
ON THE MINIMUM DILATATION OF BRAIDS ON PUNCTURED DISCS

ERWAN LANNEAU, JEAN-LUC THIFFEAULT

A. We find the minimum dilatation of pseudo-Anosov braids on n-punctured
discs for 3 ≤ n ≤ 8. This covers the results of Song-Ko-Los (n = 4) and Ham-Song (n = 5).
The proof is elementary, and uses the Lefschetz formula.

1. I

There are many results on the minimum dilatation of pseudo-Anosov homeomor-
phisms. They includes bounds and specific examples [Pen91, Bri04, Lei04, HK06, Min06,
TF06, Ven08, Tsa09, Hir09, AD10, KT10a, KT10b] as well as known values on closed and
punctured surfaces [Zhi95, SKL02, Son05, CH08, HS07, Hir09, LT10b]. For the punc-
tured discs, the case with three punctures is classical. Discs with four and five punctures
were solved by [SKL02] and [HS07] using train track automata. In this paper we give
a simple derivation for four and five punctures, and find the least dilatation for up to
eight punctures, using methods introduced in [LT10b].

It is well-known that the braid group Bn is isomorphic to the mapping class group
Mod(0,n + 1) of the sphere with n + 1 punctures (one of which is a marked point), that
is the disc with n punctures. We denote by σi ∈ Bn the classical generators [Bir75]. We
shall prove

Theorem 1.1. For 3 ≤ n ≤ 8, the minimum dilatation δn of pseudo-Anosov n-braids is the
Perron root (maximal root) of the following polynomials:

n δn ' polynomial braid stratum
3 2.61803 X2

− 3X + 1 σ1σ−1
2 (−1;−13)

4 2.29663 X4
− 2X3

− 2X + 1 σ1σ2σ−1
3 (−1;−14, 1)

5 1.72208 X4
− X3

− X2
− X + 1 σ1σ2σ3σ1σ2σ3σ4σ−1

3 (0;−15, 1)
6 1.72208 X4

− X3
− X2

− X + 1 σ2σ1σ2σ1 (σ1σ2σ3σ4σ5)2 (0;−15, 1)
7 1.46557 X7

− 2X4
− 2X3 + 1 σ−2

4 (σ1σ2σ3σ4σ5σ6)2 (2;−17, 1)
8 1.41345 X8

− 2X5
− 2X3 + 1 σ−1

2 σ
−1
1 (σ1σ2σ3σ4σ5σ6σ7)5 (3,−18, 1)

The notation for strata is explained in Section 2.4. Note that for n = 6 the pseudo-
Anosov with smallest dilatation is identical to that for n = 5, but with a punctured
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degree-1 singularity, as conjectured by Venzke [Ven08]. For n = 5 and 7 the braids are
part of a sequence described in [HK06, TF06, Ven08]. For n = 8 the minimizing braid is
the one described by Venzke [Ven08].

In the next section, we introduce the tools we will use to prove Theorem 1.1, and sketch
the proof in Section 2.7. The first two cases of the theorem (n = 3 and n = 4) are detailed
in Sections 3 & 4. For the other cases (Sections 5–8) we use a computer to find reciprocal
polynomials with a Perron root less than a given constant and for the combinatorics
of the Lefschetz numbers; this is straightforward and elementary.1 In an appendix we
give the minimum dilatation for each stratum and provide explicit examples of a braid
realizing each minimum (for 3 ≤ n ≤ 7).

Presumably the method could be used on discs with more punctures: the limiting steps
are (i) the generation of the list of polynomials on the generic stratum (with the most
allowable degree-1 singularities); (ii) the eliminination of polynomials ‘by hand’ using
the combinatorics of orbits or the action on singulaties. We also know by examining
each stratum (see appendix, Section A.1.3) that sometimes polynomials cannot be ruled
out in this manner; in those cases other techniques must be used, such as train track
automata [LT10a].

Acknowledgments. J-LT was supported by the Division of Mathematical Sciences of
the US National Science Foundation, under grant DMS-0806821. EL was supported by
the Centre National de la Recherche Scientifique under project PICS 4170 (France–USA).

2. P

For basic references on braid groups, mapping class groups, and pseudo-Anosov
homeomorphisms see for example [Bir75, FLP79, Thu88].

2.1. Braid groups. Let n ≥ 3 be an integer. The braid group Bn is defined by the
presentation

Bn =
〈
σ1, . . . , σn−1

∣∣∣ σiσ j = σ jσi if |i − j| ≥ 2 and σiσ jσi = σ jσiσ j if |i − j| = 1
〉
.

The group Bn is naturally identified with the group of homotopy classes of orientation-
preserving homeomorphisms of an n-punctured disc, fixing the boundary pointwise
[Bir75]. One can see this as follows. Let β ∈ Bn be a geometric n-braid, sitting in the
cylinder [0, 1] × D with D the unit disc, whose n strands start at the puncture points
of {0} × D and end at the puncture points of {1} × D. The braid may be considered
as the graph of the motion, as time goes from 1 to 0, of n points moving in the disc,
starting and ending at the puncture points. It can be proved that this motion extends
to a continuous family of homeomorphisms of the disc, starting with the identity and
fixed on the boundary at all times. The end map of this isotopy is a homeomorphism
h : D→ D, which is well-defined up to isotopy fixed at the punctures and the boundary.
Conversely, given a homeomorphism h : D → D representing some element of the

1These Mathematica [Mat08] functions are included as Electronic Supplementary Material in the file
PseudoAnosovLite.m and the example notebook disc5.nb for the disc with 5 punctures.
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mapping class group, we want to get a geometric n-braid. By a well-known trick of
Alexander, any homeomorphism of a disc which fixes the boundary is isotopic to the
identity, through homeomorphisms fixing the boundary. The corresponding braid is
then just the graph of the restriction of such an isotopy to the puncture points. Thus
there is a canonical mapping of the braid group Bn to the mapping class group of the
sphere with n + 1 punctures Mod(0,n + 1). Geometrically, the standard generators
σ1, . . . , σn−1 are induced by right Dehn half-twists around loops enclosing the punctures
pi and pi+1 (up to homotopy).

Obviously, orientation-preserving disc homeomorphisms and orientation-preserving
sphere homeomorphisms with a fixed marked point define the same object.

Convention 2.1. All sphere homeomorphisms in this paper will fix a marked point (regular or
singular) on the sphere.
All punctured surface homeomorphisms in this paper will (globally) fix the punctures.

One can think of punctured surfaces as surfaces with boundary (the boundary con-
sisting then of the punctures).

2.2. Pseudo-Anosov homeomorphisms. The classification theorem of Thurston [Thu88]
asserts that any orientation-preserving homeomorphism of a compact surface S is
relative-isotopic to a finite-order, reducible, or pseudo-Anosov homeomorphism. In
this paper we are interested in the last case. A homeomorphism φ is pseudo-Anosov
if there exists a pair of φ-invariant transitive measurable foliations (Fs,Fu) on a sur-
face S of genus g that are transverse to each other and have common singularities Σi.
Furthermore, there must exist a constant λ = λ(φ) > 1 such that φ expands leaves of
one foliation and shrinks those of the other foliation with coefficient λ (in the sense of
measures). The number λ is a topological invariant called the dilatation of φ; the number
log(λ) is the topological entropy of φ.

Thurston proved that if the foliations are orientable then
(1) The linear map φ∗ defined on H1(S,R) has a simple eigenvalue ρ(φ∗) ∈ R such

that |ρ(φ∗)| > |x| for all other eigenvalues x;
(2) |ρ(φ∗)| > 1 is the dilatation λ of φ.

In general λ(φ) ≥ ρ(φ∗), with equality if and only if the foliations are orientable.

Remark 2.2. The number |ρ(φ∗)| is a Perron number (i.e. an algebraic integer λ > 1 whose
conjugates λ′ all satisfy |λ′| < λ). If ρ(φ∗) > 0 then ρ(φ∗) is a Perron root of the polynomial
χφ∗(X), where χφ∗ is the characteristic polynomial of φ∗. If ρ(φ∗) < 0 then −ρ(φ∗) is a Perron
root of the polynomial χφ∗(−X). We also denote by ρ(P) the largest root (in magnitude) of the
polynomial P.

Definition 2.3. The isotopy class of a braid β ∈ Bn is by definition the isotopy class of the
corresponding homeomorphism h of the n-punctured disc (relative to the set

⋃
i Σi ∪ ∂D2, where

Σi are the marked points). We say that the braid β is pseudo-Anosov if the isotopy class of h is
pseudo-Anosov; in this case we define the dilatation of β as the dilatation of the pseudo-Anosov
homeomorphism.
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2.3. Singularities. Let Σ be a singularity of the stable (or unstable) foliation determined
by φ such that there are m leaves passing through Σ (m ≥ 1, m , 2). We will say that
Σ is a singularity of φ of degree k = m − 2. We call separatrices leaves passing through
singularities. For an orientable foliation, ifΣ ∈ S is a singularity of φ (necessarily of even
degree, say 2d) then there are 2(d+1) emanating separatrices: d+1 outgoing separatrices
and d + 1 ingoing separatrices. The collection s = (k1, . . . , km) of the degrees of the
singularities is called the singularity data of the foliations. The Gauss-Bonnet formula
gives

∑m
i=1 ki = 4g − 4.

2.4. Orientating double cover and strata. The following construction is classical. Let h
be a pseudo-Anosov homeomorphism of the sphere (that fixes a marked point) and let
(Fs,Fu) be the pair of nonorientable invariant foliations on the sphereP1 determined by h.
There exists a canonical (ramified) double covering π : S → P1 such that the foliations
lift to two transverse measured foliations (F̂s, F̂u) on S that are orientable.

The homeomorphism h also lifts to a pseudo-Anosov homeomorphism φ on S, with the
same dilatation. Observe that if we denote by τ the hyperelliptic involution determined
by the covering π, then there are two lifts: φ and τ◦φ (= φ◦τ). We choose the lift φ such
that ρ(φ∗) > 0, so that the other lift satisfies ρ((τ ◦ φ)∗) < 0. The covering π : S → P1 is
the minimal (ramified) covering such that the pullback of the foliations (Fs,Fu) becomes
orientable.

The set of critical values of π (i.e. the image of Fix(τ) by π) on the sphere coincides
exactly with the set of singularities of odd degree of the foliations.
Convention 2.4. All surface homeomorphisms φ are defined on a surface S equipped with an in-
volution τ. We will always assume that the homeomorphismsφ and τ commute (which is fulfilled
if the maps are affine with respect to the Euclidian metric determined by the foliations [LT10b]).

We can define strata for a pseudo-Anosov homeomorphism φ as follows. If φ fixes
globally a set of r singularities (necessarily of the same degree k), we will use the super-
script notation (kr) for k, . . . , k repeated r times. On the other hand, if φ fixes pointwise
the singularities, we will use the notation (k, . . . , k). For instance, the singularity data
(22, 2, 2) for φ on a genus-3 surface means that φ fixes a set consisting of two degree-2
singularities and fixes the other two degree-2 singularities pointwise.

For surfaces, we will allow fake singularities, i.e. regular points, and we will use the
formulation “singularities of degree 0”. One has the following straightforward lemma:
Lemma. Let h be a pseudo-Anosov homeomorphism on the sphere and let Σ be a degree-k
singularity of h. Let φ be a lift of h on the orientating double cover. If k is odd then Σ lifts to a
single singularity of φ of degree 2k + 2; otherwise Σ lifts to two singularities of φ of degree k.

Convention 2.1 prompts us to consider the following two definitions.
Definition 2.5. A stratum on the sphere is an unordered set of integers (kn2

2 , . . . , k
nm
m ) such that

m∑
i=2

niki = −k1 − 4,
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where ki ≥ −1 for any i. We will denote such a stratum by s = (k1; kn2
2 , . . . , k

nm
m ), the first element

being special — it is the degree of the marked point of Convention 2.1.

Definition 2.6. Let S be a hyperelliptic surface (of genus g ≥ 1) and let τ be the hyperelliptic
involution. The singularity data of a pseudo-Anosov φ determines a stratum on the surface

(kn1
1 , . . . , k

nl
l , k

nl+1
l+1 , . . . , k

nm
m ),

where we underline the degree of the singularities that are permuted by the involution τ.

Example 2.7. Let (−1;−117,−1, 42, 2, 12, 3) be the singularity data of a pseudo-Anosov homeo-
morphism on the sphere. Then the corresponding singularity data for the lifts on the covering
surface is (0, 017, 0, 44, 22, 42, 8) and the genus of the covering surface is 10.

2.5. Pseudo-Anosov homeomorphisms and the Lefschetz fixed point theorem. We
recall briefly the Lefschetz fixed point formula for homeomorphisms on compact sur-
faces [Bro71, LT10b]. In the present section, let φ be a pseudo-Anosov homeomorphism
of a compact surface S with orientable invariant measured foliations. If p is a fixed point
of φ, we define the index of φ at p to be the algebraic number Ind(φ, p) of turns of the
vector (x, φ(x)) when x describes a small loop around p.

Remark 2.8. The index at a fixed point is easy to calculate for a pseudo-Anosov homeomorphism.
Let ρ(φ∗) be the leading eigenvalue of φ∗. If ρ(φ∗) < 0 then Ind(φ, p) = 1 for any fixed point p
(regular or singular). If ρ(φ∗) > 0 then let Σ be a fixed degree-2d singularity of φ (d = 0 for a
regular point). It follows that either

• φ fixes each separatrix of Σ, hence Ind(φ,Σ) = 1 − 2(d + 1) < 0, or
• φ permutes cyclically the outgoing separatrices of Σ, hence Ind(φ,Σ) = 1.

We will use the following corollary (see [LT10b] for a proof).

Corollary 2.9. Let Σ be a fixed degree-2d singularity of φ with ρ(φ∗) > 0. If Ind(φ,Σ) = 1 then

∀ 1 ≤ i ≤ d, Ind(φi,Σ) = 1

and
Ind(φd+1,Σ) = 1 − 2(d + 1).

Theorem (Lefschetz fixed point theorem). Let φ be a homeomorphism on a compact surface
S. Denote by Tr(φ∗) the trace of the linear map φ∗ defined on the first homology group H1(S,R).
Then the Lefschetz number L(φ) = 2 − Tr(φ∗) satisfies

L(φ) =
∑

p=φ(p)

Ind(φ, p).

For convenience, we isolate the key idea involved in the Lefschetz formula since we will
use it often. If φ is a pseudo-Anosov homeomorphism on a compact surface S, with



6 ERWAN LANNEAU, JEAN-LUC THIFFEAULT

ρ(φ∗) > 0, then

2 − Tr(φ∗) =

 ∑
p singular fixed points of φ

Ind(φ, p)

 − #{regular fixed points of φ}, and

2 + Tr(φ∗) = #{regular fixed points of τ ◦ φ}.

In particular

2 − Tr(φ∗) ≤ #{singular fixed points of φ} − #{regular fixed points of φ}.

A very useful proposition for calculating Lefschetz numbers which we will use repeat-
edly without reference is the following.

Proposition 2.10. Let P be a degree-2g monic reciprocal polynomial

P = X2g + αX2g−1 + βX2g−2 + γX2g−3 + · · · + γX3 + βX2 + αX + 1.

Let φ be a homeomorphism such that its characteristic polynomial satisfies χφ∗ = P. Then

Tr(φ∗) = −α,
Tr(φ2

∗
) = α2

− 2β,
Tr(φ3

∗
) = −α3 + 3αβ − 3γ.

Proof. Use Newton’s formula, as in [LT10b]. �

2.6. Compatibility with the Lefschetz formula. Let P ∈ Z[X] be a degree-2g monic
reciprocal polynomial. Let s be a stratum of the genus-g surface S. Let us assume that
there exists a pseudo-Anosov homeomorphism φ on S with χφ∗ = P and singularity data
s. The traces of φm

∗
(and so the Lefschetz numbers of iterates of φ) are easy to compute

in terms of P. This gives algebraic constraints on the number of periodic orbits of φ as
well as the action of φ on the separatrices.

Definition 2.11. Let P be a degree-2g monic reciprocal polynomial and s be a stratum of the
surface S. We will say that P is compatible with s, or that P is admissible, if there are no algebraic
obstructions with the Lefschetz formula.

The following is clear:

Proposition 2.12. Let h be a pseudo-Anosov homeomorphism on the sphere and letφ and τ◦φ be
the two lifts on the covering surface S (with singularity data s). If P = χφ∗ then the polynomials
P(X) and P(−X) are both compatible with s.

We give two examples to illustrate the above proposition.

2.6.1. First example. The polynomial P = X2
− 3X + 1 is compatible with the stratum

s = (04, 02). Indeed, let us assume there exists an Anosov homeomorphism φ on the
torus with singularity data s. The Lefschetz numbers of the first five iterates of φ are
(−1,−5,−16,−45,−121). We can check that the number of periodic orbits of length m =
(1, 2, 3, 4, 5) are (0, 2, 5, 10, 24). The same calculation shows that P(−X) is also compatible
with s. Of course an Anosov homeomorphism realizing P does actually exists, e.g.[ 2 1

1 1
]
∈ PSL2(Z) 'Mod(1, 0).
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2.6.2. Second example. The polynomial P = X6
−3X5+4X4

−5X3+4X2
−3X+1 is compatible

with s = (05, 0, 42), but P(−X) is not. Let us show the latter assertion. Assume there exists
φ with χφ∗(X) = P(−X). Since ρ(P) > 0, one has ρ(P(−X)) = ρ(φ∗) < 0; thus the index at
each fixed point (singular and regular) is +1 (see Remark 2.8). We have L(φ) = 5 so that
φ has 5 fixed points. In particular φ has at least 3 regular fixed points. Now let ψ = φ2.
Of course ρ(ψ∗) > 0, so the index of ψ at the singularities is at most 1, and the index of ψ
at the regular points is −1. Since φ has at least three regular fixed points, the same is true
for ψ. The Lefschetz formula applied toψ gives L(ψ) ≤ 2−3 = −1. But a straightforward
calculation produces L(ψ) = 1 — a contradiction.

Remark 2.13. The converse of Proposition 2.12 is not true in general. For instance the polyno-
mials P(X) = X6

− 3X5 + 2X4 + 2X2
− 3X + 1 and P(−X) are both compatible with the stratum

s = (05, 0, 42). Nevertheless there are no pseudo-Anosov homeomorphismsφ on a genus-3 surface
with χφ∗(X) = P(X) or P(−X) (see [LT10a]).

We end this section by sketching a proof of our result.

2.7. Outline of a proof of Theorem 1.1. We outline the strategy for calculating the
minimum dilatation δn of pseudo-Anosov n-braids on the disc. Obviously δn is the
minimum of δ(s) where s is taken over all the strata on the sphere with n punctures.
Since we have a candidate ρ(Pn) for δn (given by train track automata, see [LT10a]) it is
sufficient to show that δ(s) ≥ ρ(Pn) for each stratum s. The steps are as follows:

(1) Fix a stratum s on the sphere with n punctures. Let h be a pseudo-Anosov
homeomorphism on the sphere P1 that realizes δ(s). Let us denote by π : S→ P1

the orientating double cover (genus(S) = g). The homeomorphism h lifts to two
homeomorphismsφ and τ◦φon S, where τ is the hyperelliptic involution of S. (By
convention, we choose the lift φ so that ρ(φ∗) > 0.) These two homeomorphisms
also determine a stratum s′ on S. Finally, there exists a reciprocal, monic, degree-
2g polynomial P ∈ Z[X] with a Perron root δ(s) and, by Proposition 2.12, both
P(X) and P(−X) are compatible with the stratum s′.

(2) We list all degree-2g reciprocal monic polynomials P, with a Perron root ρ(P),
1 < ρ(P) < ρ(Pn) (there is a finite number of such polynomials [AY81, Iva88]). If
δ(s) < ρ(Pn) then δ(s) = ρ(P) for some other P in our list. We will rule out all such
polynomials.

(3) Take a polynomial P from our list.
(4) If P is not compatible with stratum s′ then go back to step (3) and move on to the

next polynomial.
(5) If P(−X) is not compatible with the stratum s′ then go back to step (3) and move

on to the next polynomial.
(6) We exclude the remaining polynomials using combinatorics of the orbits or the

action on the singularities.

Remark 2.14. One can actually obtain a more precise result: our techniques apply to (almost)
all strata of the discs (see the appendix).
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3. D  3 

The only stratum on the sphere with four singularities is s = (−1;−13). The corre-
sponding stratum on the associated orientating double cover S is s′ = (0, 03). Thus the
genus of S is 1. The candidate for δ(s) is the Perron root of X2

− 3X + 1. A direct calcula-
tion shows that there are no degree-2 monic reciprocal polynomials with a Perron root
strictly less than that of X2

− 3X + 1. The statement is proved.

4. D  4 

There are two strata to consider on the sphere: s1 = (0;−14) and s2 = (−1;−14, 1). We
check that the corresponding strata on the orientating double cover Si are, respectively,

s′1 = (04, 02) and s′2 = (0, 04, 4).

The candidate for δ4 is the Perron root of X4
− 2X3

− 2X + 1.
• For the stratum s1 the surface upstairs, S1, has genus 1 so again there is nothing

to prove (see Section 3).
• For the stratum s2 the surface upstairs, S2, has genus 2. The next lemma shows

that there are four degree-4 monic reciprocal polynomials with a Perron root
strictly less than our candidate.

Lemma 4.1. The degree-4 monic reciprocal polynomials with a Perron root strictly less than
ρ(X4

− 2X3
− 2X + 1) ' 2.29663 are

polynomial Perron root
X4
− X3

− X2
− X + 1 1.72208

X4
− 2X3 + X2

− 2X + 1 1.88320
X4
− X3

− 2X2
− X + 1 2.08102

X4
− 3X3 + 3X2

− 3X + 1 2.15372

Proof. Let P = X4 + αX3 + βX2 + αX + 1 be a reciprocal Perron polynomial and let Q be
such that X4Q(X + X−1) = P. Observe that λ is a root of P if and only if t = λ + λ−1 is a
root of Q = X2

− aX + b where α = −a and β = b + 2. Since t is an increasing function of
λ, the polynomial Q admits a Perron root t. Let t′ be its (real) Galois conjugate so that
|t′| < t.

If t′ > 0 then a = t + t′ > 0. If t′ < 0 then |t′| = −t′ < t thus t + t′ = a > 0. Hence a > 0.
Now 2.29663 + (2.29663)−1 = 2.73205. If a ≥ 4 then the Perron root of Q satisfies

2 +
√

4 − b ≤ t = 1
2 (a +

√

a2 − 4b) < 2.73205.

Thus 4− 0.732052 < b ≤ 4 and we derive a = b = 4. Hence t = 2 which is a contradiction.
Finally a = 1, 2, or 3.

If a = 1 then t = 1
2 (1 +

√
1 − 4b) < 2.73205. Hence b > −4.73205 so that −4 ≤ b ≤ 0.

The cases b = 0,−1,−2 lead to non-Perron roots and the cases b = −3,−4 lead to the
two polynomials Q = X2

− X − 3 and Q = X2
− X − 4, that is, the polynomials P =

X4
− X3

− X2
− X + 1 and P = X4

− X3
− 2X2

− X + 1 respectively.
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The second case a = 2 leads to t = 1 +
√

1 − b < 2.73205. Hence b > −2 and b = −1
or b = 0. The case b = 0 leads to non-Perron roots and the case b = −1 leads to the
polynomial Q = X2

− 2X − 1, that is, the polynomial P = X4
− 2X3 + X2

− 2X + 1.

The third case a = 3 leads to t = 1
2 (3 +

√
9 − 4b) < 2.73205. Hence b > 0.732051,

implying b = 1. The corresponding polynomial is Q = X2
−3X+1, that is, the polynomial

P = X4
− 3X3 + 3X2

− 3X + 1. �

The next lemma will rule out the first and the third polynomials.

Lemma 4.2. Let φ be a pseudo-Anosov homeomorphism on S2 with singularity data (4, 0). If
ρ(φ∗) > 0, then

Tr(φ∗) ≥ 2.

Proof. If Σ ∈ S2 is the degree-four singularity then one has

2 − Tr(φ∗) = Ind(φ,Σ) − #Fix(φ),

where Fix(φ) is the set of regular fixed points of φ. Since #Fix(φ) ≥ 1 and Ind(φ,Σ) ≤ 1,
we get the desired inequality. �

This rules out the first and the third polynomials since for those we would have
Tr(φ∗) = 1. Now let us show that the second polynomial is also inadmissible.

Assume the second polynomial is admissible and let φ be a pseudo-Anosov homeo-
morphism such that χφ∗(X) = X4

−2X3+X2
−2X+1. Then L(φ) = 0. Since the singularity

data of φ is (4, 0), φ fixes the degree-four singularity (with positive index) and has only
one regular fixed point (which is also fixed by τ by construction). Since L(φ2) = 0 the
same argument applies to φ2 so that φ has no period-2 orbits.

Now let us count the number of fixed points of τ ◦ φ. These are fixed points of φ2.
Indeed if τ ◦φ(p) = p then φ(p) = τ(p) and φ2(p) = τ ◦φ(p) = p. By the above discussion,
τ ◦ φ has only one regular fixed point (hence also fixed by τ). Thus τ ◦ φ has two fixed
points in total (one singular and one regular). But

L(τ ◦ φ) = 2 − Tr((τ ◦ φ)∗) = 2 + Tr(φ∗) = 4.

Since L(τ ◦ φ) is the number of fixed points (singular and regular, see Remark 2.8) of
τ ◦ φ, we get a contradiction.

Finally, to finish the proof of the n = 4 case let us show that the fourth polynomial is
inadmissible. Assume it is admissible, which implies L(φ) = −1. Then φ must fix the
singularity with positive index (since otherwise L(φ) ≤ −5) and has two regular fixed
points. Since L(φ2) = −1 as well, the same argument shows that φ2 has two regular fixed
points (the same as φ) and so φ has no period-2 orbits.
As we have seen, fixed points of τ ◦ φ are also fixed points of φ2; thus τ ◦ φ has three
fixed points in total (one singular and two regular). But

3 = L(τ ◦ φ) = 2 − Tr((τ ◦ φ)∗) = 2 + Tr(φ∗) = 5,
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which is a contradiction. Hence δ(s2) = ρ(X4
− 2X3

− 2X2 + 1) and Theorem 1.1 for n = 4
is proved.

5. D  5 

There are four strata to consider on the sphere:

s1 = (1;−15), s2 = (0;−15, 1), s3 = (−1;−15, 2) and s4 = (−1;−15, 12).

The corresponding strata on the orientating double cover Si are

s′1 = (05, 4), s′2 = (05, 4, 02), s′3 = (05, 0, 22) and s′4 = (05, 0, 42).

The candidate for δ5 is the Perron root of X4
− X3

− X2
− X + 1. For the first three cases,

there is nothing to prove since by Lemma 4.1 there are no degree-4 monic reciprocal
polynomials having a Perron root less than δ5. We use a computer for the last case
(analogous to Lemma 4.1). This is straightforward.

The surface S4 has genus 3. There are 9 degree-6 monic reciprocal polynomials with a
Perron root strictly less than our candidate, namely:

polynomial Perron root
X6 + X5

− X4
− 3X3

− X2 + X + 1 1.32472
X6
− X4

− X3
− X2 + 1 1.40127

X6
− X5 + X4

− 3X3 + X2
− X + 1 1.46557

X6
− X5

− X3
− X + 1 1.50614

X6
− X5

− X4 + X3
− X2

− X + 1 1.55603
X6
− 2X5 + 3X4

− 5X3 + 3X2
− 2X + 1 1.56769

X6
− X4

− 2X3
− X2 + 1 1.58235

X6
− 2X5 + 2X4

− 3X3 + 2X2
− 2X + 1 1.63557

X6
− X5 + X4

− 4X3 + X2
− X + 1 1.67114

We will use a simple algebraic criterion in order to eliminate these polynomials.

Lemma 5.1. Let φ be a pseudo-Anosov homeomorphism on S4 with singularity data (4, 4, 0),
with ρ(φ∗) > 0. Then L(φm) ≤ 1 for any m ≥ 1. In addition, if L(φ) ≥ 0 then

L(φ3) ≤ −11.

Proof of the lemma. The first remark L(φm) ≤ 1 is trivial: positive indices arise only from
singularities, so that L(φm) ≤ 2. But since φ fixes a regular point for any m the first
statement holds.

Now let us assume in addition that L(φ) ≥ 0. Sinceφfixes a regular point, ifφpermutes
the two singularities then L(φ) < 0, a contradiction. Hence, φ fixes the two singularities,
with at least one of the singularities having positive index. Assume that the other
singularity is fixed with negative index. Then L(φ) ≤ 1 − 5 − #{Regular fixed points} < 0
which is again a contradiction. Hence the index at the two singularities is positive. Thus
the third power of φ fixes the singularities and their separatrices, and

L(φ3) = −5 − 5 − #{Regular fixed points of φ3} ≤ −11
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which proves the lemma. �

The above lemma can be restated as follows:

Lemma 5.2. Let P = X6 + αX5 + βX4 + γX3 + βX2 + αX + 1 be a degree-6 monic reciprocal
polynomial. If there exists a pseudo-Anosov homeomorphism φ with ρ(φ∗) > 0, χφ∗ = P, and
with singularity data (42, 0), then 2 + α ≤ 1 and 2 − α2 + 2β ≤ 1. Moreover if 2 + α ≥ 0 then

2 + α3
− 3αβ + 3γ ≤ −11.

None of the 9 polynomials above satisfies this algebraic criterion; thus Theorem 1.1
for n = 5 is proved.

6. D  6 

The techniques of the previous sections can also be applied to the case n = 6. However
the complexity becomes huge so we rely on a set of Mathematica [Mat08] functions to
test whether a polynomial P is compatible with a given stratum. This is straightforward:
we simply try all possible permutations of the singularities and separatrices (there is a
finite number of these), and calculate the contribution to the Lefschetz numbers for each
iterate of φ. We then check whether the deficit in the Lefschetz numbers can be exactly
compensated by regular periodic orbits. If not, the polynomial P cannot correspond to
a characteristic polynomial of some pseudo-Anosov homeomorphism on that stratum.
If it can, we also test the polynomial P(−X) corresponding to ρ(φ∗) < 0.

6.1. Puncturing a singularity of higher degree. So far we have considered strata on the
sphere where only singularities of degree −1 or the marked singularity (corresponding
to the disc’s boundary) are punctured. In general, it is possible to have higher-degree
punctured singularities. This does not yield any new pseudo-Anosov homeomorphisms:
for instance, taking the stratum (0;−16, 2) of the sphere (corresponding to a stratum on
the disc with 6 punctures) and puncturing the degree-2 singularity gives a stratum of the
sphere corresponding to a stratum on the disc with 7 punctures. However, the pseudo-
Anosov homeomorphisms on this new stratum are identical to the original since the
degree-2 singularity must be fixed anyways.

Another example is to puncture the degree-1 singularity of the stratum (0;−15, 1)
(arising from a stratum of the disc with 5 punctures; see [Ven08]). This produces a braid
on the disc with 6 punctures with dilatation 1.72208; namely σ2σ1σ2σ1 (σ1σ2σ3σ4σ5)2. We
will show in the next section that δ6 ' 1.72208. For this reason, the pseudo-Anosov braid
with the least dilatation on the disc with 6 punctures actually arises from a stratum of
the disc with 5 punctures.

Puncturing a degree-1 singularity in the stratum (−1;−15, 1, 1) does not give new
pseudo-Anosov homeomorphisms, since this merely eliminates the ones that permute
the two degree-1 singularities. However, the least dilatation on the stratum (−1;−15, 1, 1)
with a punctured degree-1 singularity can be larger than the unpunctured case. We do
not consider such cases here. See [HS07, Ven08] for more details.

Thus we reduce Theorem 1.1, case n = 6 to the following:
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Theorem 6.1. Let si be a stratum of the sphere where the punctures are only singularities of
degree one or regular points. Then δ(si) > ρ(X4

− X3
− X2

− X + 1) ' 1.72208.

6.2. Strata of the six punctured disc. In Table 1 we present the list of all possible strata
of the six-punctured disc with the corresponding strata on the surface S, and the list
of polynomials with Perron root strictly less than ρ(X4

− X3
− X2

− X − 1), that of the
candidate polynomial. Under “# polynomials” we give the number of polynomials P
with Perron root strictly less than our candidate, and under “# compatible” we give how
many of these are both compatible (P(X) and P(−X)) with the Lefschetz formula for that
stratum.

case stratum on P1 stratum on S genus of S # polynomials # compatible
s′1 (2;−16) (06, 22) 2 0 0
s′2 (1;−16, 1) (06, 4, 4) 3 9 0
s′3 (0;−16, 2) (06, 02, 22) 2 0 0
s′4 (−1;−16, 3) (06, 0, 8) 3 9 0
s′5 (0;−16, 12) (06, 42, 02) 3 9 0
s′6 (−1;−16, 1, 2) (06, 0, 4, 22) 3 9 0
s′7 (−1;−16, 13) (06, 0, 43) 4 148 2

T 1. Strata of the six-punctured disc.

6.2.1. The cases s2, s4, s5 and s6. We use a Mathematica [Mat08] program to eliminate the
polynomials using the Lefschetz formula, and find that there are no such polynomials.

6.2.2. The case s7. Since the number of polynomials is large, we use a Mathemat-
ica [Mat08] program to eliminate the polynomials using the Lefschetz formula. Among
the 148 polynomials, there are only two polynomials that satisfy this criterion, namely

polynomial Perron root
X8
− 2X7 + 2X6

− 4X5 + 5X4
− 4X3 + 2X2

− 2X + 1 1.59937
X8
− 3X7 + 4X6

− 7X5 + 10X4
− 7X3 + 4X2

− 3X + 1 1.67114

We will rule out these two polynomials by considering the φ-action on the singularities.

For the first polynomial, assume there exists φ such that χφ∗ = P. We first show that φ
fixes only one degree-4 singularity. Recall that φ fixes (at least) one regular point. If φ
permutes the singularities then L(φ) ≤ −1, contradicting L(φ) = 0. If φ fixes pointwise
the singularities (necessarily with positive index) then it has three regular fixed points.
Hence φ2 has at least three regular fixed points and still fixes pointwise the singularities
(with positive index). Thus

L(φ2) ≤ 3 − 3 = 0
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contradicting L(φ2) = 2. We have proved that φ fixes only one singularity and so the
same is true for τ ◦ φ. Since L(τ ◦ φ) = 4 one can conclude that φ has 3 regular fixed
points. This implies that L(φ) ≤ 1 − 3 < 0 contradicting again L(φ) = 0.

For the second polynomial, since L(φ) = 1 and L(φ2) = 0 the same argument shows
that φ fixes only one degree-4 singularity, so the same is true for τ ◦φ. Since L(τ ◦φ) = 5
one can conclude that τ ◦ φ has 4 regular fixed points. In particular φ has at least two
regular fixed points and so L(φ) ≤ −1, which is not possible.

Theorem 1.1 for n = 6 is proved.

7. D  7 

Again the techniques of the previous sections can be applied to the seven-punctured
disc. Table 2 gives the list of all possible strata of the seven-punctured disc with the
corresponding strata on the surface S, and the number of polynomials with a dilatation
smaller than the candidate polynomial (ρ(X7

− 2X4
− 2X3 + 1) = δ7 ' 1.46557). The only

stratum we have to check is s12. The two compatible polynomials are

polynomial Perron root
X10
− 4X9 + 5X8

− X7
− 2X6 + 2X5

− 2x4
− x3 + 5x2

− 4x + 1 1.40127
X10
− 2X9 + x7 + x6

− 2x5 + x4 + x3
− 2x + 1 1.45799

There are no pseudo-Anosov homeomorphisms that realize these polynomials. Indeed,
if we assume there is one, then the same arguments as in the previous section give a
contradiction on the number of periodic points (periodic orbits of length 14 and of length
7, respectively). We leave the details to the reader.

case stratum on P1 stratum on S genus of S # polynomials # compatible
s′1 (3;−17) (07, 8) 3 2 0
s′2 (2;−17, 1) (07, 4, 22) 3 2 0
s′3 (1;−17, 2) (07, 4, 22) 3 2 0
s′4 (0;−17, 3) (07, 8, 02) 3 2 0
s′5 (−1;−17, 4) (07, 0, 42) 3 2 0
s′6 (1;−17, 12) (07, 42, 4) 4 21 0
s′7 (0;−17, 1, 2) (07, 4, 02, 22) 3 2 0
s′8 (−1;−17, 1, 3) (07, 0, 4, 8) 4 21 0
s′9 (−1;−17, 22) (07, 0, 24) 3 2 0
s′10 (0;−17, 13) (07, 0, 43) 4 21 0
s′11 (−1;−17, 12, 2) (07, 0, 42, 22) 4 21 0
s′12 (−1;−17, 14) (07, 0, 44) 5 227 2

T 2. Strata of the seven-punctured disc.
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8. D  8 

Again the techniques of the previous sections can be applied to the eight-punctured
disc. Table 3 gives the list of all strata of the eight-punctured disc with the corresponding
strata on the surface S, and the number of polynomials with a dilatation smaller than
the candidate polynomial (ρ(X8

− 2X5
− 2X3 + 1) = δ8 ' 1.41345), as given by [Ven08].

There are five polynomials to check, and these are readily eliminated by examining the
detailed action on singularities. The method is identical to the previous sections so we
omit the detailed argument here.

case stratum on P1 stratum on S genus of S # polynomials # compatible
s′1 (4;−18) (08, 42) 3 2 0
s′2 (3;−18, 1) (08, 4, 8) 4 15 0
s′3 (2;−18, 2) (08, 22, 22) 3 2 0
s′4 (1;−18, 3) (08, 4, 8) 4 15 0
s′5 (0;−18, 4) (08, 02, 42) 3 2 0
s′6 (−1;−18, 5) (08, 0, 12) 4 15 1
s′7 (2;−18, 12) (08, 22, 42) 4 15 0
s′8 (1;−18, 1, 2) (08, 4, 4, 22) 4 15 0
s′9 (0;−18, 1, 3) (08, 02, 4, 8) 4 15 0
s′10 (−1;−18, 1, 4) (08, 0, 4, 42) 4 15 0
s′11 (0;−18, 22) (08, 02, 24) 3 2 0
s′12 (−1;−18, 2, 3) (08, 0, 22, 8) 4 15 0
s′13 (1;−18, 13) (08, 4, 43) 5 129 2
s′14 (0;−18, 12, 2) (08, 02, 42, 22) 4 15 0
s′15 (−1;−18, 12, 3) (08, 0, 42, 8) 5 129 0
s′16 (−1;−18, 1, 22) (08, 0, 4, 24) 4 15 0
s′17 (0;−18, 14) (08, 02, 44) 5 129 2
s′18 (−1;−18, 13, 2) (08, 0, 43, 22) 5 129 0
s′19 (−1;−18, 15) (08, 0, 45) 6 1096 0

T 3. Strata of the eight-punctured disc.

A A. M    

In this appendix, we give the minimum dilatation for each stratum and give explicit
examples of a braid realizing each minimum, for 3 ≤ n ≤ 7. We first detail the n = 5 case
(Section A.1) and then give the other cases without proof since the techniques are the
same (Section A.2).

A.1. Strata for the disc with 5 punctures. Here we give an alternative proof to that of
Ham & Song [HS07]. There are four strata to consider on the sphere:

s1 = (1;−15), s2 = (0;−15, 1), s3 = (−1;−15, 2) and s4 = (−1;−15, 12).
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The corresponding strata on the orientating double cover Si are

s′1 = (05, 4), s′2 = (05, 4, 02), s′3 = (05, 0, 22) and s′4 = (05, 0, 42).

The candidate dilatations for each stratum are given in Table 5. We will examine each
stratum in turn.

A.1.1. The strata s1 and s2. The candidate dilatation for these strata is the Perron root
of X4

− X3
− X2

− X + 1. Lemma 4.1 implies there are no degree-4 monic reciprocal
polynomials with a Perron root strictly less than that of the candidate.

A.1.2. The stratum s3. The genus of S3 is 2. Again Lemma 4.1 implies there are three
degree-4 monic reciprocal polynomials with a Perron root strictly less than our candidate
for δ(s3). The next lemma will rule out these three polynomials.

Lemma A.1. Let φ be a pseudo-Anosov homeomorphism on S with singularity data (2, 2, 0).
Assume in addition that ρ(φ∗) > 0. If Tr(φ∗) ≤ 2 then

Tr(φ2
∗
) ≥ 9.

We first show how to rule out the polynomials and then we will prove the lemma.
For each polynomial P, let us assume there exists φ with χφ∗ = P; then we can see that
Tr(φ∗) ≥ 2, so that we should have Tr(φ2

∗
) ≥ 9. But Proposition 2.10 shows that Tr(φ2

∗
) ≤ 5.

We now prove the lemma.

Proof of Lemma A.1. First of all observe that Tr(φ∗) ≤ 2 if and only if L(φ) ≥ 0, and
Tr(φ2

∗
) ≥ 9 if and only if L(φ2) ≤ −7. Thus let us assume L(φ) ≥ 0. Since φ fixes a regular

point, φ fixes the two degree-2 singularities with positive index (otherwise we would
have L(φ) < 0). Hence φ2 fixes the two singularities and their separatrices, so that the
index of φ2 at the singularities is −3. Now

L(φ2) = −3 − 3 − #Fix(φ2) ≤ −7,

where Fix(φ2) is the set of regular fixed points of φ2. The lemma is proved. �

A.1.3. The stratum s4. The surface S4 has genus 3. There are 41 degree-6 monic reciprocal
polynomials with a Perron root strictly less than our candidate δ(s4). Among these
polynomials, there are only 3 that satisfy the conclusion of Lemma 5.1, namely

P1 = X6
− 3X5 + 2X4 + 2X2

− 3X + 1,

P2 = X6
− 3X5 + 4X4

− 5X3 + 4X2
− 3X + 1, and

P3 = X6
− 4X5 + 6X4

− 6X3 + 6X2
− 4X + 1.

We discuss now the compatibility of the three polynomials P1, P2, and P3.

First of all P2(−X) is not compatible with the stratum s′4 (see Example 2.6.2).

For the third polynomial, both P3(X) and P3(−X) are admissible, which means the
Lefschetz formula does not rule out P3. Let us assume that there existsφ, with singularity
data s′4, such that χφ∗ = P3. We will get a contradiction using the φ-action on the
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singularities. More precisely we will show φ permutes the singularities whereas τ ◦ φ
fixes them, which is impossible (since τ fixes the singularities).

First assume that the two singularities are fixed by φ. Since L(φ) = −2 the index
at these singularities is positive, otherwise L(φ) ≤ −5 + 1 = −4. Now φ3 fixes the
singularities with negative index, so that L(φ3) ≤ −5 − 5 = −10. This is a contradiction
with L(φ3) = −8. Thus φ has to permutes the two singularities. Now let us show that
τ ◦φ fixes the two singularities. If not, then since L(τ ◦φ) = 6 the homeomorphism τ ◦φ
has 6 regular fixed points, so that (τ ◦ φ)2 = φ2 also has 6 regular fixed points. Hence
L(φ2) ≤ 2 − 6 = −4 but L(φ2) = 1: we have a contradiction.

Finally, the first polynomial P1 cannot be ruled out using the Lefschetz formula.
Indeed it is compatible with the stratum s′4 and there are no contradictions with the
φ-action on the singularities. Thus the Lefschetz formula does not help to calculate δ(s4)
and we need a more elaborate argument to conclude. Using train track automata, one
can actually prove δ(s4) ' 2.01536 [HS07, LT10a].

A.2. Minimum dilatation for each stratum. We give the minimum dilatation for each
stratum and provide explicit examples of a braid realizing each minimum. We have
indicated by a star the cases where we cannot conclude using the Lefschetz formula
only. For these cases one can conclude using train track automata (see [HS07] for n = 5
and [LT10a] for n = 6, 7).

Note that in the tables we denote∆k the braid σ1 · · · σk. We used Toby Hall’s implementa-
tion of the Bestvina–Handel algorithm [Hal, BH95] to verify that the braids correspond
to pseudo-Anosov homeomorphisms.

case δ(s) ' polynomial braid
s1 2.61803 X2

− 3X + 1 σ1σ−1
2

case δ(s) ' polynomial braid
s1 2.61803 X3

− 2X2
− 2X + 1 σ1σ2σ1σ2σ−1

3 ∆3

s2 2.29663 X4
− 2X3

− 2X + 1 σ1σ2σ−1
3

T 4. Discs with 3 and 4 punctures.

case δ(s) ' polynomial braid
s1 1.72208 X4

− X3
− X2

− X + 1 ∆3∆4σ−1
3

s2 1.72208 X5
− 2X3

− 2X2 + 1 σ2
1∆

2
4

s3 2.15372 X5
− 2X4

− 2X + 1 ∆3σ−1
4

s4 ∗ 2.01536 X6
− X5

− 4X3
− X + 1 σ1σ2σ−1

4 σ
−1
3

T 5. Disc with 5 punctures.
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case δ(s) polynomial braid
s1 1.88320 X5

− X4
− X3

− X2
− X + 1 ∆5σ4σ5

s2 1.83929 X6
− X4

− 4X3
− X2 + 1 σ5σ−1

4 ∆
2
5

s3 1.88320 X6
− 2X4

− 2X3
− 2X2 + 1 σ2

1σ4∆
2
5

s4 ∗ 2.08102 X6
− 2X5

− 2X + 1 ∆4σ−1
5

s5 ∗ 2.08102 X7
− X6

− 2X5
− 2X2

− X + 1 σ4σ2
5σ4∆

2
5

s6 1.88320 X7
− X6

− 2X4
− 2X3

− X + 1 ∆3σ−1
5 σ

−1
4

s7 ∗ 2.17113 X8
− 2X7 + X6

− 4X5 + 4X4
− 4X3 + X2

− 2X + 1 ∆3(σ3σ4σ5)−2

T 6. Disc with 6 punctures.

case δ(s) polynomial braid
s1 1.55603 X6

− X5
− X4 + X3

− X2
− X + 1 σ3σ4σ5σ6σ2σ3σ4∆3∆6

s2 1.46557 X7
− 2X4

− 2X3 + 1 σ−2
4 ∆

2
6

s3 1.46557 X7
− 2X4

− 2X3 + 1 σ2
6∆

2
6

s4 1.55603 X7
− 2X5

− 2X2 + 1 σ2
5∆

3
6

s5 ∗ 2.04249 X7
− 2X6

− 2X + 1 σ−2
4 ∆6

s6 1.61094 X8
− X7

− 2X5 + 2X4
− 2X3

− X + 1 σ−1
2 σ3σ4σ5∆

2
6

s7 ∗ 2.47541 X8
− 3X7 + 2X6

− 2X5 + 2X3
− 2X2 + 3X − 1 ∆3σ3(σ3σ4σ5σ6)−1

s8 ∗ 1.80979 X8
− X7

− 2X5
− 2X3

− X + 1 ∆4σ−1
6 σ

−1
5

s9 1.75488 X8
− X7

− 4X4
− X + 1 ∆3σ−1

6 σ
−1
5 σ

−1
4

s10 1.61094 X9
− X7

− 2X6
− 2X3

− X2 + 1 σ−1
5 σ

−1
4 σ3σ4σ5σ6∆

3
6

s11 ∗ 2.04249 X9
− 2X8 + X7

− 2X6
− 2X3 + X2

− 2X + 1 σ4σ5σ6σ3σ4σ5σ−1
2 σ

−1
1 ∆

−1
6

s12 ∗ 2.21497 X10
− 2X9

− X7
− X3

− 2X + 1 σ2σ2
1σ2∆

−2
6

T 7. Disc with 7 punctures.
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