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1. Introduction

1.1. Motivation and results. Closed GL(2,R) orbits of translation
surfaces first appeared in the work of Veech in connection to billiards
in triangles [Vee89]. Now their study is a sizable industry combining
flat geometry, dynamics, Teichmüller theory, algebraic geometry, and
number theory. Examples arising from torus covers are abundant, and
additionally a few infinite families and sporadic examples have been
discovered, but following deep work of McMullen, Möller, Bainbridge
and others it is believed that most types of closed GL(2,R) orbits are
rare: there should be at most finitely many in each genus.

Recent work of Matheus-Wright demonstrates a new paradigm for
proving such finiteness results [MW]. The key step is to show that
closed GL(2,R) orbits of the given type are not dense in some larger
orbit closure M. This M might be either higher rank or rank 1, but
the Hodge-Teichmüller planes used by Matheus-Wright are applicable
only in the higher rank case. Here we rule out the rank 1 case.

Theorem 1.1. Each non-arithmetic rank 1 orbit closure contains at
most finitely many closed GL(2,R) orbits.

Theorem 1.1 is new for all Prym eigenform loci in genus 4 and 5 and
the Prym eigenform loci in genus 3 in the principal stratum.

A point on a closed GL(2,R) orbit is called a Veech surface. Many
strange and fascinating surfaces are known that share some properties
with Veech surfaces but are not actually Veech. Most of these lie in rank
1 orbit closures. An open question of Smillie and Weiss asks whether
a particular property of Veech surfaces–complete parabolicity–in fact
implies that the surface is Veech [SW07]. We give a positive answer
in rank 1.

Theorem 1.2. In a rank 1 orbit closure, every completely parabolic
surface is Veech.
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Theorem 1.2 is new even for the much studied eigenform loci in
genus 2, and sheds light on the extent to which orbit closures can be
computed using cylinder deformations.

1.2. Terminology. Veech surfaces satisfy a remarkable property: in
any direction, the straight line flow in that direction is either uniquely
ergodic or there is a collection of parallel cylinders in that direction that
cover the surface and whose moduli are all rational multiples of each
other [Vee89]. (The modulus of a cylinder is defined to be the height
divided by the circumference). This motivates the following definition.

Definition 1.3. A translation surface is called completely parabolic if
for any cylinder direction, there is a collection of parallel cylinders in
that direction that cover the surface and whose moduli are all rational
multiples of each other.

An orbit closure of translation surfaces is a closed orbit if and only
if it contains only completely parabolic surfaces. Relaxing this restric-
tion, one arrives at one definition of a rank 1 orbit closure.

Definition 1.4. A translation surface is called completely periodic if
for every cylinder direction there is a collection of parallel cylinders in
that direction that cover the surface. An orbit closure of translation
surfaces is called rank 1 if it consists entirely of completely periodic
translation surfaces. Closed GL(2,R) orbits, or more generally rank 1
orbit closures, are called arithmetic if they parameterize torus covers
[Wri14].

See Section 2.2 and Theorem 2.5 for equivalent definitions.

1.3. Outline of proof. Both Theorems 1.1 and 1.2 will be deduced
from the following result.

Theorem 1.5. The set of completely parabolic surfaces is not dense
in any non-arithmetic rank 1 affine invariant submanifold that is not
a closed orbit.

Theorem 1.5 will be established in Section 3 via a mostly elementary
argument, showing that a surface whose Veech group is large and does
not have trace field Q does not admit any small rel deformation that
remains completely parabolic. They key tools will be the Zariski den-
sity of the Veech group in SL(2,R)d and a result of Eskin-Mozes-Oh
on escape from sub-varieties in Zariski dense groups.

To derive Theorems 1.1 and 1.2 from Theorem 1.5, we will use the
recent work of Eskin-Mirzakhani-Mohammadi [EM,EMM].
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Theorem 1.6 (Eskin-Mirzakhani-Mohammadi). Any closed GL(2,R)
invariant subset of a stratum is a finite union of affine invariant sub-
manifolds.

Proof of Theorems 1.1 and 1.2 from Theorem 1.5. We first prove The-
orem 1.1. Let us assume that there are infinitely many closed orbits
Ci in a non-arithmetic rank 1 orbit closure N . By Theorem 1.6, the
closure of the union of the Ci is equal to a finite union of affine invariant
submanifoldsM1∪· · ·∪Mk. One of these orbit closures, sayM1, must
contain infinitely many of the Ci. Since N is rank 1 and M1 ⊂ N , it
follows that M1 is also rank 1. Since N is non-arithmetic, M1 is also
a non-arithmetic (Corollary 2.13). Because closed orbits parameter-
ize completely parabolic translation surfaces, this contradicts Theorem
1.5.

We now prove Theorem 1.2. Suppose N is a non-arithmetic rank
1 orbit closure, and suppose (X,ω) ∈ N is a completely parabolic
surface that is not Veech. LetM be the orbit closure of (X,ω). Again
we see that M must be non-arithmetic and rank 1. Because (X,ω) is
not Veech, M is not a closed orbit. Furthermore M contains a dense
set of completely parabolic surfaces given by the orbit of (X,ω). This
contradicts Theorem 1.5. �

1.4. Context. The projection of a closed GL(2,R) orbit to the moduli
space of Riemann surfaces is called a Teichmüller curve, and up to a
double cover issue all Teichmüller curves arise in this way. Since the
relationship is so close, sometimes we will conflate these notions and
refer to closed GL(2,R) orbits as Teichmüller curves.

Marked points on Veech surfaces. The easiest examples of rank
1 orbit closures that are not Teichmüller curves are given by orbit
closures of Veech surfaces with finitely many marked points. One can
also take covers of these surfaces branched over the marked points and
obtain very closely related rank 1 orbit closures of translation surfaces
with no marked points.

A Veech surface with a marked point has closed GL(2,R) orbit if and
only if the marked point is periodic, i.e., has finite orbit under the ac-
tion of the affine group. Gutkin-Hubert-Schmidt [GHS03] and Möller
[Möl06a] showed that on any non-arithmetic Veech surface there are
at most finitely many periodic points. This can be viewed as a spe-
cial case of Theorem 1.1, and was the inspiration for the present work.
More specifically, the paper of Gutkin-Hubert-Schmidt motivated this
paper by giving us hope that in rank 1 a general finiteness result could
be obtained without using much algebraic geometry.
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The finiteness result of Gutkin-Hubert-Schmidt and Möller was used
by Hubert-Schmoll-Troubetzkoy to obtain interesting results on the
structure of rank 1 orbit closures arising from Veech surfaces with
marked points [HST08]. This is the only known instance where a
finiteness result for Teichmüller curves has been used to restrict the
structure of larger orbit closures.

Rank 1 orbit closures. There are additionally infinitely many rank
1 orbit closures in genus 2 through 5, called the (Prym) eigenform
loci. These examples were discovered by McMullen; in the case of
genus 2 they were independently discovered in a different guise by
Calta [Cal04, McM03a, McM06a]. All currently known rank 1 or-
bit closures arise from (Prym) eigenform loci or Teichmüller curves via
branched covering constructions.

The (Prym) eigenform loci have been the focus of a considerable
amount of study [McM,McM14,LNb,LNc].

Arithmetic rank 1 orbit closures never contain non-arithmetic Te-
ichmüller curves, and they always contain a dense set of arithmetic
Teichmüller curves. Non-arithmetic orbit closures never contain arith-
metic Teichmüller curves [Wri14].

Strange surfaces. The (Prym) eigenform loci and branched cov-
ers of Veech surfaces have been a rich source of examples of sur-
faces with peculiar properties, including surfaces with infinitely gen-
erated Veech groups and satisfying the (topological) Veech dichotomy
[LNa,McM03b,SW08,HS04].

There are some examples of somewhat less weird but still unusual
surfaces not lying in a rank 1 orbit closure, for example there are many
completely periodic but not Veech surfaces in H(4)hyp [LNa], whose
orbits must be dense by [NW14].

Teichmüller curves. A Teichmüller curve is called primitive if it does
not arise from a covering construction [Möl06a]. Here is a census of
all known primitive Teichmüller curves. In genus 2, 3 and 4 there
are infinite families discovered by McMullen [McM03a,McM06b]; in
genus two, these were independently discovered in a different guise by
Calta [Cal04]. The Veech-Ward-Bouw-Möller Teichmüller curves give
finitely many examples in each genus [Vee89,War98,BM10,Wri13,
Hoo13]. There is additionally one known primitive Teichmüller curve
in genus 3 and one in genus 4 [HS01,KS00].

Primitive Teichmüller curves were classified in genus 2 by McMullen
[McM05a,McM06b]. These curves and their friends in genus 3 and 4
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have been the focus of an extensive body of research [Bai07,Muk14,
KM,Muk,LN14,Möl,TTZ].

As part of his classification primitive Teichmüller curves in genus 2,
McMullen showed that there is only one primitive Teichmüller curve
in H(1, 1) [McM06b]. Before proving this, McMullen established the
weaker result that in each non-arithmetic eigenform locus in genus 2
there are at most finitely many Teichmüller curves [McM05b]. The-
orem 1.1 is a generalization of this result.

Furthermore, McMullen was able to show that every non-Veech sur-
face in these loci must have a saddle connection not parallel to any
cylinders [McM05b, Theorem 7.5]. This is very much analogous to
Theorem 1.2, because both imply the existence of a flat geometry “cer-
tificate” that shows that a surface is not Veech. Our techniques also
have similarities with those of McMullen. For example, both use that
an infinite set of Teichmüller curves must be dense. (McMullen’s work
was well before Theorem 1.6 was established, but he had previously
established this result in genus 2 [McM07].)

A Teichmüller curve is called algebraically primitive if the trace field
of its Veech group has degree equal to the genus. Finiteness of al-
gebraically primitive Teichmüller curves was shown in H(g − 1, g −
1)hyp by Möller [Möl08], in H(3, 1) by Bainbridge-Möller [BM12],
in general in genus 3 by Bainbridge-Habegger-Möller [BHM], and in
the minimal stratum in prime genus at least 3 by Matheus-Wright
[MW]. In the minimal stratum in genus 3, there are only finitely
many primitive Teichmüller curves not contained in the Prym locus
[MW,NW14,ANW].

There is a partial classification of primitive Teichmüller curves in
the Prym eigenform loci in genus three [LM]. Before the work of
Bainbridge-Habegger-Möller, Lanneau-Nguyen had previously estab-
lished Theorem 1.1 for many Prym eigenform loci in genus three in
genus 3 [LNa], using the strategy that McMullen used in eigenform
loci in genus 2 [McM05b].

Teichmüller curves have extra-ordinary algebro-geometric properties
[Möl06b,Möl06a,McM09], which have been key tools in much pre-
vious work on finiteness of Teichmüller curves. Our method will not
use any of these algebro-geometric results.

The work of Smillie-Weiss uses flat geometry to characterize and
prove finiteness results for Teichmüller curves [SW10a,SW10b].

Cylinder deformations. For many surfaces, certain recognizable
cylinder deformations span the tangent space to the orbit closure of
the surface (assuming the set of cylinders in a given direction can be
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determined) [Wri15]. However, it is unknown if this holds for all
surfaces.

For a completely parabolic surface, there is no indication from the
flat geometry that the orbit closure has any non-trivial cylinder defor-
mations. Thus if a completely parabolic but not Veech surface were to
exist, the recognizable cylinder deformations wouldn’t span the tangent
space to its orbit closure.

We write “recognizable” because, for example, if a completely para-
bolic surface but not Veech surface were to exists, it is possible certain
cylinder deformations would stay in its orbit closure. However, with-
out already knowing the orbit closure, there would be no way to guess
this from the flat geometry of the surface. In contrast, for a horizon-
tally periodic surface where the moduli are not rational multiples of
each other, certain cylinder deformations are easily seen to stay in the
horocycle orbit closure [Wri15].
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2. Background

We review useful results concerning affine invariant submanifolds,
rank and (affine) field of definition. For a general introduction to
translation surfaces and their moduli spaces, we refer the reader to
the surveys [MT02, Wri, Zor06], or any of the many other surveys
listed in [Wri].

Throughout this paper, Hg will denote the moduli space of Abelian
differentials ω on Riemann surfaces X of genus g ≥ 1. For any non-
negative integer partition (k1, k2, . . . , ks) of 2g − 2 we will denote by
H(k1, . . . , ks) the stratum of translation surfaces having s zeros, of
orders k1, . . . , ks. We will allow translation surface to have finitely
many marked points, and by convention we will consider a marked point
to be a zero of order 0. The marked points are required to be distinct
from each other and the set of true zeros. GL(2,R) acts on the set of
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translation surfaces (by post-composition with the charts of translation
atlas). Moreover, this GL(2,R)-action on Abelian differential preserves
each stratum. We will denote the stabilizer of (X,ω) by SL(X,ω), and
we will refer to it as the Veech group.

For technical reasons we will work with the finite cover H of the stra-
tum H(k1, k2, . . . , ks) consisting of surfaces equipped with a level three
structure and a labeling of the zeros. The level three structure may be
safely ignored. We will write (X,ω) ∈ H, and it will be implicit that
X carries a level three structure and the requisite number of labelled
marked points.

2.1. Affine invariant submanifolds. Let Σ be the set of zeros of
(X,ω) ∈ H and let γ1, . . . , γn be any basis of the relative homology
group H1(X,Σ,Z), where n = 2g+ s− 1. The period coordinate maps
defined by

(X,ω) 7→
(∫

γ1

ω, . . . ,

∫
γn

ω

)
provide H with an atlas of charts to Cn with transition functions in
GL(n,Z) (see [Kon97]). If γ is in absolute homology H1(X,Z), the
integral

∫
γ
ω is called an absolute period, and if γ is merely in relative

homology H1(X,Σ,Z) it is called a relative period.
Over each stratum there are flat bundles H1

rel and H1 whose fiber
over (X,ω) are H1(X,Σ,C) and H1(X,C) respectively. There is a
natural map p : H1

rel → H1.

Definition 2.1. An affine invariant submanifold of H is a properly
immersed manifold M ↪→ H such that each point of M has a neigh-
borhood whose image is given by the set of surfaces in a open set
satisfying a set of real linear equations in period coordinates. (For no-
tational simplicity, we will treat affine invariant submanifold as subsets
of strata, referring to the image of the immersion).

The tangent space to M gives a flat subbundle T (M) of H1
rel.

Definition 2.2. A rel deformation is a path of translation surfaces
{(Xt, ωt)}t∈[0,1] along which all absolute periods

∫
γ
ωt stay constant.

Lemma 2.3. The bundle ker(p) is a trivial flat bundle over H.

Proof. Suppose the zeros of ω are p1, . . . , ps. Since the zeros are la-
belled, the ordering of the pi can be chosen consistently over H. At
any point (X,ω) ∈ H, for each i = 1, . . . , s− 1, let γi be a path on X
from pi to pi+1. The map from the fiber of ker(p) to Cs−1 given by

v 7→ (v(γi))
s−1
i=1
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does not depend on the choice of γi and provides an isomorphism be-
tween ker(p) and the trivial bundle Cs−1 over H.

The γi cannot be chosen to be global flat sections, but this is not
relevant because the map does not depend on the choice of γi. The
reason it does not depend on the choice of γi is because different γi
differ by absolute homology classes, and by assumption the integral of
v over any absolute homology class is zero. �

Notation. Because H1(X,Σ,C) provides local coordinates for H at
(X,ω), for any sufficiently small v ∈ H1(X,Σ,C) there is a nearby
point in H whose period coordinates are given by those of (X,ω) plus
v. We will denote this surface by (X,ω) + v.

Lemma 2.4. Fix (X,ω) ∈ H. There is a neighborhood U of 0 in ker(p)
such that on U the map v 7→ (X,ω) + v is well defined and injective,
and such that if v ∈ U then tv ∈ U for all t ∈ [0, 1]. Moreover, if
g ∈ SL(X,ω) and v ∈ U then g((X,ω) + v) = (X,ω) + gv.

Here g acts on v ∈ ker(p) by acting on the real and imaginary parts.
That is, ker(p) = Cs−1, and the action is the standard linear action of
GL(2,R) on the plane C ' R2. Generally we will also require gv ∈ U ,
so that g((X,ω) + v) is in the image of U under the injective map
v 7→ (X,ω) + v. (We think of U as providing a local coordinate chart
for the rel leaf of (X,ω), and generally we want g((X,ω)+v) to remain
in this coordinate chart.)

Proof. The first claim follow from the fact that period coordinates are
indeed local coordinates.

For the final claim, fix g ∈ GL(2,R) and set (Xv, ωv) = (X,ω) + v
and (Xg

v , ω
g
v) = g((X,ω) + v).

Now, if γ is any relative cycle,∫
γ

ωgv = g ·
∫
γ

ωv

= g ·
(∫

γ

ω + v(γ)

)
= g ·

∫
γ

ω + g · v(γ).

This proves the result, using the triviality of ker(p).
�

2.2. Rank of an affine invariant submanifold. We define the rank
of an affine invariant submanifold M by 1

2
dimCp(T (M)). (Note that
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by the work of Avila-Eskin-Möller [AEM], p(T (M)) is symplectic, and
thus has even dimension over C).

The following result was established in general in [Wri15], having
previously been known in a number of special cases [LNa, Cal04,
McM05b, Vee89]. The simplest known proof, which in fact gives
a stronger result, may be found in [Wri].

Theorem 2.5. Any surface (X,ω) whose orbit closure M satisfies
1
2

dimCp(T (M)) = 1 is completely periodic.

This theorem is one of two implications showing that the definition
of rank 1 in this section is equivalent to the one in the introduction.
See [Wri15] for the other implication.

When M is a rank 1 submanifold, p(T (M)) is spanned by the real
and imaginary parts of the absolute cohomology class of ω. Hence
span(Re(ω), Im(ω)) is locally constant, because p(T (M)) is a flat sub-
bundle. One thinks of span(Re(ω), Im(ω)) as the directions coming
from GL(2,R), because this subspace is always contained in T (M) as
a consequence of GL(2,R) invariance.

Proposition 2.6 ([Wri]). An orbit closure M is rank 1 if and only if
for each (X,ω), there is a neighborhood U of the identity in GL(2,R)
and a neighborhood V of 0 in ker(p) ∩ T (M) such that the map from
U × V →M given by (g, v) 7→ g(X,ω) + v is a diffeomorphism onto a
neighborhood of (X,ω) in M.

2.3. Stable directions. Let M be an affine invariant submanifold.
We say that a surface (X,ω) ∈ M is M-stably periodic in some direc-
tion if the surface is periodic in this direction and if all saddle connec-
tions in this direction remain parallel on all sufficiently nearby surfaces
in M. A periodic direction that is not M-stable will be called M-
unstable.

Remark 2.7. If (X,ω) is horizontally M-stably periodic then there is
an open subset U of ker(p) ∩ T (M) containing 0 such that for any
v ∈ U , (M,ω)+v is also horizontallyM-stably periodic with the same
cylinder diagram (compare to [LNc]).

Remark 2.8. M-stability can be described in the language of [Wri15]
by saying that the twist space is equal to the cylinder preserving space.

Remark 2.9. If M is rank 1 and (X,ω) ∈ M is horizontally periodic
and U is a neighborhood of 0 in ker(p) ∩ T (M) on which the map
v 7→ (X,ω) + v is well defined and injective, then there is an open
dense subset V ⊂ U such that for any v ∈ V , (X,ω) + v is horizontally
M-stably periodic. This is because the condition of beingM-unstable
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periodic gives rise to linear equations that do not vanish identically on
T (M) ∩ ker(p).

2.4. Holonomy field, trace field and (affine) field of definition.
For more details on the results in this section, see [KS00,Wri14].

The holonomy field of a translation surface is the smallest subfield of
R such that the absolute periods are a vector space of dimension two
over this field [KS00]. The trace field of a translation surface is the
subfield of R generated by the traces of elements of its Veech group.
This is also Q[λ+ λ−1] where λ is the largest eigenvalue of any hyper-
bolic element of SL(X,ω). When SL(X,ω) contains a hyperbolic, the
trace field and the holonomy field coincide.

The (affine) field of definition of an affine invariant submanifold M
(introduced in [Wri14]), denoted k(M), is defined to be the smallest
subfield of R such that locally M can be described by homogeneous
linear equation in period coordinates with coefficients in k(M). It is a
number field [Wri14] and is always totally real [Fil].

Lemma 2.10. If M is an affine rank 1 invariant submanifold then
any translation surface (X,ω) ∈M has holonomy field equal to k(M).

Proof. By a result in [Wri14], k(M) is the intersection of the holonomy
fields of all translation surfaces in M. By definition, the holonomy
field is invariant under both the GL(2,R)-action and rel deformations.
Since M is rank 1, any two points in M may be connected by using
the GL(2,R)-action and rel deformations. This proves the lemma. �

Definition 2.11. We will say that M is arithmetic if k(M) = Q.

Remark 2.12. In the rank 1 case, it is not hard to show that this
definition of arithmetic coincides with the one given in the introduction.

Corollary 2.13. If M′ ⊂ M are rank 1, then k(M) = k(M′). In
particular M is arithmetic if and only if M′ is arithmetic.

Lemma 2.14. If (X,ω) ∈ M is a completely parabolic surface, then
there exists g ∈ GL(2,R), arbitrarily close to the identity, such that
g(X,ω) has absolute and relative periods in k[i].

Proof. This follows from the Thurston-Veech construction [Thu88,
Vee89]. Alternatively, by the definition of holonomy field there is
g ∈ GL(2,R) arbitrarily close to the identity such that g(X,ω) has
absolute periods in k[i]. By [KS00, Theorem 30] or [McM03b, The-
orem 9.4], if SL(X,ω) has a hyperbolic element, then the relative and
absolute periods span the same Q vector subspace of C. �
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Suppose that k is a totally real field of degree d over Q. We denote
the field embeddings of k into R by ι1, . . . , ιd. If a subgroup Γ ⊂
SL(2,R) has totally real trace field k of degree d over Q (Γ is not
necessarily a subgroup of SL(2,k)) then there is a natural injective
group homomorphism ρ : Γ → SL(2,R)d. This homomorphism is
defined up to conjugation by the condition that for all γ ∈ Γ, we have
ρ(γ) = (g1, . . . , gd), where tr(gi) = ιi(tr(γ)) for all i.

The next proposition is a consequence of [Gen12, Proposition 2.1
and Corollary 2.2], which is slightly stronger.

Proposition 2.15. Let Γ ⊂ SL(2,R) be a non-elementary subgroup
having a totally real trace field k of degree d over Q. If there exists
g ∈ Γ with eigenvalue λ such that k = Q[λ+λ−1], then the image ρ(Γ)
of Γ in SL(2,R)d is Zariski dense.

Proof. We provide a sketch for convenience.
Let g be the Lie algebra of the Zariski closure of ρ(Γ) ⊂ SL(2,R)d.

It suffices to show g =
⊕d

i=1 sl(2,R).

Step 1: Let πi :
⊕d

i=1 sl(2,R) → sl(2,R) be the projection onto
the i-th factor. For each i, we have that πi(g) = sl(2,R). This follows

since the Adjoint action of ρ(Γ) on each coordinate of
⊕d

i=1 sl(2,R) has
no invariant subspaces, and g is an invariant subspace for the Adjoint
action of ρ(Γ) on

⊕d
i=1 sl(2,R).

Step 2: For each i, we have that g contains an element which is non-
zero only in coordinate i. This follows from the previous result, and the
following observation: if g ∈ Γ has an eigenvalue λ with k = Q[λ+λ−1],
then Ad(g) has a simple eigenvector that is non-zero only in coordinate
i. Basic linear algebra gives that the projection onto the line spanned
by this eigenvector can be written as a polynomial in Ad(g).

Step 3: Again using that Ad(ρ(Γ)) acting on each sl(2,R) coordinate
has no invariant subspaces, we get the result. �

Corollary 2.16. If (X,ω) is contained in a non-arithmetic rank 1
orbit closure and has two non-commuting parabolic, then ρ(SL(X,ω))
is Zariski dense in SL(2,R)d.

3. Proof of Theorem 1.5

For the duration of this section, in order to find a contradiction, we
assume thatM is a non-arithmetic rank 1 affine invariant submanifold,
and completely parabolic surfaces are dense in M. Let k = k(M) be
the (affine) field of definition of M. The definition of non-arithmetic
means that k 6= Q. We denote the field embeddings of k into R by
ι1, . . . , ιd.
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Lemma 3.1. There exists a completely parabolic surface (X,ω) ∈ M
that is M-stably periodic in the horizontal direction, with all relative
periods in k[ı] and satisfying the following property. There exist a pair
of horizontal cylinders C1, C2 on (X,ω) such that the ratio of the moduli
of C1 and C2 is not constant under small rel deformations in M.

Proof. Given any periodic direction on any surface in M, a generic
small deformation of this surface will beM-stably periodic in the same
direction. Thus, there is a surface (X ′, ω′) ∈ M with an M-stably
periodic direction. There is small neighborhood U of (X ′, ω′) where
the cylinders in this direction persist, and the direction staysM-stably
periodic. Since we have assumed that completely parabolic surfaces are
dense inM, there must be a completely parabolic surface (X,ω) in U .
After applying an element in GL(2,R), we may assume that the M-
stably periodic direction on (X,ω) is horizontal and that the absolute
and hence also relative periods lie in k[i]; compare to the proof of
Lemma 2.14.

For any non-trivial imaginary rel deformation of an M-stably hor-
izontally periodic surface, there is a cylinder that increases in height,
and another that decreases in height. Two such cylinders can be chosen
as C1 and C2. Since rel deformations do not change circumference, the
ratio of moduli of C1 and C2 changes under the imaginary rel deforma-
tion. �

Let (X,ω) ∈ M, and C1, C2 ⊂ X be as in Lemma 3.1. For v in
a neighborhood of 0 in ker(p) ∩ T (M), define f(v) to be the ratio of
the moduli of C1 and C2. Note that f is the quotient of two degree
1 polynomials in the imaginary coordinates of v with coefficients in
k(M). More precisely, if the heights and circumferences of Ci at (X,ω)
are denoted by hi and ci respectively, then there are linear functionals
α1, α2 with coefficients in k such that

f(v) =
c2
c1
· h1 + α1(Im(v))

h2 + α2(Im(v))
.

Using this formula as a definition, we extend f to all of ker(p)∩T (M).

Remark 3.2. For large v, f(v) may not have geometric meaning. There
are several reasons for this: the cylinders C1 and C2 may not persist on
(X,ω)+v, or worse yet, (X,ω)+v may not even be well defined (zeroes
may collide). Furthermore, if a path (X,ω) + tv ceases to beM-stably
periodic at some t = t0, then f(tv) may not represent the ratio of the
moduli of C1 and C2 for t > t0, even if C1 and C2 persist. This is
because some zero can “hit” the boundary of the Ci. (The heights of
cylinders are only piecewise linear functions.)
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In the sequel we set

P = {v ∈ ker(p) ∩ T (M) : f(tv) = f(0) for all t ∈ R} .
Observe that since f is the ratio of two degree one polynomials, P is a
real hyperplane of ker(p) ∩ T (M).

Lemma 3.3. Let v ∈ ker(p)∩T (M)∩H1(X,Σ,k[i]) be a vector satis-
fying v /∈ P . There exists a collection of d− 1 polynomials (depending
on v) of degree at most 2 in the 4d entries of ρ(g) such that for any
g ∈ SL(2,k), if any of these polynomials are non-zero at ρ(g), then
f(gv) 6∈ Q. Moreover, these polynomials do not vanish identically on
ρ(SL(2,k)).

Proof. The condition that f(gv) ∈ Q is equivalent to the d−1 equations

ιi(f(gv)) = ιi+1(f(gv)), i = 1, . . . , d− 1.

Since f is the ratio of two degree one polynomials, by clearing denom-
inators in each of these equations we get a system of d − 1 quadratic
equations in the coefficients of ρ(g) that vanish whenever f(gv) ∈ Q.

It remains to show that these polynomials do not vanish identically
on ρ(SL(2,k)). For this, consider the matrices

at =

(
t−1 0
0 t

)
for t ∈ k∗. Since f(v) depends only on the imaginary parts of v, we
get that for any t ∈ k∗, f(atv) = f(tv). Since v /∈ P the function
t 7→ f(tv) is not constant. Recall that k 6= Q, hence any non-constant
function k → R defined as the ratio of two degree one polynomials
cannot always take rational values. This proves the lemma. �

For any v ∈ ker(p) ∩ T (M) ∩ H1(X,Σ,k[i]) with v /∈ P , we will
denote the algebraic subvariety of SL(2,R)d defined by the polynomials
in Lemma 3.3 by X (v). In particular ρ(SL(2,k)) 6⊂ X (v).

Lemma 3.4. There exists R > 0 such for any v ∈ ker(p) ∩ T (M) ∩
H1(X,Σ,k[i]) with v /∈ P , there exists g ∈ SL(X,ω) such that ‖g‖ ≤ R
and ρ(g) 6∈ X (v) i.e. f(gv) /∈ Q.

The non-trivial part of Lemma 3.4 is the control of the size of g.
This is done with the following result of Eskin-Mozes-Oh. The state-
ment presented here is slightly stronger than [EMO05, Lemma 3.2]
(see [BG08, Lemma 2.5] where the statement below appears).

Theorem 3.5 (Eskin-Mozes-Oh). For any k > 0, there is an N > 0
such that for any integer m ≥ 1, any field k, any algebraic subvariety
X ⊂ GL(m,k) defined by at most k polynomials of degree at most k,
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and any family S ⊂ GL(m,k) that generates a subgroup which is not
contained in X , we have SN 6⊆ X .

Here SN denotes the word ball of radius N .

Proof of Lemma 3.4. By Corollary 2.16, we have that ρ(SL(X,ω)) is
Zariski dense in SL(2,R)d. Let S ⊂ SL(X,ω) be a finite set such that
ρ(S) generates a Zariski dense subgroup Γ of SL(2,R)d.

Let v be as in the statement of the lemma. By Lemma 3.3 we know
that ρ(SL(2,k)) is not contained in the subvariety X (v) of SL(2,R)d ⊂
GL(2d,R). Thus the subgroup Γ is not contained in this variety. The-
orem 3.5 then implies that there is an N independent of v such that
there exists an element g ∈ SL(X,ω) of word length in S at most N ,
such that ρ(g) does not belong to X (v), which means that f(gv) /∈ Q
by Lemma 3.3.

If M = maxh∈S ‖h‖, we may set R = MN , and hence ‖g‖ ≤ R. �

Corollary 3.6. For all sufficiently small v ∈ ker(p)∩T (M)∩H1(X,Σ,k[i]),
if v 6∈ P then (X,ω) + v is not completely parabolic.

Proof. Let R be the constant given by Lemma 3.4. Let U be the neigh-
borhood of 0 in ker(p) ∩ T (M) given by Lemma 2.4 so that the map
v 7→ (X,ω) + v is well defined and injective, and if g ∈ SL(X,ω) and
v ∈ U then g((X,ω) + v) = (X,ω) + gv. By making U smaller if neces-
sary, we can assume that the cylinders C1 and C2 persist at (X,ω) + v
for all v ∈ U and that f(v) gives the ratio of the moduli of C1 and C2

at (X,ω) + v.
Now consider any v as above that is small enough so that Rv ∈ U .

If v 6∈ P , Lemma 3.4 furnishes an element g ∈ SL(X,ω) such that
f(gv) /∈ Q and ‖g‖ ≤ R. But g((X,ω) + v) = (X,ω) + gv. Since
the function f is the ratio of the moduli of C1 and C2, we see that
(X,ω) + gv has a pair of parallel cylinders whose ratio of moduli is not
rational. Since (X,ω) + gv belongs to the SL(2,R) orbit of (X,ω) + v,
we see that (X,ω) + v is not completely parabolic. �

Conclusion of the proof of Theorem 1.5. Recall that the set of com-
pletely parabolic surfaces is GL(2,R) invariant. Since M is rank 1, if
completely parabolic surfaces are dense, then there is a neighborhood
U of 0 in ker(p) ∩ T (M) such that (X,ω) + v is completely parabolic
for a dense set of v ∈ U .

By construction, (X,ω) has relative periods in k[i]. Hence if (X,ω)+
v is completely parabolic then it must have relative periods in k[i], and
hence v has coordinates in k[i]. By Corollary 3.6, if v /∈ P is small
enough and has coordinates in k[i], then (X,ω) + v is not completely
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parabolic. Since P is a hyperplane, this contradicts the fact that the
set of completely parabolic surfaces is dense in M. Theorem 1.5 is
proved. �
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arithmeticity, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 6, 847–866
(2004).

[Hoo13] W. Patrick Hooper, Grid graphs and lattice surfaces, Int. Math. Res.
Not. IMRN (2013), no. 12, 2657–2698.

[HS01] P. Hubert and T. A. Schmidt, Invariants of translation surfaces, Ann.
Inst. Fourier (Grenoble) 51 (2001), no. 2, 461–495.

[HS04] Pascal Hubert and Thomas A. Schmidt, Infinitely generated Veech
groups, Duke Math. J. 123 (2004), no. 1, 49–69.



16 LANNEAU, NGUYEN, AND WRIGHT

[HST08] P. Hubert, M. Schmoll, and S. Troubetzkoy, Modular fibers and illu-
mination problems, Int. Math. Res. Not. IMRN (2008), no. 8, Art. ID
rnn011, 42.

[KM] Abhinav Kumar and Ronen E. Mukamel, Algebraic models and arith-
metic geometry of Teichmüller curves in genus two, preprint, arXiv
1406.7057 (2014).

[Kon97] M. Kontsevich, Lyapunov exponents and Hodge theory, The mathemat-
ical beauty of physics (Saclay, 1996), Adv. Ser. Math. Phys., vol. 24,
World Sci. Publ., River Edge, NJ, 1997, pp. 318–332.

[KS00] Richard Kenyon and John Smillie, Billiards on rational-angled triangles,
Comment. Math. Helv. 75 (2000), no. 1, 65–108.
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