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RÉSUMÉ. Dans cet article nous démontrons plusieurs résultats topologiques sur les formes propres des
lieux Prym, formes differentielles abéliennes découvertes par McMullen dans des travaux antérieurs.
Nous obtenons une propriétés dîtes de complète periodicité (introduite par Calta), ainsi que de nouvelles
familles de surfaces de translation vérifiant la dichotomie topologique de Veech (sans être une surface de
Veech) . Comme conséquences nous montrons que l’ensemble limite des groupes de Veech de formes
propres de certaines strates en genre 3, 4, et 5 est soit vide, soit un point, soit tout le cercle à l’infini. Ceci
nous permet de plus de construire de nouveaux exemples de surfaces de translation ayant un groupe de
Veech infiniment engendré et de première espèce.

Notre preuve repose sur une nouvelle approche de la notion de feuilletage périodique par les involu-
tions linéaires.

ABSTRACT. This paper deals with Prym eigenforms which are introduced previously by McMullen.We
prove several results on the directional flow on those surfaces, related to complete periodicity (intro-
duced by Calta). More precisely we show that any homological direction is algebraically periodic, and
any direction of a regular closed geodesic is a completely periodic direction. As a consequence we draw
that the limit set of the Veech group of every Prym eigenform in some Prym loci of genus 3, 4, and 5
is either empty, one point, or the full circle at infinity. We also construct new examples of translation
surfaces satisfying the topological dichotomy (without being lattice surfaces). As a corollary we obtain
new translation surfaces whose Veech group is infinitely generated and of the first kind.

1. INTRODUCTION

1.1. Periodicity and Algebraic Periodicity. In his 1989 seminal work [Vee89], Veech introduced an
important class of translation surfaces (now called Veech surfaces) providing first instances of transla-
tion surfaces whose the directional flows satisfy a remarkable property: for a given direction, the flow
is either uniquely ergodic (all the flow lines are dense and uniformly distributed) or completely peri-
odic (all the flow lines are closed or saddle connection). This property is subsequently called the Veech
dichotomy. Since then numerous efforts have been made in the study of the linear flows on translation
surfaces, to name a very few: [McM03a, SW06, Möl06, SW10, EMi13, ChHM08]. Veech’s theorem
raised the issue of what can be said about the dynamics of the directional flows on non Veech surfaces.

This paper deals with the question of completely periodic linear flows. This aspect has been ini-
tiated in [C04], and then developed later in [CS07]. A useful invariant to detect completely periodic
flows (i.e. all the flow lines are closed or connect singularities), introduced in Arnoux’s thesis [Arn81],
is the Sah-Arnoux-Fathi (SAF) invariant. It is well known that the linear flow Fθ in a direction θ ∈ RP1
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on a translation surface (X, ω) (equipped with a transversal interval I) provides an interval exchange
transformation Tθ, which is the first return map to I. The invariant of the flow in direction θ can be
informally defined by

S AF(Tθ) =

∫
I
1 ⊗ (Tθ(x) − x)dx ∈ R ∧Q R,

(the integral is actually a finite sum). If Fθ is periodic, that is when every leaf of Fθ is either a closed
curve or an interval joining two zeros of ω, then S AF(Tθ) = 0. However the converse is not true
in general. Following this remark, the direction θ will be called algebraically periodic if the SAF-
invariant of the flow Fθ vanishes.

A translation surface (X, ω) is completely periodic (in the sense of Calta) if for every θ ∈ RP1 for
which Fθ has a closed regular orbit, the flow Fθ is completely periodic. We have the corresponding
“algebraic” definition: the surface (X, ω) is completely algebraically periodic if the SAF-invariant of
Fθ vanishes in any homological direction (θ ∈ RP1 is homological if it is the direction of a vector∫

c ω ∈ C ' R
2 for some c ∈ H1(X,Z)). These notions are introduced in [C04] and [CS07].

Flat tori and their ramified coverings are both completely periodic and completely algebraically
periodic; in this case, up to a renormalization by GL+(2,R), the set of homological directions is
Q∪{∞}. In [C04], Calta proved that these two properties also coincide for genus 2 translation surfaces,
in which case the set of homological directions is KP1, where K is either Q or a real quadratic field
over Q, and moreover a surface in H(2) is completely periodic if and only if it is a Veech surface
(see also [McM07]). However there are completely periodic surfaces in H(1, 1) that are not Veech
surfaces (actually, most of them are not Veech surfaces).

We will say that a quadratic differential is algebraically completely periodic (respectively, com-
pletely periodic in the sense of Calta) if its orientation double cover is. Translation surfaces in
genus two are closely related to quadratic differentials over CP1, since we have the following iden-
tifications (which are GL+(2,R) invariant) H(2) ' Q(−15, 1), H(1, 1) ' Q(−16, 2). Note that
dimC Q(−15, 1) = 4, and dimC Q(−16, 2) = 5. We record all strata of quadratic differentials of di-
mension 5 in Table 1. In this paper, our first aim is to extend the Calta’s result to all of these strata.

Theorem A. Let (Y, q) be quadratic differential in one of the strata in Table 1. If (Y, q) is completely
algebraically periodic then it is completely periodic in the sense of Calta.

Theorem B. Let K be either Q or a real quadratic field. For any stratum Q(κ) in Table 1, the set
of algebraically completely periodic quadratic differentials in Q(κ), with homological directions in
KP1 up to renormalization by GL+(2,R) is a union of GL+(2,R)-invariant submanifolds of complex
dimension 3. Such invariant submanifolds are called Prym eigenform loci (see Section 2 for precise
definitions).

The techniques developed in this paper for the proof of Theorems A and B actually provide us with
some precise information on the flow in directions for which the SAF-invariant vanishes: we get some
topological properties of the directional flows on surfaces in some particular strata. Here we introduce
the terminology of [ChHM08].

We say that a translation surface satisfies the topological dichotomy if for every direction, either
the flow is minimal, or every flow line is closed or a saddle connection. Observe that this is equivalent
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to saying that if there is a saddle connection in some direction, then there is a cylinder decomposi-
tion of the surface in that direction. Obviously a Veech surface satisfies the topological dichotomy.
First examples of surfaces satisfying topological dichotomy without being Veech surfaces have been
constructed in [HS04] (see also [McM03b]). All examples are ramified coverings above “true” Veech
surfaces. Our next Theorem provides us with new examples which do not arise from a covering
construction above Veech surfaces (see Theorem 1.13).

Theorem C. Let (Y, q) be a quadratic differential in Q(8) or Q(−1, 2, 3). Assume that all the periods
(relative and absolute) of the orientation double cover of (Y, q) belong to K(ı), where K is either Q
or a real quadratic field. If (Y, q) is algebraically completely periodic then it satisfies the topological
dichotomy. In particular, if (Y, q) is stabilized by a pseudo-Anosov homeomorphism, then it satisfies
the topological dichotomy.

Observe that Theorem C is false for other strata. Moreover, “most” of surfaces of Theorem C are
not Veech surfaces, namely:

Theorem D. The followings two hold:

(1) There are quadratic differentials in the strata Q(8) and Q(−1, 2, 3) satisfying the topological
dichotomy without being Veech surfaces.

(2) There are quadratic differentials in each of the strataQ(−13, 1, 2),Q(−1, 2, 3), andQ(8) whose
the Veech group is infinitely generated and of the first kind.

Finally our techniques also provide us with the following result for quadratic differentials in a
slightly larger family of strata (compared to Theorem C).

Theorem E. For any quadratic differential in the collection of strata Q(−13, 1, 2), Q(−1, 2, 3), and
Q(8) the limit set of its Veech group is either the empty set, a single point, or the full circle at infinity.

1.2. Prym loci and Prym eigenforms. From the work of McMullen [McM07], it turns out that all
completely periodic surfaces in genus two belong to the loci of eigenforms for real multiplication.
Later McMullen [McM06] proved the existence of similar loci in genus 3, 4 and 5. These loci are
of interest since they are closed GL+(2,R)-invariant sub-manifolds in the moduli spaces of Abelian
differentials. We briefly recall the definitions of those objects here below.

1.2.1. Prym forms. If X is a compact Riemann surface, and τ : X → X is a holomorphic involution
of X, we will denote by Ω(X) the set of of holomorphic 1-forms (Abelian differentials) on X and by
Ω−(X, τ) := ker(τ + Id) ⊂ Ω(X).

For any integer vector κ = (k1, . . . , kn) with ki ≥ 0 and
∑

ki = 2g − 2, we will denote by H(κ) the
moduli space of translation surfaces having n singularities with multiplicities κ. The set of Prym forms
Prym(κ) ⊂ H(κ) is the subset of pairs (X, ω) ∈ H(κ) such that there exists an involution τ : X → X
satisfying τ∗ω = −ω i.e. ω ∈ Ω−(X, τ), and dimCΩ−(X, τ) = 2. We sometimes add a superscript to the
vector κ, which could be “even”, “odd”, or “hyp”, to specify the corresponding component ofH(κ) in
which the Prym locus lies (see [KZ03] for the classification of connected components ofH(κ)).

Any translation surface of genus two is a Prym form: Prym(2) = H(2) and Prym(1, 1) = H(1, 1)
(the hyperelliptic involution is by definition a Prym involution, which is actually unique). See Figure 7
for an example.
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Let Y be the quotient of X by the Prym involution and π the corresponding (possibly ramified)
double covering from X to Y . By push forward, there exists a meromorphic quadratic differential q on
Y (with at most simple poles) so that π∗q = ω2. Let κ′ = (d1, . . . , dr) be the integer vector that records
the orders of the zeros and poles of q. Then there is a GL+(2,R)-equivariant bijection between Q(κ′)
and Prym(κ) [L04, p. 6].

All the strata of quadratic differentials of dimension 5 are recorded in Table 1. It turns out that if
(Y, q) is a quadratic differential in one of those strata, and (X, ω) is its orientation double cover, then
(letting τ be the deck transformation) dimCΩ−(X, τ) = genus(X) − genus(Y) = 2. Hence (X, ω) is by
definition a Prym form.

Example 1.1. Let q be a quadratic differential on a Riemann surface Y having at most simple poles.
We assume that q is not the global square of any Abelian differential. Let π : X → Y be the orientation
double cover. If genus(X)−genus(Y) = 2 then the deck transformation τ on X provides a natural Prym
form (X, τ, ω) where ω =

√
π∗q ∈ Ω(X)−.

For instance, if (Y, q) ∈ Q(−12, 6) then the orientation cover belongs to Prym(3, 3). The same is
true for (Y, q) ∈ Q(−16, 2): the orientation cover (X, ω) ∈ Prym(1, 1) = H(1, 1). On the other hand,
we have a one to one map from Q(−16, 2) to Q(−12, 6) (given by taking double cover ramified over the
double zero and five poles [L04]). This explains the notation Prym(3, 3) ' H(1, 1).

Q(κ′) Prym(κ) g(X)
Q(−16, 2) Prym(1, 1) = H(1, 1) 2
Q(−12, 6) Prym(3, 3) ' H(1, 1) 4
Q(1, 1, 2) Prym(12, 22) ' H(02, 2) 4
Q(−14, 4) Prym(2, 2)odd 3

Q(κ′) Prym(κ) g(X)
Q(−13, 1, 2) Prym(1, 1, 2) 3
Q(−1, 2, 3) Prym(1, 1, 4) 4
Q(8) Prym(4, 4)even 5
Q(−1, 1, 4) Prym(2, 2, 2)even 4

TABLE 1. Prym loci for which the associated stratum of quadratic differentials Q(κ′)
has (complex) dimension 5.

1.2.2. Prym eigenforms. We now give the definition of Prym eigenforms. We define

Prym(X, τ) := (Ω−(X, τ))∗/H1(X,Z)−,

where H1(X,Z)− := {c ∈ H1(X,Z) : τ(c) = −c}. Prym(X, τ) will be called the Prym variety of X, it is
a sub-Abelian variety of the Jacobian variety Jac(X) := Ω(X)∗/H1(X,Z).

Recall that a quadratic order is a ring isomorphic toOD = Z[X]/(X2+bX+c), where D = b2−4c > 0
(quadratic orders being classified by their discriminant D).

Definition 1.2 (Real multiplication). Let A be an Abelian variety of dimension 2. We say that A admits
a real multiplication by OD if there exists an injective homomorphism i : OD → End(A), such that
i(OD) is a self-adjoint, proper subring of End(A) (i.e. for any f ∈ End(A), if there exists n ∈ Z\{0}
such that n f ∈ i(OD) then f ∈ i(OD)).

Definition 1.3 (Prym eigenform). For any quadratic discriminant D > 0, we denote by ΩED(κ) the
set of (X, ω) ∈ Prym(κ) such that dimC Prym(X, τ) = 2, Prym(X, τ) admits a multiplication by OD, and
ω is an eigenvector of OD. Surfaces in ΩED(κ) are called Prym eigenforms.
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Prym eigenforms exist in each Prym locus described in Table 1, as real multiplications arise natu-
rally with pseudo-Anosov homeomorphisms commuting with τ (see Theorem 7.1). It follows from the
work of McMullen [McM06], that each ΩED(κ) is a GL(2,R)-invariant submanifold of Prym(κ). It
turns out that for Prym(κ) in Table 1, the loci ΩED(κ) have complex dimension 3 (see Proposition 3.1).

1.3. Other formulations of main results. Because of the correspondence between quadratic differ-
entials in Table 1 and Prym forms, we can now reformulate our main results in terms of Prym forms.

Theorem 1.4. Any Prym eigenform in the Prym loci of Table 1 is completely algebraically periodic.

Note that the cases (1) − (2) − (3) follow from the work of Calta and McMullen. Conversely, we
have

Theorem 1.5. Let (X, ω) ∈ Prym(κ) where Prym(κ) is given by Table 1. Assume that (X, ω) is com-
pletely algebraically periodic, and the set of homological directions of (X, ω) is KP1, where K is either
Q, or a real quadratic field. Then the surface (X, ω) is a Prym eigenform i.e. (X, ω) ∈ ΩED(κ) for
some discriminant D.

To prove Theorem 1.5, we need the following theorem which relates complete algebraic periodicity
and complete periodicity.

Theorem 1.6. Let (X, ω) be a translation surface in one of the Prym loci given by the cases of Table 1.
If (X, ω) is completely algebraically periodic, then it is completely periodic in the sense of Calta.

As a consequence of Theorems 1.4 and 1.6, we draw

Corollary 1.7. Every Prym eigenform in the loci shown in Table 1 is completely periodic in the sense
of Calta.

Remark 1.8. In a recent preprint [Wri13], A. Wright obtains an independent proof of Corollary 1.7,
the result of Wright is actually more general than this as it applies to Prym eigenform loci of any
dimension.

The key ingredient of Wright’s approach is the fact that the tangent space of ΩED(κ) at a point
(X, ω) projects to a subspace of complex dimension two in H1(X,C). Our approach to prove Theo-
rem 1.6 (which implies Corollary 1.7) is different from Wright’s, it is based on a careful investigation
of the geodesic foliation in directions for which the S AF-invariant vanishes. In particular, it does not
require any assumption on the GL+(2,R)-orbit closure of the surface, and hence can be used to prove
the complete periodicity of surfaces which are not Prym eigenforms.

In Appendix A, using similar ideas, we will show that for surfaces in Hhyp(4), algebraic com-
plete periodicity also implies complete periodicity in the sense of Calta, this implies the existence of
completely periodic surfaces whose GL+(2,R)-orbit is dense inHhyp(4).

To prove Theorem 1.6, we will consider linear involutions defined over 6 letters (see Section 4 for
more details) for which the S AF-invariant vanishes. It turns out that in some particular cases, one can
improve the complete periodicity in the sense of Calta. Namely, as by-products of our strategy, we
will show the following theorems, which only involve some strata in Table 1.

Theorem 1.9. Let (X, ω) be a Prym form in Prym(4, 4)even or Prym(1, 1, 4) having all the periods
(relative and absolutes) in K(ı), where K is either Q or a real quadratic field. If (X, ω) is completely
algebraically periodic then (X, ω) satisfies the topological dichotomy. Moreover, a direction θ is
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periodic on (X, ω) if and only if θ ∈ KP1. In particular, if the Veech group SL(X, ω) of (X, ω) contains
a hyperbolic element, then (X, ω) satisfies the topological dichotomy.

Remark 1.10. The statement of Theorem 1.9 is not true for all Prym loci. For instance, every com-
pletely algebraically periodic surface (X, ω) ∈ ΩED(1, 1) with relative and absolute periods in K(ı),
which is not a Veech surface, admits an irrational splitting into two isogenous tori [ChM06]. In
particular, the topological dichotomy fails for such surfaces.

We will show (see Section 9) that if (X, ω) ∈ Prym(1, 1, 2) t Prym(1, 1, 4) t Prym(4, 4)even is
stabilized by an affine pseudo-Anosov homeomorphism, then the set of directions θ ∈ KP1 that are
fixed by parabolic elements in the Veech group is dense in RP1. As corollaries, we get

Theorem 1.11. Let (X, ω) be a Prym form in Prym(4, 4)even t Prym(1, 1, 4) t Prym(1, 1, 2). Then the
limit set of the Veech group SL(X, ω) is either the empty set, a single point, or the full circle at infinity.

and

Theorem 1.12.
(1) There exist surfaces in Prym(4, 4)even t Prym(1, 1, 4) which satisfy the topological dichotomy

but without being Veech surfaces.
(2) There exist Teichmüller discs generated by Prym forms in the loci Prym(1, 1, 2), Prym(1, 1, 4),

and Prym(4, 4)even whose Veech group is infinitely generated and of the first kind.

Finally, we will show that our results give rise to surfaces which have connection points (in the sense
of Hubert and Schmidt [HS04]) but are not lattice surfaces. Recall that a (non singular) point p is a
connection point of a translation surface if every separatrix passing through p is a saddle connection.

Theorem 1.13. Let (X, ω) be a Prym form in Prym(4, 4)even or Prym(1, 1, 4) having all the periods
(relative and absolutes) in K(ı), where K is either Q or a real quadratic field. Then any (non singular)
point p ∈ X having coordinates in K[ı] is a connection point.

Proof of Theorem 1.13. If p has homology in K[ı] then any segment from a singularity to p has slope
in K. By Theorem 1.9, it is a periodic direction, hence the segment is part of a saddle connection. �

1.4. Outline of the paper. We conclude by sketching the proof of our results. It involves the dy-
namics of interval exchange transformations and linear involutions, the SAF-invariant and the kernel
foliation in Prym loci.

(1) To prove Theorem 1.4 we use an invariant introduced by McMullen similar to the SAF-
invariant: the Galois flux. Let T be an interval exchange transformation (IET), and let
λα, tα, α ∈ A, be respectively the lengths of the exchanged intervals and their translation
lengths. The Galois flux of T is defined only if the translation lengths tα lie in a real quadratic
field K ⊂ R, namely

flux(T ) =
∑
α∈A

λαt′α, where t′α is the Galois conjugate of tα.

It turns out (see Theorem 2.6) that if (X, ω) ∈ ΩED(κ) and having all absolute periods in
K(ı) then for any θ ∈ KP1,flux(Tθ) = 0, where Tθ is the IET defined by the first return map
of the flow in direction θ to a transversal interval in X. The two invariants are related by
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Proposition 2.8. Namely, under the additional assumption: if the relative periods of ω are also
in K(ı) then flux(Tθ) = 0 implies S AF(Tθ) = 0.

Now if the relative periods of ω are not in K(ı) then we can “perturb” ω in ΩED(κ) to get
a new form ω′ (by using the kernel foliation, see Section 3) so that the relative periods of
ω′ belong to K(ı). Thus by the preceding discussion S AF(T ′θ) = 0 ( T ′θ is the IET defined
by flow in direction θ on X′).We then conclude with Proposition 3.3: which states that the
“perturbation” leaves the S AF-invariant unchanged. This proves Theorem 1.4.

(2) It is well known that linear flows on translation surfaces are encoded by interval exchange
transformations. Since we will work with non-orientable measured foliations defined by qua-
dratic differentials, it will be more convenient to use the coding provided by linear involutions.
By [BL08] one can still define a “first return” of the non-orientable foliation (that is no longer
a flow) to a transverse interval, which gives a linear involution defined over d intervals (see
Section 4). It turns out that the number d of exchanged intervals is related to the dimension of
the Prym locus, namely d = dimC Prym(κ) + 1.

Obviously complete periodicity for a foliation or for its associated linear involution is the
same. In view of this, we will deduce Theorem 1.6 from results on linear involutions (see
Section 5). We briefly sketch a proof here. Let (X, ω) ∈ Prym(κ) be a Prym form which has
a vertical cylinder (we normalize so that any homological direction belongs to a quadratic
field). We will consider the cross section T of the vertical foliation to some full transversal
interval on the quotient X/〈τ〉. Let us resume the situation: T is a linear involution defined
over d = 6 letters (for all the Prym loci in Table 1, dimC Prym(κ) = 5) having a periodic orbit,
and S AF(T ) = 0. We want to show that T is completely periodic.

If T is defined over 2 or 3 intervals then the proof is immediate. We prove the assertion for
d = 6 by induction on the number of intervals, we pass from d intervals to d − 1 intervals by
applying the Rauzy induction (which preserves the SAF-invariant, see Section 5).

(3) Theorem 1.9 is a refinement of Theorem 1.6 by inspecting the possible degenerations of lin-
ear involutions (see Section 8). We actually show that for surfaces in Prym(4, 4)even and
Prym(1, 14), complete algebraic periodicity implies topological dichotomy, and the set of pe-
riodic directions coincides with the set of homological directions.

If the Veech group of a Prym form (X, ω) contains a hyperbolic element A, then (X, ω)
belongs to some Prym eigenform locus ΩED (see [McM06], Theorem 3.5), and all the periods
of ω belong to K(ı), where K = Q(Tr(A)) (see [McM03b] Theorem 9.4). Thus (X, ω) is
completely algebraically periodic by Theorem 1.4, and the arguments above show that (X, ω)
satisfies the topological dichotomy.

(4) For the proof of Theorem 1.11, we first remark that if the limit set of the Veech group SL(X, ω)
of (X, ω) contains at least two points, then (X, ω) is stabilized by an affine pseudo-Anosov
homeomorphism φ. It follows that all the relative and absolute periods of ω belong to K(ı),
where K = Q(Tr(Dφ)). To show that the limit set of SL(X, ω) is the full circle at infinity,
it is sufficient to show that the set of directions which are fixed by parabolic elements of
SL(X, ω) is dense in RP1. For the cases of Prym(1, 1, 4) and Prym(4, 4)even, this follows from
Theorem 1.9 together with a criterion for a periodic direction to be parabolic (that is to be
fixed by a parabolic element in SL(X, ω), see Proposition 9.2). For the case Prym(1, 1, 2), this
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follows from a similar result to Theorem 1.9 (see Corollary 8.6), and a careful inspection of
topological models for cylinder decompositions of surfaces in Prym(1, 1, 2) (see Section 9).

(5) To prove Theorem 1.12 we will construct explicitly Prym eigenforms in Prym(1, 1, 2) t
Prym(1, 1, 4)tPrym(4, 4)even with periods in a real quadratic field, for which there are periodic
directions such that the associated cylinder decomposition is not parabolic (that is the ratios
of the cylinder moduli are not all rational numbers). By Theorem 1.9 and Theorem 1.11 such
surfaces satisfy the topological dichotomy and the limit set of the Veech group is dense in RP1.
However, such surfaces are not Veech surfaces, from which we get the desired conclusions.
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2. INTERVAL EXCHANGE, SAH-ARNOUX-FATHI INVARIANT AND MCMULLEN’S FLUX

In this section we recall necessary background on interval exchange transformations and we will
make clear the relations between the SAF-invariant introduced by Arnoux in his thesis [Arn81], the
J-invariant introduced by Kenyon-Smillie [KS00] and Calta [C04], and the flux introduced by Mc-
Mullen [McM03a].

2.1. Interval exchange transformation and SAF-invariant. An interval exchange transformation
(IET) is a map T from an interval I into itself defined as follows: we divide I into finitely many
subintervals of the form [a, b). On each of such interval, the restriction of T is a translation: x 7→ x+ t.
By convention, the map T is continuous from the right at the endpoints of the subintervals. Any
IET can be encoded by a combinatorial data (A, π), where A is a finite alphabet, π = (π0, π1) is
a pair of one-to-one maps πε : A → {1, . . . , d}, d = |A|, together with a vector in the positive
cone λ = (λα)α∈A ∈ R

|A|

>0 . The permutations (π0, π1) encodes how the intervals are exchanged, and
the vector λ encodes the lengths of the intervals. Following Marmi, Moussa, Yoccoz [MMY05], we
denote these intervals by {Iα, α ∈ A}, the length of the interval Iα is λα. Hence the restriction of T to
Iα is T (x) = x + tα for some translation length tα. Observe that tα is uniquely determined by π and λ.

A useful tool to detect periodic IET is given by the Sah-Arnoux-Fathi invariant (SAF-invariant). It
is defined by (see [Arn81]):

S AF(T ) =
∑
α∈A

λα ∧Q tα.

It turns out that if T is periodic then S AF(T ) = 0. However the converse is not true in general.
In the case where T is defined by the first return map of the vertical flow of a translation surface

(X, ω) to a transversal interval I which crosses all the vertical leaves, Arnoux proved the following in
his thesis
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Theorem 2.1 ([Arn81], Theorem 3.5). Set ρ := Re(ω). Let {a1, b1, . . . , ag, bg} be a symplectic basis
of H1(X,Z). Then the S AF-invariant of T satisfies

S AF(T ) =

g∑
i=1

ρ(ai) ∧Q ρ(bi).

In particular, S AF(T ) only depends on the cohomology class of ρ in H1(X,R).

2.2. J-invariant, SAF, and algebraic periodic direction. Let (X, ω) be a translation surface. If P
is a polygon in R2 with vertices v1, . . . , vn which are numbered in counterclockwise order about the
boundary of P, then the J-invariant of P is J(P) =

∑n
i=1 vi∧vi+1 (with the dummy condition vn+1 = v1).

Here ∧ is taken to mean ∧Q and R2 is viewed as a Q-vector space. J(P) is a translation invariant (e.g.
J(P + −→v ) = J(P)), thus this permits to define J(X, ω) by

∑k
i=1 J(Pi) where P1 ∪ · · · ∪ Pk is a cellular

decomposition of (X, ω) into planar polygons (see [KS00]).
The SAF-invariant of an interval exchange is related to the J-invariant as follows. We define a

linear projection Jxx : R2 ∧Q R
2 → R ∧Q R by

Jxx
(( a

b
)
∧

( c
d
))

= a ∧ c.

If T is an interval exchange transformation induced by the first return map of the vertical foliation on
(X, ω) (on a transverse interval I) then S AF(T ) = Jxx(X, ω). Note that the definition does not depend
of the choice of I if the interval meets every vertical leaf (see [Arn81]). Hence this allows us to define

S AF(X, ω) = S AF(T ),

and we will say that S AF(X, ω) is the SAF-invariant of (X, ω) in the vertical direction.

Following Calta [C04], one also defines the SAF-invariant of (X, ω) in any direction k ∈ RP1

(k , ∞ =
(

0
1

)
) as follows. Let g ∈ GL+(2,R) be a matrix that sends the vector

(
1
k

)
to the vector

(
0
1

)
.

Then we define the SAF-invariant of (X, ω) in direction k to be Jxx(g · (X, ω)).

2.3. Galois flux. For the remaining of this section K will be a real quadratic field. There is a unique
positive square-free integer f such that K = Q(

√
f ). The Galois conjugation of K is given by u +

v
√

f 7→ u−v
√

f , u, v ∈ Q. For any x ∈ K, we denote by x′ its Galois conjugate. An interval exchange
transformation T is defined over K if its translation lengths tα are all in K. In [McM03b], McMullen
defines the Galois flux of an IET T defined over K to be

flux(T ) =
∑
α∈A

λαt′α.

Observe that for all n ∈ N, flux(T n) = nflux(T ). In particular flux(T ) = 0 if T is periodic. The flux is
closely related to the SAF-invariant as we will see.

2.4. Flux of a measured foliation. Let (X, ω) be a translation surface. The real form ρ = Re(ω)
defines a measured foliation Fρ on X: the leaves of Fρ are vertical geodesics of the flat metric defined
by ω. For any interval I, transverse to Fρ, the cross section of the flow is an IET. We say that I is full
transversal if it intersects all the leaves of Fρ. If all the absolute periods of ρ belong to the field K,
that is [ρ] ∈ H1(X,K) ⊂ H1(X,R), then the first return map to I is defined over K, and we have



10 ERWAN LANNEAU AND DUC-MANH NGUYEN

Theorem 2.2 (McMullen [McM03b]). Let T be the first return map of Fρ to a full transversal interval.
If [ρ] ∈ H1(X,K), then we have

flux(T ) = −

∫
X
ρ ∧ ρ′,

where ρ′ ∈ H1(X,K) is defined by ρ′(c) = (ρ(c))′, for all c ∈ H1(X,Z). In particular, the flux is the
same for any full transversal interval. In this case, we will call the quantity −

∫
X ρ ∧ ρ

′ the flux of the
measured foliation Fρ, or simply the flux of ρ, and denote it by flux(ρ).

2.5. Complex flux. Let K(ı) be the extension of K by ı =
√
−1. Elements of K(ı) have the form

k = k1 + ık2, k1, k2 ∈ K. We define (k1 + ık2)′ = k′1 + ık′2, and k1 + ık2 = k1 − ık2. Suppose that
ω ∈ Ω(X) satisfies [ω] ∈ H1(X,K(ı)) and ∫

X
ω ∧ ω′ = 0,

(ω′ is an element of H1(X,K(ı))). The complex flux of ω is defined by

Flux(ω) = −

∫
X
ω ∧ ω′.

Note that we always assume that
∫

X ω ∧ ω
′ = 0 when we consider Flux(ω). This condition holds, for

example, if [ω′] is represented by a holomorphic 1-form.
In the following proposition, we collect the important properties of the complex flux:

Proposition 2.3 (McMullen [McM03b]).
a) For any k ∈ K(ı), Flux(kω) = kk

′
Flux(ω).

b) If ρ = Re(ω), then

flux(ρ) = −
1
4

∫
X

(ω + ω) ∧ (ω′ + ω′) =
1
2

Re(Flux(ω)).

(here we used the condition
∫

X ω ∧ ω
′ = 0).

c) Assume that Flux(ω) = 0. Let k = k2/k1 ∈ KP1, k1, k2 ∈ K, and ρ = Re((k1 + ık2)ω). Then Fρ
is the foliation by geodesic of slope k in (X, ω), and we have

flux(Fρ) = flux(ρ) =
1
2

Re((k1 + ık2)ω) =
1
2

Re((k1 + ık2)(k′1 − ık
′
2)Flux(ω)) = 0.

2.6. Periodic foliation. Given a cylinder C in (X, ω), we denote its width and height by w(C) and h(C)
respectively. If the vertical foliation is completely periodic, then X is decomposed into cylinders in the
this direction. It turns out that the imaginary part of Flux(ω) provides us with important information
on the cylinders. Namely the following is true:

Theorem 2.4 (McMullen [McM03b]). Assume that [ω] ∈ H1(X,K(ı)),
∫
ω∧ω′ = 0, and the foliation

Fρ is periodic, where ρ = Re(ω). Let {C j}1≤ j≤m be the the vertical cylinders of X. Then we have∑
1≤ j≤m

h(C j)w(C j)′ =
1
2

Im(Flux(ω)).

Recall that we have N(k) = kk′ ∈ Q, for any k ∈ K. For any cylinder C, the modulus of C is defined
by µ(C) = h(C)/w(C). A direct consequence of Theorem 2.4 is the following useful corollary.
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Corollary 2.5. If Fρ is periodic, and the complex flux of ω vanishes, then the moduli of the vertical
cylinders satisfy the following rational linear relation∑

1≤ j≤m

µ(C j)N(w(C j)) = 0.

2.7. Prym eigenform and complex flux. A remarkable property of Prym loci is that the complex
flux of a Prym eigenform (of a real quadratic order) vanishes.

Theorem 2.6 ([McM03b] Theorem 9.7). Let (X, ω) be a Prym eigenform belonging to some locus
ΩED(κ). After replacing (X, ω) by A · (X, ω) for a suitable A ∈ GL+(2,R), we can assume that all the
absolute periods of ω are in K(ı), where K = Q(

√
D). We have∫

X
ω ∧ ω′ = 0 and Flux(ω) = 0.

Proof. Let T be a generator of the order OD. We have a pair of 2-dimensional eigenspaces S ⊕ S ′ =

H1(X,R)− on which T acts with eigenvalues t, t′ respectively. Since T is self-adjoint, S and S ′ are
orthogonal with respect to the cup product.

The eigenspace S is spanned by Re(ω) and Im(ω). These forms lie in H1(X,K). The Galois
conjugate of any form α ∈ H1(X,K) ∩ S satisfies Tα′ = t′α′, and hence belongs to S ′. In particular
Re(ω)′ and Im(ω)′ are orthogonal to Re(ω) and Im(ω). This shows∫

X
ω ∧ ω′ = 0 and Flux(ω) = −

∫
X
ω ∧ ω′ = 0.

�

Corollary 2.7. If (X, ω) is a Prym eigenform for a quadratic order OD such that [ω] ∈ H1(X,K(ı)),
where K = Q(

√
D), then for any k ∈ KP1, the flux of the foliation by geodesics in direction k vanishes.

2.8. Relation between SAF-invariant and complex flux.

Proposition 2.8. Let (X, ω) be as in Theorem 2.6. Assume that all the relative periods of ω are also
in K(ı). Then flux(ω) = 0 implies S AF(ω) = 0. Here, flux(ω) and S AF(ω) denote the corresponding
invariants of the vertical flow on (X, ω).

Proof. Let I be a full transversal interval for the vertical flow, and T be the IET induced by the first
return map on I. We denote the lengths of the permuted intervals Iα by λα and the translation lengths
by tα so that T (x) = x + tα for any x ∈ Iα. The assumption on relative periods implies that ∀α ∈ A,
λα ∈ K. Since K = Q(

√
f ), then we can write tα = xα + yα

√
f with xα, yα ∈ Q. Then t′α = xα − yα

√
f .

The condition flux(T ) = 0 is then equivalent to∑
α∈A

λαxα =
√

f
∑
α∈A

λαyα.

Since λα ∈ K, it follows∑
α∈A

λαyα = A + B
√

f and
∑
α∈A

λαxα = f B + A
√

f with A, B ∈ Q.

By definition of the S AF-invariant, we have

S AF(T ) = (
∑
α∈A

λαxα) ∧Q 1 + (
∑
α∈A

λαyα) ∧Q
√

f = A
√

f ∧Q 1 + A ∧Q
√

f = 0.
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�

Corollary 2.9. Let (X, ω) be a Prym eigenform in ΩED(κ). Assume that all the periods of ω belong
to K(ı), where K = Q(

√
D). Then (X, ω) is completely algebraically periodic.

Proof. We first remark that the set of homological directions of (X, ω) is KP1. For any direction
θ ∈ KP1, there exists a matrix gθ ∈ GL+(2,K) that maps θ to the vertical direction. Note that all
the periods of gθ · ω are in K(ı). From the properties of flux, we know that flux(gθ · ω) = 0, thus
S AF(gθ · ω) = 0, which implies that the S AF-invariant vanishes in direction θ. �

3. INVARIANCE OF SAF ALONG KERNEL FOLIATION LEAVES

3.1. Kernel foliation. Here we briefly recall the kernel foliation for Prym loci (see [EMZ03, MZ08,
C04, LN13c, MW08] and [Z06, §9.6] for related constructions). The kernel foliation was introduced
by Eskin-Masur-Zorich, and was certainly known to Kontsevich.

Let (X, ω) be a translation surface having several distinct zeros. The intersection of the leaf of the
kernel foliation through (X, ω) with a neighborhood of (X, ω) consists of surfaces (X′, ω′) that share
the same absolute periods as (X, ω), i.e. for any c ∈ H1(S ,Z), where S is the base topological surface
homeomorphic to both X and X′, we have ω(c) = ω′(c).

One can get such a surface by the following construction: choose a zero P of ω and ε > 0 small
enough so that the set D(P, ε) = {x ∈ X,d(P, x) < ε} is an embedded disc in X and disjoint from all
the other zeros of ω. Assume that P is a zero of order k, then D(P, ε) can be constructed from 2(k + 1)
half-discs as described in the left part of Figure 1. Pick a vector w ∈ C, 0 < |w| < ε, and cut D(P, ε)
along the rays in direction ±w, we get 2(k + 1) half-discs which are glued together such that all the
centers are identified with P. We modify the metric structure of D(P, ε) as follows: in the diameter
of each half-disc, there is a unique point P′ such that

−−→
PP′ = w, we can glue the half-discs in such a

way that all the points P′ are identified. Let us denote by D′ the domain obtained from this gluing.
We can glue D′ to X \ D(P, ε) along ∂D′, which is the same as ∂D(P, ε). We then get a translation
surface (X′, ω′) which has the same absolute periods as (X, ω), and satisfies the following condition:
if c is a path in X joining another zero of ω to P, and c′ is the corresponding path in X′, then we have
ω(c′) = ω(c) + w. In this situation, we will say that P is moved by w. By definition (X′, ω′) lies in the
kernel foliation leaf through (X, ω).

Let us now describe the kernel foliation in Prym loci in Table 1. Let (X, ω) be a translation surface
in a Prym locus given in Table 1. We first observe that either ω has two zeros, in which case the zeros
are permuted by the Prym involution τ, or ω has 3 zeros, two of which are permuted by τ, the third
one is fixed. In both cases, let us denote the pair of permuted zeros by P1, P2. Given ε and w as
above, to get a surface (X′, ω′) in the same leaf, it suffices to move P1 by w/2 and move P2 by −w/2.
Indeed, by assumptions, the Prym involution exchanges D(P1, ε) and D(P2, ε). Let D′1 and D′2 denote
the new domains we obtain from D(P1, ε) and D(P2, ε) after modifying the metric. It is easy to check
that D′1 and D′2 are symmetric, thus the involution in X \ (D(P1, ε) t D(P2, ε)) can be extended to
D′1 t D′2. Therefore we have an involution τ′ on X′ such that τ′∗ω′ = −ω′, which implies that (X′, ω′)
also belongs to the same Prym locus as (X, ω).

In what follows we will denote the surface (X′, ω′) obtained from this construction by (X, ω) + w
(from w small). Let c be a path on X joining two zeros of ω, and c′ be the corresponding path in X′.
Then we have
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• if two endpoints of c are exchanged by τ then ω′(c′) − ω(c) = ±w,
• if one endpoint of c is fixed by τ, but the other is not, then ω′(c′) − ω(c) = ±w/2.

The sign of the difference is determined by the orientation of c.

w

FIGURE 1. Moving a zero by a vector w ∈ R2

3.2. Neighborhood of a Prym eigenform. We first show

Lemma 3.1. For any Prym locus Prym(κ) in Table 1, and any discriminant D ∈ N, D ≡ 0, 1 mod 4,
if ΩED(κ) , ∅, then dimCΩED(κ) = 3.

Proof. Denote by Σ the set of zeros of ω. Let H1(X,C)− and H1(X,Σ;C)− denote the eigenspaces of
τ with the eigenvalue −1 in H1(X,C) and H1(X,Σ;C) respectively. In a local chart which is given by
a period mapping, a Prym form in Prym(κ) close to (X, ω) corresponds to a vector in H1(X,Σ;C)−.
Note that dimC H1(X,C)− = 4 and dimC H1(X,Σ;C)− = 5, and we have a natural surjective linear map
ρ : H1(X,Σ;C)− → H1(X,C)−.

Let Ŝ = C · [Re(ω)] ⊕ C · [Im(ω)] ⊂ H1(X,C)−, where [Re(ω)] and [Im(ω)] are the cohomology
classes in H1(X,R) represented by Re(ω) and Im(ω). Since ω is an eigenform of a quadratic order
OD, there exists an endomorphism T of H1(X;C)− which generates OD such that Ŝ is an eigenspace
of T for some real eigenvalue. A Prym eigenform in ΩED(κ) close to (X, ω) corresponds to a vector
in ρ−1(Ŝ ). Since dimC Ŝ = 2 and dimC ker ρ = 1, the lemma follows. �

Corollary 3.2. For any (X, ω) ∈ ΩED(κ), if (X′, ω′) is a Prym eigenform in ΩED(κ) close enough to
(X, ω), then there exists a unique pair (g,w), where g ∈ GL+(2,R) close to Id, and w ∈ R2 with |w|
small, such that (X′, ω′) = g · ((X, ω) + w).

Proof. Let (Y, η) = (X, ω) + w, with |w| small, be a surface in the leaf of the kernel foliation through
(X, ω). We denote by [ω] and [η] the classes of ω and η in H1(X,Σ;C)−. Then we have

[η] − [ω] ∈ ker ρ,

where ρ : H1(X,Σ;C)− → H1(X,C)− is the natural surjective linear map. On the other hand, the
action of g ∈ GL+(2,R) on H1(X,Σ;C)− satisfies

ρ(g · [ω]) = g · ρ([ω]).

Therefore the leaves of the kernel foliation and the orbits of GL+(2,R) are transversal. Since their
dimensions are complementary, the corollary follows. �
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3.3. Kernel foliation and SAF-invariant. In the remaining of this section, (X, ω) is a translation
surface in Prym(κ) where

κ ∈
{
(1, 1), (3, 3), (2, 2)odd, (1, 1, 2), (4, 4)even, (2, 2, 2)even, (1, 1, 4)

}
.

As we have seen, moving in the kernel foliation leaves does not change the cohomology class
[ω] ∈ H1(X,C). Therefore, the following proposition is an immediate consequence of Theorem 2.1
(see also [C04]).

Proposition 3.3. For any (X, ω) ∈ Prym(κ) there exists ε > 0 such that for any w ∈ C, with |w| < ε

S AF(X, ω) = S AF((X, ω) + w).

As a consequence, we draw our first theorem.

Proof of Theorem 1.4. We want to show that every Prym eigenform (X, ω) is completely algebraically
periodic. Since ω is an eigenform for a real quadratic order OD, up to action of GL+(2,R) we can
assume that all the absolute periods of ω are in K(ı), where K = Q(

√
D). As a consequence, the set

of homological directions of (X, ω) is KP1.

If D is a square, then K = Q, in which case, we can assume that all the absolute periods of ω belong
to Z⊕ ıZ. Thus (X, ω) is a ramified covering of the standard torus C/(Z⊕ ıZ). It follows that for every
direction θ ∈ Q ∪ {∞}, the linear flow in direction θ is periodic, which means that the SAF-invariant
vanishes. Therefore, (X, ω) is completely algebraically periodic.

For the case where K is a real quadratic field, given a direction k ∈ KP1, as usual we normalize
so that k is the vertical direction (0 : 1). Let T be the first return map of the vertical flow to a full
transversal interval. All what we need to show is that S AF(T ) = 0.

Theorem 2.6 ensures that flux(ω) = 0. However, in view of applying Proposition 2.8 we need ω
to have relative periods in K(ı), which is not necessary true. To bypass this difficulty we first apply
Proposition 3.3. One remarks that all the relative periods of ω are determined by a chosen relative
period and the absolute ones. Hence we can choose a small suitable vector w ∈ R2 such all the relative
coordinates of (X, ω) + w are in K(ı) and Proposition 3.3 applies i.e. S AF(X, ω) = S AF((X, ω) + w).
Since (Y, η) = (X, ω) + w is still an eigenform, again Theorem 2.6 gives flux(η) = 0. But now by
Proposition 2.8, we draw S AF((Y, η)) = 0. Hence the SAF-invariant of the vertical flow on (X, ω) also
vanishes and Theorem 1.4 is proven. �

4. INTERVAL EXCHANGE TRANSFORMATIONS AND LINEAR INVOLUTIONS

4.1. Linear involutions. The first return map of the vertical flow on a translation surface (X, ω) to an
interval I defines an interval exchange transformation (see Section 2.1). Such a map is encoded by a
partition of I into d subintervals that we label by letters in some finite alphabetA, and a permutation
π of A. The length of these intervals is recorded by vector λ with positive entries. The vector λ is
called the continuous datum of T and π is called the combinatorial datum (we will write T = (π, λ)).
We usually represent π by a table of two lines (hereA = {1, . . . , d}):

π =

(
1 2 . . . d

π−1(1) π−1(2) . . . π−1(d)

)
.
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When the measured foliation is not oriented, the above construction does not make sense. Never-
theless a generalization of interval exchange maps for any measured foliation on a surface (oriented
or not) was introduced by Danthony and Nogueira [DN88]. The generalizations (linear involutions)
corresponding to oriented flat surfaces with Z/2Z linear holonomy were studied in detail by Boissy
and Lanneau [BL08] (see also Avila-Resende [AR08] for a similar construction). We briefly recall the
objects here.

Roughly speaking, a linear involution encodes the successive intersections of the foliation with
some transversal interval I. We choose I and a positive vertical direction (equivalently, a choice of left
and right ends of I) that intersect every vertical geodesics. The first return map T0 : I → I of vertical
geodesics in the positive direction is well defined, outside a finite number of points (called singular
points) that correspond to vertical geodesics that stop at a singularity before intersecting again the
interval I. This equips I with is a finite open partition (Iα) so that T0(x) = ±x + tα.

However the map T0 alone does not properly correspond to the dynamics of vertical geodesics since
when T0(x) = −x + tα on the interval Iα, then T 2

0 (x) = x, and (x,T0(x),T 2
0 (x)) does not correspond to

the successive intersections of a vertical geodesic with I starting from x. To fix this problem, we have
to consider T1 the first return map of the vertical geodesics starting from I in the negative direction.
Now if T0(x) = −x + ci then the successive intersections with I of the vertical geodesic starting from
x will be x,T0(x),T1(T0(x)). . .

Definition 4.1. Let f be the involution of I × {0, 1} given by f (x, ε) = (x, 1 − ε). A linear involution is
a map T , from I×{0, 1} into itself, of the form f ◦ T̃ , where T̃ is an involution of I×{0, 1} without fixed
point, continuous except on a finite set of point ΣT , and which preserves the Lebesgue measure. In this
paper we will only consider linear involutions with the following additional condition: the derivative
of T̃ is 1 at (x, ε) if (x, ε) and T̃ (x, ε) belong to the same connected component, and −1 otherwise.

Remark 4.2. A linear involution T that preserves I×{0} corresponds precisely to an interval exchange
transformation map T0 (by restricting T to I × {0}). Therefore, we can identify the set of interval
exchange maps with a subset of the linear involutions.

As for interval exchange maps, a linear involution T is encoded by a combinatorial datum called
generalized permutation and by continuous data. This is done in the following way: I × {0}\ΣT is
a union of l open intervals I1 t . . . t Il, where we assume by convention that Ii is the interval at the
place i, when counted from the left to the right. Similarly, I × {1}\ΣT is a union of m open intervals
Il+1 t . . . t Il+m. For all i, the image of Ii by the map T̃ is a interval I j, with i , j, hence T̃ induces
an involution without fixed points on the set {1, . . . , l + m}. To encode this involution, we attribute to
each interval Ii a symbol such that Ii and T̃ (Ii) share the same symbol. Choosing the set of symbol
to be A, we get a two-to-one map π : {1, . . . , l + m} → A, with d := |A| = l+m

2 . Note that π is not
uniquely defined by T since we can compose it on the left by any permutation of the alphabetA. The
continuous data of T is a real vector λ = (λα)α∈A with positive entries, which records the lengths of
the permuted intervals.

Definition 4.3. A generalized permutation of type (l,m), with l + m = 2d, is a two-to-one map π :
{1, . . . , 2d} → A to some finite alphabet A. We will usually represent such generalized permutations
by a table of two lines of symbols, with each symbol appearing exactly two times.

π =

(
π(1) . . . π(l)

π(l + 1) . . . π(l + m)

)
.
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We will call top (respectively bottom) the restriction of a generalized permutation π to {1, . . . , l} (re-
spectively {l + 1, . . . , l + m}) where (l,m) is the type of π.

In the table representation of a generalized permutation, a symbol might appear two times in the
same line (see Example 4.6 below). Therefore, we do not necessarily have l = m.

Convention. We will use the terminology generalized permutations for permutations that are not
“true” permutations.

4.2. Irreducibility and suspension over a linear involution. Starting from a linear involution T ,
we want to construct a flat surface and a horizontal segment whose corresponding “first return” maps
of the vertical foliation give T . Such surface will be called a suspension over T , and the parameters
encoding this construction will be called suspension data (see [BL08, §2.3] for details).

We say that a linear involution T = (π, λ) admits a suspension data if there exists a collection of
complex numbers ζ = {ζα}α∈A such that

(1) ∀α ∈ A Re(ζα) = λα.
(2) ∀1 ≤ i ≤ l − 1 Im(

∑
j≤i ζπ( j)) > 0

(3) ∀1 ≤ i ≤ m − 1 Im(
∑

1≤ j≤i ζπ(l+ j)) < 0
(4)

∑
1≤i≤l ζπ(i) =

∑
1≤ j≤m ζπ(l+ j).

Given such a collection of complex numbers, one can form two broken lines L0 and L1 (with a finite
number of edges) on the plane: the edge number i of L0 is represented by the complex number ζπ(i),
for 1 ≤ i ≤ l, and L1 starts on the same point as L0, and the edge number j is represented by the
complex number ζπ(l+ j) for 1 ≤ j ≤ m.

If L0 and L1 only intersect on their endpoints, then L0 and L1 define a polygon whose sides come in
pairs and for each pair the corresponding sides are parallel and have the same length. Then identifying
these sides together, one gets a flat surface such that the first return map of the vertical foliation on the
segment corresponding to X in S defines the same linear involution as T .

If π is a “true” permutation defined over d letters, it is well known(see [Vee82, formula 3.7, p 207]
and [Mas82, p 174]) that T admits a suspension if and only if π is irreducible, i.e. π({1, . . . , k}) ,
{1, . . . , k}, 1 ≤ k ≤ d − 1.

It turns out that a similar characterization exists for generalized permutations. For the convenience
of the reader, we state this criterion here.

Definition 4.4. We will say that π is reducible if π admits a decomposition(
A ∪ B ∗ ∗ ∗ D ∪ B
A ∪C ∗ ∗ ∗ D ∪C

)
, A, B,C,D disjoint subsets ofA,

where the subsets A, B,C,D are not all empty and one of the following statements holds
i- No corner is empty.

ii- Exactly one corner is empty and it is on the left.
iii- Exactly two corners are empty and they are both on the same side.

A permutation that is not reducible is irreducible.

For example of irreducible and reducible permutations, see Claim 8.2.
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Theorem 4.5 ([BL08] Theorem 3.2). Let T = (π, λ) be a linear involution. Then T admits a suspen-
sion if and only if the underlying generalized permutation π is irreducible.

4.3. Rauzy induction. The Rauzy induction R(T ) of a linear involution T is the first return map of
T to a smaller interval I′ × {0, 1}, where I′ ( I. More precisely, if T = (π, λ) and (l,m) is the type of
π, we identify I with the interval [0, 1). If λπ(l) , λπ(l+m), then the Rauzy induction R(T ) of T is the
linear involution obtained by the first return map of T to(

0,max{1 − λπ(l), 1 − λπ(l+m)}
)
× {0, 1}.

It is easy to see that this is again a linear involution, defined on d letters.
The combinatorial data of the new linear involution depends only on the combinatorial data of T

and whether λπ(l) > λπ(l+m) or λπ(l) < λπ(l+m). We say that T has type 0 or type 1 respectively. The
combinatorial data of R(T ) only depends on π and on the type of T . This defines two operations R0
and R1 by R(T ) = (Rε(π), λ′), with ε the type of T (see [BL08] for details). We will not use these
operations in this paper.

We stress that the Rauzy-Veech induction is well defined if and only if the two rightmost intervals
do not have the same length i.e. λπ(l) , λπ(l+m). However, when these intervals do have the same
length, we can still consider the first return map of T to(

0, 1 − λπ(l)
)
× {0, 1}.

This is again a linear involution, denoted by Rsing(T ), defined over d − 1 letters. The combinatorics
of Rsing(T ) can be defined as follows: we apply the top operation of the Rauzy induction and then we
erase the last letter of the top. Equivalently, we apply the bottom operation of the Rauzy induction
and then we erase the last letter of the bottom.

Example 4.6. Let T = (π, λ) with π =
(

A A B C
D C B D

)
. Then the combinatorial datum of the Rauzy induc-

tion R(T ) of T is: (
A A B C
D C D B

)
if λC > λD(

A A B
C D C B D

)
if λC < λD(

A A B
D D B

)
if λC = λD

We can formally define the converse of the (singular) Rauzy Veech operations. We proceed as
follows: given some permutation π′ defined over an alphabet A, and a letter α < A, we put α at the
end of the top or bottom line of π′. Then we choose some letter β ∈ A. We replace β by α and we put
the letter β at the end of the bottom of top line of π′. The new permutation π we have constructed is
defined over the alphabet A t {α} and satisfies Rsing(π) = π′. It turns out that all the permutations of
R−1

sing(π′) are constructed as above with one exception: the one given by putting at the end of the top
and bottom line the letter α.

Example 4.7. Let π′ =
(

A B C D
B A D C

)
. For instance if we choose the letter β = B and we put α at the end

of the top line, we get
(

A α C D α
B A D C B

)
or

(
A B C D α
α A D C B

)
. More precisely, if β ranges over all letters ofA we



18 ERWAN LANNEAU AND DUC-MANH NGUYEN

get (up to a permutation of the letters of the alphabetAt {α}):

R−1
sing

(
A B C D
B A D C

)
= {

(
A B C D α
α A D C B

)
,
(

A B C D α
B α D C A

)
,
(

A B C D α
B A α D C

)
,
(

A B C D α
B A D α C

)
,
(

A B C D α
B A D C α

)
,
(

A B C α D
B A D C α

)
,(

α B C D α
B A D C A

)
,
(

A α C D α
B A D C B

)
,
(

A B α D α
B A D C C

)
,
(

A B C α α
B A D C D

)
}.

We end this section with the following easy lemma that will be useful for the sequel.

Lemma 4.8. If π is an irreducible generalized permutation then Rsing(π) is also a generalized permu-
tation.

4.4. Rauzy induction and SAF-invariant. We can naturally extend S AF(.) to linear involutions by
S AF(T ) := S AF(T̂ ) where the transformation T̂ is the double of T (see [AR08] for details). As for
interval exchange maps, if T is periodic then S AF(T ) = 0. The converse is true if |A| = d ≤ 3 (see
Lemma 5.1 for a proof in case d = 3).

Proposition 4.9. A linear involution T defined over d ≤ 2 intervals is completely periodic if and only
if S AF(T ) = 0.

Proof. We fix some alphabetA = {A, B}. There are three possibilities depending on the combinatorics
of the associated permutation: (

A A
B B

)
,
(

A B
A B

)
,
(

A B
B A

)
.

In the first two cases, clearly T is completely periodic (no matter what S AF(T ) is). In the last case T
is a rotation of [0, 1) of some angle θ:

T (x) =

{
x + θ if 0 < x < 1 − θ,
x + θ − 1 if 1 − θ < x < 1.

A direct computation shows S AF(T ) = 2∧Q θ; hence S AF(T ) = 0 implies θ ∈ Q and T is completely
periodic. �

Since the SAF-invariant is a scissors congruence invariant, it is preserved by the Rauzy operations.

Proposition 4.10. Let T be a linear involution. If the Rauzy induction is well defined then T then

S AF(R(T )) = S AF(T ).

Otherwise (if the Rauzy induction is not well defined), then

S AF(Rsing(T )) = S AF(T ).

Moreover, T is completely periodic if and only if R(T ) or Rsing(T ) is completely periodic.

4.5. Rauzy induction and Keane property. We will say that T = (π, λ) is decomposed if there exists
A′ ( A such that both following conditions hold: π =

(
α1 ... αi0 | ∗∗∗

β1 ... β j0 | ∗∗∗

)
, where {α1, . . . , β j0} = A′ tA′,∑i0

i=1 λπ(i) =
∑ j0

j=1 λπ( j), for some 1 ≤ i0 < l and 1 ≤ j0 < m.

This means exactly that T splits into two linear involutions. In this case, we will use the notation
T = T1#T2. Since the SAF-invariant is additive we have

(1) S AF(T ) = S AF(T1) + S AF(T2).
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Definition 4.11. A linear involution has a connection (of length r) if there exist (x, ε) ∈ I × {0, 1} and
r ≥ 0 such that

• (x, ε) is a singularity for T−1.
• T r(x, ε) is a singularity for T .

A linear involution with no connection is said to have the Keane property (also called the infinite
distinct orbit condition or i.d.o.c. property).

An instance of a linear involution with a connection of length 1 is when T is decomposed.
If T = (π, λ) is a linear involution, we will use the notation (π(n), λ(n)) := R(n)(T ) if the n-th iteration

of T by R is well defined, and λ(n)
α for the length of the interval associated to the symbol α ∈ A. The

next proposition is a slightly more precise statement of Proposition 4.2. of [BL08]:

Proposition 4.12. The following statements are equivalent.
(1) T satisfies the Keane property.
(2) R(n)(T ) is well defined for any n ≥ 0 and the lengths of the intervals λ(n) tends to 0 as n tends

to infinity.
Moreover in the above situation the transformation T is minimal.

In addition, if T has a connection and if the Rauzy induction R(n)(T ) is well defined for every n ≥ 0,
then there exists n0 > 0 such that R(n0)(T ) is decomposed.

The following proposition relates connections with vanishing SAF-invariant.

Proposition 4.13. Let T be a linear involution such that the lengths of the exchanged intervals belong
to a 2-dimensional space over Q. If S AF(T ) = 0 then T has a connection.

Proof. Let T̂ be the double of T . Since the interval exchange map T̂ has vanishing SAF, T̂ is not
ergodic (see Arnoux’s thesis [Arn81]). But by a result of Boshernitzan ([Bos88], Theorem 1.1), T̂ is
neither minimal (otherwise T̂ would be uniquely ergodic).
If T has no connection then it satisfies Keane property and Proposition 4.12 implies T would be
minimal. So that T̂ would also be minimal that is a contradiction. �

5. COMPLETE PERIODICITY OF LINEAR INVOLUTION UP TO 5 INTERVALS

In this section we specialize the analysis of complete periodicity to linear involutions. In the sequel,
T will be a linear involution defined over d intervals. We prove several lemmas depending on the val-
ues of d ∈ {3, . . . , 6}. Section 5 is devoted to the case d ≤ 5; as a corollary we will draw Theorem 1.6.
In Section 8 we will consider the case d = 6 and deduce Theorem 1.9.

Since we proceed by induction on d, let us start with the case d = 3.

Lemma 5.1 (d = 3). If T is a linear involution defined over 3 intervals with S AF(T ) = 0 then T is
completely periodic.

Proof. The condition S AF(T ) = 0 implies that the lengths of the intervals exchanged by T span
a 2-dimensional space over Q. It follows from Proposition 4.13 T has a connection. Hence from
Proposition 4.12, two possibilities can occur:

(a) either the Rauzy induction R(n0)(T ) is not well defined for some n0 > 0, or
(b) there exists n0 > 0 such that the permutation R(n0)(T ) is decomposed.
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Let us first consider case (a). Since the Rauzy induction is not well defined on T ′ := R(n0)(T ), there
is a relation: λπ(n0)(l) = λπ(n0)(l+m). We can consider the first return map of T ′ to(

0, 1 − λπ(n0)(l)
)
× {0, 1}.

We get a new T ′′ = Rsing(T ′) defined over 2 intervals. Since 0 = S AF(T ) = S AF(T ′) = S AF(T ′′) we
get that T ′′ has vanishing SAF and hence T ′′ is completely periodic. We conclude by Proposition 4.10
that T ′ and T are also completely periodic.

Let us now consider case (b). By assumption, T splits as T = T1#T2. We will denote the alphabet
by A = {A, B,C}. The decomposition of the permutation π(n0) involves the following decomposition
(up to permutation of the letters and Ti):(

A α1 α2
A β1 β2

)
, where {α1, . . . , β2} = {B,C} t {B,C}.

Here T1 =

((
A
A

)
, λA

)
. Thus obviously S AF(T1) = 0. Reporting into Equation (1):

0 = S AF(T ) = S AF(T1) + S AF(T2),

we draw S AF(T2) = 0. Since T2 is a linear involution defined over 2 letters, we again conclude that
T2 is completely periodic. This proves the lemma. �

In the next lemma, we continue this induction process. The idea is to consider the inverse of the
singular Rauzy induction. Thus the number of intervals increases, and we need to avoid “ bad ” cases.

Lemma 5.2 (d = 4). If T = (π, λ) is a linear involution defined over 4 intervals with S AF(T ) = 0,
and if π ,

(
A B C D
B A D C

)
up to a permutation of the letters, then T is completely periodic.

Proof. We first show that T has a connection. We can assume that π is irreducible (otherwise there is
a connection) and the Rauzy induction R(n)(T ) is well defined for any n > 0 (otherwise T would have
a connection and we are done).

If π is a true permutation then by Proposition 4.12 the range of the Rauzy induction is the Rauzy
class of π. Since the SAF is invariant along the Rauzy induction, we can assume that π =

(
A B C D
D C B A

)
.

For any α ∈ A, the translation lengths tα are (in terms of the lengths of the subintervals):

(tA, tB, tC , tD) = (λB + λC + λD, λC + λD − λA, λD − λA − λB,−λA − λB − λC).

It follows that

0 = S AF(T ) =
∑
α∈A

λα ∧Q tα = λA ∧ (λB + λC + λD) + λB ∧ (λC + λD) + λC ∧ λD.

We rewrite the above relation as follows:

(2) − λA ∧ λB = (λA + λB + λC) ∧ (λC + λD)

If λA∧λB = 0, which means that λB ∈ QλA, then (2) implies λD ∈ QλA+QλC . Therefore the span overQ
of the lengths {λA, λB, λC , λD} is equal toQλA+QλC , and it follows that the space SpanQ(λA, λB, λC , λD)
has rank at most 2.

Now if λA ∧ λB , 0, Equation (2) gives

(3) λA ∧ λB ∧ (λC + λD) = 0.
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Since λA and λB are linearly independent over Q there exists a, b ∈ Q such that λC + λD = aλA + bλB.
Reporting into Equation (2) we draw

(b + 1 − a) · λA ∧ λB − a · λA ∧ λC − b · λB ∧ λC = 0.

If λC does not belong to the vector space (over Q) generated by λA and λB then the vectors {λA ∧

λB, λA ∧ λC , λB ∧ λC} are linearly independent in
∧2
Q(R). Thus a = 0, b = 0 and 1 + b − a = 0 that is

a contradiction. We can then conclude that λC belongs to QλA + QλB and so does λD. Therefore the
lengths of the exchanged intervals span a vector space of rank 2 over Q. Now, by Proposition 4.13,
the linear involution T has a connection.

If π is a generalized permutation, since it is irreducible, there is a suspension (Y, q) belonging to
some stratum of quadratic differentials and inducing π. Since the number of intervals is 4, the dimen-
sion of the stratum is 3. Hence the only possibility is Q(−1,−1, 2) and, up to the Rauzy induction,
the permutation is π =

(
A A B C
C B D D

)
. The same computation shows that the lengths of the exchanged

intervals have linear rank 2 over Q so that Proposition 4.13 applies and T has a connection.

We now repeat the same strategy as in the proof of the previous lemma. From Proposition 4.12 only
two possibilities (a) and (b) can occur (see the proof of Lemma 5.1). In case (a), the Rauzy induction
is not well defined and we can reduce the problem to some T ′ = R(n0)(T ) defined over 3 letters. We
then conclude using Lemma 5.1.
Thus let us assume that there exists n0 > 0 such that R(n0)(T ) breaks into two linear involutions T1 and
T2 with S AF(T1)+S AF(T2) = 0. Again if T1 or T2 is defined over only 1 interval then we are done (by
the same argument as above). So assume that T1 and T2 are defined over 2 intervals. If S AF(T1) = 0
then we are done by Proposition 4.9. Hence we will assume that S AF(T1) = −S AF(T2) , 0 and
we will get a contradiction. This can be achieved only if the permutation associated to T1 has the
form

(
A B
B A

)
. The same is true for T2: the permutation is

(
C D
D C

)
. Hence π(n0) =

(
A B C D
B A D C

)
. From

this observation, it is not hard to see that π = π(n0), that is the desired contradiction. The lemma is
proven. �

For the case d = 5, again new pathological cases appear as shown in the next lemma:

Lemma 5.3 (d = 5). Let T = (π, λ) be a linear involution defined over 5 intervals with S AF(T ) = 0.
We assume that either the Rauzy induction is not well defined, or T decomposes. If π does not belong
to one of the following sets (up to permutation of the letters ofA):

E1 =
{(

A B C D α
α A D C B

)
,
(

A B C D α
B α D C A

)}
, E2 =

{(
α B C D α
B A D C A

)
,
(

A α C D α
B A D C B

)}
,

E3 =
{(

A B
B A π′

)
,
(
π′ A B

B A

)
, π′ permutation defined over 3 letters

}
.

then T is completely periodic.

Proof of Lemma 5.3. If the Rauzy induction is not well defined for T then we get a new linear involu-
tion T ′ = (π′, λ′) = Rsing(T ) defined over 4 intervals with vanishing SAF-invariant. If π′ ,

(
A B C D
B A D C

)
then we are done by Lemma 5.2. Hence we can assume that Rsing(π) =

(
A B C D
B A D C

)
. But by Example 4.7

permutations in R−1
sing

(
A B C D
B A D C

)
are exactly those lying in E1 ∪E2 ∪E3. Thus the lemma is proved for

this case.
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If T = T1#T2 is decomposed into two linear involutions, where Ti is defined over di intervals with
d1 + d2 = 5, then Ti satisfy S AF(T1) + S AF(T2) = 0. There are two possible partitions for the number
{d1, d2} of intervals of Ti: namely, up to permuting Ti: (d1, d2) equals (1, 4) or (2, 3). In the first
situation T1 is completely periodic as any linear involution defined over only 1 interval is periodic.
Hence S AF(T2) = 0. One wants to use Lemma 5.2. For that we need to avoid the case π2 =

(
A B C D
B A D C

)
.

But in the latter situation one would have π =
(

E A B C D
E B A D C

)
. This permutation belongs to the set E3.

Hence the lemma is proved in this situation.
The last remaining case is (d1, d2) = (2, 3). If S AF(T1) = 0 then we are done. On the other hand
S AF(T1) , 0 implies π1 =

(
A B
B A

)
, that is π ∈ E3. The lemma is proved. �

6. COMPLETE ALGEBRAIC PERIODICITY IMPLIES COMPLETE PERIODICITY

We begin with the following simple lemma.

Lemma 6.1. Let T = (π, λ) be a linear involution defined over 3 letters. We assume that π <
{
(

A B C
B A C

)
,
(

A B C
A C B

)
}. If T has a periodic orbit then T is completely periodic.

We postpone the proof of the lemma to the end of this section and show Theorem 1.6.

Proof of Theorem 1.6. Let θ be a direction of a cylinder in X. The core curve of this cylinder repre-
sents an element of H1(X,Z), hence by assumption, the SAF-invariant of the foliation Fθ vanishes.
As usual one assumes that θ is the vertical direction. We want to show that the flow in the vertical
direction is periodic. Let T = (π, λ) be the linear involution given by the cross section of the verti-
cal foliation to some full transversal interval. By assumption T is defined over 6 intervals and has a
periodic orbit. Moreover π is an irreducible generalized permutation.

Obviously proving complete periodicity for the vertical foliation or for T is the same. Since T has
a periodic orbit Proposition 4.12 implies that only two cases can occur (up to replacing T by R(n)(T )
for some suitable n), either

(a) R(T ) is decomposed, or
(b) the Rauzy induction R(T ) is not well defined.

Case (a). In this situation, T = (π, λ) = T1#T2 is decomposed into two linear involutions, each defined
over di intervals with d1 + d2 = 6, with opposite S AF. There are three possible (unordered) partitions
for {d1, d2}, namely {1, 5}, {2, 4} or {3, 3}. In the first situation π is reducible that is a contradiction. In
the second situation since π is irreducible, we necessarily have π1 =

(
A A
B B

)
. Hence T1 is completely

periodic, and S AF(T2) = 0. We conclude with Lemma 5.2 (π2 is not
(

C D E F
D C F E

)
otherwise π would

be reducible). In the last case, i.e. d1 = d2 = 3, T1 or T2 has a closed orbit, say T1. Again, by the
irreducibility of π, the two permutations π1 and π2 are generalized permutations. Then Lemma 6.1
implies that T1 is completely periodic. Hence S AF(T2) = 0 and we conclude by Lemma 5.1.

Case (b). Since the Rauzy induction is not well defined T ′ = Rsing(T ) = (π′, λ′) is a linear involution
defined over 5 letters, with a periodic orbit and vanishing SAF-invariant. Note that π′ is not necessarily
irreducible. Applying Proposition 4.12 again, we know that there exists n such that either R(n)(T ′)
decomposes, or R(n+1)(T ′) is not well defined.

Set T ′ = (π′, λ′) and T ′′ = (π′′, λ′′) := R(n)(T ′). In the first case, we have T ′ = T ′′1 #T ′′2 , where
T ′′i is a linear involution defined over d′′i intervals, and d′′1 + d′′2 = 5. If (d′′1 , d

′′
2 ) = (1, 4) then
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S AF(T ′′1 ) = 0, hence S AF(T ′′2 ) = 0. Since T ′′2 is defined over 4 letters, it follows that T ′′2 is periodic
unless π′′2 =

(
A B C D
B A D C

)
(Lemma 5.2), consequently π′′ =

(
α A B C D
α B A D C

)
. But since T ′′ is obtained from

T ′ by a sequence of Rauzy inductions, it follows that π′ =
(
α A B C D
α B A D C

)
. In particular, π′ is not a

generalized permutation, which is a contradiction to Lemma 4.8. Therefore, we can conclude that T ′′

and hence T is periodic. The case (d′′1 , d
′′
2 ) = (4, 1) follows from the same argument.

If (d′′1 , d
′′
2 ) = (2, 3), then by assumption, we know that either T ′′1 or T ′′2 has a periodic orbit. If T ′′1

has a periodic then T ′′1 is periodic (since it is defined over 2 letters), therefore S AF(T ′′1 ) = S AF(T ′′2 ) =

0. Hence T ′′2 is also periodic by Lemma 5.1. Assume that T ′′1 is not periodic, then we must have
π′′1 =

(
A B
B A

)
, and T ′′2 has a periodic orbit. If T ′′2 is periodic then S AF(T ′′2 ) = 0, which implies

that S AF(T ′′1 ) = 0, and T ′′1 is periodic. Therefore T ′′2 is not periodic. By Lemma 6.1, we have
π′′2 ∈ {

(
C D E
D C E

)
,
(

C D E
C E D

)
}. Thus we have

π′′ ∈ {
(

A B C D E
B A D C E

)
,
(

A B C D E
B A C E D

)
}

But since T ′′ is obtained from T ′ by Rauzy induction, we have π′ = π′′, and in particular π′ is not a
generalized permutation, which contradicts Lemma 4.8. Obviously, the case (d′′1 , d

′′
2 ) = (3, 2) follows

from similar arguments.

We are left with the case where R(T ′′) is not well defined. Set T̃ = (π̃, λ̃) := Rsing(T ′′), then T̃ is
defined over 4 letters. We have S AF(T̃ ) = S AF(T ) = 0, and T̃ has an periodic orbit. By Lemma 5.2
if π̃ ,

(
A B C D
B A D C

)
then T̃ is periodic. If π̃ =

(
A B C D
B A D C

)
then T̃ decomposes into two IETs defined over

2 letters. Since one of them has a periodic orbit, both SAF-invariants vanish. Therefore T̃ is periodic
by Proposition 4.9. �

Proof of Lemma 6.1. If π is a “true” permutation, then T is an IET defined over 3 letters. The assump-
tion implies that T is irreducible, therefore T can be realized as the first return map of the vertical flow
to a full transversal interval on a flat torus with two marked points. If T has a periodic orbit, then the
torus has a closed geodesic in the vertical direction, from which we deduce that the vertical flow is
periodic, and T is also periodic.

In the case π is a generalized permutation, since T is not minimal, up to replacing T by some
of its iterates under the Rauzy induction, either R(T ) is not well defined, or T is decomposed. In
the first case the problem reduces to some T ′ (defined over 2 intervals) with a periodic orbit, hence
we are done. In the latter case T decomposes as two linear involutions Ti. Since π is a generalized
permutation by assumption, one of the permutations πi is of the form

(
A A
B B

)
. Hence the corresponding

linear involution is completely periodic and we are done. �

7. COMPLETE ALGEBRAIC PERIODICITY IMPLIES REAL MULTIPLICATION

The aim of this section is to prove the converse of Theorem 1.4, namely Theorem 1.5. Our proof is
based on the following theorems.

Theorem 7.1 (McMullen, [McM06] Theorem 3.5). Let (X, ω) be a Prym form with dimC Prym(X) =

2, and let us assume that there is a hyperbolic element A in SL(X, ω), where SL(X, ω) denotes the
Veech group of (X, ω). Then (X, ω) is a Prym eigenform in ΩED, for some discriminant D satisfying
Q(
√

D) = Q(Tr(A)).
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Sketch of proof. Let φ : X → X be a pseudo-Anosov affine with respect to the flat metric given by
ω ∈ Ω(X, τ)− (e.g. given by Thurston’s construction [Thu88]). By replacing φ by one of its powers
if necessary, we can assume that φ commutes with τ. It follows that φ induces an isomorphism of
H1(X,Z)− preserving the intersection form. Therefore

T = φ∗ + φ−1
∗ : H1(X,Z)− −→ H1(X,Z)−,

is a self-adjoint endomorphism of Prym(X, τ). Observe that T preserves the complex line S in
(Ω(X, τ)−)∗ spanned by the dual of Re(ω) and Im(ω), and the restriction of T to this vector space
is Tr(Dφ) · idS. Since dimCΩ(X, τ)− = 2, one has dimC S ⊥ = 1. But T preserves the splitting
(Ω(X, τ)−)∗ = S ⊕ S ⊥, and acts by real scalar multiplication on each line, hence T is C-linear, i.e.
T ∈ End(Prym(X, τ)). This equips Prym(X, τ) with the real multiplication by Z[T ] ' OD for a conve-
nient discriminant D. Since T ∗ω = Tr(Dφ)ω, the form ω becomes an eigenform for this real multipli-
cation. Observe that Q(

√
D) = Q(λ+ λ−1) where λ being the expanding factor of the map φ. Note that

the fact T < ZId follows from basic results in the theory of pseudo-Anosov homeomorphisms. �

Theorem 7.2 (Calta [C04]). Fix a real quadratic field K ⊂ R. Let (X, ω) be a completely algebraically
periodic translation surface such that all the periods (both relative and absolute) of ω belong to K(ı).
Suppose that (X, ω) cannot be normalized by GL+(2,K) such that all the absolute periods of ω belong
to Q(ı). Then if (X, ω) admits a decomposition into k cylinders in the horizontal direction, then the
following equality holds

(4)
k∑

i=1

w′ihi = 0

where wi, hi are respectively the width and the height of the i-th cylinder, and w′i is the Galois conjugate
of wi in K.

Remark 7.3. This statement is slightly more general than the statements [C04, Proposition 4.1, and
Lemma 4.2] but its proof is essentially the same. One can also remark that Equation (4) is the same
as the one in Corollary 2.5.

Sketch of proof. We have K = Q(
√

f ), where f is a square-free positive integer. Recall that if a, b ∈ Q
then (a + b

√
f )′ = a − b

√
f . Let w, h ∈ K.

4w ∧ h = (w + w′ + w − w′) ∧ (h + h′ + h − h′)

=
1√

f
((w + w′)(h − h′) − (w − w′)(h + h′))1 ∧

√
f

=
2√

f
(w′h − wh′)1 ∧

√
f .

Let Ci, i = 1, . . . , k, denote the cylinders in the horizontal direction. We identify each Ci with a
parallelogram Pi in R2 which is constructed from the pair of vectors {(wi, 0), (ti, hi)} in K2. We have
(see Section 2.2):

J(X, ω) = 2
k∑

i=1

(
wi
0

)
∧

(
ti
hi

)
.
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By assumption, the vertical direction (0 : 1) is algebraically periodic. Hence

Jxx(X, ω) =

k∑
i=1

wi ∧ ti = 0.

Let −→v q = (1, q) with q ∈ K, and Aq =

(
1 −1/q
0 1/q

)
so that Aq ·

−→v q = (0, 1). Thus

Jxx(Aq · (X, ω)) =

k∑
i=1

wi ∧ (ti −
1
q

hi) = 0.

It follows that
k∑

i=1

wi ∧ shi = 0, ∀s ∈ K,

which implies
k∑

i=1

w′i shi − wis′h′i = 0, ∀s ∈ K.

By evaluating the last equality for s = 1 and s =
√

f , we get

k∑
i=1

wih′i =

k∑
i=1

w′ihi = −

k∑
i=1

w′ihi.

Theorem 7.2 is then proved. �

Proof of Theorem 1.5. We first observe that both properties of being completely algebraically periodic
and being a Prym eigenform is invariant along the leaves of the kernel foliation in the Prym loci given
in Table 1. In view of Theorem 7.1, we will show that there exists in the leaf of the kernel foliation
through (X, ω) a surface whose Veech group contains a hyperbolic element.

By normalizing using GL+(2,R) and moving in the kernel foliation leaf, we can suppose that all
the periods of (X, ω) belong to K(ı). If K = Q, then the GL+(2,R)-orbit of (X, ω) has a square-tiled
surface. Thus the Veech group of (X, ω) contains a hyperbolic element, and we are done.

Now assume that K is a real quadratic field. By Theorem 1.6, we know that (X, ω) is completely
periodic. We can assume that the horizontal and vertical directions are periodic. We want to find a
suitable vector v = (s, t) ∈ K2 such that the Veech group of (X, ω) + v has two parabolic elements, one
preserves the horizontal direction, the other preserves the vertical direction, a product of some powers
of such elements provides us with a hyperbolic element in SL(X, ω).

Let Ci, i = 1, . . . , k, denote the horizontal cylinders, the width, height and modulus of Ci are denoted
by wi, hi, and µi respectively. Let n be the number of cylinders up to involution, we choose the
numbering of cylinders such that for every i = 1, . . . , n, if Ci and C j are permuted by the Prym
involution then either j = i, or j > n. Theorem 7.2 implies

(5)
k∑

i=1

w′ihi =

n∑
i=1

αiµiN(wi) = 0,
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where αi = 1 if Ci is preserved by the Prym involution, αi = 2 otherwise, and N(wi) = wiw′i ∈ Q.
Remark that for all the Prym loci in Table 1, we have n ≤ 3. By Lemma 9.1, if this number is maximal
(i.e. equal to three) then the cylinder decomposition is stable (i.e. every saddle connection in this
direction connects a zero to itself). In the case n ≤ 2, Equation (5) implies that all the cylinders are
commensurable, therefore there exists a parabolic element in SL(X, ω) that fixes the vector (1, 0).

Assume that n = 3, since the cylinder decomposition is stable, in each cylinder the upper (resp.
lower) boundary contains only one zero of ω. For t ∈ R such that |t| small enough, the surface
(X, ω)+(0, t) also admits a cylinder decomposition in the horizontal direction with the same topological
properties as the decomposition of (X, ω). Let Ct

i denote the cylinder in (Xt, ωt) = (X, ω) + (0, t)
corresponding to Ci = C0

i . Note that w(Ct
i) = w(Ci) = wi for any t, but in general hi(t) = h(Ct

i) is a
non-constant function of t. Namely, if the zeros in the upper and lower boundaries of Ci are the same
then hi(t) = hi, ∀t, otherwise, either hi(t) = hi ± t, or hi(t) = ±t/2.
In particular, we see that hi(t) = hi + αit, where αi ∈ {−1,−1/2, 0, 1/2, 1}. There always exist two
cylinders Ci,C j such that αi , α j. Set Ri j(t) := µ(Ct

i)/µ(Ct
j). We have

Ri j(t) ∈
{

w j(hi + t)
wih j

,
w j(hi + t)
wi(h j − t)

,
w j(hi + t)

wi(h j + t/2)
,

w j(hi + t)
wi(h j − t/2)

,
w j(hi + t/2)

wih j
,

w j(hi + t/2)
wi(h j − t/2)

}
.

One can easily see that there always exists t ∈ K such that Ri j(t) ∈ Q. For t small enough, the
surface (X, ω) + (0, t) is also decomposed into k cylinders in the horizontal direction, and Equation
(5) holds, thus the condition Ri j(t) ∈ Q implies that all the horizontal cylinders of (X, ω) + (0, t)
are commensurable, which means that SL((X, ω) + (0, t)) contains a parabolic element preserving the
vector (1, 0).

Observe that the vertical direction on (X, ω)+ (s, t) (for small s) is still a periodic direction. Thus by
the same arguments, we can conclude that there exists a vector v = (s, t) ∈ K2 such that SL((X, ω) + v)
contains a parabolic element fixing the vertical direction. It follows that SL((X, ω) + v) contains a
hyperbolic element. By Theorem 7.1 (X, ω) + v is a Prym eigenform, and so is (X, ω). Theorem 1.5 is
then proven. �

8. COMPLETE PERIODICITY OF QUADRATIC DIFFERENTIALS WITH PERIODS IN A QUADRATIC
FIELD

In this section we prove Theorem 1.9. We will deduce the theorem from a stronger statement. We
will concentrate on cases (4) − (5) − (6) − (7) − (8) of Table 1.

Theorem 8.1. Let T = (π, λ) be a linear involution defined over 6 intervals which is defined by the
first return map of the vertical foliation on a quadratic differential (Y, q) ∈ Q(κ), where

κ ∈ {(−14, 4), (−13, 1, 2), (−1, 2, 3), (−1, 1, 4), (8)}.

We assume that the lengths of the intervals exchanged by T belong to a vector space of rank two
over Q, and S AF(T ) = 0. Then we have the followings

(1) If (Y, q) ∈ Q(−1, 2, 3) t Q(8) then T is completely periodic,
(2) Otherwise, if T is not completely periodic then:

(a) if (Y, q) ∈ Q(−13, 1, 2) t Q(−14, 4) then (Y, q) is the connected sum of a flat torus and a
flat sphere, irrationally foliated with opposite SAF-invariants.
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(b) if (Y, q) ∈ Q(−1, 1, 4) then (Y, q) is the connected sum of two flat tori, irrationally foliated
with opposite SAF-invariants.

α

α

0 0
1

1

2

2

3

3

4

4

(Y1, q1) ∈ Q(−13, 1, 2)

α

α

0

0
1

1

2 2

3

3

4

4

(Y2, q2) ∈ Q(−14, 4)

FIGURE 2. Decompositions of (Yi, qi) in a connected sum of a flat torus and a flat
sphere (colored in blue).

α

α

3 3

4 4

2

2

0

0

1

1

(Y3, q3) ∈ Q(−1, 1, 4)

FIGURE 3. Decompositions of (Y3, q3) in a connected sum of two tori.

Examples of decompositions of quadratic differentials into connected sum of irrationally foliated
components are shown in Figures 2, 3, and 5. We first show how Theorem 1.9 is obtained from
Theorem 8.1.

Proof of Theorem 1.9 assuming Theorem 8.1. If K = Q then (X, ω) is a square-tiled surface so are
done. In the case K is a real quadratic field, let θ ∈ RP1 be a direction. If the linear flow in direction θ
is not minimal then θ is the direction of a saddle connection, hence θ ∈ KP1 and up to renormalization
by GL+(2,K), we can assume that θ is the vertical direction. Recall that the Prym form (X, ω) covers
a quadratic differential (Y, q) ∈ Q(−1, 2, 3) t Q(8). Let T be a the linear involution associated to the
vertical foliation on (Y, q). Then T satisfies the hypothesis of Theorem 8.1, therefore T is completely
periodic, which implies that θ is a periodic direction on (X, ω). �
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Proof of Theorem 8.1. We begin by observing that replacing T by R(n)(T ) does not change the state-
ment. We will assume that T is not completely periodic. By Proposition 4.13 we know that T has a
connection, and by Proposition 4.12 only two possibilities can occur. Namely, up to replacing T by
R(n)(T ) for some suitable n, we will assume in the sequel that

(a) T is decomposed, or
(b) the Rauzy induction is not well defined for T .

Case (a): T decomposes. We have T = T1#T2, where Ti = (πi, λi) is a linear involution defined over
di intervals with d1 + d2 = 6. Since π is irreducible the only possible partitions for {d1, d2} are {2, 4}
or {3, 3}. Recall that by assumption, we have S AF(T ) = S AF(T1) + S AF(T2) = 0.

If (d1, d2) = (2, 4), since T is irreducible, we must have π1 =
(

A A
B B

)
. Thus, S AF(T1) = S AF(T2) =

0. From Lemma 5.2, we know that T2 is periodic unless π2 =
(

C D E F
D C F E

)
. But in this case T is

reducible, so we must have (d1, d2) , (2, 4). The case (d1, d2) = (4, 2) is also ruled out by the same
arguments.

In the case (d1, d2) = (3, 3), π1 and π2 are generalized permutations, each defined over 3 letters,
and we have naturally a decomposition of Y into a connected sum of two subsurfaces Y1 and Y2
corresponding to T1 and T2 respectively. One can check that Yi is either a sphere or a torus. Actually,
Yi either belongs to Q(−14, 0) or Q(−12, 2), and the Y1 and Y2 are glued together along a geodesic
loop which is obtained by cutting Yi along a geodesic joining a pole of qi to another singular point,
where qi is the quadratic differential defining the flat metric of Yi. The assertions of the theorem can
be easily verified by a case-by-case check.

Case (b): the Rauzy induction is not well defined. We get a new linear involution T ′ := Rsing(T ) =

(π′, λ′) defined over 5 intervals with zero SAF-invariant. Since the lengths of the intervals exchanged
by T ′ still belong to a vector space of rank two over Q, Propositions 4.13 and 4.12 imply the existence
of n0 > 0 such that either the Rauzy induction is not well defined for R(n0)(T ′), or R(n0)(T ′) is de-
composed. Recall that by assumption T is not completely periodic, so that R(n0)(T ′) is not completely
periodic either. Hence Lemma 5.3, applied to R(n0)(T ′), gives R(n0)(π′) ∈ E1 ∪ E2 ∪ E3.

We first claim that R(n0)(π′) < E1. Indeed since π is geometrically irreducible, by Lemma 4.8 π′ is
a generalized permutation (not a “true” permutation). Therefore, its image by any sequence of Rauzy
inductions cannot belong do E1.

Secondly we claim that if R(n0)(π′) ∈ E2 then, up to exchanging of the lines of π′, we have

π′ ∈ F =
{(
α B C D α
B A D C A

)
,
(
α B C D α B
A D C A

)
,
(

B C D α B
A D C A α

)}
(this list is obtained by iterating Rauzy inverse inductions to the permutations in E2). The next claim
analyze these three permutations.

Claim 8.2. Assume that Rsing(π) ∈ F . Then (Y, q) ∈ Q(−1, 1, 4), and (Y, q) is the connected sum of
two flat tori, irrationally foliated with opposite SAF-invariants.

Proof. The first statement follows directly from above discussion. Next we will consider separately
the three cases π ∈ R−1

singπ
′ where π′ ranges over F .
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For the first one, up to permutation of the letters of the alphabet {A, B,C,D, α, β} we have:

R−1
sing

(
α B C D α
B A D C A

)
= {

(
α B C D α β
β A D C A B

)
,
(
α B C D α β
B β D C A A

)
,
(
α B | C D α β
B A | β C A D

)
,
(
α B | C D α β
B A | D β A C

)
,
(
α B | C D α β
B A | D C β A

)
,(

α B | C D α β
B A | D C A β

)
,
(
β B | C D α β
B A | D C A α

)
,
(
α β | C D | α β
B A | D C | A B

)
,
(
α B β D | α β
B A D C | A C

)
,
(
α B C β | α β
B A D C | A D

)
,
(
α B C D β β
B A D C A α

)
}.

The boxed permutations correspond exactly to irreducible permutations, we also indicate the decom-
position when the permutation is reducible (see Definition 4.4). For the above three irreducible per-
mutations, the corresponding suspension (Y, q) belongs to the stratum Q(−1, 1, 4).

Observe that in these cases, we have either |α| = |A| and |β| = |B|, or |α| = |β| = |A|, where |.| denote
the length of the intervals. It follows that we have a decomposition of Y into a connected sum of two
tori which correspond to the subsets of letters {α, β, A, B} and {C,D}.

For the next one, the irreducible permutations in R−1
sing

(
α B C D α B
A D C A

)
are{ (

α B C D α β
β D C A A

)
,
(
α B C D β B β
A D C A α

)
,
(
α B C D α β β
A D C A B

) }
.

Again the corresponding suspension (Y, q) belongs to the stratum Q(−1, 1, 4) and we have a decompo-
sition of Y into a connected sum of two tori which correspond to the subsets of letters {α, β, A, B} and
{C,D}.

For the remaining case, the irreducible permutations in R−1
sing

(
B C D α B
A D C A α

)
are{ (

B C D α B β
β D C A α A

)
,
(

B C D β B β
A D C A α α

)
,
(

B C D α β β
A D C A α B

) }
.

We check that (Y, q) belongs to the stratum Q(−1, 1, 4) and has a decomposition into a connected sum
of two tori. This proves the claim in this case. �

We now turn into the case R(n0)(π′) ∈ E3.

Claim 8.3. Assume that R(n0)(π′) ∈ E3 then the followings hold:
(1) (Y, q) < Q(8) t Q(−1, 2, 3).
(2) If (Y, q) ∈ Q(−13, 1, 2) t Q(−14, 4) then (Y, q) is the connected sum of a flat torus and a flat

sphere, irrationally foliated with opposite SAF-invariants.
(3) If (Y, q) ∈ Q(−1, 1, 4) then (Y, q) is the connected sum of two flat tori, irrationally foliated with

opposite SAF-invariants.

Proof. Set E′3 :=
{(

π′′ A B
B A

)}
, and E′′3 :=

{(
A B
B A π′′

)}
, where π′′ is a generalized permutation defined

over 3 letters. We first remark that E′3 is invariant by Rauzy inverse induction, while E′′3 is not, for
instance R1

(
A B C D D A
B E C E

)
=

(
A B C D D
B A E C E

)
.

If R(n0)(π′) ∈ E′3 then π′ ∈ E′3, hence π ∈ R−1
singE

′
3. An irreducible generalized permutation π in

R−1
singE

′
3 belongs to one of the following two families: either π = (π1 | π2), where π1, π2 are generalized

permutations defined over 3 letters, or π =
(
... | A B | ∗
... | B A | ∗

)
. In the first case, the claim follows from the

arguments of Case (a). In the second case, Y is a connected sum of a slit torus (corresponding to the
permutation

(
A B
B A

)
), and another flat surface which is the suspension of the (irreducible) generalized
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permutation defined over 4 letters, which is obtained by deleting the letters A and B from π. The
assertions of the claim can be verified by a case-by-case check.

Finally, assume that π = R(n0)(π′) ∈ E′′3 . Set T := R(n0)(T ′). Applying Rauzy inductions and using
the assumption that T (hence T ) is not periodic, we can reduce to the case

π̄ ∈
{(

A B C C D
B A D E E

)
,
(

A B C D D
B A E C E

)}
.

We now use a lemma (see Lemma 8.4 below) saying that there exists an irreducible generalized
permutation π̂, which is obtained by adding a pair of letters {α, α} to π̄, such that (Y, q) is obtained by
a zippered rectangle construction from a suspension of π̂, where we allow the width of the rectangle
labelled by α to be zero. Here again, the assertions of the claim can be verified by a case-by-case
check. �

Hence the proof of Theorem 8.1 will be complete once we prove Lemma 8.4. �

Lemma 8.4. Let T := (π, λ) be the linear involution defined by the first return map of the vertical
foliation on a quadratic differential (Y, q) to a full transversal interval I, the left endpoint of which
is a singular point. Assume that R(T ) is not well defined, and let T ′ = (π′, λ′) := Rsing(T ). Then
for any T ′′ = (π′′, λ′′) which is obtained from T ′ by a sequence of Rauzy inductions, there exists an
irreducible generalized permutation π̂ that satisfies

(a) there is a pair of letters α such that if we delete this pair from π̂, then we get π′′,
(b) the surface (Y, q) can be represented by a zippered rectangle construction from π̂ where the

width of the rectangle labeled by α is zero.

Proof of Lemma 8.4. Assume that π is a generalized permutation defined over an alphabet A of d
letters. By definition, the quadratic differential (Y, q) is constructed from (π, λ) by a zippered rectangle
construction. The singular Rauzy induction consists of cutting the rightmost rectangle and gluing it
to another one. Thus we get a zippered rectangle construction of (Y, q) with d − 1 rectangles (see
Figure 4).

By construction, T ′ and T ′′ are the first return map of the vertical foliation on (Y, q) to some seg-
ments I′ and I′′ respectively, where I′′ ⊂ I′ ⊂ I. Since T ′′ is obtained from T ′ by Rauzy inductions,
the surface (Y, q) is also constructed by a zippered rectangle construction with d − 1 rectangles asso-
ciated to T ′′. Note that there is a vertical saddle connection α which does not intersect the interior of
I′ and I′′, this saddle connections must be contained in the border of some rectangle.

There exists a family S of saddle connections and segments joining the right endpoint of I′′ to some
singular points such that

• α ∈ S,
• for every segment s in this family, either s is contained in a vertical side of a rectangle, or s is

a segment joining a point in the left side to a point in the right side of the same rectangle,
• cutting Y along the segments in S, what we get is a polygon P in R2, each side of P is paired

up with another one which is parallel and has the same length.
Note that the vertices of P are the singular points of Y and the right endpoint of I′′. One can deform P
slightly so that the paired sides are still parallel and have the same length, and the sides corresponding
to α are no longer vertical. We then get a polygon P′ that gives rise to a quadratic differential (Y ′, q′)
close to (Y, q). By construction, there exists a full transversal segment J in Y ′ corresponding to I′′.
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π′′ =
( A B C C D

B A D E E
)
, π̂ =

(
αα A B C C D

B A D E E
)

FIGURE 4. Degeneration of a linear involution defined over 6 letters to a linear
involution defined over 5 letters. The associated quadratic differential belongs to
Q(−14, 4), and decomposes as connected sum of a torus (the colored part) and a
sphere.

The first return map of the vertical foliation on Y ′ to J is a linear involution T̂ := (π̂, λ̂) defined over
d letters, the additional letter (with respect to T ′′) arises from the sides of P′ corresponding to α. In
particular, we see that π̂ is an irreducible generalized permutation. Moreover, as one deforms P′ to get
back P, T̂ becomes T ′′. Thus, if we delete the pair of new letter from π̂, we obtain π′′. The lemma is
then proved. �

Remark 8.5.
• It follows from a result by McMullen [McM03b], Theorem 6.1, that if (X, ω) is an Abelian

differential having relative periods in a real quadratic field and vanishing S AF-invariant
in the vertical direction, then there exists a loop in X which is a union of vertical saddle
connections. Thus, Theorem 8.1 gives a more precise description of this situation where
(X, ω) is the orientation double cover of some quadratic differential in Table 1.
• Using the same analysis, one can also prove that if (Y, q) ∈ Q(−16, 2) satisfies the hypothesis

of Theorem 8.1, then either the vertical flow is periodic, or Y decomposes as a connected sum
of two flat spheres, which are glued together along a vertical loop. This statement was proved
in [McM03b], Theorem 8.2.

We end this section by some consequences of Theorem 8.1 in terms of Prym eigenforms.

Corollary 8.6. Let (X, ω) ∈ ΩED(κ) be a Prym eigenform and assume that ω has all its periods
(absolute and relative) in K(ı), where K = Q(

√
D). Let θ be a direction in KP1.

(1) If (X, ω) ∈ ΩED(1, 1, 4) tΩED(4, 4)even then Fθ is completely periodic.
(2) If (X, ω) ∈ ΩED(1, 1, 2) and the spine of the foliation in direction θ contains a regular fixed

point of the Prym involution then Fθ is completely periodic. The spine of Fθ is the union of
geodesic rays emanating from the zeros of ω in direction ±θ.

Again we emphasize that assertion (2) of above corollary is false for other Prym loci, see e.g.
Example 8.8 and Figure 5 when (X, ω) ∈ ΩED(2, 2).
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Proof of Corollary 8.6. As usual we will assume that θ is vertical. We begin by observing that The-
orem 1.4 implies S AF(X, ω) = 0. Let T be the cross section of the vertical foliation to some full
transversal interval on the quotient (Y, q) = (X, ω)/〈τ〉. We have S AF(T ) = 0. Complete periodicity
of Fθ is equivalent to complete periodicity of T .

Since (X, ω) ∈ Prym(1, 1, 4) (respectively, (X, ω) ∈ Prym(4, 4)even) is equivalent to (Y, q) ∈ Q(−1, 2, 3)
(respectively, (Y, q) ∈ Q(8)), assertion (1) is a reformulation of Theorem 8.1.

Let us prove (2). Again (X, ω) ∈ Prym(1, 1, 2) is equivalent to (Y, q) ∈ Q(−13, 1, 2). If T is not
completely periodic then by Theorem 8.1 (Y, q) is the connected sum of a flat torus and a flat sphere,
irrationally foliated with opposite SAF-invariants. Hence there exists a geodesic loop γ based at the
zero of multiplicity 1 which cuts Y into a flat sphere Y0, and a flat torus Y1 (with geodesic boundary).

Observe that the three poles of q are contained in the interior of Y0. Since Y ∈ Q(−13, 1, 2) the
component Y0 lifts to a fixed torus X0 and Y1 to two permuted tori X1, j, j = 1, 2, in X. One has
S AF(X0) = −2S AF(X1,1). By assumption the spine of the foliation on X0 contains a fixed point of the
Prym involution; hence Fθ |X0 is periodic. Thus S AF(X0) = 0 and we conclude that Fθ is periodic. �

Remark 8.7. The above proof fails if (Y, q) ∈ Q(−14, 4), even though we also have a connected sum
of a flat sphere and a flat torus. This is because the existence of a pole in the torus component. Indeed
the decomposition into three tori (of (X, ω)) still holds but it could happen that the pole on the spine
of the foliation on Y is the one contained in Y1 (see Figure 5). In this case, the foliation on Y0 may not
be periodic, for instance, in Example 8.8, if we choose the lengths λα, λ3 of the intervals labelled by α
and 3 so that λα

λ3
< Q .

Example 8.8. In Figure 5 below the surface (Y, q) decomposes along the saddle connection γ into
a connected sum of a flat torus and a flat sphere, as we can notice by the underlying permutation(

0 0 1 3 α 3 α
1 2 2 4 4

)
. One can arrange the parameters so that S AF(T ) = 0 and T is not completely periodic.

Moreover, there exists a regular fixed point of the Prym involution in the spine of the double cover
(X, ω). Namely (X, ω) decomposes into two permuted tori and one invariant torus along the lifts of γ
and γ′.

α

α

0

0
1

1

2 2

3

4

3

4

γ

γ′

(Y, q) ∈ Q(−14, 4)

FIGURE 5. Decompositions of (Y, q) into a connected sum of a flat torus and a flat
sphere (colored in blue).
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9. LIMIT SET OF VEECH GROUPS

In this section, we prove the result on the limit sets of Veech groups of Prym eigenforms i.e.
Theorem 1.11. In the sequel we fix a form (X, ω) ∈ ΩED(4, 4)even t ΩED(1, 1, 4) t ΩED(1, 1, 2). A
periodic direction is said to be stable if there is no saddle connection in this direction that connects
two different zeros, it is said to be unstable otherwise.

Lemma 9.1. Any direction θ that decomposes (X, ω) ∈ H(κ) into g + |κ| − 1 cylinders, where g is the
genus of X, is stable.

Proof. We begin by observing that any periodic direction decomposes the surface X into at most
g+|κ|−1 cylinders. Now if the direction θ is not stable then there exists necessarily a saddle connection
between two different zeros that we can collapse to a point (in direction θ) without destroying any
cylinder. But in this way we get a surface (X′, ω′) ∈ H(κ′) of genus g where |κ′| < |κ|, and having
g + |κ| − 1 cylinders . This is a contradiction. �

We now prove the following proposition about unstable periodic directions on Prym eigenforms.

Proposition 9.2. Let (X, ω) ∈ Prym(4, 4)even t Prym(1, 1, 4) t Prym(1, 1, 2). Assume that (X, ω) is
completely algebraically periodic, and all the relative periods of ω belong to K(ı), where K is a real
quadratic field. Then any unstable periodic direction θ decomposes the surface into cylinders with
commensurable moduli. As a consequence, SL(X, ω) contains a parabolic element fixing θ.

Proof. Assume that (X, ω) ∈ Prym(4, 4)even t Prym(1, 1, 4) then the decomposition in direction θ has
at most 6 cylinders by Lemma 9.1. Since the direction θ is not stable and none of the cylinders is
fixed by the Prym involution (otherwise the quotient (Y, q) by the Prym involution would have at least
2 poles) one has n ∈ {2, 4}. We denote the cylinders by Ci, i = 1, . . . , 2r = n, so that Ci+r = τ(Ci). By
Theorem 7.2 the moduli of the cylinders satisfies

2
r∑

i=1

h(Ci)w(Ci)′ = 2
r∑

i=1

ki · µ(Ci) = 0.

where ki = w(Ci)w(Ci)′ ∈ Q \ {0}. Hence
r∑

i=1

ki · µ(Ci) = 0.

But r ≤ 2 thus above equality implies that µ(Ci) are commensurable. The direction is parabolic and
a suitable product of Dehn twist in each cylinder gives rise to an affine automorphism with parabolic
derivative fixing θ.

The case (X, ω) ∈ Prym(1, 1, 2) follows from similar arguments since the decomposition in direc-
tion θ has at most 5 cylinders. �

Corollary 9.3. Let (X, ω) ∈ Prym(1, 1, 2) be a Prym form which is completely algebraically periodic
with relative periods in K(ı). If θ ∈ KP1 is the direction of a saddle connection between the two simple
zeros that is invariant under the Prym involution, then SL(X, ω) contains a parabolic element fixing θ.

Proof of Corollary 9.3. In view of the previous proposition it suffices to show that θ is an unstable
periodic direction. Since θ is the direction of a saddle connection, we have θ ∈ KP1. Necessarily
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the saddle connection contains a regular fixed point of the Prym involution. By Corollary 8.6, as-
sertion (2), the flow Fθ is completely periodic (the spine contains a regular fixed point of the Prym
involution). Since there is a saddle connection connecting two different zeros, this periodic direction
is unstable, and the corollary follows from Proposition 9.2. �

9.1. Proof of Theorem 1.11, Case Prym(4, 4)even t Prym(1, 1, 4).

Proof. If the limit set has at least two points then there is a hyperbolic element in SL(X, ω) represented
by an affine pseudo-Anosov homeomorphism φ. By a result of McMullen ([McM03b], Theorem 9.4)
we can assume that all the periods of ω belong to K(ı).

By Theorem 1.9 and Proposition 9.2, any linear foliation on (X, ω) in the direction θ of a saddle
connection between two different zeros is fixed by a parabolic element of SL(X, ω). It remains to
show that those directions fill out a dense subset of RP1, which implies that the limit set is the full
circle at infinity.

Let θ0 ∈ RP
1 and fix ε > 0. By Theorem 1.9, one can find θ ∈ KP1 so that the foliation Fθ is

completely periodic and |θ − θ0| < ε/2. If the direction θ is not stable then by Proposition 9.2 we are
done. Otherwise X is decomposed into 6 cylinders in direction θ. Since X is a connected surface, we
claim that there exists a cylinder C such that the top boundary of C is made of saddle connections
between one zero P and the bottom boundary is made of saddle connections between one other zero
Q , P. By a suitable Dehn twist, it is easy to find a new direction θ′ satisfying |θ − θ′| < ε/2 such
that there is a saddle connection contained in C between P and Q in direction θ′. This is the desired
direction. �

9.2. Proof of Theorem 1.11, Case Prym(1, 1, 2).

Proof. We now show the result for (X, ω) ∈ ΩED(1, 1, 2). By a result of Masur [Mas86], we know
that the set Θ of directions θ ∈ RP1 such that θ is the direction of a regular closed geodesic is dense
in RP1. Thus, by using Proposition 9.2, it suffices to show that any direction θ ∈ Θ is contained in the
closure of the set of unstable periodic directions.

Let θ0 be a direction in Θ. By Theorem 1.6, we know that X is decomposed into cylinders in
direction θ0. We can assume that θ0 is the horizontal direction. Obviously, we only need to consider
the case where θ0 is a stable periodic direction. Note that in this case X is decomposed into 5 cylinders
in direction θ0.

If γ is a geodesic segment connecting a regular fixed point of X to one simple zero ofω, then γ∪τ(γ)
is a saddle connection joining two simple zeros and invariant under τ. Following Corollary 9.3, the
direction of γ is an unstable periodic direction. We claim that there exist such geodesic segments
whose direction is arbitrarily close to θ0.

We begin by observing that in a cylinder decomposition of X, only one cylinder (denoted by C0)
is invariant under τ. Recall that τ has three regular fixed points, two of which are contained in C0,
the third one is the midpoint of a saddle connection contained in the boundaries of two exchanged
cylinders. We can divide those decompositions into three types:

(a) The boundary of the C0 only contains the simple zeros, or
(b) The boundary of C0 only contains the double zero, and C0 is a simple cylinder, or
(c) The boundary of C0 only contains the double zero, and C0 is not a simple cylinder.
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(a cylinder is simple if each of its boundary component consists of exactly one saddle connection).

In Case (a) each simple zero is contained in a boundary component of C0. Thus there exist saddle
connections contained in C0 and invariant under τwhich connect the two simple zeros whose direction
is arbitrarily close to θ0.

In Case (b), let γ be the saddle connection (in direction θ0) that contains the third fixed point of τ.
There exists a pair of cylinder C1,C2 exchanged by τ such that γ is included in the lower boundary
of C1 (resp. in the upper boundary of C2). Note that since the cylinder decomposition is stable γ
must join the double zero to itself. Remark that the upper boundary of C1 must contain a simple zero
(otherwise the angle at the double zero exceeds 6π), and consequently the lower boundary of C2 also
contains a simple zero. Therefore, there exist saddle connections contained in C1 ∪ C2 joining the
simple zeros and invariant under τ (passing through the third fixed point) whose direction is arbitrarily
close to θ0.

In Case (c), the only topological model is presented in Figure 6 below. One can easily see that

FIGURE 6. Stable cylinder decomposition in Prym(1, 1, 2), the double zero is colored
in white (the “gray” cylinder is the unique cylinder invariant under τ).

there always exists a geodesic segment from a fixed point of τ in the interior of C0 to a simple zero in
the boundary of a cylinder adjacent to C0. Using Dehn twists, we see that there exist infinitely many
such segments whose direction can be made arbitrarily close to θ0. The theorem is then proved for
this case. �

Remark 9.4. Actually we also proved a slightly different result: the limit set of the Veech group of
any (X, ω) ∈ Prym(4, 4)even t Prym(1, 1, 4) t Prym(1, 1, 2), completely algebraically periodic, having
all periods in K(ı), is the full circle at infinity.

10. INFINITELY GENERATED VEECH GROUPS

We end with the proof of Theorem 1.12

Proof of Theorem 1.12 . Recall that a Fuchsian group is said to be of the first kind if its limit set is
the full circle at infinity. Such a group is either a lattice, or infinitely generated (see e.g. [Kat92]).
Hence, in view of Remark 9.4, it suffices to exhibit Prym eigenforms (with relative periods in K(ı))
whose Veech group is not a lattice. But a theorem of Veech [Vee89] asserts that in the lattice case
the directional flow Fθ is either uniquely ergodic or parabolic (i.e. the surface is decomposed into
cylinders of commensurable moduli in direction θ). Hence it suffices to give examples where Fθ is
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periodic, but with incommensurable cylinders. In what follows we only focus on Prym(1, 1, 2) since
similar constructions work for the two other loci.

We begin by choosing a discriminant D which is not a square, and a tuple (w, h, e) of integers such
that: 

w > 0, h > 0,
e + 2h < w,
gcd(w, h, e) = 1, and D = e2 + 8wh.

Let λ := e+
√

D
2 > 0 (remark that λ < w). We also choose t ∈ Q(

√
D) so that 0 < t < λ. Let (X, ω) be

the surface represented in Figure 7 having the following coordinates
ω(α1) = (λ, 0), ω(β1) = (0, λ)
ω(α2,1) = ω(α2,2) = (w/2, 0), ω(β2,1) = ω(β2,1) = (0, h/2)
ω(η) = (t, 0).

By construction, there exists an involution τ on X which fixes the colored cylinder and exchanges

α1

β1

α2,1

β2,1

α2,2

β2,2
η

FIGURE 7. A translation surface (X, ω) ∈ Prym(1, 1, 2). The double zero is repre-
sented in white color (the fixed cylinder is colored in grey). The identifications of the
sides are the “obvious” identifications.

the other two. It is not hard to check that (X, ω) ∈ Prym(1, 1, 2). Letting α2 := α2,1 + α2,2 and
β2 := β2,1 + β2,2, the set {αi, βi}i=1,2 is a symplectic basis of H1(X,Z)−. Moreover, in these coordinates
the restriction of the intersection form is given by the matrix

(
J 0
0 2J

)
. In particular it is straightforward

to check that the endomorphism T =

( e 0 w 0
0 e 0 h
2h 0 0 0
0 2w 0 0

)
(in the basis (αi, βi)i=1,2) is self-adjoint and satis-

fies T 2 = eT + 2whIdR4 and T ∗(ω) = λω. Hence (X, ω) ∈ ΩED(1, 1, 2), and (X, ω) is completely
algebraically periodic by Theorem 1.4.

Note that (X, ω) also admits a cylinder decomposition in the vertical direction. A straightforward
computation shows that the moduli of the vertical cylinders are given by

t

λ
,

λ − t

2λ + h
, and

w − (λ − t)
h

.

One can easily see that if t/λ ∈ Q, then the first two moduli are incommensurable. Hence the Veech
group of the corresponding surface (X, ω) is infinitely generated.
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ω(α1i) = λ/2, ω(β1i) = ıλ/2,
ω(α2i) = w/2, ω(β2) = ıh

(X, ω) ∈ ΩED(1, 1, 4) α21

α22

α11 α12

β21

β22

β11 β12

t

t

1

1

2

2

3

3

4

4

5

5

6

6

ω(α1i) = λ/2, ω(β1i) = ıλ/2,
ω(α2i) = w/2, ω(β2i) = ıh/2

(X, ω) ∈ ΩED(4, 4)even

FIGURE 8. Constructions of Prym eigenforms in ΩED(1, 1, 4) and ΩED(4, 4)even. For
almost all values of t ∈ Q(

√
D), the vertical direction is periodic, but not parabolic.

For the cases Prym(1, 1, 4) and Prym(4, 4)even, examples of surfaces having infinitely generated
Veech groups can be obtained by similar constructions as shown in Figure 8 .

�

APPENDIX A. COMPLETE ALGEBRAIC PERIODICITY IN Hhyp(4)

In this section, we will sketch a proof of the following

Theorem A.1. Let (X, ω) be a translation surface in the hyperelliptic component Hhyp(4) of the
stratumH(4). If (X, ω) is completely algebraically periodic then it is completely periodic in the sense
of Calta.

Remark A.2. By a theorem by Calta-Smillie [CS07], we know that if SL(X, ω) contains a hyperbolic
element then (X, ω) is completely algebraically periodic. Examples of surfaces in Hhyp(4) whose
Veech group contains hyperbolic elements can be found in [N11]. In those examples the trace field of
SL(X, ω) is cubic (one can also construct examples with quadratic trace field). It is shown in [N11]
that such surfaces can be generic (see also [NW13]), that is their GL+(2,R)-orbit is dense inHhyp(4).
Thus there exist completely periodic surfaces which are generic inHhyp(4).

Proof of Theorem A.1. By definition, there exists a double covering ρ : X → CP1, and a quadratic
differential q on CP1 (which has a unique zero of order 3, and 7 simple poles) such that ρ∗q = ω2.
In our notations (CP1, q) ∈ Q(−17, 3). Let C be a cylinder on X, and c be its core curve. As usual
we assume that the direction of C is the vertical direction. We want to show that the vertical flow is
completely periodic. Since (X, ω) is completely algebraically periodic, we have S AF(X, ω) = 0.

Let C̊ denote the open cylinder which is filled out by simple closed geodesics in the free homotopy
class of c, and C denote the closure of C̊ in X. The set ∂C := C \ C̊ is a union of several, say k, vertical
saddle connections. The case k = 1 only occurs when X is a torus, therefore we have k ≥ 2. Since a
surface inHhyp(4) has at most 5 saddle connections in a given direction, we have 2 ≤ k ≤ 5. If k = 5
then the vertical flow is completely periodic (all vertical separatrices are saddle connections). Thus
we only need to consider the cases k = 2, 3, 4.
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Note that since (X, ω) belongs to the hyperelliptic component, all the cylinders are fixed by the
hyperelliptic involution τ. It follows that τ(∂C) = ∂C. Therefore τ maps a vertical saddle connection
s in ∂C either to itself or to another one in ∂C. If τ(s) , s, then ρ(s) is a geodesic loop in CP1

based at the unique zero of q and if τ(s) = s then ρ(s) is a segment joining the unique zero to a pole.
Since we only need to consider the cases where C , X (otherwise X is filled by saddle connections
in the free homotopy class of c), we can assume that there exists a saddle connection in ∂C that is
not invariant by τ, which implies that ρ(∂C) contains (at least) a geodesic loop. The configurations of
ρ(∂C) containing a geodesic loop are shown in Figure 9.

k = 2 k = 3 k = 4(a) k = 4(b)

zero of order 3
simple pole

FIGURE 9. Configurations of ρ(∂C) having a geodesic loop. The projection of C̊ is
the open disc represented by the unbounded component of CP1 \ ρ(∂C), note that this
open disc contains two poles of q. The exterior angle between two consecutive rays
at the zero of q is π. The projection of X \C is a union of open discs bounded by the
loops based at the unique zero of q.

Let Y ′ be the metric completion of ρ(X \ C). Remark that Y ′ is a union of flat discs with geodesic
boundary, each boundary component corresponds to a geodesic loop in ρ(∂C). One can “fold up”
the boundaries of Y ′ to get closed flat surfaces defined by quadratic differentials on the sphere. Let
us denote this union by Ŷ ′. Note that in each component of Ŷ ′ we have a vertical saddle connection
corresponding to a geodesic loop in ρ(∂C). By assumption, we have S AF(Ŷ ′) = 0. We need to show
that the vertical direction is completely periodic on Ŷ ′.

In the case k = 4(a), Ŷ ′ has two connected components: one belongs to Q(−14) and the other
belongs to Q(−14, 0). The orientation double cover of both connected components are flat tori, one of
which has a vertical closed geodesic, the other one has vanishing SAF for the vertical foliation and a
vertical saddle connection. We easily draw that the vertical flow is completely periodic.

In the cases k = 2, 3, 4(b), Ŷ ′ has only one connected component, and (Ŷ ′, q′) belongs to one of
the following components respectively Q(−16, 2),Q(−15, 1),Q(−14, 0). The orientation double cover
belongs toH(1, 1),H(2) andH(0, 0) respectively. By assumption, we know that there exists a vertical
saddle connection and the SAF-invariant of the vertical direction vanishes. From this we can easily
conclude that the vertical direction is periodic if (Ŷ ′, q′) ∈ Q(−15, 1) or (Ŷ ′, q′) ∈ Q(−14, 0) (using
Lemma 5.2 and Lemma 5.1). Thus the cases k = 3 and k = 4(b) are done.

We are left with the case k = 2. We denote by (X′, ω′) ∈ H(1, 1) the orientation double cover
of (Ŷ ′, q′). By above discussion S AF(X′, ω′) = 0 and there exists a vertical saddle connection σ
connecting two zeros of ω′. It is not difficult to see that σ is invariant by the hyperelliptic involution
τ′ of X′.
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Assume that by moving vertically in the leaf of the kernel foliation, one can collapse the two zeros
of ω′ along σ to get a surface (X′′, ω′′) ∈ H(2). We then have S AF(X′′, ω′′) = S AF(X′, ω′) = 0 by
Proposition 3.3. But the first return map (to a full transversal interval) of the vertical flow on X′′ gives
an irreducible IET defined over 4 letters. It follows from Lemma 5.2 that the vertical foliation on X′′

is periodic, and we are done.
The only obstruction to the collapsing of the zeros of ω′ along σ (so that the resulting surface

belongs to H(2)) is the existence of another vertical saddle connection σ′ joining the two zeros of
ω′ such that |σ′| ≤ |σ| (as σ is shortened, σ′ is also shortened by the same amount). For a detailed
account on collision of singularities along kernel foliation leaves we refer to [MW08]. Since there
exist exactly two geodesic rays in the same direction (in S1) from each zero of ω′, if σ′ exists, then it
is unique, and in particular it is also invariant by τ′. It follows that σ ∪ σ′ is a non-separating curve
on X′. If |σ′| < |σ|, one can collapse the zeros along σ′ (shortening both σ′ and σ until the two
zeros collide). The resulting surface belongs toH(2), and the argument above shows that the vertical
direction is periodic. In the case |σ′| = |σ|, we can cut X′ along σ∪σ′ and glue the pair of segments in
each boundary component of the new surface, what we obtain is a flat torus (X′′, ω′′) (since the closed
curve σ ∪ σ′ is non-separating). By construction, S AF(X′′, ω′′) = S AF(X′, ω′) = 0. Hence the
vertical foliation on X′′ is periodic which implies that the vertical foliation on X′ is also periodic. �
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