by t̃i = ti + shi mod wi. Hence surfaces in the U-orbit of
(X, ω) are parameterized by the line {(t1, t2, t3) + (h1, h2, h3)s, s ∈ R}.

By Kronecker’s theorem, the orbit closure U · (X, ω) is a subtorus of X. Since the moduli are not
commensurable (the horizontal direction is not parabolic) the dimension of this subtorus is at least
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two. More precisely, the orbit closure U · (X, ω) consists of the set of all twists (t̃1, t̃2, t̃3) such that the

normalized twists
t̃i − ti

wi
verify all non-trivial homogeneous linear relations with rational coefficients

that are satisfied by the moduli µi = hi/wi. Let P be the subspace of R3 which is defined by all of such
rational relations. By assumption, we have dimR P ≥ 2. But we know from Proposition 4.12 that there
exists (r1, r2, r3) ∈ Q3 \ {(0, 0, 0)} such that

∑n
i=1 riµi = 0. Therefore, we have dimR P = 2 and

(5) P =

(̃t1, t̃3, t̃3) ∈ R3,

3∑
i=1

ri

 t̃i − ti
wi

 = 0

 .
It follows that U · (X, ω) is the projection to X of the plane P ⊂ R3 defined by Equation (5). Hence,
all surfaces constructed from the cylinders with the same widths and heights as those of (X, ω) (by the
same gluings), and with the twists t̃i satisfying Equation (5) above belong to U · (X, ω).

Recall that in the horizontal kernel foliation leaf, a surface (X, ω)+ (s, 0) is still completely periodic
(for the horizontal direction), and all the data: topological gluings of the cylinders, widths, heights are
preserved, except for the twists (see Lemma 4.10). To be more precise, if Cs

i is the horizontal cylinder
in (X, ω) + (s, 0) corresponding to Ci = C0

i , then ti(s) = ti + αis (where the range of αi is {−1, 0, 1}
or {−1,−1/2, 0, 1/2, 1} depending whether ω has 2 or 3 zeros, respectively). It remains to show that
(t1 + α1s, t2 + α2s, t3 + α3s) = (t1, t2, t3) + (α1, α2, α3)s belongs to P. But

3∑
i=1

ri

 (ti + sαi) − ti
wi

 = s
3∑

i=1

ri
αi

wi
= 0

by Equation (3). Thus the lemma is proved for the case n = 3.

Let us now consider the case n = 2. Note that if D is not a square then the horizontal direction is
parabolic in this case (see Theorem 4.13). Therefore, D must be a square. By Proposition 4.12 we
know that the cylinder decomposition is stable, which implies that (X, ω) + (s, 0) is defined for all s.
In this case, the closure of U · (X, ω) can be identified with the torus

X′ = N(R) × N(R)/N(w1Z) × N(w2Z)

Using this identification, the horizontal kernel foliation leaf through (X, ω) corresponds to the projec-
tion of the affine line {(t1, t2) + (α1, α2)s, s ∈ R}. Hence

(Xs, ωs) = (X, ω) + (s, 0) ∈ U · (X, ω),

which concludes the proof of Lemma 5.2. �

Proof of Corollary 5.3. We will apply Lemma 5.2 to a transverse direction to (1 : 0). By Theorem 2.3,
let θ be a completely periodic direction on Y which is transverse to the horizontal direction. Up to
action of U, we can assume that θ = (0 : 1).

By Proposition 4.7 and Proposition 4.9, there exists ε′ > 0 such that (Y, η) + v is well defined, and
the direction (0 : 1) is completely periodic on (Y, η) + v for all v ∈ (−ε′, ε′) × (−ε′, ε′). If s , 0
then the cylinder decomposition of (Y, η) + (s, 0) in the direction of (0 : 1) is stable. Moreover,
the combinatorial data of this decomposition is unchanged when s varies in the intervals (−ε′, 0)
and (0, ε′). If the decomposition of (Y, η) in the vertical direction is stable, then we have the same
combinatorial data for any s ∈ (−ε′, ε′).
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Let {wi(s)}i=1,...,k and {hi(s)}i=1,...,k be the widths and heights of the cylinders in the vertical direction
of (Y, η) + (s, 0), s , 0. Note that the functions wi(s) are constant on each of intervals (−ε, 0) and
(0, ε). However, the set of heights hi(s) define non constant continuous functions of s. To be more
precise, hi(s) = hi + αis, where αi ∈ {−1, 0, 1} or αi ∈ {−1,−1/2, 0, 1/2, 1} depending on whether η
has two or three zeros. Obviously, at least two of αi are different. Hence the set of moduli

µi(s) =
hi + sαi

wi

of cylinders (in the vertical direction) define also non constant continuous functions of s. In particular
for almost every s in (−ε′, 0) (resp. (0, ε′)), the direction (0 : 1) is completely periodic and not
parabolic on (Y, η) + (s, 0). Applying Lemma 5.2 to the vertical direction on (Y, η) + (s, 0), we get that,
for any t ∈ (−ε′, ε′) one has

(Y, η) + (s, t) ∈ GL+(2,R) · ((Y, η) + (s, 0)).

It follows immediately that we have (Y, η) + v ∈ GL+(2,R) · (X, ω) for every v = (s, t) ∈ (−ε′, ε′) ×
(−ε′, ε′). This completes the proof of Corollary 5.3. �

One can now prove the main result of this section.

Proof of Theorem 5.1. We will show that any (Y, η) ∈ GL+(2,R) · (X, ω) = O has an open neighbor-
hood contained in O. Let B(ε) = {v ∈ R2, |v| < ε}.

First case: (Y, η) ∈ GL+(2,R) · (X, ω). By assumption, there exists a periodic direction for (X, ω)
which is not parabolic. Lemma 5.2 and Corollary 5.3 then imply that there exists ε > 0 such that
(X, ω) + v ∈ O for any v ∈ B(ε). It follows that for all g ∈ GL+(2,R), g · ((X, ω) + v) ∈ O. In
particular, there exists a neighborhood U of Id in GL+(2,R) such that g · ((X, ω) + v) ∈ O, for any
(g, v) ∈ U×B(ε). But by Proposition 3.2 the set {g · ((X, ω) + v), (g, v) ∈ U×B(ε)} is a neighborhood
of (X, ω) in ΩED(κ). Hence (X, ω) (and thus (Y, η)) has an open neighborhood contained in O.

Second case: (Y, η) < GL+(2,R) · (X, ω). Let (Xn, ωn) = gn · (X, ω) be a sequence converging to (Y, η)
with gn ∈ GL+(2,R). By Proposition 3.2, there exist ε > 0, and a neighborhoodU of Id in GL+(2,R),
such thatU ×B(ε) is identified with a neighborhood of (Y, η) via the mapping (g, v) 7→ g · ((Y, η) + v).
Thus for n large enough, there is a pair (an, vn), where an ∈ U, and vn ∈ B(ε) ⊂ R2 such that
(Xn, ωn) = an · ((Y, η) + vn). Since (Xn, ωn) converges to (Y, η), we have (an)n converges to Id, and (vn)n
converges to 0. Multiplying by a−1

n we get

GL+(2,R) · (X, ω) 3 (X′n, ω
′
n) = a−1

n · (Xn, ωn) = (Y, η) + vn,

Without loss of generality, we also assume that the horizontal direction is completely periodic on Y .
By Propositions 4.7 and 4.9, we can choose r > 0 such that for all v = (s, t) ∈ B(r) the surface (Y, η)+v
also admits a cylinder decomposition in the horizontal direction. When t , 0 this decomposition is
stable with combinatorial data depending only on the sign of t. We can assume that vn ∈ B(r) (for n
large enough).

Now, since (X′n, ω
′
n) ∈ GL+(2,R) · (X, ω), the first case implies that GL+(2,R) · (X, ω) contains

a neighborhood of (X′n, ω
′
n). Hence for each n, there exists εn > 0 such that for any v ∈ B(εn),

(X′n, ω
′
n) + v ∈ O. Now for each n, we choose δn ∈ (0, εn) small enough such that

(a) un = vn + (0, δn) ∈ B(r).
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(b) If vn = (sn, tn) with tn , 0, then δn < |tn|.
In particular since un ∈ B(r), (a) implies that (Y, η) + un also admits a cylinder decomposition in the
horizontal direction. Since the ratio of moduli is a continuous (non constant) function of δn, one can
choose δn ∈ (0, εn) satisfying (a), (b) and

(c) The horizontal direction is stable and not parabolic for (Y, η) + un,
(d) limn→∞ δn = 0.

By construction, we have δn ∈ (0, εn), hence (X′′n , ω
′′
n ) := (X′n, ω

′
n) + (0, δn) = (Y, η) + un ∈ O. Since

the horizontal direction is not parabolic on (X′′n , ω
′′
n ), by Lemma 5.2, we derive that for any s ∈ R,

(X′′n , ω
′′
n ) + (s, 0) ∈ O (see Figure 3). Thus

(X′′n , ω
′′
n ) + (s, 0) ∈ O for any s ∈ (−r/2, r/2).

X′n + B(εn)

X′′n

...

Y

−r/2 0 r/2

FIGURE 3. The convergence of (X′n, ω
′
n) and (X′′n , ω

′′
n ) to (Y, η) in the kernel foliation

leaf of (Y, η).

Since (δn)n converges to 0, we have (X′′n , ω
′′
n ) = (X′n, ω

′
n) + (0, δn) converges to (Y, η). It follows that

(Y, η) + (s, 0) ∈ O for all s ∈ (−r/2, r/2). The theorem then follows from Corollary 5.3. �

6. PROOF OF THEOREM 1.1

In this section we complete the proof of Theorem 1.1 in full generality, namely without the assump-
tion that the orbit O := GL+(2,R) · (X, ω) is not closed “for the most obvious reason”. However our
proof says nothing about the converse of this assumption, i.e. the following question remains open in
our setting:

Question. For an orbit O := GL+(2,R) · (X, ω), is the property of being not closed equivalent to be
not closed “for the most obvious reason”?

Proof of Theorem 1.1. We begin by fixing some notations and normalization. As usual, let (X, ω) ∈
ΩED(κ) and let us assume that O := GL+(2,R) · (X, ω) is not closed. Let (Y, η) ∈ O \ O be some
translation surface in the orbit closure, but not in the orbit itself.

Claim 1. There exists a sequence (Xn, ωn)n∈N converging to Y such that for every n ∈ N, (Xn, ωn) =

(Y, η) + vn ∈ O, vn = (xn, yn), yn , 0 and the horizontal direction on Y is completely periodic.
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Proof of the claim. We choose a sequence (Xn, ωn) ∈ O converging to (Y, η). As in the proof of
Theorem 5.1 we can assume that (Xn, ωn) = (Y, η) + vn where vn = (xn, yn) converging to (0, 0) ∈ R2.

Again, up to replacing Y by Rθ · Y for some suitable θ, without loss of generality, we will also
assume that the horizontal direction is completely periodic on Y . If yn , 0 infinitely often then the
claim follows by taking a subsequence. Otherwise we assume that yn = 0 for every n > N. We
choose another (transverse) completely periodic direction on Y . We can assume that this direction
to be vertical by applying a matrix in U. Note that a matrix in U fixes the vectors (xn, 0). Then up
to replacing (Y, η) and (Xn, ωn) respectively by Rπ/2 · (Y, η) and Rπ/2 · (Xn, ωn) the claim is proved
(otherwise xn = 0 for n large enough, thus (Y, η) = (Xn, ωn) ∈ O which is a contradiction to our
assumption). �

We choose some ε > 0 so that for any v = (x, y) ∈ R2, if v ∈ B(ε) then the horizontal direction on
(Y, η) + v is periodic, and the cylinder decomposition is stable if y , 0. We can assume that vn ∈ B(ε)
and yn > 0 for all n, which implies that the combinatorial data of the cylinder decomposition in the
horizontal direction of (Xn, ωn) are the same for all n. Finally we also assume that all the horizontal
directions on Xn are parabolic (otherwise we are done by Theorem 5.1).

We sketch the idea of the proof. It makes use of the horocycle flow us acting on Xn. The key is to
show that the actions of the kernel foliation and us coincide for a subsequence.

(1) Since all surfaces (Xn, ωn) are horizontally parabolic, we will show that it is always possible
to find a “good time” sn so that usn · Xn = Xn + (xn, 0) for some vector (xn, 0) ∈ B(ε).

(2) One can arrange that (xn, 0) converges to some arbitrary vector (x, 0) ∈ B(ε).
These two facts correspond, respectively, to Claim 3 and Claim 4 below. Once we achieve this, passing
to the limit as n→ ∞, we get

usn · (Xn, ωn) = (Xn, ωn) + (xn, 0) −→ (Y, η) + (x, 0).

In other words (Y, η) + (x, 0) ∈ O for all x ∈ (−ε, ε). Then Corollary 5.3 applies and this gives some
ε′ > 0 so that (Y, η) + v ∈ O for any v ∈ B(ε′) which proves the theorem.

We now explain how to construct the sequence (sn)n∈N. As usual, the cylinders on Xn are denoted
by C(n)

i , i = 1, . . . , k (the numbering is such that for every i ∈ {1, 2, 3}, C(n)
j = τ(C(n)

i ) implies j = i or

j > 3). The width, height, twist, and modulus of C(n)
i are denoted by w(n)

i , h(n)
i , t(n)

i , µ(n)
i respectively.

Recall that by Proposition 4.7 and Proposition 4.9, we have w(n)
i does not depend on n, therefore we

can write w(n)
i = wi. Let us define

h∞i = lim
n→∞

h(n)
i .

Since the cylinder decomposition of Xn is stable, we can associate to each family of cylinders (C(n)
i )n

a coefficient αi ∈ {0,±1/2,±1}. Recall that the kernel foliation action of a vector v = (x, y) changes
the height h(n)

i of C(n)
i to h(n)

i + αiy, hence we can write

h(n)
i = h∞i + αiyn.

Note that the horizontal direction on Y is not necessarily stable, some horizontal cylinders on Xn
can be destroyed in the limit (as n tends to infinity). Therefore, some of the limits h∞i may be zero.
However, there is at least one cylinder that remains in the limit, say it is C(n)

3 (see Figure 4 where the
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C3

C1

τ(C1)

C2

C2

α

α

β

β

FIGURE 4. Decomposition into four cylinders of (Xn, ωn) = (Y, η) + vn near (Y, η) ∈
ΩED(2, 2) where vn =

∫
α
ω. The cylinders C2 and C3 are fixed by the Prym involution

τ, while the cylinders C1 and τ(C1) are exchanged. When vn → 0 the cylinder C2 is
destroyed, while C3 is remains in the limit (here we have assumed that h3 > h2).

cylinder C(n)
2 is destroyed when performing the kernel foliation). Actually, since (Xn, ωn) stays in a

neighborhood of (Y, η), all the cylinders of (Y, η) persist in (Xn, ωn). Thus, the number of horizontal
cylinders of (Xn, ωn) is always greater than (Y, η). We denote by C3 the cylinder on Y corresponding
to C(n)

3 on Xn, then the height of C3 is h∞3 . In particular, we have h∞3 > 0.
From Equation (4), we have

3∑
i=1

βiwiαi = 0.

Since all the αi can not vanish (otherwise for all i ∈ {1, . . . , k} the upper and lower boundaries of C(n)
i

contain the same zero, which means that ω has only one zero), Equation (4) implies that there exist
i, j in {1, 2, 3} such that αi and α j are non zero and have opposite signs. In particular, there exists
i ∈ {1, 2, 3} such that αi , 0 and αi has the opposite sign to α3 if α3 , 0. In what follows we suppose
that α1 satisfies this condition. By a slight abuse of language, we will say that α1 and α3 have opposite
signs. Since α1 , 0, (t(n)

1 , h(n)
1 ) is a relative coordinate. For the surface in Figure 1, ω has three zeros

and (α1, α3) = (−1, 1/2), and for the one in Figure 4, ω has two zeros and (α1, α3) = (−1, 1).

Recall that, by Proposition 4.12, we know that there exists (r1, r2, r3) ∈ Q3 \ {(0, 0, 0)} such that

r1µ
(n)
1 + r2µ

(n)
2 + r3µ

(n)
3 = 0 and r1

α1

w1
+ r2

α2

w2
+ r3

α3

w3
= 0.

Obviously, we can assume that (r1, r2, r3) ∈ Z3. Note that (r1, r2, r3) does not depend on n. Set
µ∞i = h∞i /wi, by continuity we have

r1µ
∞
1 + r2µ

∞
2 + r3µ

∞
3 = 0.

Claim 2. We have r2 , 0.
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Proof. Suppose that r2 = 0, we have then
r1µ

(n)
1 + r3µ

(n)
3 = 0

r1
α1

w1
+ r3

α3

w3
= 0

Since µ(n)
i > 0,wi > 0, and α1α3 ≤ 0, this system with unknowns (r1, r3) has a unique solution

r1 = r3 = 0. Thus we have a contradiction. �

From now on, we fix an integral vector (r1, r2, r3) ∈ Z3 satisfying Equation (2) and Equation (3),
with r2 , 0.

Claim 3. Let (X̃, ω̃) ∈ ΩED(κ) be a surface which admits the same cylinder decomposition as Xn in
the horizontal direction. We denote by Ci the cylinder in X̃ which corresponds to the cylinder C(n)

i of
Xn. Let wi, hi, ti, µi, αi be the parameters of Ci. Given two integers k1, k3, if the real numbers s and
x(s) satisfy

(6) x(s) :=
1
α3

(sh3 − r2k3w3) =
1
α1

(sh1 − r2k1w1)

then us · (X̃, ω̃) = (X̃, ω̃) + (x(s), 0).

Remark 6.1. If α3 = 0, we replace Equation (6) by the following system
sh3 = r2k3w3

x(s) =
sh1 − r2k1w1

α1
.

Proof of the claim. On one hand, the kernel foliation X̃ + (x, 0), for small values of x, maps the twist
of the cylinder Ci to ti(x) = ti + αix. On the other hand, the action of us on the cylinder Ci maps the
twist ti to the twist t̃i = ti + shi mod wi. Equation (6) implies

sh1 = α1x(s) + r2k1w1 and sh3 = α3x(s) + r2k3w3

which is equivalent to

(7)


sµ1 =

α1

w1
x(s) + r2k1

sµ3 =
α3

w3
x(s) + r2k3

We see that the twist of the cylinder Ci of us · X̃ is t̃i = ti + αix(s) mod wi, for i ∈ {1, 3}. It remains to
show that sh2 = α2x(s) mod w2. Using Equation (2) and Equation (3), (7) implies

−r2sµ2 = −r2
α2

w2
x(s) + r2(r1k1 + r3k3).

It follows
sh2 = α2x(s) − (r1k1 + r3k3)w2.

Thus we can conclude that us · (X̃, ω̃) = (X̃, ω̃) + (x(s), 0). �
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Equation (6) above reads

(8) s = r2
w1k1α3 − w3k3α1

h1α3 − h3α1
.

Note that since α1 and α3 have opposite signs, s is always defined. Reporting this last equation into (6),
we derive the relation:

x(s) =
r2

α3

(
w1k1α3 − w3k3α1

h1α3 − h3α1
h3 − k3w3

)
= ... =

r2h3w1

h1α3 − h3α1

k1 −
µ1

µ3
k3

 .
We now make the additional assumption that the horizontal direction is parabolic, i.e the moduli µi
are all commensurable. We thus write the last expression as:

x(s) =
r2h3w1

h1α3 − h3α1

k1 −
p

q
k3

 , where
p

q
=
µ1

µ3
∈ Q.

We perform this calculation for each surface Xn, so that given a sequence (k(n)
1 , k(n)

3 )n we get a sequence

(9) xn =
r2h(n)

3 w(n)
1

h(n)
1 α3 − h(n)

3 α1

k(n)
1 −

p(n)

q(n) k(n)
3

 ,
where (p(n), q(n)) ∈ Z2 and gcd(p(n), q(n)) = 1. We want to choose suitable pair of integers (k(n)

1 , k(n)
3 ) ∈

Z2 in order to make the sequence (xn)n converging to some arbitrary x.

Claim 4. There exists a constant C independent of n such that, for any x ∈ (−ε, ε), there exists
(k(n)

1 , k(n)
3 ) ∈ Z2 satisfying the following: if xn is defined by (9), then

|xn − x| <
C

q(n).

Proof of the claim. For each n ∈ N, since p(n) and q(n) are co-prime, we can choose (k(n)
1 , k(n)

3 ) ∈ Z2

such that

(10)

∣∣∣∣∣∣∣k(n)
1 −

p(n)

q(n) k(n)
3 −

h(n)
1 α3 − h(n)

3 α1

r2h(n)
3 w(n)

1

x

∣∣∣∣∣∣∣ < 1

q(n).

As n tends to infinity, the sequence (h(n)
3 )n converges to h∞3 . Since w(n)

1 is constant, h(n)
1 α3 − h(n)

3 α1
converges to a non-zero constant (since α1 and α3 have opposite signs), hence there exists some
constant C > 0 such that

(11)
r2h(n)

3 w(n)
1

h(n)
1 α3 − h(n)

3 α1
< C.

From (10) and (11) we draw

|xn − x| <
C

q(n)

that is the desired inequality. The claim is proved. �



GL+(2,R)-ORBITS OF PRYM EIGENFORMS 27

In order to conclude the proof of Theorem 1.1, one needs to show that q(n) → ∞. Indeed, we then
have that xn −→ x and since x was arbitrary, by Claim 3 this shows

(Y, η) + (x, 0) ∈ O, for any x ∈ (−ε, ε).

Then Corollary 5.3 applies and Y has an open neighborhood in O, which proves the theorem.

We now prove that q(n) → ∞. Recall that

p(n)

q(n) =
µ(n)

1

µ(n)
3

=
w(n)

3

w(n)
1

·
h(n)

1

h(n)
3

=
w3

w1
·

h∞1 + α1yn

h∞3 + α3yn

and gcd(p(n), q(n)) = 1. Note that since α1 and α3 have opposite signs,
p(n)

q(n) cannot be a stationary

sequence as yn tends to 0. As n tends to infinity, p(n)/q(n) converges to p∞/q∞ =
w3h∞1
w1h∞3

. But as we

have seen
p(n)

q(n) cannot be stationary, therefore there are infinitely many n such that p(n)/q(n) , p∞/q∞

which implies that q(n) → ∞. �

In the remaining of this paper, we will apply Theorem 1.1 (more precisely, the techniques used
in the proof) to show that, for any D which is not a square, there are at most finitely many closed
GL+(2,R)-orbits in ΩED(2, 2)odd. Even though, we only prove the result for this case, it seems very
likely that one can also obtain similar results for all strata listed in Table 1. In higher “complex-
ity” (genus and number singularities) the difficulty comes from the increasing number of degener-
ated surfaces. Along the way, we will give description of surfaces in a partial compactification of
ΩED(2, 2)odd.

We end this section with a by-product theorem which follows from the same arguments as the proof
of Theorem 1.1.

Theorem 6.2. Let (Y, η) ∈ ΩED(κ) be a Prym eigenform (where ΩED(κ) has complex dimension 3)
satisfying the following properties:

(1) The horizontal direction is completely periodic on (Y, η).
(2) There exists a sequence (Xn, ωn) = (Y, η) + (xn, yn) converging to (Y, η) where yn , 0, ∀n ∈ N.
(3) For every n, Xn is horizontally parabolic.

Then there exists ε > 0 such that (Y, η) + (x, 0) ∈ O for all x ∈ (−ε, ε), where O =
⋃

n GL+(2,R) ·
(Xn, ωn).

7. PREPARATION OF A SURGERY TOOLKIT

In this section we will describe several useful surgeries for Prym eigenforms. More precisely let us
fix a surface (X0, ω0) in the following list of strata ΩED(κ):

• ΩED(0, 0, 0) (space a triple tori, Section 7.1),
• ΩED(4) (Section 7.2),
• ΩED(2)∗ (set of (M, ω) ∈ ΩED(2) with a marked Weierstrass point, Section 7.3).
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For each case, we will construct a continuous locally injective map Ψ : D̊(ε) → ΩED(2, 2)odd, where
D̊(ε) = {z ∈ C, 0 < |z| < ε}, which induces an embedding of D̊(ε)/(z ∼ −z) into ΩED(2, 2)odd. Up to
action GL+(2,R), the set Ψ(D̊(ε)) will be identified to a neighborhood of (X0, ω0) in ΩED(2, 2)odd.

We now describe these surgeries in details (observe that the second one already appears in [KZ03] as
“Breaking up a zero”).

7.1. Space of triples of tori.
We say that (X, ω) ∈ Prym(2, 2)odd admits a three tori decomposition if there exists a triple of

homologous saddle connections {σ0, σ1, σ2} on X, each of which connects the two zeros of ω, such
that (X, ω) can be viewed as a connected sum of three tori which are glued together along the slits
corresponding to σ j. One can reduce the length of saddle connections {σ0, σ1, σ2} to zero by mov-
ing in the kernel foliation leaf through (X, ω), the limit surface is then the union of three flat tori
(X j, ω j), j = 0, 1, 2, which are joint at a unique common point P.

Recall thatH(0) is the space of triples (X, ω, P) where X is an elliptic curve, ω a non-zero Abelian
differential on X, and P is a marked point of X. We denote by Prym(0, 0, 0) the space of triples
{(X j, ω j, P j), j = 0, 1, 2}, where (X j, ω j, P j) ∈ H(0), such that (X1, ω1, P1) and (X2, ω2, P2) are
isometric. The geometric object corresponding to such a triple is the union of the three tori, where we
identify P0, P1, P2 to a unique common point. Note that by construction, there exists an involution τ
on the “surface” X := {(X j, ω j, P j), j = 0, 1, 2} which preserves X0 and exchanges X1 and X2, we will
call τ the Prym involution.

We define ΩED(0, 0, 0) ⊂ Prym(0, 0, 0) to be the space of all triples {(X j, ω j, P j), j = 0, 1, 2},
which can be obtained by collapsing triples of homologous saddle connections associated to three-tori
decompositions of surfaces in ΩED(2, 2)odd. The aim of this section is to show:

Proposition 7.1. For any triple tori {(X j, ω j, P j), j = 0, 1, 2} in ΩED(0, 0, 0), there exist ε > 0 and a
continuous locally injective map Ψ : D̊(ε)→ ΩED(2, 2)odd satisfying:

(1) ∀z ∈ D̊(ε), the surface (X, ω) = Ψ(z) has a triple of homologous saddle connections {σ0, σ1, σ2}

decomposing X into three tori such that ω(σ j) = z.
(2) The map Ψ is two to one and it induces an embedding of D̊(ε)/(z ∼ −z) into ΩED(2, 2)odd.
(3) Up to action GL+(2,R), the set Ψ(D̊(ε)) can be viewed as a neighborhood of {(X j, ω j), j =

0, 1, 2} in ΩED(2, 2)odd.

We postpone the proof of Proposition 7.1 and first provide a description of the space ΩED(0, 0, 0)
(compare with [McM07, Theorem 8.3]).

Proposition 7.2. Let {(X j, ω j, P j), j = 0, 1, 2} be a triple tori in ΩED(0, 0, 0) (where X1, X2 are
exchanged by the Prym involution τ). Then there exist (e, d) ∈ Z2, with d > 0, and a covering
p : X1 → X0 of degree d such that

• D = e2 + 8d,
• gcd(e, p11, p12, p21, p22) = 1, where (pi j) is the matrix of p in some symplectic bases of

H1(X0,Z) and H1(X1,Z).

• p∗ω0 =
λ

2
ω1, where λ satisfies λ2 = eλ + 2d.
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Proof. Let (a j, b j) be a symplectic basis of H1(X j,Z), where a2 = −τ(a1), b2 = −τ(b1), and set
â = a1+a2, b̂ = b1+b2. Then (a0, b0, â, b̂) is a symplectic basis of H1(X,Z)− (X is the surface obtained
by identifying P0 ∼ P1 ∼ P2). There exists a unique generator T of OD such that the matrix of T in
the basis (a0, b0, â, b̂) is of the form T =

(
eId2 2B
B∗ 0

)
, where e ∈ Z, B ∈ M2(Z), B∗ =

(
0 −1
1 0

)
· B ·

(
0 1
−1 0

)
,

and T ∗ω = λω, with λ > 0.
Observe that B can be regarded as a map from H1(X1,Z) to H1(X0,Z). Set L0 = Zω0(a0) +

Zω0(b0), L1 = Zω1(a1)+Zω1(b1). We can identify (X0, ω0) and (X1, ω1) with (C/L0, dz) and (C/L1, dz)
respectively. The condition T ∗ω = λω reads

ω0(2B(a1)) = λ · ω1(a1) and ω0(2B(b1)) = λ · ω1(b1).

Hence λ
2 L1 is a sublattice of L0. It follows that there exists a covering map p : C/L1 → C/L0 such

that p∗dz = λ/2dz. The degree of p is given by d = det(B) > 0. Note that T satisfies

T 2 = eT + 2 det(B).

Since T is a generator of OD, we have D = e2 + 8 det(B). As λ is an eigenvalue of T , λ satisfies the
same equation. �

Proof of Proposition 7.1. Let ε > 0 be small enough so that the set D(P j, ε) = {x ∈ X j, d(x, P j) < ε}

is an embedded disk in X j, j = 0, 1, 2. The map Ψ is defined as follows: for any z ∈ D̊(ε), let σ j be the
geodesic segment in X j whose midpoint is P j such that ω(σ j) = z (since |z| < ε, σ j is an embedded
segment). By slitting X j along σ j, and gluing X0, X1, X2 along the slits in a cyclic order, we get a
surface (X, ω) in H(2, 2). It is easy to check that (X, ω) ∈ ΩED(2, 2)odd. We define (X, ω) = Ψ(z).
Since we cannot distinguish the two zeros of ω, one has Ψ(z) = Ψ(−z).

Clearly, any surface in ΩED(2, 2)odd admitting a three-tori decomposition {(X′j, ω
′
j), j = 1, 2, 3}

such that (X′j, ω
′
j) = (X j, ω j), and the length of the slit is smaller than ε belongs to the image of Ψ.

The proposition follows immediately from this observation. �

7.2. Collapsing surfaces to ΩED(4). This surgery already appears in [KZ03] (“Breaking up a zero”).
As in the previous section, our aim is to show:

Proposition 7.3. For any (X0, ω0) ∈ ΩED(4), there exist ε > 0 and a continuous locally injective map
Ψ : D̊(ε)→ ΩED(2, 2)odd satisfying:

(1) ∀z ∈ D̊(ε), the surface (X, ω) = Ψ(z) has the same absolute periods as (X0, ω0).
(2) There exists a saddle connection σ in X joining the zeros of ω and invariant by the Prym

involution such that ω(σ) = z5.
(3) Ψ(z) = Ψ(−z).
(4) Up to the action of GL+(2,R), a neighborhood of (X0, ω0) ∈ ΩED(4) in ΩED(2, 2)odd is

identified with Ψ(D̊(ε)).

The constructive proof we will give is on the level of Abelian differentials i.e. in Prym(2, 2) and
Prym(4). One can interpret this construction on the level of quadratic differentials i.e. Q(−14, 4)
and Q(−13, 3), respectively. This last approach is related to the surgery “breaking up a singularity”
in [KZ03] (breaking up the zero of degree 3 of the quadratic differential into a pole and a zero of
degree 4).
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Proof of Proposition 7.3. Let (X0, ω0) ∈ ΩED(4) and let P0 be the unique zero of ω0. We consider
0 < ε < 1 small enough so that the disk D(P0, ε) = {x ∈ X0, d(x, P0) ≤ ε} is embedded into X0.
To define the map Ψ, we will deform the metric structure inside D(P0, ε) in a similar manner as in
Section 4.3.

Let D(ε) := {v ∈ R2, |v| ≤ ε}, and let c denote the center of D(ε). Let v ∈ R2 \ {0} be a vector such
that |v| < ε. The line in the direction of v through c intersects ∂D(ε) at two points a and b, the labeling
is chosen such that −→ac =

−→
cb = ε

|v|v. Let D+(ε) and D−(ε) be the two half-discs of D(ε) that are cut out

by ab. By convention, as one moves from a to b, D+(ε) is on the right.
Since the cone angle at P0 is 10π, the disk D(P0, ε) can be constructed from 5 copies of D+(ε),

denoted by Di+, and 5 copies of D−(ε), denoted by Di−, with i = 1, . . . , 5. Let ai±, bi±, ci± denote the
points in the boundary of Di± that correspond to a, b, c respectively. To obtain D(P0, ε), we glue Di+

to Di− along the segment cb, and glue Di− to D(i+1)+ along ac.
Let x and y denote respectively the points in ab such that −→xc = −→cy = 1/2v. As usual, the points in

the border of Di± corresponding to x and y are denoted by xi± and yi±.
To get a surface (X, ω) in ΩED(2, 2)odd with a saddle connection σ such that ω(σ) = v, we first

choose a number k ∈ {1, . . . , 5}, and then replace D(P0, ε) by a domain D̃(ε) constructed from Di± as
follows (see Figure 5 for k = 2)

• for i < {k, k + 1, k + 2}, Di+ is glued to Di− along xb,
• for i ∈ {k, k + 1, k + 2}, Di+ is glued to Di− along yb,
• for i < {k, k + 1}, Di− is glued to D(i+1)+ along ax,
• for i ∈ {k, k + 1}, Di− is glued to D(i+1)+ along ay,
• Dk+ is glued to D(k+2)− along xy.

a1+b1+

b1− a1−

a2+b2+

b2− a2−

a3+b3+

b3− a3−

a4+b4+

b4− a4−

a5+b5+

b5− a5−

D1+

D1−

D2+

D2−

D3+

D3−

D4+

D4−

D5+

D5−

σ

σ

x1+

x1−

y2+ x2+

y2−

y3+

y3−

y4+

y4− x4−

x5+

x5−

FIGURE 5. Splitting a zero of order 4 into two zeros of order 2.

Observe that all the points xi± (resp. yi±) are identified to give a point with cone angle 6π. There is
an involution in D̃(ε) that maps Di+ to D(i+2)−, thus the surface we obtain belongs to Prym(2, 2)odd. By
construction, there is a saddle connection σ arising from the identification of xk+yk+ and x(k+2)−y(k+2)−.
Note that σ is invariant by the involution and and we have ω(σ) = v as desired.

Since we have 5 choices for the pair of half-disks which contain σ in their boundary, we see that
there are five surfaces (X, ω) in Prym(2, 2) close to (X0, ω0) satisfying the following conditions:

• The absolute periods of ω and ω0 coincide.
• There exists a saddle connection σ in X, invariant by the Prym involution, joining the two

zeros of ω such that ω(σ) = v.
Since the absolute periods of ω and ω0 coincide, the new surfaces actually belong to the same real
multiplication locus as (X0, ω0), that is (X, ω) ∈ ΩED(2, 2)odd.
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Let z be a complex number such that z5 = v, we define the map Ψ by assigning Ψ(z) to be one of
the surfaces constructed above. By analytic continuation, this defines the desired map Ψ : D̊(ε) →
ΩED(2, 2)odd. Observe that since we cannot distinguish the zeros of ω, the surfaces corresponding
to ±z are the same (with different choices for the orientation of σ). The properties asserted in the
statement of the proposition follows immediately from the definition of Ψ. �

Remark 7.4. The “breaking up a zero” surgery is clearly invertible: we can collapse the two zeros
of (X, ω) along σ to get the surface (X0, ω0) ∈ ΩED(4). More generally, let P,Q denote the zeros of
ω, where (X, ω) ∈ ΩED(2, 2)odd, and let σ be a saddle connection, that we assume to be horizontal,
joining P to Q that is invariant by the involution τ (such a saddle connection always exists, for instance
the union of a path of minimal length joining a fixed point of τ to P or Q, and its image by τ). If for any
other horizontal saddle connection σ′ we have |σ′| > 2|σ| then one can collapse the zeros of ω along
σ by using the kernel foliation (see Section 8). The resulting surface (X0, ω0) belongs to ΩED(4).
However if σ has twins, that is another saddle connection σ′ such that ω(σ′) = ω(σ), then the limit
surface is no longer in ΩED(4) as we will see in the next section.

7.3. Collapsing surfaces to ΩED(2)∗. In this section, we investigate degenerations by shrinking a
pair of saddle connections that are exchanged by the Prym involution. Let ΩED′(2)∗ be the space of
triples (X, ω,W), where (X, ω) ∈ ΩED′(2), and W is a Weierstrass point of X which is not the zero of
ω. We will prove

Proposition 7.5. For any (X0, ω0,W0) ∈ ΩED′(2)∗ there exist ε > 0, D ∈ {D′, 4D′}, and a continuous
locally injective map Ψ : D̊(ε)→ ΩED(2, 2)odd with the following properties:

(1) ∀z ∈ D̊(ε) the surface (X, ω) = Ψ(z) has the same absolute periods as (X0, ω0,W0).
(2) there exists a pair of saddle connections (σ1, σ2) on X that are exchanged by the Prym invo-

lution and satisfy ω(σ1) = ω(σ2) = z3.
(3) Ψ(z) = Ψ(−z).
(4) Up to action of GL+(2,R), Ψ(D̊(ε)) is a neighborhood of (X0, ω0,W0) in ΩED(2, 2)odd.

As for above surgeries, we will describe how one can degenerate some (X, ω) ∈ ΩED(2, 2)odd to
the boundary of the stratum i.e. to (X0, ω0,W0) ∈ ΩED′(2)∗, by using the kernel foliation. The inverse
procedure will give the map Ψ of Proposition 7.5. Hence let us show:

Theorem 7.6. Let (σ1, σ2) be a pair of non-homologous saddle connections in X that are exchanged
by the Prym involution τ. Suppose that for any other saddle connection σ′ joining P to Q in the same
direction as σ1, we have |σ′| > |σ1|. Then as the length of σ1 tends to zero (in the leaf of the kernel
foliation), (X, ω) tends to a point in the boundary of ΩED(2, 2)odd which is represented by a triple
(X0, ω0,W0) ∈ ΩED′(2)∗ for some D′ ∈ {D,D/4}.

Observe that we consider θ and −θ (θ ∈ S1) as two distinct directions. As usual, we choose the
orientation for any saddle connection joining P and Q to be from P to Q. For the remaining of this
section, we fix a pair of saddle connections (σ1, σ2) satisfying assumption of Theorem 7.6. We will
need of the following:

Lemma 7.7. Let us construct the translation surface (X′, ω′) by first cutting (X, ω) along c = σ1 ∗

(−σ2) and then gluing the resulting pair of geodesic segments in each boundary component. Then

(X′, ω′) ∈ ΩED′(1, 1) for some D′ ∈ {D,D/4}.
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(the involution τ of X descends to the hyperelliptic involution of X′).

Proof of Lemma 7.7. We first show that (X′, ω′) ∈ H(1, 1). For that, we remark that the pair of angles
specified by these two rays at the zeros P and Q are (2π, 4π). Since τ sends σ1 to −σ2 and preserves
the orientation of X, necessarily the angle 2π at P and the angle 2π at Q belong to the same side of c
which prove the first fact.

The surface (X′, ω′) has two marked segments c1, c2, where c1 is a saddle connection, and c2 is
simply a geodesic segment which has the same length and the same direction as c1. We denote the
endpoints of c1 (respectively, c2) by P1,Q1 (respectively, P2,Q2), where P1, P2 correspond to P and
Q1,Q2 correspond to Q. Note that P1,Q1 are the zeros of ω′. We choose the orientation of c1
(respectively, c2) to be from P1 to Q1 (respectively, from P2 to Q2).

With these notations, τ induces an involution τ′ on X′ such that τ′(c1) = −c1 and τ′(c2) = −c2.
It turns out that τ′ has six fixed points on X′: these are the four fixed points of τ (none of them
are contained in c) and two additional fixed points in c1 and c2. By uniqueness τ′ is therefore the
hyperelliptic involution of X′.

To conclude the proof, one needs to show that (X′, ω′) is an eigenform. For that we first need to
choose a symplectic basis of H1(X′,Z). We proceed as follows (see Figure 6). Let α1,1, α1,2, α2, β2
be the simple closed curves, and β1,1 and β1,2 be simple arcs in X′ as shown in Figure 6, where
α1,2 = −τ′(α1,1) and β1,2 = −τ′(β1,1). Let β′1 denote the simple closed curve which is the concatenation
c1 ∪ β1,1 ∪ c2 ∪ β1,2. Set α′1 = α1,1 (the orientations are chosen so that (α′1, β

′
1, α2, β2) is a symplectic

basis of H1(X′,Z)).

P1

Q1

P2

Q2

β1,1

β1,2

α1,1

α1,2

α2

β2

FIGURE 6. Surface in H(1, 1) obtained by cutting and gluing along a pair of sad-
dle connections exchanged by the Prym involution. The hyperelliptic involution τ′

exchanges the upper and the lower halves of X′.

Observe that β1,1, β1,2 correspond to two simple closed curves in X, and that α1,1, α1,2 are not
homologous in H1(X,Z). Set α1 = α1,1 + α1,2, β1 = β1,1 + β1,2. Then (α1, β1, α2, β2) is a symplectic
basis of H1(X,Z)−. In this basis, the intersection form is given by the matrix

(
2J 0
0 J

)
.
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Since (X, ω) ∈ ΩED(2, 2)odd, by definition there exists a unique generator T of OD that can be
expressed (in the basis (α1, β1, α2, β2) of H1(X,Z)−) by the matrix

T =

( e 0 a b
0 e c d

2d −2b 0 0
−2c 2a 0 0

)
,

where D = e2 + 8(ad − bc), gcd(a, b, c, d, e) = 1 and T ∗ω = λ · ω, with λ > 0. In the symplectic basis
(α′1, β

′
1, α2, β2) of H1(X′,Z) we define the endomorphism:

T ′ =

( e 0 2a 2b
0 e c d
d −2b 0 0
−c 2a 0 0

)
.

It is easy to check that T ′ is self-adjoint with respect to the symplectic form
(

J 0
0 J

)
and T ′2 = eT ′ +

2(ad − bc)Id.
We now claim that ω′ is an eigenform for T ′, namely (T ′)∗ω′ = λ ·ω′, with λ > 0. Let (x, y, z, t) be

the periods of (α1, β1, α2, β2) by ω. The condition T ∗ω = λω reads

(12) (x, y, z, t) · T = λ(x, y, z, t).

Now, we have

ω′(α′1) = ω(α1,1) = 1
2ω(α1) = x/2,

ω′(β′1) = −ω′(c1) + ω′(β1,1) + ω′(c2) + ω′(β1,2) = ω(β1,1) + ω(β1,2) = ω(β1) = y,
ω′(α2) = ω(α2) = z,
ω′(β2) = ω(β2) = t.

By simple computations, we see that (12) implies

(13) (x/2, y, z, t) · T ′ = λ(x/2, y, z, t),

which means that ω′ is an eigenvector for T ′. Actually (12) and (13) are equivalent.
Observe that T ′ generates a self-adjoint subring isomorphic to OD in End(Jac(X′)) for which ω′

is an eigenform. In other words (X′, ω′) ∈ ΩED′(1, 1) for some D′ dividing D. The proper subring
isomorphic to OD′ is generated by the matrix T ′/k ∈ End(Jac(X′)) where k = gcd(2a, 2b, c, d, e). By
assumption gcd(a, b, c, d, e) = 1, therefore k ∈ {1, 2}. Since D = k2D′, the lemma follows. �

We can now proceed to the proof of our results.

Proof of Theorem 7.6. We keep the notations of Lemma 7.7. By construction, there is no obstruction
to collapse c1 along the kernel foliation leaf through (X′, ω′), the resulting surface belongs to ΩED′(2).
Note that when c1 is shrunken to a point, so is c2. Since c2 is invariant by the hyperelliptic involution
of X′, in the limit c2 becomes a marked Weierstrass point. �

Proof of Proposition 7.5. The surgery “collapse a pair of saddle connections exchanged by τ”, as
described above, is invertible: this is the map Ψ of the proposition. Let us give a more precise
definition of this map.

We fix a point (X0, ω0,W0) ∈ ΩED′(2)∗, and choose ε > 0 small enough so that the sets D(P0, ε) =

{x ∈ X0, d(x, P0) < ε}, where P0 is the unique zero of ω0, and D(W0, ε) = {x ∈ X0, d(x,W0) < ε}, are
two disjoint embedded disks.

Given any vector v ∈ R, with |v| < ε, we construct a Prym form in Prym(2, 2) as follows. We break
up the zero P0 into two zeros to get a surface (X′, ω′) ∈ H(1, 1) having the same absolute periods as
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ω, with a marked saddle connection, say σ1, that is invariant by the hyperelliptic involution and such
that ω′(σ1) = v. Note that by assumption σ1 is disjoint from D(W0, ε). Let σ2 be a geodesic segment
in D(W0, ε) such that ω′(σ2) = v, and W0 is the midpoint of σ2. Cutting X′ along σ1 and σ2, then
regluing the resulting boundary components, we get a new surface (X, ω) ∈ H(2, 2) together with an
involution τ : X → X induced by the hyperelliptic involution of X′. Since by construction τ∗ω = −ω
one has (X, ω) ∈ Prym(2, 2).

The arguments of the proof of Lemma 7.7 actually show that (X, ω) ∈ ΩED(2, 2) for some D ∈
{D′, 4D′}. We then define Ψ(z) = (X, ω), where z is a complex number such that v = z3 (this condition
is due to the fact that we have three choices for the segment σ1), then extend Ψ to D̊(ε) by analytic
continuation. It is now straightforward to check that the map Ψ has the desired properties. �

8. DEGENERATING SURFACES OF ΩED(2, 2)odd

In this section, we show that the surgeries described in Section 7 are sufficient to describe the all
the degenerations (along the kernel foliation) of Prym eigenforms in ΩED(2, 2)odd having an unstable
cylinder decomposition when D is not a square (compare with [LN13c]).

Theorem 8.1. Assume that D is not a square, and (X, ω) ∈ ΩED(2, 2)odd admits an unstable cylinder
decomposition in the horizontal direction. Then there exists a finite interval [smin, smax] such that for
any x ∈]smin, smax[, the surface (X, ω) + (x, 0) is well-defined and belongs to ΩED(2, 2)odd. Moreover
when x tends to ∂[smin, smax], (X, ω) + (x, ω) converges to a surface (Y, η) which belongs to

ΩED(0, 0, 0), ΩED(4) or ΩED′(2)∗ with D′ ∈ {D,D/4}.

We will use the following elementary lemma.

Lemma 8.2. Let (X, ω) ∈ ΩED(2, 2)odd. Assume that one of the following occurs:

(1) There exists a non trivial homology class c ∈ H1(X,Z)− such that ω(c) = 0.
(2) There exist two twins saddle connections in X joining the two zeros of ω, both of which are

invariant by the Prym involution.
(3) There exists a triple of twins saddle connections (σ0, σ1, σ2) (that isω(σ0) = ω(σ1) = ω(σ2)),

where σ0 is invariant and (σ1, σ2) are exchanged by the Prym involution, such that c0 =

σ1 ∗ (−σ2) is non-separating.

Then D is a square.

Proof of Lemma 8.2. For the first condition, we set K = Q(
√

D). If D is not a square then K is a real
quadratic field over Q and, up to a rescaling by GL+(2,R), the map H1(X,Q)− 3 c 7→ ω(c) ∈ K(i) is
an isomorphism of Q-vector spaces. Thus ω(c) = 0 implies c = 0 in H1(X,Z)−.

For the second condition, let σ1, σ2 be a pair of twin saddle connections which are both invariant
by the Prym involution τ. If c = σ1 ∗ (−σ2) ∈ H1(X,Z)− is separating then by cutting X along
σ1, σ2 and regluing the segments of the boundary of the two components, we get a pair of translation
surfaces each of which has a unique singularity with cone angle 4π. They thus belong to the stratum
H(1). Since this stratum is empty, we get a contradiction. Therefore, c must be non-separating i.e.
c , 0 ∈ H1(X,Z)−. One has ω(c) = ω(σ1) − ω(σ2) = 0, hence the first condition applies and D is a
square.
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For the last condition, we set c j = σ0 ∗ (−σ j), j = 1, 2. Remark that we have τ(c1) = −c2 and
c0 = c2 − c1 in H1(X,Z). Since c0 is non-separating by assumption, it is a primitive element of
H1(X,Z). Observe that if one of the curves c1 or c2 is separating then the other is also separating
(as τ(c1) = −c2) and in this case c0 = c1 − c2 = 0 ∈ H1(X,Z) contradicting the assumption. Hence
both c1, c2 are non-separating. Let c = c1 + c2. We have τ(c) = −c which means that c ∈ H1(X,Z)−.
If c = 0 ∈ H1(X,Z) then c2 = −c1 i.e. c0 = c1 − c2 = 2c1: contradiction with the primitivity of
c0 ∈ H1(X,Z). Thus c , 0 ∈ H1(X,Z)−. Since σ0, σ1, σ2 are twin saddle connections, we have

ω(c) = ω(c1) + ω(c2) = 2ω(σ0) − ω(σ1) − ω(σ2) = 0.

Again the first condition applies and D is a square. �

Proof of Theorem 8.1. Let P,Q be the zeros of ω. We denote by {σi, i ∈ I} the set of horizontal saddle
connections on X connecting P to Q. Recall that we always define the orientation of such a saddle
connection to be from P to Q, it is said to be positively oriented if the orientation is from the left
to the right, otherwise it is said to be negatively oriented. The corresponding holonomy vectors are
{(si, 0) = ω(σi) ∈ R2, i ∈ I}. For every i ∈ I, σi is contained on the lower boundary of a unique
cylinder. If σi is positively oriented (namely si > 0) then there exists σ j in the same lower boundary
component as σi which is negatively oriented. In particular, all the numbers {si} cannot have the same
sign.

Let us define
smin = −min{si, si > 0} and smax = −max{si, si < 0}.

If (Y, η) = (X, ω)+(x, 0) then by construction η(σi) = (si+x, 0) and the surface (Y, η) can be constructed
from the same cylinders as (X, ω). For all x ∈]smin, smax[, (X, ω) + (x, 0) is a well-defined surface in
ΩED(2, 2)odd since si + x , 0, proving the first statement.

We now prove the second assertion. Let us analyze the case when x tends to smin (the case x tends
to smax being similar). Letting Cmin = {σi, si = −smin} and Cmax = {σi, si = −smax} (necessarily
|Cmin| ≤ 3, and |Cmax| ≤ 3). When x → smin, only the saddle connections of Cmin can collapse to a
point. We thus have three cases, parameterized by the number of elements of Cmin.

(1) Cmin = {σi0}: the unique saddle connection σi0 is invariant by τ and (X, ω) + (x, 0) converges
to a surface in ΩED(4).

(2) Cmin = {σi1 , σi2}: σi1 andσi2 are exchanged by τ (otherwise the closed curve c = σi1∗(−σi2) ∈
H1(X,Z)− represents a non zero element and. Since ω(c) = 0, Lemma 8.2 implies that D is
a square). By Theorem 7.6, (X, ω) + (x, 0) converges to a surface in ΩED′(2)∗, for some
D′ ∈ {D,D/4}.

(3) Cmin = {i0, i1, i2}: if there are two saddle connections in {σi0 , σi1 , σi2} that are invariant by τ
then D must be square (see Lemma 8.2). Hence one can assume that τ preserves σi0 while it
exchanges σi1 and σi2 . If the closed curve c0 = σi1 ∗ (−σi2) is non-separating then D must
be a square (again by Lemma 8.2). Thus c0 is separating and {σi0 , σi1 , σi2} are homologous
saddle connections. We only need to show that X decomposes into three tori. Indeed, as x
tends to smin the length of these saddle connections tends to zero, and the limit surface is an
element of ΩED(0, 0, 0).
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Hence, in view of the above discussion, in order to finish the proof of the theorem, we need to show
that, in case (3), the complement of σi0 ∪σi1 ∪σi2 has three connected components, each of which is
a one-holed torus.

We begin by observing that σi1 , σi2 determine a pair of angles (2π, 4π) at P and Q. Since τ ex-
changes P and Q and preserves the orientation of X, a careful look at the geodesic rays emanating
from P and Q shows that the angles 2π at P and the angle 2π at Q belong to the same side of c0. Cut
X along c0, then glue the two segments in each boundary components together, we then obtain two
closed translation surfaces. From the observation above, one of the new surfaces has no singularities,
hence it must be a flat torus that will be denoted by (X′, ω′). The remaining surface is then a surface
(X′′, ω′′) inH(1, 1).

We have in X′ a marked geodesic segment σ′ which is the identification of σ1 and σ2, we denote
the endpoints of this segment by P′ and Q′ such that P′ (resp. Q′) corresponds to P (resp. to Q). For
(X′′, ω′′), we denote the zeros of ω′′ by P′′ and Q′′ such that P′′ (resp. Q′′) corresponds to P (resp.
to Q). In X′′ we have a pair of twin saddle connections σ0 and σ′′, where σ′′ is the identification of
σ1 and σ2.

The involution τ induces an involution τ′ on X′ and an involution τ′′ on X′′. We can consider
τ′ and τ′′ as the restrictions of τ in X′ and X′′ respectively. Note that τ′ exchanges P′ and Q′ and
satisfies τ′(ω′) = −ω′. Since X′ is an elliptic curve, there exists only one such involution. We deduce
in particular that τ′ has four fixed points in X′, one of which is the midpoint of σ′, the other three are
the fixed points of τ.

Recall that τ has four fixed points in X. Therefore, τ′′ has exactly two fixed points, one of which is
the midpoint of σ0 by assumption (recall that σ0 is invariant by τ), and the other one is the midpoint
of σ′′. Let ι denote the hyperelliptic involution of X′′. Remark that ι has six fixed points. From the
observations above, we can conclude that τ′′ , ι.

We now claim that ι(σ0) = −σ′′. Indeed, since ι is in the center of the group Aut(X′′), we have
ι ◦ τ′′ = τ′′ ◦ ι. Therefore ι preserves the set of fixed points of τ′′. If ι fixes the midpoint of σ0, then it
follows that ι◦τ′′ = Id, since both ι and τ′′ are involutions. Hence τ′′ = ι, and we have a contradiction.
Therefore, ι must send the midpoint of σ0 to the midpoint of σ′′. Remark that ι∗ω′′ = −ω′′, which
means that ι is an isometry of (X′′, ω′′). Thus ι maps σ0 to another saddle connection such that
ω′′(ι(σ0)) = −ω′′(σ0). Since ι exchanges the zeros of ω′′, we conclude that ι(σ0) = −σ′′.

Now, the element in H1(X′′,Z) represented by the closed curve σ0 ∪ σ
′′ is preserved by ι, which

implies that this curve is separating. Cut X′′ along σ0 ∪ σ
′′, then glue the segments in the boundary

of each component together, we then get two flat tori (X′′1 , ω
′′
1 ) and (X′′2 , ω

′′
2 ) which are exchanged by

τ′′. This finishes the proof of Theorem 8.1. �

9. CYLINDER DECOMPOSITION OF SURFACES NEAR ΩED(4) AND ΩED(2)∗

Let (X0, ω0) be a surface in ΩED(4), and Ψ : D̊(ε)→ ΩED(2, 2)odd be the map in Proposition 7.3.

Proposition 9.1. Assume that the horizontal direction is completely periodic for (X0, ω0). Then there
exists 0 < ε1 < ε such that for every (X, ω) ∈ Ψ(D̊(ε1)), the horizontal direction is also completely
periodic. Set R(k,5)(ε1) = {%ekı π5 , 0 < % < ε1}, for k = 0, . . . , 9, and D̊(k,5)(ε1) = {%eıθ, 0 < % <
ε1, (k − 1)π/5 < θ < kπ/5}, for k = 1, . . . , 10. Then

(1) The cylinder decompositions in the horizontal direction of all surfaces in Ψ(R(k,5)(ε1)) are
unstable and have the same combinatorial data.
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(2) The cylinder decompositions in the horizontal direction of all surfaces in Ψ(D̊(k,5)(ε1)) are
stable and have the same combinatorial data.

Proof. This proposition follows from similar arguments as Proposition 4.9. Let Ci, i = 1, . . . , n,
denote the horizontal cylinders of X0, and γi denote the simple closed geodesic in Ci whose distances
to the two boundary components of Ci are equal. Choose ε1 satisfying 0 < ε1 < min{ε, 1} small
enough so that D(P0, ε1) = {x ∈ X0, d(x, P0) < ε1}, where P0 is the unique zero of ω0, is an embedded
disk disjoint from the curves γi. Note that by the choice of ε1, we have ε5

1 < ε1 < ε.

By definition, the surface Ψ(%eıθ) has a small saddle connection (of length %5) in direction 5θ. It
follows immediately that the horizontal direction is periodic for the surfaces in Ψ(R(k,5)(ε1)). Since we
have a horizontal saddle connection with distinct endpoints, the corresponding cylinder decomposition
is unstable. Clearly, the combinatorial data of the decomposition of Ψ(z) does not change as z varies
in R(k,5)(ε1) (see Lemma 4.6).

Let us now consider a surface (X, ω) = Ψ(z), where z ∈ D̊(k,5)(ε1). We will assume in addition that
z5 = 2ıh with 0 < h < ε1/2, the general case then follows from Lemma 4.6. Recall that D(P0, ε1) is
the union of 10 half-disks Di±, with i = 1, . . . , 5, where Di+ is a copy of {z ∈ C, |z| ≤ ε1, Re(z) ≥ 0}
and Di− is a copy of {z ∈ C, |z| ≤ ε1, Re(z) ≤ 0}. Let ai±, bi±, ci± denote the points in the border of
Di± that correspond to −ıε1, ıε1, 0 respectively.

Since the horizontal direction is periodic for (X0, ω0), we have a bijection π : {ci+, i = 1, . . . , 5} →
{ci−, i = 1, . . . , 5}. The gluing rules then give rise to a permutation σa of {ai+, i = 1, . . . , 5} and a
permutation σb of {bi+, i = 1, . . . , 5} (see Section 4.3). Now, the surface (X, ω) = Ψ(z) is obtained
from (X0, ω0) by replacing the disk D(P0, ε1) by another disk D̃(ε1) constructed from the half-disks
Di± with a choice of j ∈ {1, . . . , 5} and the following gluing rules (see Figure 7 for the case j = 2),
here we use the convention i ∼ (i − 5) if i > 5,

• Di+ is glued to Di− along the segment {Re(z) = 0, h ≤ Im(z) < ε1} for i ∈ { j, j + 1, j + 2}.
• Di+ is glued to Di− along the segment {Re(z) = 0, −h ≤ Im(z) < ε1} for i < { j, j + 1, j + 2}.
• Di− is glued to D(i+1)+ along the segment {Re(z) = 0, −ε1 < Im(z) ≤ h} for i ∈ { j, j + 1}.
• Di− is glued to D(i+1)+ along the segment {Re(z) = 0, −ε1 < Im(z) ≤ −h} for i < { j, j + 1}.
• D j+ is glued to D( j+2)− along the segment {Re(z) = 0,−h ≤ Im(z) ≤ h}.

c1− c1+

a1− a1+

b1− = b1+

c2− c2+

a2− a2+

b2− = b2+

c3− c3+

a3− a3+

b3− = b3+

c4− c4+

a4− a4+

b4− = b4+

c5− c5+

a5− a5+

b5− = b5+

FIGURE 7. Splitting a zero of order 4 to two zeros of order 2 ( j = 2).

Let P (resp. Q) denote the zero of ω which corresponds to the point −ıh ∈ D j+ (resp. ıh ∈ D j+).
From the gluing rules, any horizontal geodesic ray emanating from P (reps. Q) ends up at P (resp. Q).
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Moreover, those horizontal saddle connections are encoded in the permutations σa and σb. It follows
that (X, ω) admit a stable cylinder decomposition in the horizontal direction.

By the choice of ε1, (X, ω) has n cylinders associated to the geodesics γi, i = 1, . . . , n, and some
additional cylinders which contain some of the points ci±. The cylinders associated to γi are in bijec-
tion with the cycles of σa and σb. For the additional ones, we remark that the gluing rules imply the
following identifications:

• ci− is identified with ci+ if i < { j, j + 1, j + 2},
• ci− is identified with c(i+1)+ if i ∈ { j, j + 1},
• c( j+2)− is identified with c j+.

Composing these identifications with π, we get a permutation σc of the set {ci+, i = 1, . . . , 5}. Clearly,
the horizontal cylinders containing some of the points ci± are in bijection with the cycles of σc. We
derive that the permutations σa, σb, σc completely determine the combinatorial data of the cylinder
decomposition of (X, ω), hence these combinatorial data depend only on the sector D̊k,5(ε1). The
proposition is then proved. �

Remark 9.2. In general, the topological model of the decomposition of (X, ω) changes if we change
the sector D̊(k,5)(ε1).

By a saddle connection on (X0, ω0,W0) ∈ ΩED′(2)∗, we refer to a geodesic segment whose end-
points are in the set {P0,W0}. We consider, by convention, a cylinder in (X0, ω0,W0) as the union
of all simple closed geodesics in the same free homotopy class in X0 \ {P0,W0}. Obviously, a direc-
tion θ is periodic for (X0, ω0,W0) if and only if it is periodic for (X0, ω0), but the associated cylinder
decomposition of (X0, ω0,W0) may have one more cylinder than the one of (X0, ω0), since a simple
closed geodesic passing through W0 will cut the corresponding cylinder in (X0, ω0) into two cylinders
in (X0, ω0,W0). The following proposition follows from completely similar arguments as Proposi-
tion 9.1.

Proposition 9.3. Let (X0, ω0,W0) be a surface in ΩED′(2)∗. Assume that the horizontal direction is
periodic for (X0, ω0,W0). Let Ψ : D̊(ε) → ΩED(2, 2)odd be the map defined in Proposition 7.5. Then
there exists 0 < ε1 < ε such that for all (X, ω) ∈ Ψ(D̊(ε1)), the horizontal direction is also periodic.
Set R(k,3)(ε1) = {%ekı π3 , 0 < % < ε1}, k = 0, . . . , 5, and D̊(k,3)(ε1) = {%eıθ, 0 < % < ε1, (k − 1)π/3 < θ <
kπ/3}, k = 1, . . . , 6. We have

(1) The associated cylinder decomposition of surfaces in Ψ(R(k,3)(ε1)) are unstable and have the
same combinatorial data.

(2) The associated cylinder decomposition of surfaces in Ψ(D̊(k,3)(ε1)) are stable and have the
same combinatorial data.

Having Propositions 9.1 and 9.3 proved, using the arguments in Section 6 we get

Theorem 9.4. Let (X0, ω0) (resp. (X, ω0,W0)) be a surface in ΩED(4) (resp. in ΩED(2)∗) which is
horizontally periodic, and Ψ : D̊(ε) → ΩED(2, 2)odd be the map defined in Proposition 7.3 (resp. in
Proposition 7.5). Let {zn}n∈N be a sequence of complex numbers in a fixed sector D̊(k,n)(ε1), where ε1

is the constant in Propositions 9.1 (resp. Proposition 9.3), such that zn
n→∞
−→ 0. Assume that for all

n ∈ N, the horizontal direction is parabolic for the surface (Xn, ωn) = Ψ(zn). Then the set

O :=
⋃
n∈N

GL+(2,R) · (Xn, ωn)
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is dense in a component of ΩED(2, 2)odd.

Sketch of proof. Since the arguments for the two cases are the same, we will only consider the case
(X0, ω0) ∈ ΩED(4). Recall that by definition, all the surfaces in Ψ(D̊(ε)) belong to the same leaf of the
kernel foliation. Set D̊(k,n)(ε1) = {z = %eıθ ∈ C, 0 < % < ε1, (k− 1)π/5 ≤ θ ≤ kπ/5}. By a slight abuse

of notations, if (X, ω) = Ψ(z), with z ∈ D̊(k,n)(ε1), then we will write (X, ω) = (X0, ω0) + z5. Using this

convention, given z1, z2 in D̊(k,n)(ε1), we have

(X0, ω0) + z5
2 = ((X0, ω0) + z5

1) + (z5
2 − z5

1),

where the expression in the right hand side corresponds to a move in a leaf of the kernel foliation in
ΩED(2, 2)odd.

By assumption, we can write (Xn, ωn) = (X0, ω0) + (sn, tn), with (sn, tn)
n→∞
−→ (0, 0), tn , 0, and

(Xn, ωn) admits a parabolic cylinder decomposition in the horizontal direction. By Proposition 9.1,
we know that the topological data and the widths of the cylinders in this decomposition are the same
for all n. Thus, the arguments in Section 6 allows us to conclude that (X0, ω0) + (x, 0) ∈ O, for all
x ∈ (−ε5

1, ε
5
1).

Pick a point x ∈ (−ε5
1, ε

5
1)\{0}, and set (X, ω) = (X0, ω0)+(x, 0), we see that there exists ε0 > 0 such

that (X, ω)+(s, 0) ∈ O for all s ∈ (−ε0, ε0). Corollary 5.3 then allows us to conclude that (X, ω)+v ∈ O
for any v ∈ R2, with v small enough. We can then choose v such that (X, ω) + v ∈ Ψ(D̊(k,n)(ε1)) and the
horizontal direction is not parabolic for (X, ω) + v. The theorem then follows from Theorem 5.1. �

10. THE SET OF VEECH SURFACES IS NOT DENSE

In this section we will prove the following theorem:

Theorem 10.1. If D is not a square then for any connected component C of ΩED(2, 2)odd, there exists
an open subsetU ⊂ C which contains no Veech surfaces.

10.1. Cylinder decomposition and prototypes. We first prove the following lemma, which says
that if we have a three tori decomposition such that the direction of the slits is periodic, then up to
GL+(2,R), the surface belongs to the real kernel foliation leaf of some “prototypical surface” in a
finite family.

Lemma 10.2. Let (X, ω) ∈ ΩED(2, 2)odd be an eigenform with a triple of homologous saddle con-
nections {σ0, σ1, σ2} so that (X, ω) admits a three tori decomposition into tori (X j, ω j), j = 0, 1, 2.
Assume that (X, ω) is periodic in the direction of σ0. Let (̃a j, b̃ j) be a basis of H1(X j,Z) with ã j par-
allel to σ j, and τ(̃a1) = −ã2, τ(̃b1) = −b̃2, where τ is the Prym involution. Then there exists a tuple
(w, h, t, e) ∈ Z4 satisfying

(PD(0, 0, 0))
{

w > 0, h > 0, 0 ≤ t < gcd(w, h), gcd(w, h, t, e) = 1,
D = e2 + 8wh

such that up to the action of GL+(2,R) and Dehn twists, we have

ω(Zã0 ⊕ Zb̃0) = λ · Z2,

ω(Zã j ⊕ Zb̃ j) = Z(w, 0) ⊕ Z(t, h) for j = 1, 2,

where λ ∈ Q(
√

D) is the unique positive root of the equation λ2 − eλ − 2wh = 0.
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Proof. We include a sketch of this result (compare with [LN13, Proposition 4.2]). Set ã = ã1 + ã2 and
b̃ = b̃1 + b̃2. We have (ã0, b̃0, ã, b̃) is a symplectic basis of H1(X,Z)−. The restriction of the intersection
form is given by the matrix

(
J 0
0 2J

)
.

Since (X, ω) ∈ ΩED(2, 2)odd, let us denote by T a generator of the order OD. In the above coordi-
nates, since T is self-adjoint, T has the following form (up to replacing T by T − f · Id)

T =

( e 0 2w 2t
0 e 2c 2h
h −t 0 0
−c w 0 0

)
,

for some (w, h, t, e, c) ∈ Z5. Since ω is an eigenform, we have T ∗ω = λ · ω for some λ (that can
be chosen to be positive by changing T to −T ). Now up to the action of GL+(2,R), one can always
assume thatω(Zã0⊕Zb̃0) = λ·Z2. Now in our coordinates, Re(ω) = (λ, 0, x, y) and Im(ω) = (0, λ, 0, z),
for some x, y, z > 0. Reporting into the equation T ∗ω = λ · ω, we draw x = 2w, y = 2t, z = 2h and
c = 0. Since T satisfies the quadratic equation T 2 − eT − 2whId = 0, we get D = e2 + 8wh. We can
renormalize further using Dehn twists so that 0 ≤ t < gcd(w, h). Finally properness of OD implies
gcd(w, h, t, e) = 1. All the conditions of PD(0, 0, 0) are now fulfilled and the lemma is proved. �

Definition 10.3. For each D, let PD(0, 0, 0) denote the set

{(w, h, t, e) ∈ Z4, (w, h, t, e) satisfies (PD(0, 0, 0))}.

We call an element of PD(0, 0, 0) a prototype. The set of prototypes is clearly finite.

10.2. Switching decompositions. Let (X, ω) be a surface in ΩED(2, 2)odd which admits a three-tori
decomposition by a triple of saddle connections {σ0, σ1, σ2}. We also assume that the direction of σ j

is periodic. Let (X j, ω j) and (̃a j, b̃ j) be as in Lemma 10.2. We wish now to investigate the situation
where X admits other three-tori decompositions.

By Proposition 7.2, for any primitive element b0 ∈ H0(X0,Z), there exists a unique primitive ele-
ment b j ∈ H1(X j,Z), j = 1, 2 such that

ω(b j) =
2β j

λ
ω(b0)

with β j ∈ N. This is because L(X j, ω j) is a sublattice of 2
λ
L(X0, ω0) (L(X j, ω j) is the lattice associated

to (X j, ω j), see Proposition 7.2), hence it contains a vector parallel to 2/λω0(b0). We call b j the
shadow of b0 in X j.

The following lemma provides us with a sufficient condition of the existence of many other three-
tori decompositions. Its proof is inspired from [McM05b, Theorem 5.3].

Lemma 10.4. Let b0 be a primitive element of H1(X0,Z) \ {±ã0} and let b j be the shadows of b0 in
X j, j = 1, 2. Set c = b0 + b1 + b2. Then there exists s0 > 0 such that if the ratio s = |σ0|/|̃a0| is smaller
than s0, then the surface (X, ω) admits a three-tori decomposition by a triple of saddle connections
{δ0, δ1, δ2} such that δ j ∗ (−σ j) = c.

Proof. For v1 = (x1, y1), v2 = (x2, y2) in R2, let us define v1 ∧ v2 = det
( x1 x2

y1 y2

)
. By assumption, we

have b0 < Zã0, hence |ω(b0) ∧ ω(̃a0)| > 0. Since ω(b j) is parallel to ω(b0), and ω(̃a j) is parallel to
ω(̃a0), we also have |ω(b j) ∧ ω(̃a j)| > 0.

Choose s0 small enough so that if 0 < s < s0, then 0 < s|ω(b j) ∧ ω(̃a j)| < Area(X j). Assume that
|σ j| < s0 |̃a j| for j = 0, 1, 2. Note that |σ0| = |σ1| = |σ2|, and |̃a1| = |̃a2| = w/λ|̃a0|.
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Let σ̂ j be the marked geodesic segment corresponding to {σ0, σ1, σ2} in the torus X j, and let γ j be
a simple closed geodesic representing the homology class b j ∈ H1(X j,Z). By assumption, we have
0 < |ω(γ j) ∧ω(σ̂ j)| < Area(X j), hence γ j intersects σ̂ j at at most one point. Thus the union of all the
geodesics representing b j which intersect σ̂ j is an embedded cylinder Ĉ j in X j.

X1

X0

X2

b1

b0

b2

δ0

δ1

δ2

σ0 σ0

σ1

σ2

FIGURE 8. Switching three-tori decomposition.

Recall that (X, ω) is obtained from X0, X1, X2 by slitting and regluing along σ̂ j. As a consequence,
we see that the union of the cylinders Ĉ j, j = 0, 1, 2, is an embedded cylinder C whose core curves
represent the homology class c = b0 + b1 + b2. Let δ j be the image of σ j under a Dehn twist in C, then
{δ j, j = 0, 1, 2} is also a triple of homologous saddle connections which decompose X into three tori
(see Figure 8). By definition, we have δ j ∗ (−σ j) = c, and the lemma follows. �

Using the same notations as in Lemma 10.4. Let (X′j, ω
′
j), j = 0, 1, 2, denote the tori in the

decomposition specified by {δ0, δ1, δ2} (X′0 is the torus which is fixed by τ). We regard X j and X′j as
subsurfaces of X. The following elementary lemma provides us with an explicit basis of H1(X′0,Z),
its proof is left to the reader.

Lemma 10.5. Let a0 be a primitive element of H1(X0,Z) such that (a0, b0) is a basis of H1(X0,Z).
Then we have H1(X′0,Z) = Z · (a0 + c) + Z · b0.

Next, we have

Lemma 10.6. Let (X, ω) be a surface in ΩED(2, 2)odd satisfying the hypothesis of Lemma 10.4. Let a0
be a primitive element of H1(X0,Z) such that (a0, b0) is a basis of H1(X0,Z). There exists (p, q) ∈ Z2

such that ã0 = pa0 + qb0. Set β = 2β1 + 2β2 = 4β1 ∈ Z, where ω(b j) = (2β j/λ)ω(b0). If the direction
of δ0 is completely periodic, then we have

(14) s =
λ + β

(rp + p − q)λ + pβ
with r ∈ Q.



42 ERWAN LANNEAU AND DUC-MANH NGUYEN

Proof. We know that the saddle connections {δ0, δ1, δ2} decompose X into three tori X′0, X
′
1, X

′
2, where

X′0 is preserved by τ. By Lemma 10.5 we have H1(X′0,Z) = Z · (a0 + b0 + b1 + b2) + Z · b0. Set
A = ω(a0 + b0 + b1 + b2), B = ω(b0), then we have L(X′0) = ZA + ZB, where L(X′0) is the lattice
associated to X′0. Set v = ω(σ0), w = ω(δ0). We have

A = ω(a0) + ω(b0) +
β

λ
ω(b0) = ω(a0) + (1 +

β

λ
)B.

Thus
ω(a0) = A − (1 +

β

λ
)B.

Since ã0 = pa0 + qb0, we have

v = sω(̃a0) = s(pω(a0) + qω(b0)) = s(p(A − (1 +
β

λ
)B) + qB) = s(pA + (q − p(1 +

β

λ
))B).

Now

w = v + ω(b0 + b1 + b2)

= spA + s(q − p(1 +
β

λ
))B + (1 +

β

λ
)B

= spA + (sq + (1 − sp)(1 +
β

λ
))B.

The direction of δ0 is periodic if and only if w is parallel to a vector in the lattice ZA + ZB, which is
equivalent to

r =
sq + (1 − sp)(1 +

β
λ
)

sp
=

sqλ + (1 − sp)(λ + β)
spλ

∈ Q.

It follows
srpλ = sqλ + (λ + β) − sp(λ + β),

or equivalently

s =
λ + β

rpλ − qλ + p(λ + β)
=

λ + β

(rp + p − q)λ + pβ
.

�

We can now prove

Proposition 10.7. Let (X, ω) be a surface in ΩED(2, 2)odd, where D is not a square. Assume that there
exists a triple of homologous saddle connections {σ0, σ1, σ2} which decompose (X, ω) into three tori,

and the direction of σ j is periodic. Set s =
|σ0|

|̃a0|
, where ã0 is a simple closed geodesic parallel to σ0

in the torus which is preserved by the involution. Then there exists a constant s0 > 0 depending only
on D such that if s < s0 then (X, ω) is not a Veech surface.

Proof. Let (̃a j, b̃ j), j = 0, 1, 2, be as in Lemma 10.2. Let (e,w, h, t) be the prototype in PD(0, 0, 0)
which is associated to the cylinder decomposition in the direction of σ0. Set (a0, b0) = (̃a0, b̃0), and
(a′0, b

′
0) = (̃a0 + b̃0, ã0 + 2̃b0). Let b j (resp. b′j) be the shadow of b0 (resp. b′0) in X j, j = 1, 2. We have

ω(b1 + b2) =
β

λ
ω(b0), ω(b′1 + b′2) =

β′

λ
ω(b′0),
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where β, β′ ∈ N are determined by the prototype (e,w, h, t). From Lemma 10.4, there exists s1 > 0
such that if s < s1, then (X, ω) admits three-tori decompositions by the triples of saddle connections
{δ j, j = 0, 1, 2} and {δ′j, j = 0, 1, 2}, where δ0 and δ′0 satisfy

δ0 ∗ (−σ0) = b0 + b1 + b2 ∈ H1(X,Z), and δ′0 ∗ (−σ0) = b′0 + b′1 + b′2 ∈ H1(X,Z).

By definition, we have ã0 = a0 = 2a′0 − b′0. Assume that (X, ω) is a Veech surface, then the direc-
tions of δ and δ′ must be periodic, hence, from Lemma 10.6, we have

(15) s =
λ + β

(r + 1)λ + β
=

λ + β′

(2r′ + 3)λ + 2β′

with r, r′ ∈ Q. Set R = r + 1,R′ = 2r′ + 3, we see that the equation (15) is equivalent to

R′λ2 + (R′β + 2β′)λ + 2ββ′ = Rλ2 + (Rβ′ + β)λ + ββ′

Using λ2 = eλ + 2wh, we get

R′(eλ + 2wh) + (R′β + 2β′)λ + 2ββ′ = R(eλ + 2wh) + (β + Rβ′)λ + ββ′

⇔ (R′e + R′β + 2β′)λ + (2whR′ + 2ββ′) = (Re + β + Rβ′)λ + (2whR + ββ′)

It follows {
R′(e + β) + 2β′ = R(e + β′) + β
2whR′ + 2ββ′ = 2whR + ββ′

or

(16)


R(e + β′) − R′(e + β) = 2β′ − β

R − R′ =
ββ′

2wh
.

We first remark that β , β′, otherwise Equation(15) would imply that (R − R′)λ = β, and hence
R−R′ < Q since β , 0. It follows that the linear system (16) has a unique solution. Let s2 be the value
of s corresponding to this solution which given by Equation (15). It follows that if s < min{s1, s2}

then the directions of δ0 and δ′0 cannot be both periodic, hence (X, ω) cannot be a Veech surface. Since
the set PD(0, 0, 0) is finite, the proposition follows. �

The next proposition is a direct consequence of Proposition 10.7.

Proposition 10.8. Let {(X j, ω j, P j), j = 0, 1, 2} be an element of ΩED(0, 0, 0), and Ψ : D̊(ε) →
ΩED(2, 2)odd be the map in Proposition 7.1. Then there exists 0 < δ < ε such that if (X, ω) ∈ Ψ(D̊(δ)),
then (X, ω) is not a Veech surface.

Proof. Let `0 be the length of the shortest simple closed geodesic in the torus (X0, ω0). Let s0 be the
constant in Proposition 10.7. Pick δ < min{ε, s0`0}. By definition, if (X, ω) = Ψ(z), then we have
a triple of homologous saddle connections {σ0, σ1, σ2} which decompose X into three tori such that
ω(σ j) = z. Assume that z ∈ D̊(δ), we claim that (X, ω) is not a Veech surface. We have two cases:

• z is not parallel to any vector in the lattice L0 associated to (X0, ω0). In this case, the direction
of σ j is not periodic, hence (X, ω) is not a Veech surface.
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• z is parallel to some vector in L0. In this case, (X, ω) admits a decomposition into three
cylinders, which correspond to the tori X0, X1, X2, in the direction of z. Let v be the primitive
vector in L0 in the same direction as z, then the width of the cylinder corresponding to X0 is
|v|. By assumption, we have

|σ0|

|v|
≤
|σ0|

`0
< s0.

Therefore, (X, ω) cannot be a Veech surface by Proposition 10.7
�

Using Proposition 10.8, we can now prove the theorem announced at the beginning of the section.

Proof of Theorem 10.1. Fix a connected component C of ΩED(2, 2)odd. By the main result of [LN13c],
we know that there exists a surface (X, ω) ∈ C which admits a three-tori decomposition by a triple of
homologous saddle connections {σ0, σ1, σ2}.

By moving in the kernel foliation leaves, we can assume that the direction of σ j is periodic on
(X, ω). By Lemma 10.2, we get a corresponding prototype (w, h, t, e) in PD(0, 0, 0). Set L0 = Z(λ, 0) +

Z(0, λ), L1 = L2 = Z(w, 0) + Z(t, h), and (X j, ω j) = (C/L j, dz), j = 0, 1, 2. Let P j be the projection
of 0 ∈ C in X j. Then the triple {(X j, ω j, P j), j = 0, 1, 2} belongs to ΩED(0, 0, 0). Note that we obtain
this triple of tori as the limit surface when σ0, σ1, σ2 are collapsed.

Let Ψ : D̊(ε) → ΩED(2, 2)odd be the map in Proposition 7.1. It is easy to see that Ψ(D̊(ε)) ⊂ C .
From Proposition 10.8, we know that there exists 0 < δ < ε such that the set V = Ψ(D̊(δ)) does not
contain any Veech surface. As a consequence the setU = GL+(2,R) · V does not contain any Veech
surface either. It is easy to see thatU is an open subset of C . The theorem is then proved. �

11. FINITENESS OF CLOSED ORBITS

In this section we will prove our main second main result, namely:

Theorem 11.1. If D is not a square then the number of closed GL+(2,R)-orbits in ΩED(2, 2)odd is
finite.

We first show a useful finiteness result up to the kernel foliation for surfaces in ΩED(2, 2)odd.
Recall that (X, ω) admits an unstable cylinder decomposition in the horizontal direction if and only if
this direction is periodic, and there exists (at least) one horizontal saddle connection whose endpoints
are distinct zeros of ω.

Theorem 11.2. If D is not a square then there exists a finite family PD of surfaces in ΩED(2, 2)odd

such that if (X, ω) ∈ ΩED(2, 2)odd admits an unstable cylinder decomposition, then up to rescaling by
GL+(2,R), one has

(X, ω) = (Xi, ωi) + (x, 0) for some (Xi, ωi) ∈ PD.

If we label the zeros of ω by P and Q, we always choose the orientation for any saddle connection
joining P and Q to be from P to Q: this defines in a unique way the surface (X, ω) + (x, 0).

Proof of Theorem 11.2. By [McM05a], for any D′ ≡ 0, 1 mod 4,D′ > 0, the set ΩED′(2)∗ is a
finite union of GL+(2,R)-closed orbits. More precisely there exists a finite family PD′(2) of surfaces
(prototypical splittings) such that any (X, ω) ∈ ΩED′(2)∗ which is horizontally periodic belongs to the
P-orbit (here P = {

( ∗ ∗
0 ∗

)
⊂ GL+(2,R)}) of some surface in PD′(2).
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In [LN13], we have proved the same result for the stratum ΩED(4): there exists a finite family
PD(4) of surfaces such that any horizontally periodic surface (X, ω) ∈ ΩED(4) belongs to the P-orbit
of a surface in PD(4). The corresponding statement for the stratum ΩED(0, 0, 0) is Lemma 10.2.
Let PD(0, 0, 0) be the set of corresponding surfaces in ΩED(0, 0, 0). We will call the surfaces in the
families PD′(2), PD(4), PD(0, 0, 0) prototypical surfaces.

Given a discriminant D > 0, for each prototypical surface X∞ in these finite families PD(0, 0, 0),
PD(4) and PD′(2), where D′ ∈ {D,D/4}, we apply, respectively, Propositions 7.1, 7.3 and 7.5. This
furnishes a map Ψ : D̊(ε)→ ΩED(2, 2)odd where ε > 0.

By construction, the surfaces in ΩED(2, 2)odd whose horizontal kernel foliation leaf contains X∞
(i.e X∞ is a limit of the real kernel foliation leaf through such surfaces) and close enough to X∞ are
contained in the set Ψ(R(k,n)(ε)), where n ∈ {1, 3, 5}, k ∈ {0, . . . , 2n − 1}, depending on the space to
which X∞ belongs. For each prototypical surface, and each admissible pair (k, n), we pick a surface in
Ψ(R(k,n)(ε)). Let PD denote this (finite) family. Note that for all the surfaces in this family, the cylinder
decomposition in the horizontal direction is unstable.

Now, thanks to Theorem 8.1, if (X, ω) ∈ ΩED(2, 2)odd admits an unstable cylinder decomposition,
then up to action of GL+(2,R), the horizontal kernel foliation leaf through (X, ω) contains some pro-
totypical surface. Therefore (X, ω) belongs to the same horizontal kernel foliation leaf of a surface in
the family PD, and the theorem follows. �

We have now all necessary tools to prove our main result.

Proof of Theorem 11.1. Let {(Xi, ωi), i ∈ I} be a family of Veech surfaces that generates an infinite
family of closed GL+(2,R)-orbits in ΩED(2, 2)odd. We will show that the set

O =
⋃
i∈I

GL+(2,R) · (Xi, ωi)

is dense in a component of ΩED(2, 2)odd contradicting Theorem 10.1.
Since the direction of any saddle connection on a Veech surface is periodic, each surface in the

family {(Xi, ωi), i ∈ I} admits infinitely many unstable cylinder decompositions. Therefore, we can
assume that each of the surfaces (Xi, ωi) belongs to the horizontal kernel foliation leaf of one surface
in the family PD of Theorem 11.2. Since the set PD is finite, there exists a surface (X, ω) ∈ PD and an
infinite subfamily I0 ⊂ I such that (Xi, ωi) = (X, ω) + (xi, 0) for any i ∈ I0. By Theorem 8.1, xi ∈]a, b[,
where a, b does not depend on i.

The compactness of the interval [a, b] implies the existence of a subsequence {ik}k∈N ⊂ I0 such
that {xik } converges to some x ∈ [a, b]. The sequence (Xik , ωik ) = (X, ω) + (xik , 0) thus converges to
(Y, η) := (X, ω) + (x, 0). If x ∈]a, b[ then (Y, η) belongs to ΩED(2, 2)odd. However if x ∈ {a, b} then
by Theorem 8.1, (Y, η) belongs to a boundary component of ΩED(2, 2)odd, namely ΩED(4),ΩED′(2)∗

with D′ ∈ {D,D/4}, or ΩED(0, 0, 0). We distinguish separately the four cases below.

Case (Y, η) ∈ ΩED(2, 2)odd.
Let θ be a periodic direction on (Y, η) that is different from (±1, 0). Set

(Yθ, ηθ) := R−θ · (Y, η), and (Xθ
ik , ω

θ
ik ) = R−θ · (Xik , ωik ),

where R−θ =
(

cos θ sin θ
− sin θ cos θ

)
. Note that (Yθ, ηθ) is horizontally periodic, and we have

(Xθ
ik , ω

θ
ik ) = (Yθ, ηθ) + vk,
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where vk = R−θ · (x − xik , 0). Thus we have vk
k→∞
−→ (0, 0). Note that, since θ , (±1, 0), vk does not

belong to R × {0}.
By Propositions 4.7 and 4.9, for k large enough, (Xθ

ik
, ωθik ) admits a stable cylinder decomposition

in the horizontal direction. Moreover, we can assume that the cylinder decompositions of (Xθ
ik
, ωθik ) in

the horizontal direction share the same combinatorial data, and the same widths of cylinders. Finally,
since (Xθ

ik
, ωθik ) are Veech surfaces, the horizontal direction is parabolic. The assumptions of Theo-

rem 6.2 are therefore fulfilled, and we derive that there exists ε1 > 0 such that (Yθ, ηθ) + (s, 0) ∈ O for
all s ∈ (−ε1, ε1). It follows from Corollary 5.3, that there exists ε′1 > 0, such that (Yθ, ηθ) + v ∈ O for
any v ∈ R2 such that |v| < ε′1. One can find a vector v with |v| < ε′ such that the surface (Yθ, ηθ) + v is
horizontally periodic but not parabolic. By Theorem 5.1, the GL+(2,R)-orbit of (Yθ, ηθ) + v is dense
in a component of ΩED(2, 2)odd. Since this GL+(2,R)-orbit is contained in O, we conclude that O
contains a component of ΩED(2, 2)odd.

Case (Y, η) ∈ ΩED(4).
In this case (Y, η) is a Veech surface. Choose a periodic direction θ for (Y, η) that is different from
(±1, 0). We define (Yθ, ηθ) and (Xθ

ik
, ωθik ) as in the previous case.

Let Ψ : D̊(ε) → ΩED(2, 2)odd be the map in Proposition 7.3 associated to (Yθ, ηθ). Recall that by
construction, the set Ψ(R(k,5)(ε)) consists of surfaces in ΩED(2, 2)odd close to (Yθ, ηθ) which have a
small horizontal saddle connection invariant by the Prym involution.

By the choice of θ, (Xθ
ik
, ωθik ) is not contained in Ψ(R(k,5)(ε)) for any k ∈ {0, . . . , 9}. Thus, there

must exist k ∈ {1, . . . , 10} such that the sector Ψ(D̊(k,5)(ε)) contains infinitely many elements of the
family {(Xθ

ik
, ωθik )}. Note that every surface in Ψ(D̊(k,5)(ε)) admits a stable cylinder decomposition in

the horizontal direction with the same combinatorial data and the same widths of cylinders (see Propo-
sition 9.1). By assumption, the horizontal direction is parabolic for all (Xθ

ik
, ωθik ). Thus Theorem 9.4

allows us to conclude that O is dense in a component of ΩED(2, 2)odd.

Case (Y, η) ∈ ΩED′(2)∗.
In particular (Y, η) is a Veech surface (viewed as a surface of ΩED′(2)). The same arguments as the
case (Y, η) ∈ ΩED(4) show that O contains a component of ΩED(2, 2)odd.

Case (Y, η) ∈ ΩED(0, 0, 0).
In this case (X, ω) has a triple of horizontal saddle connections {σ0, σ1, σ2} that decompose the surface
into a connected sum of three tori, and (Y, η) can be viewed as the limit when the length of σ j goes
to zero. By Proposition 10.8, there is no Veech surface in the neighborhood of (Y, η). Thus this case
does not occur.

From above discussion, we draw that O is always dense a component of ΩED(2, 2)odd, but this is a
contradiction with Theorem 10.1. The proof of Theorem 11.1 is now complete. �

APPENDIX A. EXISTENCE OF VEECH SURFACES IN INFINITELY MANY PRYM EIGENFORM LOCI

It follows from the work of McMullen [McM06a] that there exists only finitely many GL+(2,R)
closed orbits in the union

⋃
D not a square

ΩED(1, 1) (see [LMöl13] for a similar result in ΩED(1, 1, 2)).
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However the situation is different in ΩED(2, 2)odd. We will show that for infinitely many discrimi-
nants D that are not squares, the locus ΩED(2, 2)odd contains at least one GL+(2,R) closed orbit (the
fact that ΩED1(2, 2)odd and ΩED2(2, 2)odd are disjoint if D1 , D2 will be proved in [LN13c]). Re-
mark that the corresponding Veech surfaces we found are not primitive, they are double coverings
of surfaces in ΩED(2). It is unknown to the authors if there exists any primitive Veech surface in⋃
D not a square

ΩED(2, 2)odd.

Following [McM05a] we say that a quadruple of integers (w, h, t, e) is a splitting prototype of dis-
criminant D if the conditions below are fulfilled:

w > 0, h > 0, 0 ≤ t < gcd(w, h),
gcd(w, h, t, e) = 1,
D = e2 + 4wh,
0 < λ := e+

√
D

2 < w.

To each splitting prototype one can associate a Veech surface (X, ω) ∈ ΩED(2) as follows (see Fig-
ure 9).

a1
b1

a2
b2

FIGURE 9. Prototypical splitting of type (w, h, 0, e) where ω(a1) = (λ, 0), ω(b1) =

(0, λ), ω(a2) = (w, 0) and ω(b2) = (0, h). Parallel edges are identified to obtain a
surface (X, ω) ∈ ΩED(2)

Define a pair of lattices in C by Λ1 = Z(λ, 0) ⊕ Z(0, λ) and Λ2 = Z(w, 0) ⊕ Z(t, h) (recall that
λ := e+

√
D

2 > 0). We construct the corresponding tori (Ei, ωi) = (C/Λi, dz) and the genus two surface
(X, ω) where X = E1#E2 and ω = ω1 + ω2.

Geometrically, the surface (X, ω) is made of two horizontal cylinders whose core curves are denoted
by a1 and a2 (see [McM05a] and Figure 9 for details).

Let {a1, b1, a2, b2} be the symplectic basis of H1(X,Z) such that ω(a1) = (λ, 0), ω(b1) = (0, λ),
ω(a2) = (w, 0) and ω(b2) = (t, h). A generator of the order OD is given (in the above basis) by the
following matrix

T =

( e 0 w t
0 e 0 h
h −t 0 0
0 w 0 0

)
.

It is straightforward to check that T is a self-adjoint with respect to the intersection form of
H1(X,Z), T 2 = eT + whId, and T satisfies T ∗ω = λω. It follows that T generates a proper sub-
ring in End(Jac(X)) for which ω is an eigen vector. Thus (X, ω) ∈ ΩED(2), and therefore (X, ω) is a
Veech surface (see [McM06] for more details).

Theorem A.1. Let (w, h, t, e) be a splitting prototype for a discriminant D, and (X, ω) be the associ-
ated Veech surface in ΩED(2). Let (Y1, η1) and (Y2, η2) be two surfaces in H(2, 2) constructed from
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(w, h, t, e) as shown in Figure 10. Then both (Y1, η1) and (Y2, η2) are Veech surfaces in some Prym
eigenform loci inH(2, 2)odd. More specifically, we have

(i) (Y1, ω1) ∈ ΩE4D(2, 2)odd if h is odd, otherwise (Y1, η1) ∈ ΩED(2, 2)odd,
(ii) (Y2, ω2) ∈ ΩE4D(2, 2)odd if w is odd, otherwise (Y2, η2) ∈ ΩED(2, 2)odd.

a11

a12

a21

a22

b11

b12

b21

b22

(Y1, η1)

a11

a12

a21

a22

b11

b12

b21

b22

(Y2, η2)

FIGURE 10. Double coverings of a surface in ΩED(2): ηi(a11) = ηi(a12) =

λ, ηi(b11) = ηi(b12) = ıλ, ηi(a21) = ηi(a22) = w, ηi(b21) = ηi(b22) = t + ıh, i = 1, 2.
The cylinders fixed by the Prym involution are colored.

Remark A.2.
• In general, the Teichmüller disks generated by (Y1, ω1) and by (Y2, ω2) are different, for in-

stance when h is odd, and w is even.
• If D ≡ 5 mod 8, then it is easy to see that e,w, h are all odd. Therefore, in both construction

(Yi, ηi) belongs to ΩE4D(2, 2)odd.

Proof. It is easy to see that both (Y1, η1) and (Y2, η2) are double coverings of (X, ω), the deck trans-
formation sends ai j to ai j+1 and bi j to bi j+1 (here we use the convention (i3) ∼ (i1)). Since (X, ω) is a
Veech surface both (Y1, ω1) and (Y2, ω2) are Veech surfaces (see [GJ00] and [MT02]).

Remark that Yi has an involution τi that exchanges the zeros of ηi such that τ∗i ηi = −ηi, in Figure 10
the cylinders fixed by τi are colored. It follows that (Yi, ηi) belongs to the Prym locus Prym(2, 2) ⊂
H(2, 2)odd (Prym(2, 2) consists of double coverings of quadratic differentials in Q(−14, 4)). By some
standard arguments (see [LN13] and [McM06]), we can conclude that (Yi, ηi) is a Prym eigenform,
thus (Yi, ηi) is contained in some locus ΩED̃(2, 2)odd. It remains to determine the discriminant D̃.

Set H1(Yi,Z)− = {α ∈ H1(Yi,Z) | τi(α) = −α}. Since (Yi, ηi) ∈ Prym(2, 2), we have H1(Yi,Z)− ' Z4.
We choose a basis of H1(Yi,Z)− as follows:

• for (Y1, η1), set α1 = a11 = a12 and α2 = a21+a22, we choose β1 = b11+b12 and β2 = b21+b22.
In particular the restriction of the symplectic form has the following matrix

(
J 0
0 2J

)
.

• for (Y2, η2), set α1 = a11 + a12, α2 = a21 = a22, β1 = b11 + b12, β2 = b21 + b22. In this basis,
the restriction of the intersection form to H1(Y2,Z)− is given by

(
2J 0
0 J

)
.
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In the above bases, the coordinates of ηi are the following:

Re(η1) = (λ, 0, 2w, 2t) and Im(η1) = (0, 2λ, 0, 2h).

Re(η2) = (2λ, 0,w, 2t) and Im(η2) = (0, 2λ, 0, 2h).
Let T̃1 be the following self-adjoint endomorphism of H1(Y1,Z)− (given in the basis {α1, β1, α2, β2}):

T̃1 =

( 2e 0 4w 4t
0 2e 0 2h
h −2t 0 0
0 2w 0 0

)
.

Similarly, let T̃2 be the self-adjoint endomorphism of H1(Y2,Z)− (given in the basis {α1, β1, α2, β2})
by the following matrix

T̃2 :=
( 2e 0 w 2t

0 2e 0 2h
4h −4t 0 0
0 2w 0 0

)
It is straightforward to check that T̃ ∗i ηi = (2λ) · ηi thus ηi is an eigenform of T̃i. Remark that both T̃i

satisfy T̃ 2
i −2eT̃i−4whId = 0, which implies that T̃i generates a self-adjoint subring of End(Prym(Yi))

isomorphic to OD′ , where D′ = (2e)2 + 16wh = 4(e2 + 4wh) = 4D.
There exists a unique proper subring of End(Prym(Yi)) for which ηi is an eigenform, this proper

subring is isomorphic to a quadratic order OD̃i
. Clearly, this subring must contain T̃i, hence it is gener-

ated by T̃i/ki, where k1 = gcd(2e, 4w, 2h, 2w, h, 4t, 2t) = gcd(2e, 2w, h, 2t), and k2 = gcd(2e,w, 2h, 2t).
Since gcd(w, h, t, e) = 1 we have ki ∈ {1, 2}. Note that 4D = k2

i D̃i, therefore D̃i = 4D if ki = 1, and
D̃i = D if ki = 2. We can now conclude by noticing that k1 = 1 if and only if h is odd, and k2 = 1 if
and only if w is odd. �
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