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We consider quantum systems driven by Hamiltonians of the form H +  W(t), 
where the spectrum of H consists of an infinite set of bands and Ve'(t) depends 
arbitrarily on time. Let ( H ) ,  (t) denote the expectation value of H with respect 
to the evolution at time t of an initial state r We prove upper bounds of the 
type (H)~,(t)=O(t~), ~ > 0 ,  under conditions on the strength of W(t) with 
respect to H. Neither growth of the gaps between the bands nor smoothness of 
W(t) is required. Similar estimates are shown for the expectation value of func- 
tions of H. Sufficient conditions to have uniformly bounded expectation values 
are made explicit and the consequences on other approaches to quantum 
stability are discussed. 
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1. I N T R O D U C T I O N  

Consider a time-dependent system characterized by a Hamiltonian of the 
form 

H+ W(t) (1.1) 

where H is a positive self-adjoint operator whose spectrum consists of 
09 separated bands {crj} j= 1 such that 

crj___ [)'i, hi]  (1.2) 
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576 Joye 

and W(t) is a time-dependent symmetric perturbation. Let U(t) be the 
corresponding evolution operator satisfying the Schr6dinger equation 

iU'(t) q~ = (H+ W(t)) U(t) q~, U(O) = I (1.3) 

where the prime denotes time derivative. 
Our main concern is the time behavior as t--* m of the expectation 

value of the energy operator H, 

( H)  ~, (t)= (U(t) q~fHU( t) ~o) (1.4) 

and of similar operators. These are among the quantities of interest in the 
study of quantum stability for general time-dependent systems; see, e.g., 
refs. 5, I, 11, 13, and 19 and references therein. Such quantities have been 
studied analytically for driven quantum oscillators 15"7'~1 for various time 
dependences. The solubility of the quantum problem and its strong links 
with the classical dynamics of the system make it possible to get a rather 
precise description of the expectation value of the kinetic energy. For exam- 
ple, it can be deduced from the analysis provided in ref. 7 that periodically 
perturbed harmonic oscillators can lead to a behavior of the type 

( H ) ~ ( t ) = e  r', y > 0  (1.5) 

for some parameters and some initial condition ~0 (G. Hagedorn, private 
communication). 

For general Hamiltonians of the form (1.1) with arbitrary time 
dependence, the only analytical results we are aware of are those of 
Nenciu, tls~ who tackles this problem by means of tools coming from the 
adiabatic theory. The adiabatic machinery already proved to be useful in 
the determination of the spectral properties of the monodromy operator in 
case of periodic time dependence of the Hamiltonian; see, e.g., refs. 8, 9, 17, 
12, 18, 3, and 4. Nenciu considers systems with increasing gaps in ref. 18 
and the main result regarding (H)~,( t)  is essentially that if the gaps 
2 j -Aj_~ between the bands grow like j~, with ~>0 ,  and if W(t) is 
strongly C" with n>~ [(1 +~)/(2~)] + 1, then 

( H ) ~  ( t )=  O( t li +~/"~) (1.6) 

as t ~  m, provided sup,~R+ I[(d/dt)* W(t)[[ < c~, k = 0 ,  1 ..... n. This estimate 
holds for arbitrary time dependence of W(t) and regardless of the nature of 
the spectrum in the bands aj. The length of the bands must not grow faster 
than j~. Note that the necessary growth of the gaps in the spectrum of H 
prevents the application of this result to the driven harmonic oscillator. 
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In this paper we also deal with H's  whose spectrum consists of an 
infinite set of bands and we obtain results which can be considered as com- 
plementary to those of Nenciu txS) in the following sense. We prove 
estimates similar to (1.6), without restriction on the size of gaps and 
without a smoothness assumption on W(t). Of course, there is a price to 
pay for dropping these hypotheses: the strength of perturbation W(t) with 
respect to H must be small in some sense. Let us denote the spectral projec- 
tors of H associated with the band crj by Pj. Typically, if the operator W(t) 
is such that 

sup ~ 2 ]q IlejW(s)ll2<oo (1.7) 
s ~ R + j = l  

for some q >/1/2, then, as t ~ 0% 

<H>~ (t) = O(t I/q) (1.8) 

See Section2. Here again, (1.8) holds for arbitrary time dependence of 
W(t) and regardless of the nature of the spectrum in the bands trj provided 
the bands are not too long. Such algebraic bounds on the growth of 
< H> ~ (t) already give some information on the system; see (1.5). However, 
as noticed in ref. 18, for C ~ perturbations such that both IIW(t)ll and 
I[W'(t)ll are uniformly bounded in time we have the trivial bound for 
any H 

<n>~,(t)=O(t) (1.9) 

If we work under stronger hypotheses, more precise estimates are 
given, some of which lead to uniformly bounded expectation values. This 
is the case if we assume instead of (1.7) that the function of s defined by 

)": 
2j IlejW(s)ll 2 (1.10) 

1 

is integrable on R +. 
Remarking that (1.8) is independent of the characteristics of the bands 

in the spectrum, we can generalize our results to estimate the expectation 
values of reasonable positive functions of H, f(H), in the following way 
(see Section 3). Assume for simplicity that f :  R + -* R + is strictly increasing 
and that (1.7) is satisfied with f(2j)  in place of 2j. Then 

<f(H)>~o (t)= O(t l/q) (1.11) 
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Also, if (1.10) is satisfied wi thf (2 j ) in  place of2j, sup ,ER+(f(H))  ~ ( t )<  ~ .  
Thus it may be possible to have sup,ER+(f(H))  ~ ( t )<oo  for a careful 
choice of f whereas (H)~o(t) cannot be uniformly bounded by our 
methods. A specific example displaying these features is dealt with in Sec- 
tion 4. Such cases are of interest when we consider other relevant quantities 
in the study of quantum stability; see Section 6. 

In Section 5 we consider Hamiltonians H with discrete spectrum such 
that 2j---j ~, ct>0. In particular, we show that perturbations W(t) belong- 
ing to a class of operators introduced by Howland ~~ satisfy our 
hypotheses. This class is determined by the behavior of the matrix elements 
of W(t) in a basis of eigenvectors of H and was considered by Howland in 
his study of the spectral properties of the monodromy operator for time- 
periodic W(t). We end the paper by addressing some questions on the links 
between results on expectation values of operators and different linear 
manifolds introduced to study the quantum stability of such systems in 
Section 6. 

The method used to get our estimates essentially consists in comparing 
the actual evolution U(t) with the free evolution V(t)= e -i '~ and control- 
ling the difference between them. In some sense, this can be viewed as some 
kind of degenerate adiabatic technique. Therefore, our proof follows the 
general pattern of that of Nenciu. 1~81 By slightly modifying the method 
sketched above, we can actually accommodate a certain class of unbounded 
perturbations W(t), for which (1.9) does not apply. 

Before closing this introduction, let us note that the search for lower 
bounds on ( f (H) )~  (t) is more complicated. This is due in particular to 
the fact that such bounds must depend on the initial state ~o, whereas this 
is not the case for upper bounds. There are results for time-independent 
systems only which require knowledge of the detailed structure of the spec- 
tral measure associated with q~. The interested reader should consult refs. 
6, 2, and 16 and references therein. 

2. UPPER BOUNDS ON ( H ) .  (t) 

We consider a Hamiltonian H satisfying the following requirements. 

Hypothesis H1. H is a positive self-adjoint operator with dense 
domain D(H) in a separable Hilbert space Off. The spectrum a of H con- 
sists of disjoint bands tr = { trj} j~ ~ characterized by 

2 j=  inf 2 and A j = s u p  2 (2.1) 
"2" e ~ 2 e oj 
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with Aj< 2j+ l Vje N* = { 1, 2,...}. Moreover, 

lim 2j = oo and sup Aj/2j = s < oo (2.2) 
j ~  oG j e  N* 

Let us denote by Pj the spectral projection corresponding to trj, j e N*, 
by means of the Riesz formula. We set 

mj = dim Ran(P/) ~< oo (2.3) 

allowing infinite values of mj. 
The time-dependent perturbation W(t) is such that: 

H y p o t h e s i s  H2. W(t), t ~ R  +, is a symmetric, strongly C ~ 
operator which is H-bounded, 

II W(t)~011 <<.a(t)I1~011 + b  IIHq'll (2.4) 

where b < 1 is uniform in t and a(t)< oo Vte R+. The diagonal part of 
W(t) is defined by the strong limit 

Wa(t)q~= ~ PjW(t) Pjq,,  r (2.5) 
j=l 

and we further assume that the off-diagonal part of W(t), 

W~ = W( t ) -  Wa(t) (2.6) 

is bounded. Moreover, there exists a subsequence going to infinity 
{Jk} ~o=, = N* such that Ilejk W~ ~ O. 

R e m a r k .  This last assumption ensures that subspaces of arbitrary 
energy are coupled by 14'~ Otherwise, ( H ) ,  (t) is uniformly bounded in 
time. 

It follows from H1 and H2 that the operator 

H(t) = H+ W(t) (2.7) 

is strongly C ~, self-adjoint on D(H), and bounded from below for all 
t e R  + (ref. 14, w Thus the evolution operator U(t) satisfying the 
Schr6dinger equation 

iU'(t) ~o = (H+ W(t)) U(t) q~, U(0) = I (2.8) 

where q~eD(H) and t ~ R  + is unitary and both U(t), U-~(t) map D(H) 
into D(H) (see, e.g., ref. 15). 
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We now approximate the evolution U(t) by a unitary V(t) which is 
P ~ and such that the difference U( t ) -  V(t) diagonal with respect to { j} j= 

is small in some sense. 

I . e mma  2.1. The operator Wd(t) is symmetric, H-bounded with 
relative bound b for any t e R +, and is strongly C ~. 

R e m a r k .  As a consequence, the bounded operator W~ is strongly 
C'  and self-adjoint. 

It follows from this lemma, the proof of which is given in an appendix, 
that the solution of 

iV'(t) q~=(H+ Wa(t)) V(t) q~, V(0) = I  (2.9) 

where qo~D(H) and t e R  +, is unitary and both V(t), V-I(t) map D(H) 
into D( H). 

Moreover, as a consequence of 

(H+Wa(t))Pjq~=Pj(H+Wd(t))q~, Vj~N*, t ~ R  +, q~ �9 D( H) 

(2.10) 

we have the identity 

[V(t),Pj]=O, Vie N*, t ~ R  + (2.11) 

The above properties yield 

i (V- ' ( t )  U(t))' q~ 

= i V - ' ( t )  U(t) qo+ iV-I(t)  U(t)' ~o 

= V-~(t)(W(t) - Wd(t)) U(t) qo= V-~(t) W~ U(t) q~ (2.12) 

for any cp ~D(H), where W~ is assumed to be bounded. Or, in an equiv- 
alent form, 

U(t) - V(t) = - iV(t)  Io V-'(s)  W~ U(s) as = R(t) (2.13) 

where the integral is taken in the strong sense and 

IIR(t)ll ~<2 (2.14) 

Note that R(t) maps D(H) into D(H) since U(t), V(t), and V-~(t) do. 
However, we will be able to take initial conditions in the form domain Q 
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of H, i.e., in Q = D(H u'-) (ref. 14, w For  any X, ~P E D(HI/2), we will 
use the notation 

(xlH~o) = ( H'/2zl HI/2~o) (2.15) 

Let us finally introduce H-dependent norms on the space of bounded 
operators which will appear in the estimates to come. 

Def in i t ion.  
defined by 

The H-norm of order p/> 1 of a bounded operator B is 

][Bllp.n = 2~ IIPjBII p) 
1 

(2.16) 

where 2j and Pj are given in HI.  

It is easily checked that IIBIIp, n is indeed a norm, using Minkowski's 
inequality. When p = 2 ,  IIBIIzm is related to the usual norm and Hilbert-  
Schmidt norm (denoted by I1" 112) of HB in the following way. 

L e m m a  2.2. With s, mj defined by (2.2), (2.3), respectively and 
supj~N* mj=M<~ ~ ,  we have 

IIHBII ~ s  IIBII2.H~s IIHBII2~v"Ms 2 IIBII_, n (2.17) 

If mj = 1 Vj ~ N*, we have s = M =  I and equal signs in place of the last two 
inequalities. 

The proof is given in an appendix. 
To control the size of R(t) we must make assumptions on the size of 

W~ We consider a set of two hypotheses giving rise to different results: 

Hypothesis H3. (i) There exists q>~ 1/2 such that 

•)q [IgjW~ 2 --[I w~ 
j I 

is locally integrable as a function of t. 

(ii) Hypothesis H3(i) holds and W~ has the form 

(2.18) 

W~ =k( t )  co ~ (2.19) 

where k(t) is a real-valued function and co ~ is a bounded, self-adjoint, time- 
independent operator on ~vg. 
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Note that the Pj and 2~ ~ are the spectral projectors and bot toms of the 
bands of H q, respectively, so that the norms introduced here are consistent 
with our definition above. 

T h e o r e m  2.1. Assume hypotheses H1-H3.  Then the evolution 
operator  solution of (2.8) is such that for any t e R + 

U(/): D(H 1/2) ~ D(H I/z) (2.20) 

Let cp e D(H 1/2) and consider (H)~ ,  (t) = (U( t )  cplHU(t) ~o) as t --* ~ .  If 
H3(i) holds, then 

( H ) ~ ( t ) = O  [[W~ (2.21) 

If, in addition, Zj~'~=12)q Ilej W~ 2 converges uniformly in s ~ R +, we get 

If  H3(ii) holds, then 

( H )  ~o ( t) = o( l I/q) (2.22) 

(H),,(t)=o([ I] [k(s)l dsl '/q) (2.23) 

Remarks. 1. No assumptions are made on the nature of the spec- 
t rum of H inside the bands aj, the size of the gaps between them, or on the 
actual dependence of 2j on j. The time dependence of W(t) is restricted in 
no way and the norm or H-norm of W~ need not be uniformly bounded 
in time. 

2. The initial condition can be taken in D(Ht/2)~D(H).  

3. If H3(i), respectively H3(ii), hold and IlW~ respectively 
k(s), are integrable, we thus get sup ,ER+(H)~  ( t ) < m .  This could have 
been expected in the latter case since Io ~ Ik(s)l ds is a measure of the total 
amount  of energy available to the system. 

4. If II W~ is uniformly bounded as a function of time, we get 
the estimate 

( H)  ~o ( t) = OU t/q) (2.24) 

5. The additional result (2.22) holds, for example, under the stronger 
assumption on W~ 

2 2)q sup [IPjW~ (2.25) 
j~N* t~R + 
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6. The bound (2.24) when q e [1/2, 1] is weaker than the trivial 
bound (1.9) for bounded W(t), but it is of interest if W(t) is unbounded. 

7. The unitary V(t) defined by (2.9) could be replaced by e -i'/t when 
W(t) is bounded, but in hypothesis H3, W~ should be replaced by W(t), 
which implies stronger conditions to fulfill. However, such a choice makes 
it possible to accommodate bounded W(t) which are not C ~ but generate 
a well-behaved evolution operator. 

8. The parameter q characterizes the relative strength of the pertur- 
bation W(t) with respect to H. The higher q is, the weaker is W(t) and the 
weaker is the growth in time of energy. 

Proof. A consequence of hypothesis H3(i) is that for any t e R  + and 
any q ~> 1/2 

_ 2] '1 ilejWo(s)ll2\lp- 2 Y' 2] IlejW~ ds ds 
j=l j 1 

(2.26) 

Indeed, the partial sums depending on two variables (s, u) e [0, t] x [0, t] 
satisfy 

N 
Y" A q IIPjW~ A'J Ilejw~ 

j= l  

( ~ ~]q [[Pj W~ N 2r 112) I/2 
\ j = l  \j----~l )'~ IIPjW~ 

II W~ II W~ (2.27) 

where the right member is integrable on [0, t] x [0, t] by assumption for 
any t e R +. Hence we get the result by integration on (s, u )e  [0, t] x [0, t] 
from the dominated convergence theorem. 

On the other hand, we get from the hypotheses made on H 

~[AJ z H=j~..~.= H j = j = , . ~ j  dE(2) (2.28) 

where E(2) is the spectral family of H and H i =  PjHPj satisfies for any 
j e N *  

2jPj <~ Hj <<. AjPj <<. s2jPj (2.29) 
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[see (2.2)]. Also 

j = l  2j 

But since 

2j [IPj~oll = ~< ['~J 2 d liE(2) ~o11-'-<-~ si.j liBido II- 

we get 

D(Hm)= ~e.g' ~__ )~illPj~oll2<oo 
j l 

Take ~oeD(HW'). Using (2.11), we get 

j = l  j = |  

so that V(t)~o e D(H'/2). Consider now R(t)~o for any cp. We have 

Ileyi(t)~oll2= g(t) g-'(s) ejW~ g(s)~ods 

<~( I~ IlP'W~ ds) 2 II~~ 

If H3(i) holds, using (2.26) with q = 1/2, we get 

~" Ay IIPja(t) ~o112~< 2)/2 IlPjW~ ds Ilrpll'- 
j = !  j = l  

This means that for any t >10, 

R(t): ,g'~ D(H u'') 
hence 

U(t): D(HI/~).--.. D(H I/2 

Joye 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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The positivity of H implies that for any q), Z ~ D(H l/,_) (see ref. 14, p. 53) 

2 I (z ln~o) l  ~< ( x I H z )  + (q'l  n g )  (2.38) 

so that using (2.13), we can write for any ~o~D(HI/2), 11911 = 1, 

( n)~, (t) = (U(t) q~ InU(t) ~o) 

= ( V(t) ~o]HV(t) ~o) 

+ 2 Re(V(t)  cplHR(t)~o) + (R(t)  ~o [HR(t)~p) 

~<2((V(t) ~olHV(t) ~o) + ( R(t) ~o IHR(t) ~o) ) 

= 2(IIHi/2V(t) 9112 + IIH~/2R(t) ~0l] 2) (2.39) 

The estimate (2.29) together with (2.33) yields for the first term of (2.39) 

Ilnl/2V(t) 9112= L IIH)/2V(t) ~~ 
j = l  

<~s L 2jllejv(t)~~176 ~ (2.40) 
j = l  

which is independent of time. We deal with the second term as follows. For 
any N ~ N * ,  we have by virtue of (2.34) and (2.14) 

Ilnl/'-R(t) ~o II-' 

N 

= Z I[H)/2R(t)91[ 2+ L [IHJ/2R(t)~~ "- 
j = l  j = N + I  

N 

<~s2~,, ~ IIejR(t)~oll2+s ~ 2jllPjR(t)~oll z 
j = l  j = N + I  

<~ 4S2N+ S 2j IIPjW~ ds (2.41) 
j = N +  1 

Gathering these estimates, we finally get for any cp sD(H~/'-), !1~oll = 1, 

( g ) ~  (t)~<Rs IIHt/-'~olle+42u+ 2j IlejW~ ds (2.42) 
j = N + I  
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Assume H3(i) holds. 
Applying (2.26) to the 

monotonicity of 2j in j e  N*, 
last term of (2.42), we get, 

J/2 ,~j IIPjW~ ds 
j=N+I 

I ( f 'Rq IIPjW~ ds - 
~ ] 2 q - - I  ~kjO J 

"~N+I j=N+l 
1 ~ I/2 )2 

"~21~l~l={fO[j=~N+l~qllPjW~ ds~ 

(I~ II W~ mds)  2 
1~2q- 1 

N + I  

Thus, for some constant c <  oo independent 
estimate 

using the 

If 

we have 

(2.43) 

of t and N, we have the 

(H)q, (t)~<c (1 + 2N + (j• II W~ m ~  ds) 2) 
ZLN+ I 

(2.44) 

[ ~ o , ],/2 
= sup ),]qllejW~ - x / g ( N +  1) 

s ~ R +  j 1 
(2.46) 

where g(N)--*O as N ~  oo and g ( N ) > 0  for any N, due to the last condi- 
tion in H2. Thus 

t 2 
<,>~ i,,.~ c (1 + ~ +  ~,~,~ g/N+ 1,) (2.47) 

Is 1 .'2 ~<- sup 2~ q [IPj W~ 2-  II W~ 
t o s~R+ j i 

j~N+I 

ds 

N t lim sup ~2~qllPjW~ 2-  IIW~ ~,;m = 0  (2.45) 
N ~ ' ~  s ~ R  + j 1 
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Assume H3(ii) holds. 
In this case, 

587 

j = N +  1 

~< Ik(s)l ds 2j Ile/o~ 2 
j = N + I  

Hence, 

 ti; Ik s l dsl 2 i 'V" ,PJ,o% 2 
] 2 q - -  1 
" ~ N +  1 j =  N +  1 

<H>~(t)<~c(l +2~ +[I'~ g(N + I )) 
"~N+ 1 

where 

O < g ( U ) =  ~ )~jq IlP/o~ 1 ) ~ 0  
j=N 

(2.48) 

(2.49) 

as N ~  (2.50) 

It remains to minimize the right-hand sides of (2.44), (2.47), and (2.49) 
with respect to N as t ~ ~ .  

L e m m a  2.3. Let 0t/> 0 and r(t) be a positive function of t e R + such 
that l im,_ ~ r(t) = oo. Let 2j and g(j) be two sequences of positive numbers 
such that 2 j<2 j+ t  ~ ~ a s j ~  ~ and g(j)>~g(j+ 1). Consider 

r(t) 
h(N, t ) - - 2 u + ~ u + l g ( N + l )  (2.5l) 

Then, for each t, there exists a unique N ( t ) e N *  such that in the limit 
t--. c~ 

if limj_ ~ g ( j ) = O  and 

if infj~ N, g(j) > O. 

h(N(t), t) = o(r '/l' +~(t)) (2.52) 

h(N(t), t) = O(r I/~l +~l(t)) (2.53) 
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Remarks. If sup,~R+ r(t) < or, we get 

sup h(N 0, t) < oe (2.54) 
t e n  + 

for any fixed N 0 e N * .  
This lemma is optimal in the sense that any asymptotically different 

choice of N(t) as t--+ ~ yields a weaker estimate, as easily verified from the 
proof. 

Proof. The hypotheses on 2j and g(j) imply that 

).y/gl/~J+'~(j)<2j+l/gt/ll+~)(j+l)--*~ as j--* ~z (2.55) 

so that there exists a unique index N(t) for any t e R  + such that 

2Nl,i/gl/~l+~(N(t)) <~ rl/ll+~l(t) < 2NI,~ + 1/gl/~l+~(N(t) + 1) (2.56) 

Hence, taking N=N( t )  in h(N, t), we can write 

h(N(t),t)<~rl/Cl+=~(t)(g~/IJ+=l(N(t))+g~/ll+=l(N(t)+ l)) (2.57) 

where lim,_ ~ N(t)= ~ .  Hence, depending on the behavior at infinity of 
g(N), we get a little-o or a big-O estimate for h(N(t), t). | 

The theorem is proven by applying this lemma with c( = 2q - 1 and the 
corresponding r(t) to (2.44), taking g ( N ) -  1, and to (2.47), (2.49) with the 
g(N) defined in (2.46), (2.50). | 

3. UPPER BOUNDS ON ( f ( H ) ) ~  (t)  

Looking back at Theorem 2.1, we see that the 2j play a significant role 
in the hypotheses on the size of W~ only and that the end result on 
( H )  ~ (t) is independent of ),j. This calls for a generalization to expectation 
values of operators of the following type. 

Hypothesis H4. Let f :  R---, R be a function such that 

satisfy 

0 < f j =  inf f (2 )  and Fj = sup f(2) ,  j e N *  (3.1) 
2effj 2EO'j 

F j < f j + , ,  V jeN*  and sup F J f j = c < ~  (3.2) 
j ~ / N *  
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In this case, f(H) is positive and self-adjoint on its domain D(f(H)), 
which is dense (ref. 14, w and easily shown to coincide with 

D(f(H))= {~bs~g' ~. f)IIPjOII'-< oo} (3.3) 
j = l  

The values o f f  outside the support of the spectrum of H are irrelevant. 
We introduce another set of hypotheses, each of which gives rise to a 

different estimate. 

Hypothes is  H5. (i) There exists q~> 1/2 such that 

) Z f)q IIPjW~ 2~/~- ~ II W~ H 
\ j =  1 

is locally integrable as a function of t. 

(ii) Hypothesis H5{i) holds and W~ has the form 

(3.4) 

W~162 ~ (3.5) 

where k is a real-valued function and 09 ~ is a bounded, self adjoint, time- 
independent operator on ._Of. 

Then, by repeating the proof of Theorem 2.1, wi th f (H)  in place of H, 
f j  in place of 2j, and c in place of s, we get immediately the following result: 

Theorem 3.1. Assume hypotheses H1 and H2, and let f :  R--, R be 
such that H4 and H5 are satisfied. Then, the evolution operator solution 
of (2.8) is such that for any t ~ R  + 

U(t): D(fU2(H))~D(f~/2(H)) (3.6) 

Let cpeD(fl/2(H)) and consider (f(H))o ( t )=  (U(t)  q~[f(H) U(t) cp) as 
t--* ~ .  If H5(i) holds, then 

(f(H) ) ~, (t) = O ([ I] II W~ H~ ds] '/q) (3.7) 

If, in addition, Z j ~ l f  2q IlPjW~ = converges uniformly in s e R  +, we 
get 

(f(n))~, (t)=o(t l/q) (3.8) 

822[8s 
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If H5(ii) holds, then 

(f(H))~,(t)=o([ ~ [k(s)l dsl l/q) (3.9) 

Using this result, if (H)~o (t) cannot be estimated by Theorem 2.1, we can 
nevertheless try to get a bound on the expectation value o f f ( H ) ,  taking an 
f such that 0 < f ( H ) < H .  We can actually consider the problem from the 
reversed point of view. Given a perturbation IV(t), can we find an unbounded 
operator whose expectation value can be controlled as t--. m? This is the 
object of the following result. 

C o r o l l a r y  3.1. Assume that there exists a positive, strictly increas- 
oO ing sequence {/tj} j= l such that 

l q  [IPj W(t)[I 2 (3.10) 

is locally integrable as a function of t. 
Then, for any q/> 1/2 there exists a function f :  R + --* R +, depending 

on q and satisfying H4, such that 

( f( H) ) ~o ( t ) = O ([ f~ [] W~ s )ll ,_,fq, m dsl l/q) (3.11) 

for any initial condition in D(f'/2(H)). 
Proof. Take the function defined for a n y j e N *  by 

{0 )/q if 2 ~ o'.i 
f (2 )  = otherwise (3.12) 

which satisfies H4, and apply Theorem 3.1. II 

Remark.  In case W~ ~ we get 

(f(H) ) ~ (t)=o ([ I~ ,k(s)l ds] '/q) (3.13) 

for the same f 
The interest of this corollary stems from the fact that for a given W(t), 

( H ) ~  (t) may fail to be bounded uniformly in time, whereas the expecta- 
tion value of some function of H may be (see the example in the next 
section). 
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Another improvement of these results consists in trying to get 
estimates on (H) g ,  (t), respectively ( f ( H ) ) ~  (t), of a more general type 
than algebraic in t. This can be achieved by replacing 2 q, respectively f ] ,  
by a(2j), respectively a(fj), in the hypotheses on the size of W~ where 
a: R + --* R + is some increasing function. More precisely: 

Hypothesis H6. Let 

a: R + ~ R  + 

x~--~ a(x) (3.14) 

be a continuous, strictly monotonic increasing function such that b defined 
by 

b: [p, ~ [  --,R + 

x ~--~ aZ(x)/x (3.15) 

is nondecreasing, for some fl > 0. 

We indicate in an appendix how to alter the proof of Theorem 2.1 in 
order to show the following result: 

T h e o r e m  :3.2. Assume H1 and H2 and l e t f a n d  a be two functions 
satisfying H4 and H6. If 

)l,2 
(i) a2(fj) ILPj W(t)ll 2 = II W~ (3.16) 

j i 

is locally integrable as a function of t, respectively 

(ii) W~ ~ (3.17) 

where k(t) is a real-valued function and co ~ is a bounded, self-adjoint, time- 
independent operator and W"(t) satisfies (i), then, as t --* oo, 

(i) 

respectively 

(f(H))~,(t)=O(a-l [ I I IIW~ 

(ii) (f(H))~(t)=O(a-'[f~ 
for any initial condition q~ e D(f~/Z(H)). 

(3.18) 

k/sl  319/ 
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This last result shows more precisely how the strength of the 
hypotheses, characterized by the function a of, can be modulated in order 
to improve the time dependence of the estimates, characterized by a, or to 
enlarge the class of operators to which the results apply, characterized by f. 

. EXAM PLE 

Let us demonstrate the use of the estimates of the preceding section on 
a specific example. 

Assume rn2= 1 VjeN* and consider 

We define 

and 

H = ~  2jlq~j)(~ojl= ~ ) v P j  where 2j-j,-'= ~ > 0  (4.1} 
j = l  j = l  

X(t)= cj(t) cpj with cj(t)=j/~_s~,~, f l > 0  (4.2) 
j = l  

f(t)=fl-o~/2-1/2-1/[2(l +t)2"], n>O (4.3) 

Then sup,~R. Ilx(t)ll < oo (see below) and actually it is not difficult to see 
that Z(t) is analytic in a sector containing R +. Let g(t) be a C ~- real-valued 
function such that 

sup ]g(t)[ = o o ,  g(t)eL~(R+), [g(t)[(1 +t)"r +) (4.4) 
t c R  + 

This is the case with n = 1 if 

supp Ig(t)[ ~- { t l [ t - j [  ~< 1# 3 , VjeN*} 

sup [g(t)[ = j =  [g(s)[ (4.5) 
t e  { t l l t - j l  ~< 1/J 3} 

VjeN* 

Then we set 

W(t) =g(t) IZ( t ) ) (X(t) l  

By construction, 
applied for this bounded perturbation. With the definition 

W~ - L PjIX(t))(Z(t)IPj) (4.7) 
j = l  

Vse {sl Is-jl <~ 1/(2j3)}, 

(4.6) 

W(t) satisfies H2 and the trivial bound (1.9) cannot be 
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we easily get 

liP~ W~ =g( t )  cj(t) c~,(t) 
k 1 
k v~j 

(4.8) 

that 

We show the following result below. 

L e m m a  4 .1 .  There exist t-independent constants 0 < p _  < p +  such 

p_  g( t) cj( t) <<. IIPj w~ t)ll ~ p + g( t ) cj( t) (4.9) 

Hence, using the integral test, we obtain that the behavior of 
II W~ is equivalent to that of 

Ig(t)l 2jc)(t))  --Ig(t)l  

( , ),,2 
>~ Ig(t)l 2 ( f l - f ( t ) ) - a - f  = lg ( t ) l ( l+ t ) " (4 .10 )  

By assumption, [g(t)[(1 + t)" fails to be integrable on R +, so that we can- 
not show that s u p , , R + ( H ) ~ o ( t ) < m .  However, considering f(H)=I-F 
with 0 < y <  1, we find that the behavior of  II W~ l,~r,/-' is equivalent to 
that of 

( ~  y,_ \u2 
Ig(t)[ 2jc ) ( t ) )  

j I 

= [g(t)t jZ~l~-.l'~,}}-~,~;j 
I 

~< Ig(t)l 1 + 2 ( f l _ f ( t ) ) _  y~_  1 

l ~,/2 
= lg( t ) l  l + ( l _ _ ~ , ) ~ + l / ( l + t ) z . j  (4.11) 

which is integrable on R +. Consequently, Vy ~ ]0, 1 [ and V~0 ~ D(Hy/2), 

sup ( / T ' ) ~  (t) < m (4.12) 
t ~ l R  § 
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find 
Proof  o f  Lemma 4. 1. On the one hand, using 2 ( f l - f ( t ) ) >  1 + a, we 

k = l  k = l  k = l  
k ~ j  

On the other hand, using the integral test, we obtain 

,,~(t)= E + c~(t) 
k = )  k = l  k = j + l  
k ~ j  

>1 + x2(P_fm) 
[ + 1  

(4.13) 

( ' , ) 1 1 1)2~/s-r~,-1 j 2 ~ # - / ' t - l  (4 .14)  
= 2 ( f l - - f ( t ) ) - - I  + ( j +  

If j =  1, since 2 [ f l - f ( t ) ] -  1 < 1 +~,  we can take 1/[(1 +~)  2 I+ ' ]  as a 
lower bound on (4.14). If j >  1, then 

1 1 
1 j2~p-r ,  -J > 1 -2G  (4.15) 

yields (2 = - 1 )/[ 1 + 00 2 ~] > 0 as a lower bound. | 

5. APPLICATIONS 

In this section, we consider a restricted class of Hamiltonians 
H +  W(t) which are likely to appear in specific models and fit in the 
framework described above. For this class of Hamiltonians it is even 
possible to improve slightly the results of Theorem 2.1. 

P r o p o s i t i o n  5.1. Assume H1 and H2 and let H be such that 

) .j~<0 "~ as j ~  oo 

for l, co>0 independent of j, and let W~ be such that 

(5.1) 

sup IIPj W~ ~ c/j/s (5.2) 
t E R  + 

for c, fl > 0 independent of j. Then, provided 2 f l - ~  > 1, we get for any 
cp ~ D(H ]/2), 

( H )  ~ ( t ) = O( t ~'/q~- ]/2~) (5.3) 
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R e m a r k s .  1. Applying the results of  Section 2, we get under  the 
same condit ions ( H ) ~ o ( t ) = o ( t  ~) with ~ = ~ / ( f l - 1 / 2 ) + e ,  for a rb i t ra ry  
small e > 0. 

2. The exponent  0c is characteristic of  H, whereas fl characterizes W ( t ) .  

If  0c gets smaller, the exponent  in (5.3) gets better, independently of  W ( t ) .  

However ,  taking higher values for ~ requires taking weaker  perturbat ions.  

3. Replacing H by some power  of  H merely amoun t s  here to altering 
the exponent  ~ appropr ia te ly .  

P r o o f .  In order  to show the proposi t ion,  we simply est imate more  
carefully the last te rm in Eq. (2.42) using our  hypotheses.  We can write 

2/ IIPjW~ d s  <~lct 2 1 / j  2 a - ~  
j = N + I  j = N + I  

<~ ( t~ - / (N  + 1 ) 2 p - ~ -  l (5.4) 

for some cons tant  6. Hence  we are led to minimize 

N ~ +  t 2 / ( N +  1) 2 p - ~ - '  (5.5) 

by means  of L e m m a  2.3, which yields the result. II 

Let us consider a class of  per turbat ions  W(t) for which the estimate (5.2) 
can be proven. This class of  opera tors  was introduced recently in ref. 10. 

Assume m / <  ~ Vj �9 N* and denote  by 

r~r=l , . . . ,nt j  
(~j~jEN* 

an o r t h o n o r m a l  basis of  eigenvectors of  H such that  P/p~ = ~p~, r = 1 ..... mj. 
An ope ra to r  A belongs to the class X(P ,  Y), where p, y �9 R, if there exists a 
cons tant  C such that  

C 
I(q, ffl A~pDI ~< ( k - j ) ,  ( k j )  ~' (5.6) 

for all r =  1 ..... mj, s =  1 ..... ink, where ( n )  = Inl if n :/:0, and ( 0 )  = 1. 

Tablel .  Bounds on IlPjW~ f o r 6 = O  

p<O p=O O < p < l  p = !  p > l  

0 < y < l  - -  - -  l / j  2;'+p-t l n j / j  "+' l / j  2r 
y = I - -  - -  l n j / j  t +p In j / j  2 I/ j  2 
y> I 1/j >'+p l/j;" 1/j +'+p li f t  '+l 1/j ~' + mi"~"'~'l 
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Tablel l .  Bounds on IlPiW~ f o r S > 0  

p < 0  p = 0  0 < p < l  p = l  p > l  

) " ~ 0  . . . .  l / j  r' * min(p'r)  

0 < y ' < l  - -  l / J r ' +P i fp<yandy>> ' l  I / f f ' + J i f l  <) '  ' 
- -  1 / j r , + r + p - l i f p > ~ y o r p < y < l  l n j / j ; ' + Y i f l > ~ y  l / j  r+m'"lp'~'~ 

y ' = l  - -  - -  l / j  I+p l / j  2 I / j  I+min(p'~') 

y ' > l  1/j ;'+p 1/j r' 1/j ~'+t' 1/j y'+~ I / J " + P i f P < Y '  
l/jY' +~'ifp>~ ), ' 

We prove the following technical lemma in an appendix, using the 
Schur condition. 

L e m m a  5.1. Assume mj <~ Mj ~, where M and 6 >/0 are independent 
of j, and let W~ belong to the class Z(P, )'), with a constant C uniform 
in t e R  +, where y > 0  and y - 6 + p >  I. Then, there exists a constant x 
such that: 

(i) If 6--0 ,  IlejW~ is bounded by h- times the quantities in 
Table I. 

(ii) If 6 > 0 ,  with y ' = y - 6 ,  [[ejw~ is bounded by ~c times the 
quantities in Table II. 

R e m a r k s .  1. We can get rid of the logarithms in Tables I and II 
by decreasing the exponent o f j  by an arbitrarily small amount. 

2. In order to apply Proposition 5.1, we further need the exponent of 
j to be greater than 1/2. 

6. C O N C L U D I N G  R E M A R K S  

Here we make explicit some links between our results on expectation 
values of H or f ( H )  and other relevant quantities in the study of quantum 
stability. Let us recall these notions and their properties, following mainly 
refs. 5, 1, and 19. Consider the subspaces 

JgP(U) = { ~ e ~'f~ I { U(t) r  >>- O} is precompact in ~f~} 

~ f ( u )  = ( /0E~ limo ~ _I [iKU(t)~p[[Zdt = 0 
T 

(6.1) 

for any compact operator K} (6.2) 
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Regardless of the time dependence of the Hamiltonian, ~r and g f ( U )  
are closed subspaces of Jig and ovgP(U).1_ J f f ( u ) .  (5,19) D'Oliveira further 
introduced subspaces related to some operator. Let A defined on D(A) be 
unbounded, self-adjoint, and positive with discrete spectrum and assume 
that U(t): D(A)--,D(A), V t e R  +. We set 

9~ = { go e D(A) I sup <A >~, (t) < ~ }  
I ~ R *  

5e"(A) = D(A) ca [Saba(A) ] • 

(6.3) 

(6.4) 

It is shown in ref. 19 that 

,_~bd(A)=~P(U) and D(A)ndtaS(U)cSe"(A)  (6.5) 

If we restrict our concern to time-periodic Hamiltonians, i.e., 
W(t+ 1)=  W(t), and assume that 

then ~5.~ 

with 

m/<  oo, Vj~N* (6.6) 

= ~,~P(U) ~ ,~-f(U) (6.7) 

~ . r (U)  = gf~( U(1 )) and :ffP(U)=~pp(U(1)) (6.8) 

where Y(,.( U( 1 )), respectively ~pp( U( 1 )), are the continuous, respectively 
pure point, spectral subspaces of the monodromy operator U(1). 
Moreover, as implicitly contained in refs. 5 and 1, we deduce from (6.5) 
with A = H that 

go ~ D( H) n gt~( U(1)) =~ sup ( H > ~  (t) = 
I ~ R *  

(6.9) 

or, equivalently, 

go ~- D( H) and sup(H>~,(t)<oo=~goeJfpp(U(l)) (6.10) 
I E R *  

Remark that U(t): D ( H ) ~  D(H), Vt ~R +, under our general hypotheses. 
The converse statement to (6.10) is believed to be false, although no proof 
seems to be available yet. (L~3~ We can replace H by f (H)  [choosing 
A = f ( H ) ]  in (6.9), (6.10) under the hypotheses of Theorem 3.1 and (6.6), 



598 Joye 

provided we take initial conditions ~o e D(fl/2(H)) instead of ~o e D(f (H)) .  
The question of domains is then solved by the property U(t): 
D(fl/2(H)) ~ D(fI/2(H)), VteR  +, which alters neither the proof nor the 
results of ref. 19. Hence, the study of expectation values may give informa- 
tion on the spectral properties of the monodromy operator in such cases. 
(Note, however, that Theorems 2.1 and 3.1 cannot yield boundedness of 
expectation values in the time-periodic case.) 

In case of arbitrary time dependence, the Hilbert space cannot be 
decomposed according to (6.7), but we can write 

= x ' , ' (u )  (9 ~ r ( u )  @ w " ( u )  (6.11) 

where ,g,a(U) is called the "U-unusual" subspace in ref. 19. To show the 
existence of Jf"(U), d'Oliveira ~19~ studies an explicit example of a 
Hamiltonian for which he proves that actually 

J f  = J f " (U)  (6.12) 

The example treated in Section 4 yields in turn a case where 

~f~ = J f " ( U )  (6.13) 

Indeed, for any 9 in the dense domain D(H r/'-) we showed that 

sup <H;'>~, < ~ (6.14) 
t ~ R *  

Thus, by virtue of (6.5) and the closedness of ~ P ( U )  we get the result. 
Actually, it is not difficult to find a whole class of systems for which 

J f  = .Yf'P(U) (6.15) 

Consider 

H(t) = H +  k(t) co" (6.16) 

where we suppose that k( t )e  L I and that (6.6) holds. Further assume that 
there exists a positive, strictly increasing sequence {pj} j~N" such that 

~. p~ IIe/o"ll 2 < oo (6.17) 
j=l 

Then, as a consequence of the remark following Corollary 3.1, we get for 
any ~0 in the dense domain D(f~/2(H)) 

sup <f(H))~ < oo (6.I8) 
t E R *  
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where f ( a j ) =  {u]}, Vje N* andf (R\a j )= {0}. Again, (6.5) and the closed- 
ness of ~ r ( U )  yield the result. Hence, the property (6.12) does not seem 
to be the rule for driven quantum systems; see the conclusion of ref. 19. 

A P P E N D I X  A. PROOF OF L E M M A  2.1 

Let us show that wd(t) is H-bounded with relative bound b. Let 
9 e D(H); we have 

IIW'*(t)<pl[ 2 :  ~ I[ejw(t)Pjq~[I 2 
j=J 

<~ ~ [[W(t) Pjq~H 2 
j = l  

~ (b IInPj~oll +a(t)ll ej~011)-" 
j = l  

=b ~- [IHq~ll2 +a(t) 2 11~o112+2 ~ b Ilejg~P][ a(t) IIPj~ol[ 
j = l  

~< (b IIn~oll + a(t) Ilq~ll )2 (A.I) 

Consider the strongly C l bounded symmetric operator 

N 

wN(t) = Z pjwlt) Pj 
j = l  

(A.2) 

for any tER § We define K = [ 0 ,  T] such that t ~ K c R  +. We have for 
M>~N and ~o6D 

I1(wN(t) - w M (  t)  ) ~112 

M 

= ~ Ilej W(t) e/pll 2 
j = N  

M 

= ~" IIPjW(t)H-IPjg~oll 2 
j = N  

M 

~< sup IIW(t)n-~ll 2 ~ IIPja~oll 2 
t ~ K ~ R  + j = N  

(A.3) 
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Hence WN(t) tends strongly to Wa(t), uniformly in teK, and Wa(t) is sym- 
metric. Similarly, for t ~ K ~ R +, 

M 

I1( WN'( t ) -  w~'( t))  ~oll 2= ~. IlPjW'(t) H - '  PjH~oII z 
j=N 

M 

~< sup IIW'(t)H-'II2Z IlejH~oll -~ (A.4) 
t ~ K  ~ R +  j = N  

so that the strongly continuous operator 

N 

wN'(I)= 2 PjW'(t) Pj (A.5) 
j = l  

tends on D to a limit w(t) uniformly in t~K. Hence w(t) is strongly con- 
tinuous. 

Finally, for any ~o ~ D and t e K c R +, 

where 

(Wa(t) - Wa(0)) ~o= lim PjW'(s) H-IpjH(p 
N ~  : ~ j =  1 

N t t 

lim ~=foPJW'(s) Pj~O-foW(S)qgds 
N ~ z r ~  j 1 

-<< lim ~ [IP:W'(s)H-'PjH~oI]'- ds 
N ~ .  ,s o j =  + 1  

, . ,  : ~<Jo f l[ W'(s) IIds lim IlPjH~oll 2\'/2 = 0  
N ~  ~ j =  + I 

This means that 

Wa(t)  ~o = Wa(0) ~o + w(s) ~o ds 

(A.6) 

(A.7) 

(A.8) 

so that Wa(t) is strongly C t. | 

APPENDIX B. PROOF OF L E M M A  2.2 

We have 
c,-_ 

2~ IIPjBII2 < ~ :=, B: ~--* D(H) 
j = l  

(B.I) 
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Hence, using the spectral theorem for H, we get, for any q~, 

IIHBq~llA=j ~',.~ fx AAd LIE(A) B~ll ~" (B.2) 

where [see (2.2)] 

f) A-~d liE(k) BgllA<~.s2A} IIejnll 2 I1~0112 (B.3) 

which proves the boundedness of HB. Since the domain of H is dense, 
B*Hc (HB)* is bounded as well. 

There exists a basis of or thonormal  eigenvectors {q~k}~2~.r of H 
p x-',,,~ i *)(q~k[, k = l  ..... mj, and H~p~=lj.kq~ with Aj-..< such that J = ~ k = ~  ,r 

lj., ~< dj ,  k = 1 ..... m;. Hence, 

IIHBll ~ --- IIB*HII 

= ~ IIB*Hcp~[I 2 
j = l  k = l  

j = l  k = l  

j = l  

j = l  

= ~, 2y IIPjBII 2 (B.4) 
j = l  

with equalities everywhere if mj = 1, Vj ~: N*. 
If, furthermore, s u p j  e N* r/Tj ~( M, then 

iIHBli]= E iiB*n o;, 2 
j = ]  k = l  

~s 2 ~ IIn*ej~ffll2 Aj ~s 2M IIBPjIIAA~ I (B.5) 
j = l  k = l  j = l  
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APPENDIX  C. PROOF OF T H E O R E M  3.2 

We follow again the same steps as in the proof of Theorem 2.1 with 
f (H)  in place of H. The hypotheses on a and the strict monotonicity o f f j  
imply that f j  ~< a2(fj) for j ~> J, J large enough. Thus, for any t [ see (2.35)], 
if (i) holds, 

f j  IIPjR( t) ~oll 2 j=J 
j~j \ l/2ds} 2 

~< II W~ 2,,.,s~m ds [l~fl 2 < oo 

I1~o11-' 

(C .1 )  

Hence, as above, we get that for any t/> 0, V(t): D ( f m ( H ) ) ~  D(fl/'-( H) ), 
R(t): JF-~D(fl/'-(H)), and thus U(t): D(fl/2(H))~D(fJ/2(H)).  Then, 
under hypothesis (i), respectively (ii), using the monotonicity of b, we are 
led by arguments similar to (2.43), respectively (2.48), to minimize the 
quantity 

h(N, t) = fN + r(t) fN+ ~/a2(fu+ 1) (C.2) 

for N large enough, where 

respectively 

r(t) = II I~-~ ds (C.3) 

r(t) = Ik(s)l ds (C.4) 

by a particular choice of N(t). We do not attempt to take advantage of the 
presence of any decreasing function g(N) in (C.2). 

I . e mma  C.1. Let h(N, t) be defined by (C.2), where f ,  respectively 
a, satisfies H4, respectively, H6. For each t > 0 ,  there exists an N(t) such 
that 

h(N(t), t) = O((a2) -I (r(t))) (C.5) 

Remarks. Ifr( t )  is uniformly bounded in t, then h(N o, t) is, too, for 
any N o and the lemma is optimal in the same sense as Lemma 2.3. 
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Proof. We can rewrite (C.2) as 

h(N, t) = f N +  r( t)/b(fN+ ~) (C.6) 

and we can assume that r(t) tends to infinity as t--, ~ .  Let N(t) be the 
unique index such that 

f N ,  t) < . (a2 )  - I  ( r ( l ) ) <  f lvr  (C.7) 

For t large enough we can use the identity 

b((aZ) - l  ( x ) ) = x / ( a  z) ' (x) V x e  [a2(//), ~ [  (C.8) 

and deduce from (C.7) that 

b(ful,~+ l) >>- r(t)/(a2) -I  (r( t)) (C.9) 

Hence 

h(N(t),  t)~<2(a2} -I ( r ( t ) ) = 2 a - l ( [ r ( t ) ]  '/2) I (C.10) 

This lemma ends the proof of the theorem. | 

APPENDIX D. PROOF OF L E M M A  5.1 

According to the Schur condition (ref. 14, example 2.3, p. 143), 

~ mk ~ mi / 
IIGIl~<max sup ~ ~ I(q~;:lGqr~.)l, sup ~. I(~o~lGq~2.) I (D.1) 

\ j,r k = l  s=l  k,s j= l  r=l  

Thus it follows from our assumptions that we need to estimate 

and 

,..,"k _<CM~ ] ~' r" o I(%,lPjW(t)q~)l~ j~. [k_j[Pk~,_  ~ sup 
j'.r' k=l  s=l  k=l  

k r  

(D.2) 

"'J' C M  1 
sup ipkr (D.3) sup ~' I ( q ~ : l P j W ~  k I k - j  

k,s j ' = l  r '=l  
k ~ j  

under the conditions y - 6  + p  > 1, y > 0. It is readily seen that in any case 
the sup in (D.3) is bounded by 1/j min~p';'~. The sum appearing in (D.2) is 
estimated using the integral test 



604 Joye 

b b + l  

~. f(k) <~ fo f(x) dx 
k ~ a  

b b 

2 f(k) <~ f~ f(x) ax 
k = a  - - I  

on the function 

if f(x) is nondecreasing on [a, b + 1 ] 

(D.4) 

if f(x) is nonincreasing on [ a -  1, b] 

for ~l <~x<~j-1 
(x>.j+ 1 d(x) = Ix - j l  p x ~'' (D.5) 

where 7' = 7 - g. The resulting integrals are then analyzed by means of the 
technique described in the appendix of ref. 9. In (D.2), however, we have to 
accommodate the term Ik - j ] - P ,  which may be singular as k -~j and was 
absent in ref. 9. The analysis is nevertheless quite similar, so we only give 
the main steps (we will denote by the same symbol c all constants inde- 
pendent o f j  in what follows). 

Let D d= {X E R ] 1 ~< x ~<j-- 1 or x >~j+ 1 } and x o be such that 
d'(xo) = 0. We need to consider four cases: 

1. p > 0 and ?' > 0 ~ Xo < j -  1, for j large enough. 
2. p > l  and ?' <~O~xoCDa. 
3. p < 0 a n d T ' > l ~ x  o > j + l ,  for j large enough. 

4. p = 0 a n d y ' > l ~ s u c h x o .  

For case 4 we get 

d(k)<, d(k)<.d(1)+ d(x)dx<c (D.6) 
k ~ l  k = l  
k # j  

For case 2, similarly, and asymptotically as j -- ,  oo, 

~. d(k)~d( j - l )+ d(x) dx<.c/jr'+ d(x)& (D.7) 
k ~ l  1 

I/ f/ d(k)~d(j+ l)+ d(x)dx<~c/jr'+ d(x)dx (D.8) 
+1 +1  k = j +  1 

In case 1 we proceed as follows for j -1  ~ / ,  = I d ( k ) :  

j -  1 [xo] j -  2 

d ( k ) = d ( 1 ) +  ~ d(k)+ ~ d(k)+d(j-1) 
k = l  k = 2  k = [ x o ] +  1 

<~ c/j" + f[- '  d(x) dx + c/j r' (D.9) 
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whereas (D.8) holds for ~"~,kc't==j+ 1 d(k). Finally, for case 3 we get by similar 
manipulations 

j - - I  j - - I  

~" d(k) <. c/j p + f d(x) dx 
k = l  al 

f j -  1 <~ c/j~" + d(x) dx 
1 

(D.IO) 

d(k)<.2d([xo])+ d(x)dx 
+1 k=j+ 1 

<~c/jP+r'+ d(x) dx 
+1 

(D.11) 

using xo=y'j/(p+y').  It remains to estimate the integrals. Using the 
techniques of ref. 9, we get 

(c / j  p+~''-I if p <  1 

f ~  d(.v) dx< ~clnj/j~ if p = l  (D.12) 
.i+ I [.c/fl" if p > 1 

On the other hand, 

=-1 d(x) dx+ d(x) dx=Ii-t-12 (D.13) 

where 

( c/j p+;''-I if f < l  (c/ j  p+y'-t i f p < l  

I I ~< ~C In j/jP if y ' =  1 and I_, < ~c  lnj/j~" if p -- 1 

(.c/j p if y' > 1 (.c/j ~'' if p > 1 

Gathering these estimates in (D.1), we finally get the result. II 

(D.14) 
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