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Abstract

We consider unitary analogs df-dimensional Anderson models &{Z%)
defined by the produdi,, = D,SwhereSis a deterministic unitary anb, is
a diagonal matrix of i.i.d. random phases. The oper&dg an absolutely
continuous band matrix which depends on parameters ctingrdhe size of
its off-diagonal elements. We adapt the method of Aizenidahchanov to
get exponential estimates on fractional moments of the isnatements of
Uw(Uw —2) 72, provided the distribution of phases is absolutely cortiiraiand
the parameters correspond to small off-diagonal elemédrfis 8uch estimates
imply almost sure localization fdy,,.
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1 Introduction

Unitary operators displaying a band structure with respea distinguished
basis appear in the description of the long time propertieedain quantum
dynamical systems. For example, such operatorE’@¥) are used to model
the dynamics of an electron in a ring threaded by a time deg@naagnetic
flux. In some regime of the physical parameters, certaingghagthe matrix
elements can be considered as random variables. Thesesaodalseful for
numerical investigations. See [BB], [BHJ] and referentesdin for details on
the model and more on quantum dynamical systems.

Unitary operators with a similar band structure appearna#ifuin the study
of orthogonal polynomials on the unit circg with respect to a measudg on
the torusT, see [Si1]. Indeed, it is shown in [CMV] that multiplicatitay €9 <



S' onL?(T,du(a)) expressed in a certain basis of orthonormal polynomials is
represented by such a band matri¥4aN). This construction is simpler than
the earlier Hessenberg form of the matrix representati¢hisinitary operator
provided in [GT]. The spectral analysis of the unitary opergherefore yields
informations on the polynomials. Considering some phasearalom amounts
to considering certain types of random polynomials.

The spectral analysis of a certain set of deterministic amdlom unitary
operators with a band structure is undertaken in [BHJ] ahd[dis set contains
the examples mentionned above as particular cases. Inriermracases stud-
ied in these two papers, the operators considered congisairices on?(Z)
(which are unitarily equivalent to matrices) of the followiform: U, = DS
where S is a deterministic unitary an®,, is a diagonal matrix of random
phases, see [J]. The opera®is an absolutely continuous band matrix which
depends on a parametet|0, 1] which controls the size of its off-diagonal ele-
ments, see Section 2. When the phases are i.i.d random eajjpical results
obtained for discrete one-dimensional random 8dhmger operators are shown
in [BHJ] and [J] to hold in the unitary setting as well. Fortigsce, the availabil-
ity of a transfer matrix formalism to express generalizegavectors allows to
introduce a Lyapunov exponent, to prove a unitary versiolsiuf-Pastur The-
orem, and get absence of absolutely continuous spectrurd][Bdensity of
states can be introduced and a Thouless formula is provaih iR¢lated analy-
ses in the framework of orthogonal polynomials on the umileiare provided
in [GT], [T], [Si1].

In the present paper, we introduce a natural generalizafieuch unitary
operators to higher dimensions, i.e.|%9Z%), d > 1, in analogy with the self-
adjoint Anderson model. The construction is motivated ystructure ofJ,,
given as a product of a diagonal random operd@grtimes a deterministic
unitary S. This structure is a natural transposition to the unitatyirgg of that
of the Anderson model consisting in the sum of a diagonal samgotential
and the deterministic discrete Laplacian. The extensiatrégghtforward and
consists in matriced, of the formDS, acting onIZ(Zd), where the infinite
matricesD,, and S have similar properties with respect to the canonical basis
of 12(Z9), see Section 2. In particular, we assume the phases in therdia
of Dy, are i.i.d. with an absolutely continuous distribution, ahd operatoS
depends now on a set dfparametersty, to, - - -, tq) which control the size of its
off-diagonal elements.

Once defined, these random operators call for an analysiseaf $pec-
tral properties. In the self-adjoint case, the localizatpoperties of thal-
dimensional Anderson model can be conveniently proverdige disorder by
means of the fractional moment method of Aizenman and MolohdAM]
and the Simon-Wolff criterion [SW]. Actually, the fractidn@moment method
also applies in some weak disorder regimes, see e.g. [ASBHt]main result,
Theorem 2.1 below, is an exponential estimate on the fragtimoments of the
matrix elements ob, (U, —2)~1, uniform in z, obtained by an adaptation to
the unitary setting of the Aizenman-Molchanov method. Gitineate holds for
arange of paramete(f, to, ..., tq) such that the off-diagonal elements®#ére
small enough. This last condition is the equivalent in outirsg of the large



disorder assumption made in the self-adjoint case. Thenpply ghe unitary
version of the Simon-Wolff criterion proven by CombescurdC] to derive
localization forU,, in Corollary 2.1, for the same range of parameters.

2 TheMode and Main Result

We denote byk) = [Ki, ka, - - -, Kg) the unit vector at sitk € Z9, so that{|K) }, .70
form an orthonormal basis &f(Z9). We introduce a probability spa¢®,.7, P),
whereQ is identified with{’ﬂ‘zd}, T being the torus, ant = ®,_,4Px, where
P, = Po for anyk € Z4 is a probability distributions offf, and.# the o-algebra
generated by the cylinders. We introduce a set of randonoreon(Q, .7, P)
by

6:Q—T, st G(w) =w, keZd (2.1)

These random vectofgk },.q are thus i.i.d orf.
In the one dimensional casd,= 1, we consider unitary operators of the
form

Up = DyuS, with Dy, = diag{e %@ (2.2)
and
o —t?
2 —rt
o or2 ot —t2
- , 2.3
= —t2 —tr 2 —nt (2.3)
et r2
—t2  —tr

where the translation along the diagonal is fixed 2ly— 2|S 2k) = —t2, k € Z.
The parametersandr are linked byr? +t2 = 1 to ensure unitarity. We shall
sometimes writ&y(t) to emphasize this dependence. The spectruf @f is
purely absolutely continuous and consists in the set

0(So(t)) = Zo(t) = {erarccosi-tilreosy) y ¢ Ty, (2.4)

For this and other properties &, relations betweetJ,, with the physical

model alluded to in Section 1 or links with orthogonal polymals, see [J].

Note that the band structure (2.3) is the simplest one amyrofgerator can take
without being trivial from the point of view of its spectruf@HJ].

To deal withd-dimensional operators, we introduce the following ndtura
generalization of (2.2) tt?(Z9). We consider the unitary

U = DS on 13(Z9), (2.5)
whereDy, is diagonal again
Dolk) = e '%(“)[k) (2.6)



whereas the deterministic part is defined by
S=S®-®%. (2.7)

That is, we view?(Z%) as®9_,12(Z) so thatlk) ~ ki) ® --- ® [ks) andS; acts
onkj) asSin (2.3). We shall identifi5; with[®...I® §;®1---®1. A natural
symmetric choice consists in taking the same paramétereach unitarys;(t)
appearing in the definition o= S(t). But we can naturally consider non-
symmetric cases characterized by a set of paramietersy, tp, - -, tq) €]0, 1[4

to construct the unitary operat&t) = S;(t1)S(t2) - - Si(tq). Note that one
gets rightaway thai(t) is purely absolutely continuous and

O'(S(t)) = Zo(tl) X Zo(tz) X oo X Zo(td). (2.8)

Moreover, with the normx| = max;— ... ¢ |xj|, X € RY, we have the band struc-
ture

KS)=0 if |j—k>2 (2.9)

Remarks:

i) In this definition,S plays the role of the fred-dimensional Laplacian in the
self-adjoint case. Therefore, in the same way the Laplac@mbe written as
a sum of commuting one-dimensional Laplacia®ss defined as a product of
commuting unitary operators.

i) Our construction ofSgives a band structure td,,. However, our results do
not require such a structure, see below.

iif) Note that aslt| — 0, S(t) tends to the identity operator.

Our main result is an estimate on the fractional momentssskmtially, the
matrix elements of the resolvent df,.

Theorem 2.1 Let U, be defined by (2.5, 2.6, 2.7). Assume th@(w) } 7
are i.i.d. and distributed according to the probability nsese d/(6) = 1(6)d#,
wheret € L*(T). Let s€]0,1]. There existsels) > 0 small enough and
0 < K(s) < o« such that if[t| < to(s), there exists/(s,t) > 0 so that for any
j,ke 2% and for any z= C,

E(|(jUo(Uo—2) 1K) [%) < K(s)e U7, (2.10)

Remarks:
i) The Theorem is true for more general deterministic ugitgveratorsSthan
(2.7). The only requirement is that for soms) > 0,

sup§k|<sm>|'°‘e”k*” < i (9)inf|(SKK)I°, (2.11)
k| k

whereClY (s) is defined in (4.9) and depends sand onv only. This condition
expresses some locality property of the oper&otts equivalent in the self-
adjoint case is seen to be satisfied in the large disordeneegi

ii) The random variable$i(w) need not be independent, and their distribution
can be more general, see [AM]. However, we stick to the ptdsgmtheses
for simplicity.



Corollary 2.1 Consider |, = D,S(t) under the hypotheses of Theorem 2.1.
Then, if|t] < to(s),

0(Uy) is pure point almost surely.

Note:

As this paper was being completed, the preprint [Si2] apgmkalt announced
the paper [St] by Stoiciu where estimates of the type (2.1®)aoven in the
realm of orthogonal polynomials on the unit circle and peotleat dynamical
localization is a consequence of these estimates in thigsset

The rest of the paper is organized as follows. The next Secl&scribes
the effect of changing a phase at one site in terms of rank ertarpations in
order to derive formulas for later use. Then we prove Thea2elalong the
lines of [AM], [AG] in Section 4. The Corollary on localizatn is proven in
Section 5. An Appendix containing some technical matetizes the paper.

3 Rank One Perturbations

By construction, the variation of a random phase at one siteescribed by a
rank one perturbation. As randomness plays no particulartrere, we drop
the w's in the notation.

Let j € 29 be fixed. We defin® by taking8; = 0 in the definition oD:

b — %D =Dt |j)(jj(1-e ")

= D+|j){(jlnj, with nj=1—e"'9, (3.1)
so that, with the obvious notations,
U =Ds=¢%1lu =u +1j)(jln;. (3.2)
Letz¢ S'. By the first resolvent identity, we have
U-27*'-U-27* = -U-27Yj)imsu-2*

= —U-27Yj)imsu -2 (3.3)
ThereforeF (z) = SU —2)~! andF (2) = S(U —2) 1 satisfy
(

F(2)~F(2) =-niF@Ii)ilIF(2 = -nF@Ii){ilF (2. (3.4)
Itis readily checked that this implies
e nj ~ N
F@=F@+ eyt @INIFE. (35)
Henc(?, with the notatioR (j,k; z) = (j|F (2)k) and similarly withF (z), for any
jeZf,

ey Flk2)
F(J’k’z)_il—r/jlf(j,j;z)' (3.6)



We emphasize that in the relation above, the opeﬂ%(} depends orj fixed.
Note also thaF (j,k;z) = €% (j|U(U —2)~%k), so that it is equivalent to deal
with F(z) orU (U —z)~1 as far as the modulus of matrix elements is concerned.
We choose to deal with (z) because of the simple relation (3.4).

4 Estimateson Fractional Moments

The Aizenman-Molchanov approach of localization for s&lfeint operators
consists in deriving exponential estimates on the exgeataf fractional pow-
ers of the matrix elements of the resolvent that are unifarithé spectral pa-
rameter [AM]. We conduct a similar analysis on the matrixnedats ofF (z) to
prove Theorem 2.1, following the original strategy and [AG]

We restore the dependence in the disordén the notation at this point and
we derive the equation satisfied by the matrix elem&pik, j;z), z¢ St. We
have

I=(Uo—2)(Uy—2) "= (Uy—2)SFu(2) = (Dw—2S)Fu(2). (4.1)
Taking matrix elements, this yields
Sik (KI(Dw—28)Fu(2)]) = &4/ (KIFu(2) ) - 2(SKFw(2)])

e MR, (K, ;2 -2 T (SKIFw(l, };2). (4.2)
lezd

The diagonal elements &= S(t) are constant and given by

(SKK) = (1—t])(1—1])--- (1 —t§) =rfr3---rd = pa(t). (4.3)
Separating the indelx= k from the otheil’s we get for allj £ k and 04 z¢ St
Fu(k. j;2) (67%@Z 1 py(t) ) = 5 (SHFall. ;2 (4.4)

[

Note that the off-diagonal elemerks£ | satisfy
(SKI) =NS_y(Si(tj)kjll;) = O([t]), with [t| = maxts,---ta), (4.5)

since for ongj at leastk; # |, so that there is at least a factpin the product,
whereas

(SKk) =1+ 0(]t]?) < 1. (4.6)

At this point, we mimick [AM] and [AG]. We takes €]0,1[ and try to get
estimates on the expectation|Bf,(k, j;2)[°. Using| ¥ j a;|°> < ¥ j |aj[°, we infer
from (4.4)

Fu(k, j;2)[°

e MOz patt < 5 IISKOPRul 12 | ke
|

Taking expectation and making use of the identity (3.6){{Witn place ofj),

this yield
E (I;I<SHI>ISFQ>(I,J‘;Z)IS> >

6



Fulk i2)°[e 8@zt — pyr)|
E = .(4.8)
11— nkFo(k K 2)[s
In order to get estimates which are unifornzjiwe need to get rid of the factor

e @z 1_pyt )’ . This is done by means of a decoupling lemma similar to

the one proven in [AM] for the self-adjoint setting. Rec&latdv(6) defined
on T is the common distribution of the i.i.d. phasg8( )} z¢- As Fy is
independent obk(w), we shall first average oveék(w) and make use of a
unitary version of the decoupling Lemma.

Lemma 4.1 (Decoupling Lemma) Assume ©(0) = 1(8)d6, where0 < 1 €
L*(T) is such thatf. dv(8) = 1. Then, for any < s< 1, there exists a constant

0< C\(,l)(s) < oo such that for alla, 8 € C
et _qg° 1) 1
/dv ‘eﬂe et (S)Adv(e)m. 4.9)

Moreover, there exist8 < C\(,Z)(s) < oo such that for allg € C

1 ©)
/Td"(e)\eiie_ms <c?s). (4.10)

Remarks:
i) A proof is provided in Appendix. We only note here that otlce estimates
hold for€? in the integrand, they hold fa ¢ by conjugation.
ii) A variant of the above result holds for more general dlisttionsdv(8) of
phases, in the spirit of [AM], and [AG].

)

iii) As a first application we get the uniform bound
E 1
|(1-Fo(k ki2)Fo(k ki2) L +eT@)]

Fo(k k;2)
E(|Fu(kk2)5) = E @
(k. ki2)P) (‘1 Fo(k k; 2) + e 1@ Fy, (k, k; 2)
ci?(s). (4.11)
We apply now the decoupling Lemma to the RHS of (4.8) as fdallowe
can write

IN

S
e @zt — py(t )‘
+e*'9k( )Fu(k k;2)[s
PO Fu(k :2)°|pa(t) 1z L~ 8@
11— Fo(k.k; Z)|S|eiek(w) + Foo(k ki 2)(1— Fo(k k; Z))71|S'
Therefore, the average ov8y(w) of the above yields the bound
~ . S
Fulk :2)[°[e8(@21 — py(1)|
dv(6 = . = >
./11‘ ( )\17 Fo(k k;2) + e 1&(@F, (k k; 2)[s ~

|FA0)(k7 le)|
11— Fe(kk;z

= (4.12)

(4.13)

7



. Fu(k.j:2)°
C t) [ dv( ~ NI
v (S)pd(>/T v( )|1_Fw(k?k;z)+efl9k(w>Fw(k,k;z)|s’

where the last integrand coincides with(k, j;z)|. Therefore, inserting this in
(4.8), we finally get forj # k and anys €]0,1],

I;KSHUISE(IFOJ(',J';Z)IS) > CY(9)p§(DE(Fu(k, 1:2)[9). (4.14)

This last formula is the key to the desired bound, due to theviing Lemma,
see [AM],[AG]. The proof of [AG] is repeated in Appendix, foompleteness.

Lemma4.2 Let f € 1°(Z%) be non-negative and : 1°(Z9) — 1°(29) be a
linear operator with kernebr(k,1) > 0 such thato(k,k) = 0 and

SlkaZ o(k,1)=N < co. (4.15)

Fix a j € 9 and assume there exists some finite @ such that f satisfies for
any K#£ |

(af)(k):Za(k,l)f(l)2Cf(k). (4.16)

Then, if N< C, and if there existg > 0 such that
supZ ok el <, (4.17)
k

we have for any k,
f(k) < f(j)e . (4.18)

This proposition applies th(k) = E(|F,(k, j;2)|%) anda(j, k) = [{Sj|k)|® with
the constants

c=Cy"(s)ps(t), and N=sup3 |(SKi)I® (4.19)
k iZ

for small enough values df}. Indeed, forz ¢ S*, we have the priori bound
IFo(k,;2)| = [(i|SUe —2) k)| < 1/ distz. S"), (4.20)

showing thatf is in 1. Moreover, if|t] is small enough, we get from (4.3) and
(4.5) that

NZSEDJ;(KSNJ'H =O([tP) < (4.21)

i (9)p3(t) = Cy (s) +O([t2) =C.

Finally, as the sum defininly in (4.19) carries over a finite number of indices
only, for such values oft|, there exists & = y(s,t) > 0 so that (4.17) holds
true. With the uniform bound oR(|F(j, j;z)|) derived in (4.11), and by the

fact thatD,, is diagonal, this ends the proof of Theorem 2.1.



5 Localization

We spell out here a spectral consequence of the estimatiesaiér Theorem
2.1 by proving Corollary 2.1. We do this by applying the unjteersion of the
Simon-Wolff criterion [SW] for localization presented by @bescure in [C],
see also [T].

We need some preliminary estimates. Let us introduce 8",

Ho(2) =Uw(Uo—2) . (5.1)
We choosg = 0 in the definition (3.2). By the Spectral Theorem ,
[ dEy(a)e"
Ho(2) = /Tr BT (5.2)

whereE(a) is the spectral family associated with,. Therefore, the spectral
measure associated wild)

dHo(a) = d{0]Eu(@)0) = d][Eu(@)0) 53)
is such that

OHo(2)0) = [ D 5.4)
Thus, for|z| < 1,

Ha(@0)2 = OHL@Ha(@0) = [ S2T 59

Introducing the Poisson integral of a measdge

_ |72
Plol(a) = [ G

the identity above for =re'® r < 1 can be cast under the form

. . 2
Ha(€0? = Pldual(re)+ [ P00 (5)

= P[due)(re'®) +By(r, 0). (5.8)

We know that the following limit exists and is finite for a@ < T with respect
tod6/2m

>0, [74<1, (5.6)

lim Pldus(re) = d“;ém. (5.9)
Since
r2
"I o coga —6) on0.1 (5.10)
is positive and monotone increasing, then
rinl[ Bw(r,0) = ; % = By(0) (5.11)



exists for all(w, 6) € Q x T, and may be infinite. Moreover, fgw, 8) fixed,
B (r, 8) is monotone non-decreasingtriras well. Now, Theorem 2.1 says for
O0<s<1,

E(](j|Hw(2)0)|%) < K(s)e”Y&ll uniformly in z. (5.12)
Together with

(ZIUH@( ) <> [(iHo(2)0)°, for§=s/2<1, (5.13)
J

]
this implies

B ((IHa(207)°) < T K (9" =R(9) < (5.14)

Thus, we can apply the Monotone Convergence Theorem aggbriltb) for the
measureld x dP(w) to get from (5.8) that,

/Tde E((Bo(8))%) = lim | dOE((Bu(r.0))")
< lim deIE<(Bw(r,9>+P[duw](re“’))§>
- tim [0z ((Hae?)017)°)
< 2nK(s). (5.15)

Therefore B, (0) is finite for almost al( 8, w) € T x Q, w.r.t. d6 x dP(w). By
Fubini, this implies

Proposition 5.1 Under the hypotheses of Theorem 2.1, there elsts Q of
probability one and § € T of full measure such that

Bu(8) <o if weQy and 6 €J,. (5.16)

We are now in a position to apply the unitary version of [C]lué Simon-
Wolff criterion for localization. Consider

He(2) =Uw(Uw—2)"1 corresponding to (3.2) (5.17)

anddfl,, the corresponding spectral measure associated with therj@c The
relation (3.6) forj = k = 0 is equivalent to

(0|Hw(2)0)

(0|Hw(2)0) = (OF0(2)0) (1 8@ § g (5.18)
The properties of the perturbed spectral measlug, i.e. with 8y(w) arbi-
trary, can be read from those of the unperturbed spectradumedyl,,, i.e. with
6o(w) = 0, by means of the unitary analog of the Aronszajn-Donogthze-c
acterization of supports of the Lebesgue decompositione$pectral measure
dug. We recall this characterization for completeness, chranglightly nota-
tions with respect to [C]: Combescure uses the resolveherahanH(z) =
1+2zUy,—2)7L Let Bw(e) be defined by (5.11) fady,, in place ofduy,.
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Proposition 5.2 With the notations above,
a support of the singular continuous part gfid is
. i6o .
Sw=1<0¢€T|lim (0]Hy,(re'®)0) = €®  and Bw(B) = &, (5.19)
r—1- 660 -1

the set of atoms ofyd, is

g —1

whereas a support of the absolutely continuous partiof &

Py = {9 eT| Iirrl1_<0|l:|w(rei9)0> = andB(0) < oo} , (5.20)

Ay= {e €T | lim Plduy)(re'®) = d“dLée) € (o,oo)}. (5.21)
r—1—
These sets are mutually disjoint.

The key proposition from [C] regarding the propertiesdpg, in our setting is
the following unitary version of the Simon-Wolff criterion

Proposition 5.3 Let dfi, and du,, be related by (5.18).

éw(e) <o fora.ef € T <= duy is purely atomic for a.efy € T.(5.22)

Indeed, Considerinkj(,J gb(@y,, instead otJ,, we deduce from Propo-

sition 5.1 and the criterion above that for agye Qo, the spectral measure for
|0) of

j — e B0y, — diage (@

Uy = Uy =diagle "1 \")S (5.23)
where

6f (w) = 6j(w) + B30, (5.24)

is purely atomic for almost a8 € T. But, as the distribution of phases is abso-
lutely continuous, this means that the spectral meadugg-) = (O|dE(-)0) of
Uy, is purely atomic forw € Qoq, a set of probability one. Repeating the argu-
ment for the spectral measurgsE(-) j), j € Z9, this yields the same result for
w € Qj, whereQ;j is a set of probability one. Thereforg,, is pure point for
w € N7 Qj, a set of probability one.

|

6 Appendix

6.1 Proof of the Decoupling Lemma

Let us start with the second part of the Lemma. For &ny O,

~ dv(6) / " dv(0)
< Al dv(6 +/
/Tlée Bls {|69—B|-5<A} ©® {166 -p|-s>2} |69 — B[

}\+/va{|ei6—,8\’52)\ YA, 6.1)

IN
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where

v{|€9 —BI75> A} < ||T[|eo de. 6.2
e Ly . (6.2)
In the last integral, we can assume without loss fhat 0 and it yields the
arclength of the intersection of the unit circle with a girdf radius ¥A1/S,
centered aff. We first note that ifA “1/s>1 ie. A <1, the integral takes its
maximal value Zr, obtained with3 = 0. If A > 1, the integral is maximized by

the choiceB = B(A) = /1—A~2/Sto give

d6 = 2arcsif1/AYS), if 1/AYsS<1. 6.3
/{‘éefﬁlgmm} (1/AY) / (6.3)

As A — oo, this integral behaves agA'/S, which is integrable for 6< s < 1.
At this point we optimize our upper bound (6.1) #rby choosingA such that

1— ||7]|w2arcsif{1/AYS) = 0. (6.4)
Since||T]| > 21Tto ensure normalization, the minimizer is
A =1[sin(1/(2||T]|»)))] %> 1. (6.5)

Therefore we have proven the existence of a conﬁgﬁ(s) depending ors
andv only such that (4.10) holds.

The first part of the Lemma is proven along the lines of [AG]Jislshown
in the appendix C of this paper that foxOs < 1 and for anyu,v,a, 3 € C,

1 n 1 < v—al® 1 n 1
VvBF TuBF = N-pF\ju—aP  u-Bp
lu—al® 1 1
T upE\vap "vops)  ©9

Then, replacing/ andu by €9 and€®’ respectively, and by integrating over
dv(8)dv(8'), we get

2/dv B|S
J. fLovee :'V <|e9 Bs+|é9’1—ﬁs> =
/dv \e' g:s/d (|99’ T +|ei9,113|s>

+(8 < 6) (6.7)

where(6’ < 8) means the same expression wéttand 6’ exchanged. We fi-
nally get (4.9) WitrC\(,l)(s) = 1/(20\(,2> (s)) by applying the bound (4.10). [

6.2 Proof of Lemma4.2

We first observe that ith = {¢(K)}z0 € L™(Z%) is real valued, such that
¢(j) <0 and satisfies

Co(k) < (a¢)(k), Vk#], (6.8)

12



theng (k) < 0, for anyk. Indeed, if it were not the cas®| = sup, ¢ (k) would
be strictly positive. But that would imply

C¢(k)§Za(k,l)¢(l)§NM = CM < NM, (6.9)
which contradictdN < C. Then one applies the above to

d(k)=f(k)—f(jeIl st ¢(j)=0. (6.10)
Since

(O'efy"fj‘)(k) — ZO'(k7|)efy(“7”7|k7”)efy|k7”

< Za(kJ)eV“‘”e‘V'k‘” <ce vkl (6.11)
by hypothesis, we get, usinig j) > 0,
(@)K = (af)(k)—f(j) (e K
> C(f(k)—f(i)e ") =Cp k), (6.12)
hencef (k) < f(j)e vkl |
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