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Abstract. We show that every positive integer d ≤ 3g − 3 appears as a multi-
curve intersection degree on the closed orientable surface of genus g ≥ 2. As an
application, we obtain that the largest degree of a pseudo-Anosov stretch factor
obtained via the Thurston–Veech construction on the closed orientable surface
of genus g ≥ 2 equals 6g − 6, validating a claim by Thurston from the 80ies.
For g ≥ 3, we show that the multicurves can be constructed in such a way that
the pseudo-Anosov map belongs to the Torelli group.

1. Introduction

1.1. Multicurve intersection degrees. Let S be the smooth closed orientable
surface of genus g ≥ 2. A multicurve α ⊂ S is a disjoint union of finitely many
smooth simple closed curves, α = α1 ∪̇ · · · ∪̇ αn. Note that our definition allows for
parallel multicurve components.

A pair of multicurves α, β ⊂ S fills the surface S if α and β intersect transversally
and if the complement S \ (α ∪ β) is a union of topological discs none of which is
a bigon. This in particular implies that each pair αi and βj of components realises
the minimal number of intersection points within their respective isotopy classes.

For a pair α, β ⊂ S of filling multicurves, let X = (|αi ∩ βj |)ij be the matrix encoding

the number of intersections of the components of α and β.

The matrix XX> is primitive, hence by Perron-Frobenius theory its spectral radius
equals its largest eigenvalue and is therefore an algebraic integer. Let d be its
algebraic degree. We call the number d the multicurve intersection degree of α
and β.

The degree d is obviously bounded from above by the rank of the matrix XX>, which
in turn is bounded from above by the maximal number of nonparallel components of
a multicurve in S. This number equals the number of curves in a pants decomposition
of the surface, which equals 3g − 3.

Our first main result states that this is the only restriction.

Theorem 1. Every positive integer d ≤ 3g−3 is realised as a multicurve intersection
degree on the closed orientable surface of genus g ≥ 2.

Refined versions of this result are conceivable: there are numerous conditions one can
impose on the multicurves α and β that correspond to certain geometric situations.
Our second main result concerns multicurves whose difference is trivial in homology.

Theorem 2. Every positive integer d ≤ 3g−3 is realised as the multicurve intersec-
tion degree of a pair of filling multicurves α, β ⊂ S on the closed orientable surface S
of genus g ≥ 3, such that [α]− [β] = 0 ∈ H1(S;Z).
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Theorem 2 is again optimal, and it is better than what we could hope to achieve if
we asked that both multicurves α and β consist of separating components only. In
this case, the maximal number of nonparallel components is 2g− 3, which in turn is
an upper bound for the multicurve intersection degree of α and β. Finally, observe
that the assumption on the genus is important: for genus two, necessarily α and β
are in fact a union of separating curves, and 2g − 3 < 3g − 3 (see Section 1.3).

Our proof of Theorem 1 and Theorem 2 is constructive, and even explicit up to
the fact that for certain multicurve components of β, we cannot specify how many
parallel copies there need to be. The algebraic tools we use are Eisenstein’s criterion
and Hilbert’s irreducibility theorem. See also Section 6 for explicit constructions in
small genera.

Obviously, Theorem 2 implies Theorem 1 (at least for g ≥ 3) but we think it is helpful
to present an simpler proof of Theorem 1 first. Indeed, the proof of Theorem 2 is
conceptually the same, but with more geometrical ingredients.

The pair of multicurves α, β ⊂ S naturally determines a bipartite graph whose
vertices correspond to curve components and the number of edges between each
pair of vertices equals the number of intersection points of the respective curve
components. The adjacency matrix of this graph is Ω =

(
0 X
X> 0

)
. Clearly, the

square root
√
µ of the spectral radius µ of XX> equals the spectral radius of Ω. We

call the algebraic degree of
√
µ the multicurve bipartite degree of α and β. We prove

the following result.

Theorem 3. Every even integer 2 ≤ 2d ≤ 6g−6 is realised as a multicurve bipartite
degree on the closed orientable surface of genus g ≥ 2.

Our motivation for studying multicurve intersection degrees stems from Teichmüller
geometry. More specifically, we are interested in the applications to the theory of
pseudo-Anosov maps and their stretch factors.

1.2. Pseudo-Anosov stretch factors. A homeomorphism f of S is pseudo-Anosov
if there exists a pair of transverse singular measured foliations Fu and Fs and a real
number λ > 1 such that f(Fu) = λFu and f(Fs) = λ−1Fs. Thurston’s classifi-
cation states that elements of the mapping class group of S come in three types:
reducible, periodic and pseudo-Anosov. The number λ is called the stretch factor.
It has several characterisations and is an algebraic integer of degree bounded above
by the dimension of the Teichmüller space of S, namely 6g − 6 [Thu88].

An important construction of pseudo-Anosov maps appeared independently in two
papers by Thurston and Veech [Thu88, Vee89]. Given a pair of filling multic-
urves α, β ⊂ S, this construction provides pseudo-Anosov mapping classes in the
subgroup 〈Tα, Tβ〉 of the mapping class group generated by multitwists along the
multicurves α and β. This construction is referred to as the Thurston–Veech con-
struction. In his seminal 1988 Bulletin paper [Thu88], Thurston provides the upper
bound of 6g − 6 on the algebraic degree of a pseudo-Anosov stretch factor λ(f)
and claims, without proof, that “the examples of [Thu88, Theorem 7] show that
this bound is sharp”. The referenced examples are exactly the pseudo-Anosov maps
in 〈Tα, Tβ〉.
While Strenner precisely determined the set of integers appearing as the algebraic
degrees of pseudo-Anosov stretch factors on every closed surface [Str17], Thurston’s
claim remained open. Based on Theorem 1, we are finally able to substantiate it,
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even for pseudo-Anosov maps in the Torelli group. Our main application to pseudo-
Anosov stretch factors is the following.

Theorem 4. Every even integer 2 ≤ 2d ≤ 6g − 6 is realised as the algebraic degree
of a pseudo-Anosov stretch factor arising from the Thurston–Veech construction on
the closed orientable surface of genus g ≥ 2. For g ≥ 3, the pseudo-Anosov maps
can be chosen in the Torelli group.

Proof of Theorem 4. Our proof is based on the following existence result:

Theorem 5. Let α, β ⊂ S be a pair of filling multicurves having multicurve in-
tersection degree d. For ε ∈ Z \ {0}, there exists n ∈ Z>0 such that the mapping
class Tnα ◦ Tnεβ is pseudo-Anosov with stretch factor λ of degree 2d.

Assuming Theorem 5, we can immediately conclude the proof of Theorem 4. Set-
ting ε = 1, the first statement follows directly from Theorem 1. For the second
statement, we notice that if we impose that the homology class [α] − [β] is trivial
in H1(S;Z), then the pseudo-Anosov map Tnα ◦ T−nβ acts trivially on homology for

every n ∈ Z\{0}. In particular, it is an element of the Torelli group of the surface S.
Hence we can apply above criterion with ε = −1 using multicurves α an β provided
by Theorem 2 to finish the proof of Theorem 4. �

Remark 6. Specifically, in our construction of multicurves, we can actually prove
a stronger result. Namely, if we take our construction of the multicurve intersection
degree 1 < d ≤ 3g − 3 from Section 4 (proof of Theorem 1), and if we consider
the pseudo-Anosov mapping class Tα ◦ Tβ, then its stretch factor has degree 2d.
In the setting of Theorem 5, this means that for ε = 1 one can choose n = 1. It
uses [LL24, Theorem 6] (see Section 6 for details). Unfortunately, for the Torelli
case, the criterion from [LL24] does not apply. Hence, we need to use Theorem 5,
which provides a slightly less explicit result.

1.3. The first Johnson subgroup, Johnson filtration. While Theorem 4 com-
pletely answers the question about the sharpness of Thurston’s upper bound [Thu88,
Theorem 7], refined versions of this question are still open to investigation. There
are numerous conditions one can impose on the multicurves α and β. For instance
the first Johnson subgroup K(S) is the subgroup of the Torelli group generated by
the Dehn twists along separating simple closed curves. Since the rank of any Abelian
subgroup of the Torelli group is bounded from above by 2g − 3, this immediately
implies that the maximal degree of stretch factors for K(S) is 4g− 6. In the sequel,
we will mention one particular other restriction.

The following question remains open. It was asked to us by Margalit in the more
general context of infinite index normal subgroups of the mapping class group.

Question 7. Which stretch factor degrees appear in the Torelli subgroups? What
is the maximal algebraic degree of stretch factors of pseudo-Anosov maps in the
Johnson filtration?

1.4. Strata of quadratic differentials. One may impose restrictions on the ge-
ometry of the complement S \ (α∪β), for example by fixing how often every 2k-gon
is allowed to occur. Via the Thurston–Veech construction, a pair of filling mul-
ticurves α, β ⊂ S corresponds to a nonzero quadratic differential on a Riemann
surface, and a 2k-gon in the complement corresponds to a zero of order k− 2 of the



4 ERWAN LANNEAU AND LIVIO LIECHTI

quadratic differential. Furthermore, the multicurve intersection degree for α and β
equals the trace field degree of the quadratic differential. Now, the space of nonzero
quadratic differentials on a Riemann surface admits a stratification according to the
number of zeros of each order, and some of the strata even have multiple connected
components.

In previous work, we have shown that in the case where the quadratic differential
is the square of an Abelian differential, then the stratum (and even the connected
component in case there are multiple) imposes no restrictions on the possible trace
field degrees that can be realised via the Thurston–Veech construction [LL24]. We
end this introduction by stating this problem for connected components of strata of
quadratic differentials.

Question 8. For a given connected component C of a stratum of quadratic differen-
tials on Riemann surfaces of genus g, which positive integers ≤ 3g−3 arise as trace
field degrees and which positive integers ≤ 6g − 6 arise as the algebraic degree of a
stretch factor of a product of two affine multitwists on a surface belonging to C?

We note that Question 8 is open also for general pseudo-Anosov maps, that is,
pseudo-Anosov maps that are not necessarily a product of two affine multitwists.

1.5. Odd degree stretch factors. While Theorem 5 provides the existence of
field extensions Q(λ) : Q(λ + λ−1) of degree two for mapping classes in 〈Tα, Tβ〉,
realising extensions of degree one seems to be more mysterious. For example,
Veech [Vee82] discovered a family of Hecke groups 〈Tα, Tβ〉 = 〈

(
1 λq
0 1

)
,
(

1 0
−λq 1

)
〉,

where λq = 2 cosπ/q for q ≥ 3. The genus of the surface S is (q − 1)/2 for odd q.
For q = 7, 9 one can find stretch factors of degree one over the trace field Q(λq):

for instance Tα ◦ T−1β is an example for q = 7, and we refer to [Bou22] for q = 9.

However, it is conjectured (see [HMTY08, Remark 9]) that stretch factors of degree
one over Q(λq) do not exist for odd q ≥ 11.

Organisation. In Section 2 we prove Theorem 5, the new nonsplitting criterion
used to deduce Theorem 4 from Theorem 1 and Theorem 2. In Section 3 we intro-
duce an irreducibility criterion for the characteristic polynomial of matrices of the
form XX> which plays a central role throughout the rest of the article. Using this
irreducibility criterion, we give of proof of Theorem 1 in Section 4 and of Theorem 2
in Section 5. Finally, we provide some explicit examples in Section 6.

Acknowledgments. The authors thank Dan Margalit and Jean-Claude Picaud
for inspiring discussions. The first author has been partially supported by the
LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program
Investissement d’avenir. The first author would like to thank the University of Fri-
bourg for excellent working conditions.

2. A nonsplitting criterion

In this section we prove Theorem 5, which is an algebraic criterion that allows us to
deduce that the degree of the field extension Q(λ(f)) : Q(λ(f) +λ(f)−1) equals two
for certain f which are a product of multitwists. Compare with [LL24, Theorem 6].
For convenience, we repeat the statement of Theorem 5:
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Theorem (Theorem 5). Let α, β ⊂ S be a pair of filling multicurves having multic-
urve intersection degree d. For every ε ∈ Z \ {0}, there exists n ∈ Z>0 such that the
mapping class Tnα ◦ Tnεβ is pseudo-Anosov with stretch factor λ of degree 2d.

Proof of Theorem 5. By the Thurston–Veech construction, there exists a represen-
tation ρ : 〈Tα, Tβ〉 → PSL2(R) mapping Tα to the matrix ( 1 r

0 1 ) and Tβ to the

matrix
(

1 0
−r 1

)
, where r2 = µ is the spectral radius of the matrix XX> for the multi-

curves α and β. Furthermore, the stretch factor λ(f) of f ∈ 〈Tα, Tβ〉 equals the spec-
tral radius of ρ(f). Now, let us consider the product of multitwists f = T 2n

α ◦ T 2nε
β .

A direct computation provides that the trace of ρ(f) equals tr(ρ(f)) = 2− ε(2nr)2.
Thus, λ(f)+λ(f)−1 = |2−ε(2nr)2| and hence Q(λ(f)+λ(f)−1) = Q(µ) = K. Note
that by assumption, the degree of the field extension K : Q is d, the multicurve
intersection degree of α and β.

Since λ = λ(f) solves the quadratic equation t2− (λ+λ−1)t+ 1 = 0, λ has degree 1
or 2 over K. All what we need to do is find n ∈ Z>0 such that λ 6∈ K, or equivalently
such that the discriminant D = (2 − ε(2nr)2)2 − 4 = 16 · n2 · ((nεµ)2 − εµ) of
the quadratic equation is not a square in K. We will proceed by contradiction.
Let µ′ = εµ and let us assume that (nµ′)2 − µ′ is a square in K = Q(µ′) for
every n > 0. Since the expression is invariant under the transformation n 7→ −n,
we can assume the expression is a square for every n ∈ Z \ {0}.
Let P = adt

d + ad−1t
d−1 + · · · + a1t + a0 ∈ Z[t] be the minimal polynomial of µ′

over Q. The Thurston–Veech construction implies that µ is an eigenvalue of a square
matrix, so is µ′ and ad = 1. Thus, µ′ and n2µ′−1 are algebraic units. The norm of µ′

equals N(µ′) = (−1)da0. Similarly, the minimal polynomial of n2µ′−1 is n2dP
(
t+1
n2

)
.

Inspecting the constant term, we have

N(n2µ′ − 1) = (−1)d
d∑

k=0

akn
2d−2k.

Altogether this gives N((nµ′)2 − µ′) = Q(n2), where

Q(t) = a0

d∑
k=0

akt
d−k.

By assumption,Q(n2) is a square for every n ∈ Z\{0}. We show thatQ(0) = N(−µ′)
is also a square. Indeed, for any prime integer p, the reduction modulo n = p
of N((nµ′)2 − µ′) gives that N(−µ′) is a quadratic residue. Thus it is also a square
in Z. Hence Q(t) ∈ Z[t] is a polynomial taking integral square value at every integer
specialisation. By a result of Murty [Mur08, Theorem 1], Q(t2) is the square of a
polynomial.

Moreover, we observe that Q(t) = a0 · tdP
(
1
t

)
∈ Q[t]. In particular Q

(
1
µ′

)
= 0, and

since µ′ and 1
µ′ generate the field extension K : Q, the polynomial Q is irreducible

over Q. It is in particular separable. Now each root 0 6= a ∈ C of Q gives rise to
two distinct roots ±

√
a of Q(t2), and conversely. Thus Q(t2) is also separable, and

cannot be a square. This concludes the proof of the theorem. �

3. An irreducibility criterion

The goal of this section is to present an algebraic criterion that allows us to deduce
that certain characteristic polynomials of matrices of the form XX> are irreducible.
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Proposition 9. Let M be a square integer matrix, and let N be the principal subma-
trix of M obtained by deleting the first row and the first column. If M and N have
no common eigenvalue, and if M has a simple eigenvalue ρ, then the characteristic

polynomial of M̃ = M + aypE11 is an irreducible element of Z[t, y], for all p ≥ 1
and for all 0 6= a ∈ Z.

Proof. Our goal is to use Eisenstein’s criterion on χ
M̃
∈ Z[t, y] ∼= (Z[t]) [y], viewing

it as a polynomial in the variable y and coefficients in Z[t]. We calculate

χ
M̃

(t, y) = det(t · Id− M̃) = −ypaχN (t) + χM (t)

and notice that aχN and χM are relatively prime in Z[t]. Indeed, χM has leading
coefficient +1 and no root in common with χN by our assumption that M and N
have no eigenvalue in common. In particular, they have no common factor, which
shows that χ

M̃
∈ (Z[t]) [y] is primitive. In order to apply Eisenstein’s criterion,

let µρ ∈ Z[t] be the minimal polynomial of the simple eigenvalue ρ of M . By
assumption, µρ divides χM exactly once, but it does not divide χN since χM and χN
have no common root. In particular, Eisenstein’s criterion applies to show that the
polynomial χ

M̃
∈ (Z[t]) [y] ∼= Z[t, y] is irreducible. �

Remark 10. In the previous statement, one can easily replace χ
M̃

(t) by χ
M̃

(tn)
for any integer n > 0. Indeed χM (tn) and χN (tn) are still coprime and µρ(t

n)
divides χM (tn) exactly once, so Eisenstein’s criterion applies.

Remark 11. Oscillatory matrices satisfy a stronger version of Perron-Frobenius
theory, namely all the eigenvalues are positive real, simple, and they strictly inter-
lace when taking a principal submatrix [And87]. Hence, Proposition 9 applies very
cleanly to this class of matrices.

We use Proposition 9 on the following two cases (Lemma 12 and Lemma 13).

Lemma 12. For n ≥ 1, let

N =


a1 a2 . . . an
a2
... ∗
an

 , M =


0 αa1 . . . αan
αa1

... N
αan


be square integer matrices with a1 ≥ 1. If M is nonnegative and irreducible, and

if χN ∈ Z[t] is irreducible, then the characteristic polynomial of M̃ = M + ay2E11

is irreducible in Z[t, y] for all 0 6= a ∈ Z.

Proof. In order to use Proposition 9, we need to show that M has a simple eigenvalue
and that M and N share no eigenvalue. The former holds since M is nonnegative
and irreducible, and in particular has a Perron-Frobenius eigenvalue which is simple.
For the latter, we compute

χM (t) = tχN (t) + q(t),
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where q(t) ∈ Z[t] is of degree at most n − 1. We claim that it is not the zero
polynomial either. Indeed, we directly verify

q(0) = det


0 −αa1 . . . −αan
−αa1

... −N
−αan



= det


α2a1 0 . . . 0

0
... −N
0

 = ±α2a1 detN 6= 0.

Now if there existed a common root λ ∈ C of χM and χN , then λ would also be a
root of q(t). But since χN is irreducible of degree n and q(t) is a nonzero polynomial
of degree at most n− 1, this is impossible. �

Lemma 13. For n,m ≥ 1, let

A =


a1 a2 . . . an
a2
... ∗
an

 , B =


b1 b2 . . . bm
b2
... ∗
bm


be square integer matrices of dimension n and m, respectively, with a1, b1 ≥ 1.
Furthermore, let α, β 6= 0 such that

M =



0 αa1 . . . αan βb1 . . . βbm
αa1

... A
αan
βb1

... B
βbm


is a matrix with integer coefficients. If M is nonnegative and irreducible, and
if χA, χB ∈ Z[t] are irreducible and distinct, then the characteristic polynomial

of M̃ = M + ay2E11 is irreducible in Z[t, y] for all 0 6= a ∈ Z.

Proof. The proof is similar to the proof of Lemma 12: the only thing to verify is
that no eigenvalue of A or of B is also an eigenvalue of M . Again, we compute

χM (t) = tχA(t)χB(t)± q1(t)χB(t)± q2(t)χA(t),

where q1(t) ∈ Z[t] is of degree at most n−1 and q2(t) ∈ Z[t] is of degree at most m−1.
This is seen by developing the first column of the matrix tI−M . The first coefficient
is responsible for the summand tχA(t)χB(t), the next n coefficients are responsible
for the summand ±q1(t)χB(t) and the final m coefficients are responsible for the
summand ±q2(t)χA(t). We claim that neither among q1(t) and q2(t) is the zero
polynomial. Indeed, by developing the first column of the matrix tI − M , and
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evaluating at t = 0, we get

q1(0) = det


0 −αa1 . . . −αan
−αa1

... −A
−αan



= det


α2a1 0 . . . 0

0
... −A
0

 = ±α2a1 detA,

which is not zero since χA is irreducible. Similarly, q2(0) 6= 0. Now if there existed
a common root λ ∈ C of χM and χA, then λ would also be a root of either χB or q1.
Since χA and χB are irreducible and distinct, we must have q1(λ) = 0. But since χA
is irreducible of degree n, and q1(t) is a nonzero polynomial of degree at most n− 1,
this is impossible. Similarly, no root of χB can be a root of χM , which concludes
the proof. �

Remark 14. One could formulate Lemma 13 with k ≥ 2 blocks A1, . . . , Ak of
respective sizes n1, . . . , nk, instead of k = 2. In this case, all the k characteris-
tic polynomials χAi should be irreducible and pairwise distinct. The argument is
identical by considering

χM (t) = t
k∏
i=1

χAi +
k∑
i=1

±qi(t)
∏
j 6=i

χAj ,

where qi(t) ∈ Z[t] is of degree at most ni − 1 and nonzero.

4. Proof of Theorem 1

Our goal of this section is to construct, on the closed orientable surface of genus g ≥ 2
and for every positive integer d ≤ 3g − 3, a pair of filling multicurves α and β
with multicurve intersection degree d. In a first step, we construct the maximal
multicurve intersection degree 3g−3, and in a second step we discuss how to modify
our construction in order to realise all smaller multicurve intersection degrees as
well.

In order to read off the matrix XX> from our figures, we use the following for-
mula for its coefficients, which is a direct consequence of the definition of matrix
multiplication:

(XX>)ij =
∑
k

|αi ∩ βk| · |βk ∩ αj |.

4.1. Multicurve intersection degree 3g−3. We start by realising, on the surface
of genus g ≥ 1 with 2 boundary components, a pair of filling multicurves α and β
such that χXX> ∈ Z[t] is irreducible and of degree 3g− 1. We proceed by induction
on g.
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y − 1 copies

α2

α1

Figure 1. Two multicurves α (in red) and β (in blue) on the sur-
face of genus one with two boundary components. The multicurve β
contains y − 1 parallel copies of one of its components.

4.1.1. For g = 1 with two boundary components. We consider the two multicurves α
and β shown in Figure 1, where one of the components of β has y−1 parallel copies.
Here, we think of y as a variable that we specify later on.
We directly calculate

XX> =

(
4 2
2 y

)
.

Observe that X is a matrix of size 2× y (the multicurve β has y components). We
have χXX>(t) = t2− (4 + y)t+ 4(y− 1) with discriminant y2− 8y+ 32, which is not
a square if y ≥ 12. Indeed, in this case we have

(y − 3)2 = y2 − 6y + 9 > y2 − 8y + 32 > y2 − 8y + 16 = (y − 4)2.

In particular, for y ≥ 12 the polynomial χXX> is irreducible.

4.1.2. For g > 1 and two boundary components. For the inductive step, assume we
have constructed on the surface of genus g ≥ 1 with 2 boundary components a pair
of multicurves α′, β′ such that the characteristic polynomial χ′ = χXX> ∈ Z[t] is
irreducible and of degree 3g − 1. Furthermore, assume that α′1 is a simple closed
curve that encircles all the handles of the surface, as illustrated in Figure 2. Take
a surface of genus 1 and two boundary components, as in the case of genus g = 1,
see Figure 1, and denote its multicurves by α′′ and β′′. Now glue its right boundary
component to the left boundary component of the surface of genus g, and add two
new curves α0 and β0 to the multicurves. The curve α0 encircles all the handles
of the newly formed surface, and the curve β0 twice intersects α0 but no other
multicurve component. Again, see Figure 2 for an illustration.
Let A be the matrix XX> for the pair of multicurves α′, β′, and let B be the
matrix XX> for the pair of multicurves α′′, β′′. We define the multicurves

α = α0 ∪ α′ ∪ α′′

β = β0 ∪ β′ ∪ β′′
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· · ·

β0
α0

α′1α′′1

Figure 2. Two surfaces of genus g and 1, respectively, and two
boundary components, glued together along one of their boundary
components. The curves α′1 and α′′1 are shown, each encircling all the
handles of their respective surface. The new curve α0 encircles all
the handles of the newly formed surface, and the new curve β0 runs
along the glued boundary component.

A quick computation gives

A =


a1 a2 . . . an
a2
... ∗
an

 , B =

(
4 2
2 b

)
.

Let us choose b such that χB is irreducible and distinct from χA. We may assume
inductively that a1 = 4a. In the multicurve β, we take y2− a− 1 ≥ 1 parallel copies
of β0, for y > 0 large enough. The matrix XX> for the multicurves α and β takes
the form

XX> =



4y2 a1 . . . an 4 2
a1
... A
an
4 4 2
2 2 b


.

By Lemma 13, χXX> ∈ Z[t, y] is irreducible (recall that χA is irreducible). Hence,
by Hilbert’s irreducibility theorem, there exist infinitely many specifications of y
(and in particular infinitely many specifications of y such that y2 − a − 1 > 0)
with χXX> ∈ Z[t] irreducible. This polynomial is of degree

3g − 1 + 3 = 3(g + 1)− 1,

which is exactly what we wanted to show. Finally, to justify our inductive assump-
tion on the top-left coefficient of the matrix A, note that the top-left coefficient of
the matrix XX> is again a multiple of 4.

4.1.3. The closed case for g ≥ 2. Take any example of a pair of multicurves α′ and β′

we constructed on the surface of genus g − 1 ≥ 1 with two boundary components
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in Section 4.1.2. Let

A =


a1 a2 . . . an
a2
... ∗
an


be the matrix XX> for the multicurves α′ and β′, where a1 = 4a. We identify the
two boundary components of the surface to increase the genus by one. Let α0 be
a longitude of the created handle, and let β0 run along the glued boundary. Define
the two new multicurves

α = α0 ∪ α′

β = β0 ∪ β′,

where we take y2 − a copies of β0. Then the matrix XX> for the multicurves α
and β takes the form

XX> =


y2 a1

2 . . . an
2

a1
2
... A
an
2

 ,

and χXX> ∈ Z[t, y] is irreducible by Lemma 12. By Hilbert’s irreducibility theorem,
there exist infinitely many specifications of y (and in particular infinitely many spec-
ifications of y such that y2 − a > 0) with χXX> ∈ Z[t] irreducible. This polynomial
is of degree 3(g − 1)− 1 + 1 = 3g − 3.

4.2. Multicurve intersection degrees < 3g − 3. So far, we have realised the
maximal possible multicurve intersection degree 3g−3. In order to prove Theorem 1
in its full generality, we need to argue that all smaller multicurve intersection degrees
are also realised. For this we need a new building block for our surfaces. The surface
we need is depicted in Figure 3.

y1 yk

· · ·

y2 − k

Figure 3. A surface of genus k with two boundary components, as
well as two multicurves α (in red) and β (in blue). Some components
of β have several parallel copies, as indicated by y1, . . . , yk and y2−k.
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We denote the red multicurve by α and the blue multicurve by β. The multicurve α
has k + 1 separating components: one for each of the handles that separates the
handle, and one that separates all the handles. We denote the component of α that
separates all the handles of the surface in Figure 3 by α1, and we denote the other
separating components of α by α2, α4, . . . , α2g−2 from left to right. Finally, the
remaining nonseparating components of α are α3, α5, . . . , α2g−1 from left to right.

In this situation, we have

XX> =


4y2 v> v> · · · v>

v By1 0
v 0 By2
...

. . .

v Byk

 , Byi =

(
4 2
2 yi

)
, v =

(
4
2

)
.

Let pyi(t) = t2 − (4 + yi)t + 4(yi − 1) be the characteristic polynomial of Byi . We
know from Section 4.1.1 that pyi is irreducible if y ≥ 12. So, choosing all yi ≥ 12
pairwise distinct, Remark 14 guarantees that the polynomial χXX>(t, y) ∈ Z[t][y] is
irreducible. By Hilbert’s irreducibility theorem, there are infinitely many specifica-
tions of y such that y2 − k > 0 and such that χXX>(t) ∈ Z[t] is irreducible and of
degree 2k + 1.

Case 1: 2g ≤ d < 3g − 3. Assume we want to realise the multicurve intersection
degree 3g − 3 − f for 0 < f ≤ g − 3. Let k = f + 2 ≤ g − 1. Start the inductive
procedure as in Section 4.1.2 with the surface from Figure 3 as a starting point,
adding g−1−k more handles. The exact same argument yields a surface of genus g−1
with two boundary components, and a characteristic polynomial χXX> ∈ Z[t] that
is irreducible and of degree 2k + 1 + 3(g − 1− k) = 3g − 3− k + 1. Closing up the
surface exactly as in Section 4.1.3 yields 3g− 3− k+ 2 = 3g− 3− f as a multicurve
intersection degree on the closed orientable surface of genus g.

Case 2: g < d < 2g. Assume we want to realise the multicurve intersection de-
gree 2g − f for 0 < f ≤ g − 1. Take the surface depicted in Figure 3 for k = g − 1.
Now, remove f of the separating curve α2, . . . , α2g−2. This slightly modifies the

matrix XX>: f of the 2-by-2 blocks on the diagonal are now 1-by-1 blocks, with the
single coefficient yi. Nevertheless, since all the yi are chosen pairwise distinct, Re-
mark 14 guarantees that the polynomial χXX>(t, y) ∈ Z[t][y] is irreducible. We note
that for the coefficients yi in the 1-by-1 blocks, any positive integer can be chosen.
By Hilbert’s irreducibility theorem, there are infinitely many specifications of y such
that χXX>(t) ∈ Z[t] is irreducible and of degree 2g − 1− f . Closing up the surface
as in Section 4.1.3 yields the multicurve intersection degree 2g − f on the closed
orientable surface of genus g.

Case 3: 1 ≤ d ≤ g. This is the case we have already dealt with in [LL24].

Finally, we end this section we a proof of Theorem 3.

Proof of Theorem 3. For every g ≥ 2 and every integer g < d ≤ 3g − 3, we
have constructed a pair of filling multicurves α and β, with a parameter y, such
that χXX>(t, y) ∈ Z[t, y] is irreducible. By Remark 10, we may run the same
argument to show that also the polynomial χXX>(t2, y) ∈ Z[t, y] is irreducible.
By Hilbert’s irreducibility theorem, we find infinitely many specifications of y such
that χXX>(t2) ∈ Z[t] is irreducible of degree 2d. The leading eigenvalue µ of XX>
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is a root of a characteristic polynomial χXX>(t), so χXX>(t2) ∈ Z[t] is the minimal
polynomial of

√
µ. Hence, the multicurve bipartite degree of α and β equals 2d.

For 1 ≤ d ≤ g, instead of the examples constructed in this section, we use the
examples in [LL24], as in the third case above. Similarly to Remark 10, one can run
the same proof as [LL24, Lemma 10] to show that χXX>(t2, y) ∈ Z[t, y] is irreducible
for these examples. The rest of the proof is then exactly as in the case above. �

5. Proof of Theorem 2

The goal of this section is to realise every positive integer d ≤ 3g−3 as the multicurve
intersection degree of a pair of multicurves α, β ⊂ S of the closed orientable surface
of genus g ≥ 3, such that [α]− [β] = 0 ∈ H1(S;Z).

As before, we start with the maximal degree and then discuss how to adapt the
construction in order to realise smaller degrees.

5.1. Multicurve intersection degree 3g−3. We start by realising, on the surface
of genus g ≥ 2 with one boundary component, a pair of filling multicurves α and β
such that χXX> ∈ Z[t] is irreducible and of degree 3g − 2, in such a way that their
difference is trivial in homology: [α]− [β] = 0 ∈ H1(S;Z). The construction is done
by induction on the genus g ≥ 2.

5.1.1. For g = 2 with one boundary component. We consider the two multicurves α
and β shown in Figure 4. We first note that [α] − [β] = 0 ∈ H1(S;Z). Indeed,

α1

α2

α3

α4

y copies

Figure 4. Two multicurves α and β on the surface of genus two
with one boundary component. One component of β has y parallel
copies.

the components α1 and α3 are separating, so they are already trivial in homology.
Furthermore, the components α2 and α4 have their counterparts in the multicurve β
with which they each form a bounding pair. Finally, the component of β of which
there are y parallel copies and the component of β drawn in light blue in Figure 4
are separating.
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We directly calculate

XX> =


84 + 16y 40 + 8y 40 16
40 + 8y 20 + 4y 20 8

40 20 20 8
16 8 8 4

 ,

and it is a direct check (by the computer) that the characteristic polynomial of XX>

is irreducible if y = 2 or y = 3. This finishes the case g = 2 with one boundary
component.

5.1.2. For g > 2 and one boundary component. In order to increase the genus by
one, we glue a surface of genus one with two boundary components as follows. On
this surface, we consider the two multicurves α and β shown in Figure 5. We directly

Figure 5. Two multicurves α (in red) and β (in blue) on the surface
of genus one with two boundary components. The multicurve β has y
parallel copies of its separating component.

calculate

XX> =

(
16y + 4 8y

8y 4y

)
=: Cy,

and χXX>(t) = t2 − (20y + 4)t+ 16y with discriminant 16 · (25y2 + 6y + 1), which
is never a square. Indeed, we have

(5y)2 = 25y2 < 25y2 + 6y + 1 < 25y2 + 10y + 1 = (5y + 1)2.

In particular, the polynomial χXX> is irreducible for every positive integer y.

For the inductive step, let g ≥ 2. Assume we have constructed on the surface of
genus g with one boundary component a pair of multicurves α′, β′ such that the
characteristic polynomial χXX> ∈ Z[t] is irreducible and of degree 3g − 2, in such
a way that [α] − [β] = 0 ∈ H1(S;Z). Further, assume that α′1 is a simple closed
curve that encircle all the handles of the surface, except for the rightmost. Then, we
take such a model surface and glue to its boundary a surface of genus one with two
boundary components, as shown in Figure 5, and add two new curves α0 and β0 to
the multicurves. The curve α0 encircles all the handles of the newly formed surface,
except for the rightmost one, and the curve β0 runs along the glued boundary
components, and twice intersects α0 but no other component of α, see Figure 6.

The proof of irreducibility is now exactly the same as in the non-Torelli case. The
only thing we need to check is that [α] − [β] is still trivial in H1(S;Z). But this is
clearly the case, since all the curves we add in the inductive step are separating or
come as a bounding pair.
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· · ·

Figure 6

5.1.3. The closed case for g ≥ 4. The last step is to make the surfaces closed. We
simply glue together two pieces of genera g′, g′′, where g′+g′′ = g, and one boundary
component together along their boundaries. The same argument as in the inductive
step provides irreducible characteristic polynomials of degree

3g′ − 2 + 3g′′ − 2 + 1 = 3g − 3.

5.1.4. The closed case for g = 3. We need a different argument. In this case, we start
with the surface of genus two and one boundary component depicted in Figure 4,
and close it off to the left by glueing a surface of genus one with one boundary
component, see Figure 7. First add the curves α5 and β5 with y2 − 29 parallel

α1

α2

α3

α4

2 copiesβ5

β6
α6

α5

Figure 7. Two multicurves α and β on the surface of genus three.
There are to new components of α when compared to Figure 4: a
nonseparating component (red) that we call α5 and a separating com-
ponent (orange) that we call α6. Similarly, there are two new com-
ponents of β: a separating component (blue) that we call β5 and a
nonseparating component (light blue) that we call β6.

copies. The resulting characteristic polynomials is irreducible for infinitely many
choices of y by Lemma 12. Repeat the same process with α6 and β6 (adjusting the
number of parallel copies of β6 suitably), and we are done.



16 ERWAN LANNEAU AND LIVIO LIECHTI

5.2. Multicurve intersection degrees d < 3g−3. . We now show how to modify
our construction from Section 5.1 in order to realise multicurve intersection degrees
smaller than the maximal multicurve intersection degree 3g−3. As in the non-Torelli
case, we need new building blocks to construct our surfaces.

Block 1. Our first block is obtained from the surface depicted in Figure 4, simply
by dropping the component α3. A direct verification yields that for y = 1, 2 the
characteristic polynomial of XX> is irreducible and of degree 3.

Block 2. Our second block is obtained from the surface depicted in Figure 8. The
characteristic polynomial of the matrix XX> for the multicurves α and β is irre-
ducible and of degree 1. Versions of this block with distinct characteristic polynomial
can be obtained by taking y parallel copies of β.

Figure 8. Two separating and filling curves α and β on the surface
of genus two with one boundary component.

Block 3. Take a surface as depicted in Figure 9. We denote the red multicurve by α
and the blue multicurve by β. The multicurve α has k + 1 separating components:
one for each of the handles that separates the handle, and one that separates all
the handles. We denote the component of α that separates all the handles of the
surface in Figure 9 by α1, and we denote the other separating components of α
by α2, α4, . . . , α2g−2 from left to right. Finally, the remaining nonseparating com-
ponents of α are α3, α5, . . . , α2g−1 from left to right. In this situation, we have

· · ·

Figure 9. A surface of genus k with two boundary components, as
well as two multicurves α (in red) and β (in blue). The separating
components of β can have several parallel copies: the ones separating
the handles have y1, . . . , yk copies, and the separating component in
the middle has y2 − 4k − y1 − · · · − yk copies.
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XX> =


4y2 v>y1 v>y2 · · · v>yk
vy1 Cy1 0
vy2 0 Cy2
...

. . .

vyk Cyk

 , Cyi =

(
16yi + 4 8yi

8yi 4yi

)
, vyi =

(
16yi + 4

8yi

)
.

By Remark 14, χXX>(t, y) ∈ Z[t][y] is irreducible. By Hilbert’s irreducibility theo-
rem, there are infinitely many specifications of y such that y2−4k−y1−· · ·−yk > 0
and such that χXX>(t) ∈ Z[t] is irreducible and of degree 2k+1. Note that as in the
non-Torelli case, we can drop the separating components of α winding around one
handle one by one in order to decrease the degree, again reducing a 2-by-2 block to
a 1-by-1 block for each component dropped in this way. The irreducibility argument
remains the same. We can in this way construct all degrees k + 1 ≤ d ≤ 2k + 1 for
the surface of genus k and 2 boundary components.

5.2.1. Realising multicurve intersection degrees 3g − 6 ≤ d < 3g − 3. Using a block
of type 1 or 2 instead of our standard starting surface depicted in Figure 4, we can
reduce the multicurve intersection degree by 1 or 3, respectively. Since we use such
block on both sides of the surface in our construction, this gives the possibility to
reduce the degree by any among the numbers 1,2,3,4 or 6. In particular, we can
clearly realise the multicurve intersection degrees 3g − 3, 3g − 4 and 3g − 5. This
argument works for g ≥ 4.

In case of g = 3, we need a separate argument. The idea is to copy our example
of maximal degree from Figure 7, but leave out first α3 and then also α1. We start
from the multicurves depicted in Figure 4 and drop α3. Letting y = 2, we then get

XX> =

116 56 16
56 28 8
16 8 4

 ,

which has irreducible characteristic polynomial. We can now close off the surface
by glueing a torus with one boundary component and add more components to α
and β, in the same way as in Figure 7. The exact same argument we used to realise
degree 6 now yields degree 5 instead.

In order to realise degree 4 for g = 3, we note that if we start from the multicurves
depicted in Figure 7 and drop the components α1, α3, α6 as well as β5, β6, then the
matrix XX> for α5, α2, α4 is exactly the matrix as above:

XX> =

116 56 16
56 28 8
16 8 4

 ,

with irreducible characteristic polynomial. If we add back α6 and β6 with y2 − 116
parallel copies, the resulting characteristic polynomials is irreducible for infinitely
many choices of y by Lemma 12, realising degree 4. Note that all in all, we have
dropped the components α1, α3 and β6, which are all separating. Therefore, we have
not changed the homology classes.

5.2.2. Realising multicurve intersection degrees g ≤ d ≤ 3g − 6. We start by con-
structing a surface of genus g − 2 with two boundary components, which we then
close off in a second step.
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Using surfaces of the type depicted in Figure 5 and applying the inductive step pro-
cedure, we can construct a surface of genus g−2 ≥ 1 and two boundary components,
as well as filling multicurves α and β with intersection degree 3(g− 2)− 1 = 3g− 7.
Using at some point in the inductive procedure a block of type 3 of genus k ≤ g− 2,
as depicted in Figure 9, we can reduce the degree by up to 2k− 2 ≤ 2g− 6, realising
multicurve intersection degrees from g − 1 to 3g − 7 on the surface of genus g − 2
with two boundary components. Now we close the surface, as depicted in Figure 10,
adding the new components α0 and β0 to the multicurves α and β, respectively.

· · ·

β0

α0

Figure 10. Two separating curves α0 and β0. There are ρ parallel
copies of β0.

We obtain the matrix

XX> =


64ρ+ 16a1 4a1 . . . 4an

4a1
... A

4an

 ,

where A is the matrix XX> before adding the curves α0 and β0. Since a1 = 4a, we
can set ρ = y2 − a to have the top-left coefficient 64y2, which is exactly the form
of the matrix in Lemma 12. Finishing the argument as usual, we can realise the
multicurve intersection degrees g ≤ d ≤ 3g − 6 for g ≥ 3.

5.2.3. Realising multicurve intersection degrees 1 ≤ d < g. Realising multicurve
intersection degree one is clearly achieved by taking a pair of separating filling curves
on the surface S.

For 2 ≤ d < g, let us define f = g − 1− d. We start with a surface block of type 3
of genus g − 2, where we deleted all the components of α that are separating. We
also remove the component of β in the middle of Figure 9. Furthermore, we let
the f + 1 ≤ g − 2 first of the parameters yi be equal to 1. Then we close off the
surface as in the previous case, adding one component α0 to α and one component β0
to β, compare with Figure 10. Assume there are ρ parallel copies of β0. We get

XX> =


64(ρ− g + 2) + 256δ 32y1 32y2 · · · 32yg−2

32y1 4y1
32y2 4y2

...
. . .

32yg−2 4yg−2

 ,
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where δ = y1 + · · ·+ yg−2. We choose ρ such that 64(ρ− g + 2) + 256δ = 64y2. To
simplify the calculations, we let zi = 4yi for i = 1, . . . , g − 2. The matrix becomes

XX> =


64y2 8z1 8z2 · · · 8zg−2
8z1 z1
8z2 z2

...
. . .

8zg−2 zg−2

 .

By Lemma 9 in [LL24], the characteristic polynomial of XX> equals

p(t, y, z) = −64y2
g−2∏
i=1

(t− zi) + t

g−2∏
i=1

(t− zi)−
g−2∑
i=1

64z2i
∏
j 6=i

(t− zj).

If all the zi are pairwise distinct, this polynomial is irreducible as a polynomial
in t, y by Lemma 10 in [LL24]. However, we chose that the first f + 1 coeffi-
cients y1, . . . , yf+1 are equal to 1 and the other yi 6= 1 and pairwise distinct. In

particular, the polynomial p(t, y) factors as (t − 4)f p̃(t, y), where p̃(t, y) is of de-
gree g − 1 − f = d in the variable t and with pairwise distinct zi. In particular,
Lemma 10 in [LL24] implies that p̃(t, y) ∈ Z[t, y] is irreducible. Hilbert’s irreducibil-
ity theorem guarantees the existence of infinitely many positive specifications of y
such that the resulting polynomial is irreducible in Z[t].

6. Explicit pseudo-Anosov maps

In this section, we show that in our construction of multicurves in Theorem 1, we
can actually prove that the degree of the stretch factor of Tα ◦ Tβ equals two over
the trace field. It uses the nonsplitting criterion of [LL24, Theorem 6] that we recall
below.

6.1. Even degrees stretch factors.

Theorem 15 ([LL24], Theorem 6). Let α, β ⊂ S be a pair of filling multicurves.
Let X be their geometric intersection matrix, let d be their multicurve intersection
degree and let Ω =

(
0 X
X> 0

)
. If dim(Ω) > σ(Ω + 2I) + null(Ω + 2I) > dim(Ω)− 2d,

then the mapping class Tα ◦ Tβ is pseudo-Anosov with stretch factor λ of degree 2d.

Here, σ(A) and null(A) denote the signature and the nullity, respectively, of the
matrix A.

Theorem 16. Let α and β be an example of a pair of multicurves described in Sec-
tion 4, realising a multicurve intersection degree 1 ≤ d ≤ 3g− 3. Then the mapping
class Tα ◦ Tβ is pseudo-Anosov with stretch factor λ of degree 2d.

For the case 1 ≤ d ≤ g, this is shown in [LL24].

Proof of Theorem 16. According to Theorem 15, all there is to show is

dim(Ω) > σ(Ω + 2I) + null(Ω + 2I) > dim(Ω)− 2d.(1)

We now make a case distinction depending on d.

Case 1: 2g ≤ d ≤ 3g − 3. We consider the submatrix Ω′ of Ω that is obtained by
deleting all the rows and columns corresponding to components of the multicurve α
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that have been added during the inductive step or closing up of the surface. Further-
more, if d < 3g − 3, we also remove the component of α encircling multiple handles
of the starting surface, that is, the surface depicted in Figure 3.

A base change by a permutation matrix brings Ω′ + 2I into block diagonal form
with g− 1 blocks corresponding to genus one surface pieces as depicted in Figure 1,
and a block of the form 2I. For a block of the former type, and for y > 4, we directly
calculate that the nullity is zero and the signature equals the dimension of the block
minus two. Already, this implies that certainly the signature of Ω + 2I is not equal
to its dimension, and it only remains to verify the lower bound in Equation (1).

By construction, if the genus equals g ≥ 2, we have g − 1 surface pieces as in Fig-
ure 1. This in particular implies that σ(Ω′) = dim(Ω′) − 2g + 2. Furthermore, we
have dim(Ω)− dim(Ω′) = d− 2g+ 2. The latter equality follows from that fact that
the number of components of α in our construction is exactly d, and there are two
components per surface pieces as in Figure 1. We now calculate

σ(Ω + 2I) ≥ σ(Ω′)− (dim(Ω)− dim(Ω′))

= (dim(Ω′)− 2g + 2)− (d− 2g + 2)

= dim(Ω′)− d
> dim(Ω)− 2d,

which implies Equation (1), so we are done for this case.

Case 2: g < d < 2g. We consider the submatrix Ω′ of Ω that is obtained by deleting
two rows and two columns corresponding to components of the multicurve α: the
one corresponding to the component encircling multiple handles in Figure 3 and the
one obtained from closing the surface. Recall that we have removed f = 2g − d
separating curves α2, . . . , α2g−2.

A base change by a permutation matrix brings Ω′ + 2I into block diagonal form
with g − 1 − f blocks corresponding to surface pieces as in Figure 1, f blocks cor-
responding to surface pieces as in Figure 1 but with the separating component of α
removed, and a block of the form 2I.

For a block of the first type, and for y > 4, recall from the previous case that the
nullity is zero and the signature equals the dimension of the block minus two. For
a block of the second type, the sum of the nullity and the signature equals the
dimension of the block if y ≤ 3, and it equals the dimension of the block minus
two if y > 3. We may assume that for at least one block of the second type, we
have y = 3. This is enough to ensure that dim(Ω) > σ(Ω + 2I) + null(Ω + 2I), so
again we only need to verify the lower bound in Equation (1).

By construction, if the genus equals g ≥ 2, we have g−1 surface pieces as in Figure 1.
Having at least one piece with y ≤ 3, this implies that σ(Ω′) > dim(Ω′) − 2g + 2.
Furthermore, we have dim(Ω)− dim(Ω′) = 2. We now calculate

σ(Ω + 2I) ≥ σ(Ω′)− (dim(Ω)− dim(Ω′))

> (dim(Ω′)− 2g + 2)− 2

= dim(Ω′)− 2g

= dim(Ω)− 2g + 2 ≥ dim(Ω)− 2d,

which implies Equation (1) also in the case g < d < 2g, so we are done. �
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6.2. Explicit multicurves. We conclude this section by giving explicit computa-
tions supporting a conjecture on the irreducibility of the characteristic polynomials
constructed in Theorem 1 for specific values of y. In the inductive step of Sec-
tion 4.1.2, one uses a map

φk :

Mk(Z)× Z −→ Mk+3(Z)

(C, y) 7→

 4y2 ∗ ∗
∗ C
∗ A

 , with A = ( 4 2
2 12 ) .

For g > 1 we inductively construct the (3g − 1) × (3g − 1) matrix Mg with the
maps φ3i−1 for i = 1, . . . , g − 1:

Mg = φ3(g−1)−1(φ3(g−2)−1(. . . φ3·2−1(φ3·1−1(B, y
(1)), y(2)), . . . , y(g−2)), y(g−1)),

with B = ( 4 2
2 13 ) and suitable parameters y(i) given by Hilbert’s irreducibility theo-

rem. The condition y2 > 1
4c11 + 1 appearing in the construction is obviously equiv-

alent to (y(i))2 > (y(i−1))2 + 1. Finally, following Section 4.1.3 the matrix XX> for
the multicurves α and β on the closed surface of genus g + 1 takes the form

Ng =

(
y2 ∗
∗ Mg

)
with the condition y2 > 1

4(Mg)11 = (y(g))2.

By computer assistance, one immediately checks the following proposition.

Proposition 17. For any 1 < g ≤ 200, if y(i) = i+ 1 for i = 1, . . . , g − 1, then the
characteristic polynomial χMg is irreducible over Q. Moreover for y = g+ 1, χNg is
irreducible over Q.

Together with Theorem 16, this gives explicit examples of pseudo-Anosov maps
realizing the upper bound 6g − 6 in Theorem 4 for every 1 < g ≤ 201. We don’t
know whether χMg and χNg are actually irreducible for every g > 200 with the

parameters y(i) = i+ 1 chosen as in Proposition 17.
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