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Abstract

This work is devoted to rigorous results about the adiabatic theorem of
quantum mechanics. This theorem deals with the time dependent Schrédinger
equation when the hamiltonian is a slowly varying function of time, character-
izing the so-called adiabatic regime. Mathematically, the adiabatic theorem
describes the solutions ,(¢) in an Hilbert space H of the rescaled Schrédinger
equation

a%%@:Hm%m

in the limit ¢ — 0. Suppose the hamiltonian possesses for any time t two
spectral projectors, P;(t) and P,(t), which are spectrally isolated. Let us
consider a normalized solution which belongs at time ¢t = —oo to the spectral
subspace Pj(—o00)H, i.e. which satisfies the boundary condition

Jim [Py ()% (t)]] = 1.

Then the transition probability Pz;(¢) from Py(—00)H to Py(+00)H between
the times —oco and +o0 is defined by

Pale) = ,_l,iﬁ,nw | P2(t)e(2)I2

The adiabatic theorem states that P,;(¢) tends to zero in the limit ¢ — 0. Our
main concern is the study of the decay of P»;(¢) as ¢ — 0. We first show that
if H(t) is an analytic unbounded operator then P31(¢) decays exponentially
fast to zero in the adiabaticity parameter ¢:

Pa(e) = O(e~7/¢)

for some positive constant .

Then we turn to two-level systems for which we have a finer control on the
behaviour of Pj;(¢) as € — 0. Indeed, in the generic case we give an explicit
asymptotic formula for the transition probability P,;(¢) which reads

P21(e) = exp {2Imé, } exp {%Im‘[7 el(z)dz} (1 + O(e)).

The prefactor exp {2Imé6, } is of geometrical nature and the exponential decay
rate 2Im [ e1(z)dz is computed by means of the integral of the analytic con-
tinuation of the eigenvalue e,(t) along a suitable path v in the complex plane.
This expression constitutes a generalization of the so-called Dykhne formula
which does not contain the geometric prefactor. Moreover, we improve this
result and compute the leading term of P2 (¢) up to a correction of order
O(e?), for any g, instead of O(e). This result shows as well that the logarithm
of P,1(e) admits an asymptotic power series in € up to any order. Finally we
push the estimates to get the leading term of P,;(€) up to a correction of order
O(e~"/¢). We consider also cases where the 2 x 2 hamiltonian possesses some
symmetry, as the time reversal symmetry for example. In these situations, the
leading term of P;;(e) changes qualitatively since it is given by a decreasing
exponential multiplying an oscillatory function of 1/¢.

Then we come back to general systems driven by unbounded hamiltonians
and study the case where Py(t) and Pz(t) are both one-dimensional. These
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projectors are thus associated with non-degenerate instantaneous eigenvalues
e1(t) and es(t) of the hamiltonian H(t). We prove that, in this case too, an
asymptotic formula for P, () exists, provided the two levels e,(t) and ey(t)
are sufficiently isolated in the spectrum of H(t). This formula turns out to
be the same as the formula valid for two-level systems. Finally, we consider
the situation frequently encountered in applications where the two levels e(t)
and e,(t) display an avoided crossing during the evolution. For an avoided
crossing located at time ¢ = 0, this means that the levels behave as

e2(t) — e1(t) = Va2t2 + 2cét + 5262, |t} < 1,

where § € 1. As a consequence, the gap between e;(t) and e,(t) is minimum
for t = to(§) ~ —%ﬁ- where its value is

e2(to(8)) — e1(to(8)) = 6,/b2 — ¢2/a? = O(5).

In this case, we show that for ¢ and § small enough, the above formula for
P21(¢) reduces to the well-known Landau-Zener formula

&2 (b2 P
Pt =em{-Z2 (2 - 5) o6} 1+ 000+ 0.

When ¢ = 0 we recover the familiar Landau-Zener formula. This gives a
rigorous mathematical status to a formula which has been widely applied for
years in a variety of circumstances.



Résumé

Ce travail est consacré aux résultats recents sur le théoréme adiabatique
de la mécanique quantique. Ce théoréme traite de 1’équation de Schrddinger
dépendant du temps lorsque ’hamiltonien est une fonction lente du temps,
caractérisant le régime dit adiabatique. Mathématiquement, le théoréme adi-
abatique décrit les solutions .(t) dans un espace de Hilbert H de 1’équation
de Schrédinger écrite a ’aide d’un temps sans dimension

is%gb,(t) = H(t)e(t)

dans la limite ¢ — 0. On suppose que I’hamiltonien posséde en tout temps
t deux projecteurs spectraux Pi(t) et P,(t) qui soient spectralement isolés.
Considérons une solution normalisée qui appartient au temps ¢t = —oo au
sous espace spectral Py(—o00)H, c’est-a dire, qui satisfait 1a condition de bord

Jim 1P (@)%(t)]| = 1.

On définit alors la probabilité de transition Py (e) de Pi(—co)H & Py(+oo)H
entre les temps —o0 et +0o par

Pale) = ‘_1221“ | P2 ()e(E)II>.

Le théoréme adiabatique affirme que P;;(¢) tend vers zéro dans la limite
¢ — 0. Notre objectif principal est d’étudier la décroissance de Py (¢) lorsque
¢ — 0. On montre en premier lieu que si H(t) est un opérateur analytique non-
borné, alors P,;(¢) décroit exponentiellement vite vers zero dans le paramétre
d’adiabaticité ¢:

Pale) = O(e™?7/¢)

ol 7 est une constante positive.

On considére ensuite les systémes & deux niveaux pour lesquels on a un
contréle plus fin du comportement de P»1(¢). En effet, dans le cas générique
on donne une formule asymptotique explicite pour la probabilité de transition
P21(e) qui s’écrit

Pa1(e) = exp {2Imé, } exp {%Im/; el(z)dz} (14 O(e)).

Le prefacteur exp {2Im6, } est de nature géometrique et le taux de décroissance
exponentielle 2Im [, e;(z)dz se calcule au moyen de l'intégrale du prolonge-
ment analytique de la valeur propre e;(t) le long d’un chemin v judicieusement
choisi dans le plan complexe. Cette expression constitue une généralisation de
la formule dite de Dykhne qui ne contient pas le préfacteur géométrique. De
plus, on améliore ce résultat par un calcul du terme dominant de Py;(¢) & une
correction d’ordre O(e?) prés, pour tout ¢, au lieu de O(¢). Ce résultat montre
également que le logarithme de P;;(¢) admet un dévelopement asymptotique
en puissances de ¢ d’ordre arbitraire. Finalement on pousse les estimations
jusqu’a obtenir le terme dominant de Pz; (¢) & une correction d’ordre O(e~"/¢).
On considére également des cas d’hamiltoniens 2 X 2 possédant une certaine




symeétrie, par exemple la symétrie de renversement du temps. Dans ces situa-
tions le terme dominant de P;(c) change qualitativement puisqu’il est donné
par une exponentielle décroissante multipliant une fonction oscillante de 1/¢.

On revient ensuite 3 des systémes généraux gouvernés par des hamiltoniens
non-bornés et on étudie le cas ou Py(t) et Pp(t) sont tous deux unidimension-
nels. Ces projecteurs sont alors associés & des valeurs propres instantanées
non dégénérées e;(t) et ex(t) de ’hamiltonien H(t). On prouve dans ce cas
également qu’une formule asymptotique pour P, (¢) existe pour autant que
les deux niveaux e;(t) et e,(t) soient suffisamment isolés dans le spectre de
H(t). Cette formule se révéle étre identique a la formule valable pour les
systemes 3 deux niveaux. Finalement, on considére la situation que l’on ren-
contre fréquemment dans dans les applications dans laquelle les deux niveaux
e1(t) et ey(t) présentent un “presque croisement” (avoided crossing) durant
I’évolution. Pour un presque croisement situé en ¢ = 0, cela signifie que les
niveaux se comportent comme

e2(t) — e1(t) ~ Va2 + 2¢6t + b262, |t| <« 1,

ol § € 1. Par conséquent, la lacune spectrale entre e;(t) et e;(t) est minimale
en t = to(5) = — < et vaut

e2(to(8)) — ex(to(8)) = §/b% — ¢?/a? = O($).

Dans ce cas on montre que pour ¢ et § sufisamment petits, la formule donnant
P21(e) ci-dessus se réduit 3 la fameuse formule de Landau-Zener

2z (b2 ¢2

Pafe) = exp {—3 (— - —) (1+ 0(6))} (14 O(8) + O(¢)).

a ad

Lorsque ¢ = 0 on retrouve la forme usuelle de la formule de Landau-Zener.
Ce résultat donne un statut mathématique & une formule largement appliquée
depuis des années dans diverses circonstances.



Chapter 1

Introduction

1.1 Historical Account

Since the early days of quantum mechanics, the search for approximate solutions to the
celebrated Schrédinger equation has been recognized as an important problem, since exact
solutions were, and still are, rather scarce. This is the reason why we began to consider
this equation in a variety of limits, corresponding to different physically relevant regimes,
in order to study quantum physics through approximate but simple solutions obtained in
these limits. Among the different cases under consideration, the so-called adiabatic regime
has attracted physicists’ as well as mathematicians’ attention for a long time and it still
does. This regime describes the evolution of a system in an environment characterized by
a slowly varying time dependent hamiltonian. A typical example is the smooth switching
on of a perturbation of a reference system. Mathematically we model that situation by
considering a hamiltonian of the form H(es) where s is the time and 1/¢ is the character-
istic time scale over which the hamiltonian changes a finite amount. Thus, the adiabatic
regime corresponds to the limit ¢ — 0 in the Schrédinger equation (with & = 1)

d
i2-0e(s) = H(es)oels) , £:(0) = g0 (1.1)
or in its equivalent rescaled version
d
te—¥e(t) = H(t)ge(t), 4.(0) = po (1.2)

obtained after introduction of the dimensionless time ¢ = ¢s. The presence of the small
parameter ¢ in front of the time derivative in this last equation forbids a perturbative
approach of its solutions through Dyson’s series and makes the limit ¢ — 0 singular.

The original statement already established by Born and Fock [BF] in 1928, is essentially
that if H(t) possesses an instantaneous energy level e;(t) isolated in the spectrum for all
t € [t1,1;), then a system prepared in the eigenstate corresponding to e;(t;) at time £ = ¢,
will evolve to an eigenstate corresponding to e;(f;) at time ¢ = t, in the limit ¢ — 0.
More precisely, if ¢1(t) is the normalized instantaneous eigenstate associated with e;(t),
characterized by the phase fixing condition

d
(1)l 1 (8)) =0 Ve € [t1, 8], (1.3)
the solution of (1.2) at time ¢, will be given by
e
Yelts) = exp {-% [ el(t)dt} er(tz) + O(e). (1.4)
1

1




2 CHAPTER 1. INTRODUCTION

In particular, the transition probability P2 (¢) to any other eigenstate wa(t;) of H(t3) is
of order ¢2 and vanishes in the limit ¢ — 0.

This first approximation, known as the adiabatic theorem in text books, is often in-
voked in physics in a form or another to reduce a complicated time dependent quantum
mechanical problem to the study of an effective hamiltonian acting in an instantaneous
eigenspace of the complete hamiltonian driving the system. We make use of the fact that
in this approximation the transitions out of the eigenspace under consideration must be
small with respect to the transitions between the eigenstates belonging to that subspace,
provided the corresponding energy levels are isolated in the spectrum. However, this re-
duction process is only a first step, often implicit, and the physically interesting quantities
are given by the transition probabilities to be computed in the reduced system. This is the
case for example in the theory of electronic transitions in slow atomic collisions. The mo-
tion of one excited electron in the field created by two slowly moving atoms can sometimes
be reduced to the study of a two-level system driven by a slowly varying time dependent
hamiltonian. The probability of a charge transfer from one atom to the other during the
slow collision is then given by the corresponding transition probability P2;(¢) from one
level to the other in the adiabatic limit ¢ — 0, where ¢ is proportional to the relative
velocity of the atoms (see for example the monograph [NU] and the reviews [So], [Na],
(C])- It is thus important in this physical context to obtain accurate formulae for Py (),
and not only bounds, when ¢ is small but finite. Indeed, shortly after the establishment
of the adiabatic theorem, Landau [La), Zener [Z], Majorana [M] and Rosen and Zener
[RZ) gave explicit formulae for transition probabilities in the adiabatic limit for two-level
systems, to be applied in similar physical contexts.

Let e;(t) and e;(t) be the eigenvalues of a 2 X 2 hamiltonian displaying an avoided
crossing with closest approach of order § at time t = 0:

ez(t) - el(t) = Va?t? + 5262 4 O(tz). (15)

If é is small but finite, the Landau-Zener formula states that the transition probability
from one level to the other is given by

§2xb?
P21(e) ~ exp {— e;a } ase — 0. (1.6)

This formula has been obtained by Zener [Z] and Majorana [M] in the case of a particular
two-level hamiltonian for which they found an analytic solution of the Schrédinger equa-
tion. It was derived independently by Landau [La] who introduced the remarkable idea
of integrating the Schrédinger equation in the complex plane on a path surrounding the
complex eigenvalue crossing point 29 ~ i%, thus making explicit use of the analyticity of
the hamiltonian.

The formula given in [RZ] also results from an exact solution of the Schrédinger equa-
tion and displays an exponentially decaying behaviour as ¢ — 0 as well. This result
together with the Landau-Zener formula gave credit to a folk adiabatic theorem saying
that

" the transition probability out of a spectral subspace of the hamiltonian is ez-
ponentially small in the adiabaticity parameter, provided this subspace is spec-
trally isolated by a gap and the hamiltonian is analytic in time”.

This folk adiabatic theorem, in turn, gave an a posteriori justification to the reduction
process which leads from the complete problem to a reduced two-dimensional problem.
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In 1960, following the original idea of Landau, Dykhne [D] derived a generalization of the
Landau-Zener formula for analytic real symmetric hamiltonians without assuming avoided

crossings between the energy levels. He proposed the following formula for the transition
probability

Par(e) ~ exp {%Im/;(el(z) - ez(z))dz} ase =0 (1.7)

where ( is a path in the complex plane leading from the real axis to a complex eigenvalue
crossing point zg (i.e. such that e;(29) = e2(20)). Further generalizations and other exact
results can also be found in the chemical physics literature.

The Landau-Zener and Dykhne formulae have been used with success for years in
atomic and molecular physics mainly [NU], [So], [Na] but also in nuclear physics [Thi], in
solid state physics [Wi] or in laser physics [BH], [Kam] for example. A more recent field
of application for the adiabatic approximation is the theory of the quantum Hall effect
discovered by von Klitzing et. al. [VKDP)]. Indeed, when it had been recognized that the
adiabatic theorem could contribute to understand this phenomenon [Tho}, more general
versions of it, to which we shall come back, were introduced and used to explain some
aspects of the quantum Hall effect [Ku], [ASY].

There has been also a sudden regain of interest in the adiabatic theorem for itself
among physicists when in 1984 Berry [B1] pointed out that if it was applied to hamiltonians
satisfying H(t,) = H(t;), it could generate a phase factor having non trivial geometrical
meaning. The point is that when the hamiltonians coincide at ¢; and ¢, the initial
condition ¢, (¢;) and the eigenvector ¢;(t;) appearing in the approximate solution

i 4

pelts) = exp{ =2 [ ex(t)it] px(t2) + O(¢) (1.8)
1

must coincide up to a phase exp {—i5} which is determined by the condition (1.3). Thus

we have

Pe(t2) = exp {—s /: el(t)dt} exp {—18} .(t1) + O(¢) (1.9)

where the geometrical meaning of the phase exp {—i3} has been clearly exposed by Simon
in [Si]. The discovery of this geometrical phase has been confirmed experimentally by
Delacretaz et. al. [DGWWZ]. We shall not investigate this geometrical aspect of the
adiabatic theorem and we refer the reader to [SW) for more details and references on the
subject. Another aspect of the adiabatic theorem we shall not consider here is the study
of the decay of the transition probability with ¢ when the instantaneous energy level e, (t)
experiences crossings with other levels during the evolution. Born and Fock [BF] showed
that the adiabatic theorem was still true for a certain type of crossings, although the
transition probability decays to zero with ¢ more slowly in these cases. The most recent
and complete investigation of this problem is the work of Hagedorn [H1] who gives an
asymptotic expansion of the solution of the Schrédinger equation in the adiabatic limit,
in the case of real eigenvalue crossings.

1.2 Mathematical Aspects

These rapid successes of the adiabatic theorem in physical applications are to be con-
trasted with the rather slow process which gave a rigorous mathematical status to some
of its aspects. Indeed, it was only in 1950 that Kato [Katl] gave a rigorous and expected
generalization of the result obtained by Born and Fock. This generalization consists in en-
larging the class of hamiltonians for which the adiabatic theorem holds, by removing some
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technical restrictions on their spectrum. Kato’s work was important from a physical point
of view since the main result of Born and Fock had been derived under the assumption
that the spectrum of the hamiltonian was discrete and non degenerate. These hypotheses
on the spectrum are physically too restrictive as most spectra encountered in applications
contain a continuous part and degeneracies of eigenvalues can occur as the result of some
symmetry of the hamiltonian. Nevertheless, the adiabatic theorem was expected to hold
true under the sole hypothesis that the eigenvalue of interest e;(t) was isolated in the
spectrum for t € [t),2;]. It was argued that the nature of that spectrum far from e, (t)
should not influence in an essential way the solution of the Schrédinger equation with
initial condition at ¢t = ?; in the eigenspace associated with e;(¢;). Kato proved that it
was indeed the case. Let H be the Hilbert space which describes the system and let P;(t)
be the spectral projector associated with e;(¢). We suppose e;(2) to be finitely degenerate
and isolated in the spectrum of the hamiltonian H(t) for any t € [t;,%;]. We denote by
U.(t,t,) the physical evolution associated with the equation

ieditU,(t, t) = H(t)U.(t,t1), Ue(ts,t1) =TI (1.10)

so that the solution of (1.2) is given by

Ye(t) = Ue(t, t1)wo. (1.11)
Kato introduced in [Kat1] a unitary operator W(t,t,), solution of the equation

d

. d
EW(t,tl) = z[zPl(t), P(t)W(t,t1), W(t,ty) =1, (1.12)

i
which he showed to have the intertwining relation
W(t, 1) Pi(t:) = Pi()W (2, t1). (1.13)
Performing an integration by parts on the dynamical phase, he obtained the estimate
{ U.(t,ta) — exp { —:i /: el(t')dt'} W(t,tl)} Pit) = O(c) VE€lt,ts.  (L14)
These last two expressions mean that if ¥.(t;) = o is in the eigenspace P(t;)H, i.e.

Py(t1)p0 = o, then 9,(t) will be in Py(t)H for any t € [t;,%s], up to an error of order ¢
since they lead to

b(t) = U.(t, t1) g0 = exp {-i /t t el(t’)dt'} W(t, t1)go + O(c) (1.15)
where
W(t, t1)<Po = P1 (t)W(t, tl)(PO- (116)

As a corollary, we obtain again that the transition probability P,; () to any state p,(t)
which is not in Py ()X, i.e. such that P;(t)2(¢) = 0, is given by P2;(e) = O(¢?). When we
apply Kato’s result to a case where the eigenspace P, (¢)H is one dimensional, we come back
to the approximation (1.4) of Born and Fock since it can be shown that W (z,¢; )po = ¢1(t)
satisfies condition (1.3) on the phases of the instantaneous eigenstates. We shall call
W (t,t,) the parallel transport operator in the sequel, according to its geometrical meaning
in the setting studied by Berry [B1].
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Lenard [Len] made an important step in 1959 concerning the study of the decay with
¢ of the transition probability out of a spectral subspace. Let us denote by P»;(¢) the
transition probability from one spectral subspace P;(¢1)H of H(¢;) to any other spectral
subspace P,(t2)H of H(t2) between the times ¢; and ¢;. Lenard showed that if H(¢) is a
non degenerate n-level hamiltonian for any t € [t;,¢,] satisfying %H (t1) = 0 for all n,
then the transition probability admits an asymptotic expansion in powers of ¢:

Pa(e) = aze? + aze® + - -+ + ane™ + O(e™*1) Va. (1.17)

An important feature of this asymptotic expansion is that its first N terms vanish if
g—,,H (t2) = 0 for all n < N, yielding a transition probability of order ¢é¥+1. In particular,
if %H (t2) = O for any n, the transition probability is smaller than any power of ¢

Pai(e) = O(e™) Vn. (1.18)
Lenard obtained this result by considering the projector

Q.(t) = Ue(t,t1) Pi(t1)U (2, ty) (1.19)

solution of the Heisenberg equation of motion

ie2Qu(t) = [H(), Qu(t)], Qe(tr) = Pu(ty). (1.20)

Inserting in (1.20) an a priori expansion of the solution in powers of ¢ with unknown matrix
coeflicients, he could solve the resulting equations for the coefficients, order by order. The
link between Q.(t2) and P2;(¢) is furnished by the general relation

Pa(e) = || P(t2)Ue(t2, t1 ) Pr(t1) | = [ Po(22)Qc(t2)I1%. (1.21)

In 1964, Garrido [G] generalized the results of Lenard under the same assumptions on the
hamiltonian by means of an iterative scheme generating hamiltonians Ho = H, Hy,---, H,.
His recurrent construction allowed Garrido to show that to any (one-dimensional) spectral
projector Py(t) of H(t) corresponds a spectral projector Py (t) of the hamiltonian H(t),
such that if the solution of the Schrédinger equation (1.2) is in Ppy(#1)H at ¢t = ¢, it
will be in P,1(t2) at t = 2 up to order £?*1, for any g > 0, provided ¢ is small enough.
Moreover, when all the derivatives of H(t) vanish at time ¢;, Py1(t;) = Pi(t1) so that
we recover the result of Lenard [Len]. Similarly, when all the derivatives of H(t) vanish
at time t; as well, we get P,;(¢) = O(e™). Another generalization of this last result had
been previously established in 1962 by Sancho [Sa] who showed that the estimate (1.18)
still holds when P;(2) is a finite dimensional projector associated with the eigenvalue e;(?)
which is isolated in the spectrum of H(t) for any time ¢t € [t1,¢2], provided the same
conditions on the derivatives of H are satisfied. Kato’s generalization of the formulation
of the original adiabatic theorem together with the improvements in the bounds on the
transition probability by Lenard, Garrido and Sancho gave further credit to the folk adi-
abatic theorem on the exponential decay of the transition probability mentioned earlier.
At that point, it remains essentially two steps to take, one of qualitative nature and the
other of rather technical character, before a mathematical proof of such a theorem in the
setting used by physicists could be given. The qualitative step is to extend the same kind
of results to cases where P;(t) is a spectral projector of H(t) corresponding essentially to
several different eigenvalues which may cross each other but which are otherwise isolated
from the rest of the spectrum for any time t € [t;,;]. This is typically the situation en-
countered in the reduction process from complete problems to effective simpler problems
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described in the previous section. The second step, of a more mathematical nature is to
prove that the transition probability P,;(¢), shown to be smaller than any power of ¢, is
actually exponentially decreasing with £, under suitable conditions, that is

Pa(e) = O(exp {-2r/e}) as & — 0. (1.22)

1.2.1 Adiabatic Evolution

The extension of the adiabatic theorem to the general cases just described was first demon-
strated by Nenciu [Nel] in 1980 for bounded hamiltonians. Later, in 1987, Avron, Seiler
and Yaffe [ASY] showed that this extension held for unbounded hamiltonians as well and
applied it to deal with the quantum Hall effect. The main hypothesis on the hamiltonian
H(t) is that its spectrum o(t) must be composed of two parts o1(t) and o3(t) separated
by a finite gap g for any time ¢ € [t;,2,], i.e.

o(t) = o1(t) U o2(t) and tei[?ft ]dist[al(t),az(t)] >g>0 (1.23)

where 0,(t) is bounded. The projector P;(t) corresponding to o,(t) is then given by a
Riesz formula and the nature of the spectrum included in o,(t) does not matter. The
idea is essentially to build an approximation of the evolution operator U.(t,¢t;), similar
to the one given by Kato when P;(t) is associated with one eigenvalue e;(t), which was
essentially

U.(t, 1) = exp { -f /t: el(t')dt’} W(t, 1) + O(e). (1.24)

We shall call such an approximation an adiabatic evolution. The point here is to find
an expression which is an equivalent of the dynamical phase factor exp {—% f:l e (t)dt }
when e,(t) is replaced by oy(t). Such an expression is provided by the unitary operator
®.(t,t1), which we shall call dynamical phase operator, defined by the equation

ie%@,(t,tl) = W ) EOW(E 0)E(6), Betnt) =T  (1.25)

where W is the parallel transport defined by (1.12). By performing an integration by parts
on this dynamical phase operator, in the spirit of the original proof by Born and Fock,
Avron Seiler and Yaffe established the estimate

Ud(t, t) = W(t, £1)8.(8, 1) + O(e). (1.26)

The unitary operator W&, is thus an adiabatic evolution operator which approximates
the physical evolution up to an error of order ¢. This formula implies that the transition
probability Pz;1(¢) to any other spectral subspace P;(t)H satisfies Ppy(e) = O(e?) because
of the intertwining property (1.13) and the relation

[B.(t,t1), Pi(t1)] = 0 Vt € [ty,¢2). (1.27)

Moreover Nenciu [Ne2] and Nenciu and Rasche [NR] generalized the ideas of Garrido
when H(t) satisfies the sole gap assumption just mentioned. They introduced another
hierarchy of hamiltonians {H,}, ¢ > 0 for which they could prove a similar result to the
one obtained by Garrido. As before, when all the derivatives of H(t) vanish at ¢; and t,,
we have P2, (e) = O(e™), for any n ([Ne2], [ASY], [NR]).

On the other hand, results concerning the actual exponential decay of the transition
probability with ¢ were rather scarce and not quite satisfactory as far as mathematical
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rigour is concerned. Moreover, essentially two-level systems were treated in these works
and there was a complete lack of rigorous results for general systems.

We would like to stress that although we presented this aspect of the problem as a
technical one, it has a definite importance in the physics involved. Indeed, suppose the
adiabatic theorem is invoked to reduce a problem to the study of a two-level system,
for which the physically relevant transition probability from one level to the other turns
out to be exponentially decreasing in the adiabatic limit. It is then necessary that the
discarded transition probability out of the two-dimensional subspace considered decreases
exponentially as well, so that the former probability actually gives the leading behaviour
in the adiabatic limit.

This was the major motivation to begin this study which is focused mainly on the
exponential suppression of transition probabilities in the adiabatic limit.

1.2.2 Adiabatic Invariants

As a final remark before describing the content of this work, we can replace these consid-
erations in the broader frame of the search for adiabatic invariants of a dynamical system.
Consider a dynamical system depending on a parameter ¢

%x = F(X,et) (1.28)

where X belongs to some functional space. An adigbatic invariant of this system is a
function I(X (t),¢) such that

[I(X(t),e) - I(X(0),)| > 0 as & — 0. (1.29)

In the case of a classical system driven by a time dependent hamiltonian of the form
H(p, ¢,¢t), an adiabatic invariant is a function I(p(t), g(t),¢) such that

[I(p(2), a(t), ) — I(p(0),(0),€)] = 0 as & —0. (1.30)

An important example is provided by the one-dimensional harmonic oscillator whose fre-
quency varies slowly with time. The corresponding hamiltonian reads

2
PPl a2
= — - t .
H(p,g,et) = o+ smw(et)g (1.31)
and the adiabatic invariant for this system is given by

H(p(t),q(t), et)
w(et) ’

I(p(t),q(t),€) = (1.32)
provided w(et) > 0 for any time t (see [A], paragraph 20). For this linear dynamical
system, it is even possible to obtain an exponential estimate for the total change AI(e) of
the adiabatic invariant

Al(e) = [I(p(+00), ¢(+0),€) — I(p(~0), g(~0),¢)| = O(exp {-7/¢}) (1.33)

when w(t) possesses an analytic extension in a strip including the real axis and tends
sufficiently rapidly to definite limits at +00. With these notions we see that the transition
probability

Pai(e) = || P2(t)Ue(t, 0) P1(0)}|? (1.34)
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is an adiabatic invariant of the dynamical system
d
is~d—tU¢(t, 0) = H(t)U.(t,0), U.(0,0)=1I (1.35)

In relation with the KAM theorem of classical mechanics Nekhoroshev [Nek] studied in
details what he calls nearly integrable systems, i.e. systems governed by hamiltonians of
the form

H = Ho(I)-i-CE](I, SO,Et) (1.36)

where ¢ and I denote the canonical angle action variables of the system. When ¢ = 0,
the system is integrable and I is a constant of the motion by virtue of the equation
3‘%1 = ——%‘%Q = 0, whereas for ¢ positive but small, I(t,¢) stay close to their initial
value. The quantity I(t,¢) is not quite an adiabatic invariant in the sense given above,
but it shares the same general properties of an adiabatic invariant. Indeed, Nekhoroshev
investigated the decay with ¢ of the difference |I(t,¢) — I(0,¢)| and showed that under

suitable smoothness assumptions on the hamiltonian
|I(t,€) — I(0,¢)| < e® Wt €[0,exp{1/e°}] (1.37)
where a and b depend on Ho(I). Put in another way, this means that
[I(t,€) - I(0,¢)| < P exp {-1/e%} ¢. (1.38)

Thus obtaining of an exponential estimate on the transition probability P;;(¢) amounts
to prove an estimate of the type (1.38) for || P2(t)U.(t,0)Py(0)||. We shall call such results
in our quantum setting ”Nekhoroshev type estimates” although the dynamical systems
corresponding to (1.36) and (1.35) are rather different.

1.2.3 Reader’s Guide

Before coming to the description of the main results of this work, we would like to draw
the reader’s attention to the following fact. From now on, we drop the historical point
of view to adopt a more synthetic presentation of the most recent contributions to the
adiabatic theorem which were obtained by several authors. In the notes at the end of the
introduction we restore the chronology and make precise the links between these results.

1.3 Iterative Scheme

Let us now describe more precisely the two main ideas which will underlie most of this
work and lead to our main results. The first essential tool we use is another recurrent
construction of hamiltonians Ho(t) = H(t), Hi(t), - -, Hy(t), - - -, which is simple and local.
By this we mean that H.(t) is computed directly from H,_;(t), without solving any
differential equation.

Let H(t) be a smooth hamiltonian, bounded from below, whose spectrum o(t) consists
of two distinct parts o;(t) and o,(t), separated by a finite gap g > 0, as above. We denote
by P(t) the spectral projector corresponding to the bounded part o;(t) of the spectrum.
We have seen in the foregoing that the projector Q.(t) solution of the Heisenberg equation
of motion

ie 3Qu(t) = [E(2),Qu(0)], Qeltr) = P(t2) (1.39)
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can provide direct information on the transition probability. Let us look at this equation
more closely. Since its solution is a projector, it satisfies

Qe(t)Qe(t)Qe(t) = 0 (1.40)
»n nd»

where means " £, which is a direct consequence of the property Q2(t) = Q.(t). By
means of this identity, it is then possible to express the Heisenberg equation under the
form

[H(t) - i[Qc(t), Qe(8)], Q(2)] = 0. (1.41)
We shall try to find an approximate solution of this equation for Q.(¢) in the limit ¢ — 0.
The leading order in (1.41) will vanish if we replace Q.(t) by the approximation Po(t) =
P(t), since we obviously have [H(t), P(t)] = 0. Thus we write

Qc(t) = Po(t) + €R1(t,€), (1'42)

where R;(t,¢) is a rest. We are hopeful that it will be of order 1 in ¢. Inserting this
expression for Q.(t) in (1.41), we obtain

[H(t) - ie[Py(t), Po(t)] + O(?), Qc(t)] = 0. (1.43)
Now the leading term of this equation, given by
[H(2) — ie[Po(t), Po(t)], Qe(1)], (1.44)
is equal to zero if we choose as a second approximation
Q.(t) = Pi(t,€) + €?Ra(t,€), (1.45)
where P;(t,¢) is a spectral projector of the self-adjoint operator
Hy(t,e) = H(t) — ie[Py(t), Polt)). (1.46)

This definition makes sense since according to perturbation theory, assuming ¢ to be small,
the spectrum of H,(t,¢) is still separated in two disjoint pieces, one of which is bounded.
We define P;(t,¢) as the projector corresponding to the bounded part of the spectrum of
Hy(t,¢) which tends to Po(t) as ¢ — 0. Again we are confident that R(¢,¢) is of order 1
in ¢. Now we repeat the same procedure and we are led to the equation

[H(t) - ie[Pi(t,€), Pa(t, €)] + O(%), Qe(t)] = 0. (1.47)
Similarly, the leading order will be set to zero by the choice
Q.(t) = Py(t,€) + €2 Ra(t,¢), (1.48)
where P(t,€) is a well defined spectral projector of
Hy(t,e) = H(t) — i[Py(t,¢), Pi(t,¢)) (1.49)

when ¢ is small and R3(¢,¢) is a rest. We can repeat the whole process as many times
as we wish, which provides us with a hierarchy of hamiltonians whose spectral projectors
should solve the Heisenberg equation to an increasing accuracy. We define then an iterative
scheme starting with Ho(t) = H(t) by the equations

Hy(t,e) = H(t) — eK4-1(2,€) (1.50)

with
Kq—l(t,e) = i[Pé-l(t’eLPq—l(t,e)]? (1.51)
P,_1(t,¢) being the spectral projector associated with the bounded part of the spectrum

of Hy_1(t,€). As for the iterative schemes mentioned above, H,(t,¢) and H(¢) coincide at
the points t = ¢ where the first ¢ derivatives of H(t) vanish.
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1.3.1 Higher Order Adiabatic Evolutions

The next step is to build an evolution operator which would follow the decomposition of
the Hilbert space H in Py(t,e)H & (T — Py(t,e))H for any time t, in the spirit of Kato
[Kat1] and Krein [Kr], and which would also approximate the evolution operator U,(t,t,)
given by the Schrédinger equation (1.10) when ¢ is small. We expect such an evolution to
approximate the physical evolution up to a correction of order £9+! since the projectors
P,(t,€) seem to approximate Q.(t) up to a term of the same order. Thus, as before, we
introduce a parallel transport operator W,(t,t;) such that

Wo(t,t1) Py(t1,€) = Py(t, e)Wo(t, t1) Vit € [ty, 5] (1.52)

by means of equation (1.12) with Py(t, ¢) in place of P(t), and a dynamical phase operator
®,(t,t1) commuting with Py(t;,¢) by the equation

. d -
ze£§q(t,t1) = W7t 0)Hy(t, )Wo(t, 1) B,(t, 1h), Bg(ts, 1) =L (1.53)

Note that here both operators depend on ¢. From these very definitions follows the basic
estimate

t
10t 11) - Wolt, t)Bo(t, 0l < [ IKG(t'0) = Kama(E, 0l (154)
1

The simplicity of the above iterative scheme allows the difference [|K; — Kq-1|| to be
evaluated by perturbation theory and yields [JP1}, [JP2]

1 Kq(t'€) = Kg-1(t,€)l| < Bge? (1.85)

where §, is a constant. Thus, as expected, we obtain a better adiabatic evolution which
is of order ¢7 instead of ¢

Ue(t,t1) = Wo(t, 1) @4(2, t1) + O(e9). (1.56)

As a corollary, we get Pj1(¢) = O(e29) if the first ¢ derivatives of H(t) vanish at ¢; and
t;. As we assumed our hamiltonian to be smooth, we can construct adiabatic evolutions
of arbitrary order. The price to pay for the simplicity of this construction is that we have
to modify the dynamical phase operator and to perform an integration by parts, [JP1], to
improve the approximation by a factor £ ([NR]). The expected estimates at the ¢*® step
read Ue(t,t1) = Wy(t, t1)B,(t, t1) + O(e9+!), where &, is the modified dynamical phase
operator, and Pz (g) = O(g2(etd)) .

1.3.2 From Adiabatic to Superadiabatic Evolutions

When the hamiltonian H(t) depends analytically on time, we can get much better bounds
on the difference ||K; — K4_1||. This comes from the fact that, in this case, we can
control the dependence on g of the constants B, appearing in (1.55), for values of ¢ up to
N*(e) = O(1/¢). We have essentially the factorial behaviour

Bq ~ b%g! for any ¢ < N™(¢) ~ é, (1.57)
where b is a constant. Thus, for ¢ = N*(¢), we get using Stirling formula for N*(¢)! [JP3]

1K, €) = Koos(t',€)l| = O (exp {—7/¢}) withr = % (1.58)
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Inserting this result in the approximation of the evolution operator, we obtain a ”Nekhoro-
shev type estimate” which reads [Ne3], [JP3]

Ue(t,t1) = We(e)(t, 1) BNe(o) (8, t1) + O (Jt2 — t1| exp {—7/e}). (1.59)

This means that the approximation Wy+®y. we have just constructed differs from the
physical evolution U, by a term which remains small for exponentially long times, i.e.
ta—t; ~ O(exp {7/e}), in contrast with the usual adiabatic approximation W&, in (1.26)
which is valid for ¢ — t; ~ O(1/¢) only. Because of that property we shall call

Va(t, t1) = Wiye(o)(8,81) B ne(e) (8, 1) (1.60)
a superadiabatic evolution.

In the setting we consider here, to compute the transition probability P»;(¢) from the
spectral subspace P(t;)H of H(t1) to its complement (I~ P(t2))H at time ¢;, it is necessary
to take first the limits {; — —o0 and ¢t — +400. Indeed, the simultaneous requirements
for H(t) be analytic in time and to have all its derivatives equal to zero at times ¢; and
ty are compatible in these limits only, unless H is time-independent. Consequently we
further require the existence of limiting hamiltonians H+ and H~, which satisfy the gap
assumption and towards which H(t) tends sufficiently rapidly as ¢ — foo. By this we
mean in an integrable way.

The construction of the superadiabatic evolution V. (¢, ¢;) together with this last remark
show that for analytic hamiltonians, a solution of the Schrédinger equation initially in the
instantaneous spectral subspace P(¢;)H of the hamiltonian H(¢;) with ¢, finite, will follow
this spectral subspace during the evolution up to an error of order ¢ only Vt € [t;,¢t2)}, t2
finite, and not up to an exponentially small error in ¢. Nevertheless, there exist time
dependent projectors Py«(.)(,¢) such that a solution initially in Pye(c)(t1,€)H will be
confined to the subspaces Pye(.)(t,¢)H up to exponentially small errors, and this for any
time £ between #; and t;. These projectors Py«()(t,¢) are a distance of order ¢ away from
the spectral projectors P(t) and coincide with them at times ¢; = —oo and ¢» = +0co only.
It shows that the transition probability Pa;(¢) from P(—oo0)H to (I— P(+00))H between
the times —oo and +oo0, satisfies

Pa(e) = O(exp {-27/c}). (1.61)

It should be noted also that we have the same bound on the transition probability from
(I— P(—o0))H to P(+o0)H, as expected.

The role of such superadiabatic evolutions obtained by optimal truncation of an itera-
tive scheme was emphasized in this context by Berry [B2] and generalized independently
by Nenciu [Ne3]. Nenciu’s method is inspired by Lenard’s one and it applies to analytic
hamiltonians as well as more general C*® smooth hamiltonians. The main advantage of
our approach is that we can control the dependence of the exponential decay rate 7 on
the width of the gap g isolating the spectral projector P(t) of H(t). The rate 7 is directly
proportional to the width of the gap g between the components o;(t) and o2(t) of the
spectrum of the hamiltonian, as expected on physical grounds [JP3]. This property will
be crucial for other results to come.

1.4 Complex Time Method

1.4.1 An Asymptotic Formula

Our iterative scheme has allowed us to prove that the transition probability across the gap
is bounded by an exponentially decreasing function of £, thus justifying the folk adiabatic
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theorem quoted at the beginning of this introduction. But this method cannot give us
the leading behaviour of the transition probability in the adiabatic limit. This behaviour
will be provided in certain cases by the application of the second main idea used in this
work, which we shall now describe. This is the original idea Landau used to compute the
transition probability P,;(¢) for two-level systems [La], which amounts to make the time
variable complex and to push the path of integration of the Schrodinger equation from
the real axis to the complex plane. This idea was further exploited by Pokrovskii and
Khalatnikov [PK] and Dykhne [D] and it was finally made rigorous in some cases by Davis
and Pechukas [DP), and Hwang and Pechukas [HP] in two interesting papers. Actually they
justified the Dykhne formula (1.7) for two-level systems driven by analytic hamiltonians
which are real and symmetric. Let us see in more details what happens when we consider
general two-level hamiltonians. Let H(t) be a two-level hamiltonian which is hermitian
and possesses an analytic extension H(z) in a strip S, of width 2a surrounding the real
axis. We also suppose that it tends rapidly to non degenerate limiting hamiltonians H+
and H~ ast — too. As before, we consider the transition probability P,;(¢) from the level
associated with the eigenvalue e;(t;), in the limit {; — —oo, to the level associated with
e2(%2), in the limit ¢, — +00. We also assume that the levels are non degenerate for any
real time so that e;(t) —e;(t) > g > 0, Vt € IR. Let ¢;(t) be the normalized instantaneous
eigenvectors corresponding to e;(t), j = 1,2, whose phases are fixed by condition (1.3)
or, equivalently, ¢;(t) = W(t,to)p;(to), with W(t,1,) the parallel transport operator and
#;(to) a normalized eigenvector associated with e;(Zo). We can expand the solution 1, of
the Schrodinger equation on this time dependent basis, introducing unknown coefficients
¢;(t) and explicit dynamical phases as

2 i rt
v =Y sWem{-2 [ @)t} i) toc R (1.62)

=1

The coefficients c; are determined by a set of coupled differential equations obtained by
inserting the expansion (1.62) in the Schrodinger equation. The situation we consider at
t, = —oo is characterized by the condition ¢;(—00) = 1, ¢2(—00) = 0 and the transi-
tion probability P2;(¢) is thus given by the expression Pyi(e) = |c2(+00)|%. Now, as the
hamiltonian H(t) admits an analytic extension H(z) in the strip S,, the solution ¥.(t)
also admits an analytic extension .(2) in S,, so that we can deform the path of inte-
gration of the Schrédinger equation in S,. The idea is to use the multivaluedness of the
analytic continuations e;(z) and ¢;(z) of the instantaneous eigenvalues and eigenvectors.
Indeed, these quantities have generically square-root type singularities at complex eigen-
value crossing points, i.e. points 2z such that e;(z) = e2(20). If we write our two-level
hamiltonian under the form B(t)-s, where s, k = 1,2, 3, are the spin-% matrices and B(t)
is a magnetic field whose components are analytic in S,, the eigenvalues have the form

it) = (~173/BI0) + B30 + B3(t) = (~1¥ 5 /() i=12  (1.69)

with p(t) > 0 V¢ € IR. Thus an eigenvalue crossing point zg is a complex zero of the
analytic function p(z) which is generically simple. Hence the behaviours

es(2) = (~1Y5/P(z0)(z — 20) 5 = 1,2 (1.64)

in the vicinity of z9. Consider now a loop 7 based at ¢y € IR which encircles the eigenvalue
crossing point zp (see figure (1.1)). If we analytically continue e;(tg) and ¢,(¢p) along
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this loop and denote by é1(¢o|7) and $1(%o]7) the results of the analytic continuations, it
follows from the foregoing that

e.l(to]’/) = ez(to). (165)

Since ¢1(z) is the eigenvector associated with e;(z), along the whole loop, we must have

P1(tolr) = exp {—i61(to|7)} w2(20) (1.66)

where 6;(tp]y) is in general a complex phase. Because of the above properties, and the
analyticity of ¥, (2), it becomes clear that there must exist a relation between the coefficient
c2(400) obtained by integration of the Schrédinger equation along the real axis and the
coefficient ¢;(+00) obtained by integration of the same equation along a path # off the
real axis, but in the analyticity strip S,, passing above the eigenvalue crossing point z,
(see figure (1.1)). The relation reads

Figure 1.1: The loop 4 encircling 2o and the path of integration 7.

cx(o0) = exp {=its (tai)}exp { - [ x()dz} &i(4o0), (1.67)

in which we recognize a contribution from the eigenvectors, and a contribution from the
dynamical phases (where [ e1(z)dz is the integral of the analytic continuation of €1(z)
along 4). Thus, provided we can control the coefficient ¢; along the path 5 in the complex
plane in such a way that

é1(+o0) =1+ O(e), (1.68)

we have the asymptotic formula for the transition probability [JKP1], [B3], [JKP2]

P21(e) = exp {2Imb; (o))} exp {-i-lm[y el(z)dz} 1+ O(e)). (1.69)

A few remarks are in order here.

o The first is that the exponential decay rate 2Im [ e;(z)dz is the same as the one
appearing in Dykhne formula (1.7) and it is independent of the location of the base
point ¢4 € IR.

¢ In the second place, the prefactor exp {2Imé;(¢o|7)} has a geometrical origin since
it is a characteristic of the parallel transport (1.12) as the usual Berry phase [B1]
and it is also independent of ¢, € JR. Moreover, we have an explicit formula for this
geometrical prefactor in terms of the components of the field B(z).
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e When applied to real symmetric hamiltonians on the real axis, i.e. such that
By(t) = 0, our formula shows at once that the prefactor reduces to one, yielding
back the Dykhne formula. This property of the geometrical prefactor explains why
its presence had never been noticed up to now. Indeed, the physical situations to
which the Dykhne formula giving the transition probability has been applied corre-
spond to real symmetric two-level hamiltonians (see [NU]).

o The presence of the unexpected geometrical prefactor exp {2Imé, (¢o|y)} in the for-
mula giving the transition probability between two levels in the adiabatic limit has
been confirmed experimentally by Zwanziger, Rucker and Chingas [ZRC] who stud-
ied the evolution of spin-%’s in a slowly varying time-dependent magnetic field.

e Last but not least, the validity of the formula (1.69) is subjected to the condition that
a fine control of the coefficient &(+00) of the form (1.68) could be established. Note
that proving such an estimate for ¢;(+00) amounts to extend the usual adiabatic
theorem for the coefficient ¢, from the real axis to the path n in the complex plane.

As we shall see, there are cases for which the asymptotic formula (1.69) can be entirely
justified analytically and the geometrical prefactor exp {2Im6;(to|y)} is different from one
[JKP2].

1.4.2 Dissipative Paths and Stokes Lines

By studying the differential equation satisfied by the coefficients c;, we can see easily
that a sufficient condition for the bound (1.68) to hold can be expressed in terms of the
multivalued analytic function

Aps(z) = /to “(ex(2') = ex(#))d2" (1.70)

where the integral is taken along a path going from g € IR to z € S,;. If the path 5 going
above the eigenvalue crossing point zg is parameterized by 7(s), the condition reads

%ImAu(n(s)) >0, Vs€ IR (1.71)
so that ImA;2(n(s)) is a non decreasing function of s. A path satisfying this requirement
will be called a dissipative path. The existence of dissipative paths for a given two-level
hamiltonian is a non-trivial matter since the condition they must verify is a global one.
Nevertheless, we can handle this situation through the so-called Stokes lines of the problem
which makes it possible in some cases to conclude to the existence of a dissipative path
or, on the contrary, to exclude the existence of such paths in the analyticity strip of the
hamiltonian. The Stokes lines here are defined as the level lines

ImA;,(z) = ImAj2(20) Yz € S, (1.72)
or, by means of the expressions (1.63)
Im / o(2/)dz' = 0 Vz € S,. (1.73)
2q
As is easily verified by a local analysis around zp, there are generically three branches

of Stokes lines which meet at zo and it can be shown also that these branches neither
intersect each other or themselves, nor cross the real axis. The relation between Stokes
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lines and dissipative paths is essentially the following [JKP2].
There ezists a dissipative path passing above zo for a given problem if and only if the
corresponding Stokes lines are such that one of the branches goes from —co to zo whereas

a second one goes from zy to +0o, both these lines being entirely in the analyticity strip
Sa-

As a dissipative path cannot cross twice a branch of Stokes lines because of the monotonic-

D 7

S

R

Figure 1.2: The Stokes lines associated with zp and the dissipative path 7.

ity condition (1.71), it must then find itself above the two branches which are entirely in
Sg in order to pass above the eigenvalue crossing point 2, and cross the third branch of
Stokes lines which can be shown to leave S,, as on figure (1.2). This assertion provides us
with an effective tool to decide whether or not the formula (1.69) is valid, since an analytic
approach of the Stokes lines is sometimes possible whereas a numerical investigation can
be done in more complicated situations.

1.4.3 A Little Geometry

One could think that the existence of dissipative paths we have required and expressed
as a condition on the global behaviour of Stokes lines, is a technical limitation with no
serious implication on the physics involved. However it should be stressed that this is not
the case. Indeed, suppose that instead of having one eigenvalue crossing point only, we are
in a situation such that there are N eigenvalue crossing points z;, j = 0,---, N — 1, above
the real axis. Which one should be selected to compute the asymptotic behaviour of the
transition probability given by (1.69) ? This is definitely an important issue since formula
(1.69) depends explicitly on that choice. The answer to that question is precisely provided
by the global behaviour of the set of Stokes lines of the problem. To each eigenvalue
crossing point z;, j = 0,...,N — 1, correspond Stokes lines defined as the level lines
Im f:, Vp(z')dz' = 0, which have the general properties given above. Now, if the Stokes
lines associated with one eigenvalue crossing point, say zq, are such that two branches go to
plus and minus infinity entirely in S,, then it can be shown that zo is the unique eigenvalue
crossing point above which a dissipative path can be constructed and consequently, it is
the eigenvalue crossing point to be used in formula (1.69) [JKP2]). Moreover, 2o is not
necessarily the closest complex eigenvalue crossing point to the real axis (in the Euclidian
distance), as sometimes erroneously stated. Nevertheless, by considering a different notion
of distance in the complex plane, which is more appropriate to our problem, we can recover
this intuitive property of zo. Let us define the distance between two points z, y of the




16 CHAPTER 1. INTRODUCTION

complex plane by
dp(2,) = inf [ |p(2)"/*|dz] (1.74)
¥

where the infimum is taken on all rectifiable paths linking = and y. It is readily seen that
any branch of Stokes line is a geodesic, with respect to that new metric, and that the real
axis is also a geodesic. Thus the conditions satisfied by the Stokes lines associated with
zo imply that there exists an infinite geodesic passing through z, which is parallel to the
real axis. As a direct consequence, the eigenvalue crossing point zg is the closest to the
real axis in the metric d,, d,(z,IR) < d,(2x,IR), Vk # j. The metric d, comes from
the theory of quadratic differentials and was used to study Teichmueller spaces (see for
example [St] and [Let}). It also allows us to express the transition probability in purely
geometrical terms [JKP2}:

Pa(e) = exp {~24,(20, ) | exp {2t tal)} (1 + O(e)). (1.75)

1.4.4 Interferences

Up to now, we have considered generic situations with respect to two aspects. We have
assumed that the eigenvalue crossing point 2o was a simple zero of the analytic function
p(z) and that the Stokes lines associated with it met no other eigenvalue crossing point
in S;. Let us now consider a case with two eigenvalue crossing points, for example z;
and z,, such that the sets of Stokes lines associated with z; and z, possess a common
branch which links z; and z,, another which leads from —oo to 2; and another one from
2 to 400 (see figure (1.3)). We assume that these branches are entirely in the analyticity

Figure 1.3: The Stokes lines associated with z; and 2.

strip S,. Such a situation is certainly less generic than the one considered before, but it
appears in many examples of time reversal two-level systems. This is due to the symmetry
of the Stokes lines with respect to the imaginary axis which this condition induces in the
complex plane. A little thoughts shows that it is no possible anymore to find a dissipative
path passing either above z; or z;, or both. Hence we have to adopt another strategy to
deal with this problem. The approach we shall describe has been designed by Pokrovskii
and Khalatnikov [PK] in a semiclassical context and Davis and Pechukas [DP] used it in
the simpler case of real symmetric hamiltonians on the real axis. The general idea is to
integrate the Schrodinger equation directly on the different branches of Stokes lines which
lead from —oo to +o0, since the Stokes lines are also dissipative paths. But because of
the branching points of e;(z) and ¢;(2) at the eigenvalue crossing points, the differential
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equation satisfied by the coefficients c;(z) is singular at 2; and 2, and we are forced to
consider an approximate differential equation for the coefficients in the neighbourhood of
these points. The comparison equation retains the most singular terms of the original
equation and turns out to be solvable in terms of well known special functions. Then, by
using standard stretching and matching techniques of asymptotic solutions, we obtain the
leading term of the coefficient ¢2(+00) as ¢ — 0 which yields the transition probability
[JMP]

2

Zexp {—iQ,-}exp{—éIm[r~ el(z)dz}

Jj=1

1 2
+ O <exp {gIm el(z)dz} el/"’)
where 7; are loops based at the origin which encircle z; and 6; = 6;(0|7;) in the notation
used before. As expected we have Im [ e1(z)dz =Im [, e1(z)dz so that the leading term
in the expression (1.76) is given by a decreasing exponential times an oscillatory function
of 1/e.

This result shows that the behaviour of the Stokes lines in the complex plane de-
termines the leading order of the transition probability not only quantitatively, as in the
generic cases involving several eigenvalue crossings considered before, but also qualitatively
through the appearance of oscillations in the current situation. This oscillatory behaviour
results from a very general phenomenon in quantum mechanics, namely interferences. In
the adiabatic limit, we see that interferences take place between the exponentially small
leading contributions of each involved eigenvalue crossing point z; and z; to the transition
probability. It is possible to formulate the transition probability in geometrical terms only
in this situation too. By introducing the metric d,, we have a formula which reads, for a

’le(e) =

(1.76)

m

case with N eigenvalue crossing points 2q, 21, - *,2ny-1 on the same Stokes line,
2d,(z, R)Y | R
Pa(e) = exp {°—p(+l} { Y exp {2Im§;}
3=0
N-1
1 1/5
+2 ) exp{Im(6; + 6i)} cos ~dp(2k, 23) + Re(6h — 65)| + O(e'/*) (1.77)
k<j

displaying explicitly the oscillations due to interferences. Note finally that if the situation
we consider here is the result of a time reversal symmetry it will be robust with respect
to perturbations which possess the same symmetry.

We shall present in this work a new way of proving these results which leans more on
general algebraic properties of two by two matrices than on asymptotic analytic behaviours
of special functions, but it also involves integrations along specific paths in the complex
plane, around the eigenvalue crossing points. The proof will thus gain in brevity, if not
in clarity, and the order of the error bounds in the end results (1.76) and (1.77) will be
improved from /5 to e. The method we shall use to prove this result is adapted from the
ones described by Froman and Fréman [FF] in a simpler context of semiclassical analysis.

In the results we have given here, the system under consideration is in the ground
state of the hamiltonian at ¢ = —oc0 and we compute the transition probability to the
excited state of the hamiltonian at time ¢t = 400, by considering the Schrédinger equation
on a path in the upper half complex plane. When the roles of the excited and ground
states are exchanged, we have exactly the same transition probability as can be seen from
a symmetry of the Schrédinger equation in the two-level case.
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1.4.5 How to Avoid Considering the Stokes Lines ?

As we have just seen, the original idea of considering complex times, first expressed by
Landau [La] is a very fruitful one for two-level systems since it gives access to explicit
formulae for the leading terms of transition probabilities in the adiabatic limit. Neverthe-
less, the conditions on the Stokes lines to be verified in order to justify these formulae can
be rather difficult to handle analytically and there are examples where these conditions
are simply not fulfilled. We can then ask whether this method could be adapted to give
results on the transition probability without any information on the Stokes lines. The
answer is yes, with a price to pay, which is that we can get only bounds on the transition
probability, instead of their leading behaviours. More precisely, when the hamiltonian is a
2 X 2 hermitian matrix, analytic in a strip enclosing the real axis, which tends sufficiently
rapidly to limits as ¢ — +o0o and whose spectrum is separated by a finite gap for any time,
we can prove the existence of positive constants 7 and M such that

Pa(e) < Mexp(—1/c) ase = 0 (1.78)

by the following method [JKP1], [JKP2]. We consider the Schrédinger equation on a path
7 in the complex plane which is above the real axis again but passes under all the eigenvalue
crossing points. It can be shown as before that if 5(s), s € IR is a dissipative path, we can
control the analytic continuations of the dynamical phases exp { —ifFei( )dz’} along
n(s) and moreover, if 7(s) is at a finite distance x of the real axis for any s € IR the
dynamical phases provide us with an exponentially decreasing factor at the end point
of the path, since Imn(+00) > £ > 0. In such a case, the exponential decay rate 7 is
proportional to Imn(+00). Again we are led to prove the existence of dissipative paths,
but this time, it is the presence of a finite gap between the eigenvalues taken on the
real axis which insures the existence of a dissipative path slightly above the real axis.
The method can be further adapted to deal with n-level hamiltonians satisfying the same
general hypotheses [JKP1], [JKP2] and even with unbounded hamiltonians as well [JP4].
The notion of dissipative path in the latter case is a direct generalization of the two-level
case. By dissipative path we mean a path in the complex plane along which it is possible
to control the ¢-dependent dynamical phase operator €.(z,0) generalizing expressions like
exp {—§ Jo e;(2")dz! } . More precisely, we have to control the numerical range of &.(2,0).
Again, the assumed gap in the spectrum of H(t) allows the existence of dissipative paths
strictly above the real axis to be proven. It should be noted also that for unbounded
hamiltonians it is not possible to consider analytic extensions of the evolution operator
in the complex plane, so that we have to prove the result for bounded operators first.
Then we approximate the unbounded hamiltonian H by bounded operators H,, tending
to H as n — o0, and show that the estimate (1.78) holds uniformly in n [JP4]. We shall
present this way of obtaining the bound (1.78) in details for bounded hamiltonians only
whereas we shall prove the exponential decay of transition probabilities for unbounded
hamiltonians by means of our iterative scheme. Yet this method gave the first proof of an
exponential estimate on the transition probability across a gap in the adiabatic limit for
general unbounded hamiltonians [JP4].

There is a physically relevant situation where formula (1.69) can be used without
verifications on the Stokes lines. This occurs when the levels e; and e; display an avoided

crossing at some time ¢ € IR during the evolution. We shall describe this case in details
in a forthcoming section.
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1.5 Combining the Methods

1.5.1 Asymptotic Formula up to Exponentially Small Errors

Now that we have described our main tools separately as well as the kind of results
they lead to, we shall combine the iterative approach with the complex time approach to
improve these results by using the merits of both simultaneously. As a first application
of this idea, we shall compute higher order corrections to the transition probability for a
generic two-level system. Suppose we have a hamiltonian satisfying all the requirements
for the transition probability to be computed by the complex time method so that

Paa(e) = exp {2Imb1 (0}y)} exp {-22-Im /1 el(z)dz} (1+ O(e)) (1.79)

where « is a loop based at the origin, which encircles the reléva.nt eigenvalue crossing point,
say zo among the set z;, j = 0,---, N — 1. We have obtained this result by considering a
decomposition of the wave function ¥,(t) of the form

2 i ft
Belt) = D cj(t) exp {—; /o ej(t')dt'} pi(t) te R (1.80)

j=1

with ¢;(—00) = 1, ¢2(—00) = 0 and by making use of the multivaluedness of e; and ¢;
in the analyticity strip S, together with the formula Pj;(¢) = {c2(+00)|2. Let us consider
now our iterative scheme (1.50)

Hy(t,e) = H(t) — eKq-1(t,€) ; Ky(t,€) = i[Py(t,€), Py(t,¢€)] (1.81)

defined for real values of ¢. It can be shown [JP2] that if ¢ is small enough, the 2 x 2
matrix representing the hamiltonian Hy(t,¢) has a univalued analytic continuation in the
domain Sa\Uf;’olD;. where the D,’s are disks centered at the eigenvalue crossing points
24, of arbitrarily small radius r. The singularities of H,(t,¢) come from the fact that
generically the projectors are singular at eigenvalue crossing points. Moreover, the eigen-
values eg ;(2,¢) of Hy(t,¢€), j = 1,2, have multivalued analytic extensions in Sa\Uf:’:';,le,
and they experience no eigenvalue crossings in that domain. This means that we can
define without ambiguity the normalized eigenvectors ¢, ;(t,¢) associated with eg ;(t,¢),
satisfying the usual phase fixing condition (1.3), and that they also have a multivalued
analytic extension in S,\UN_!Dj. Since the hamiltonians H,(t,¢) and H(t) coincide as
t — £o0o, we can expand our wave function ¥.(t) on the vectors pg ;(t,¢) as

velt) = Y cas(t)emp (-2 [ castt )it} poste) te (1.82)

with initial conditions cg,1(—00) = 1 and ¢4 2(—o0) = 0. Thus the transition probability
we are interested in is given by P21(€) = |cg,2(+0)|2. The key feature of that construction
is that if we analytically continue ¢41(0, ¢) along v, which we assume to encircle the disk
Dy, we obtain when we come back to the origin a value &,1(0, £|7) such that

&1(0,¢l7) = e32(0,¢). (1.83)

Hence, with the same notation,

Pa1(0,¢ly) = exp {—164,1(0, £|7)} ¢4,2(0, €). (1.84)
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Thus, we have a similar situation to the previous one, so that we can perform the same
type of analysis. Indeed, we can prove by perturbation theory the existence of a dissipative
path and we get the estimate

Paa(e) = exp {2m0, 1(0, 1)} exp {§1m [, eq,l(z,e)dz} 1+ 0(e%), (1.85)

where the correction term ((¢9) comes from the properties of the iterative scheme we have
presented in paragraph (1.3.1). It remains to expand the quantities 6,; and e, in powers
of ¢ to get an asymptotic expansion for the logarithm of the transition probability of the
form [JP2]

q-1 .
InPau(e) = —1—2Im / er(z)dz + 2mby (O}y) + 3 aje + O(e?) Vg2 1.  (1.86)
Y

1=1

Now using our finer knowledge of the asymptotic properties of the iterative scheme, we
can actually improve this result by truncating the procedure in an optimal way to obtain
by means of our superadiabatic approximation

Pale) = (1.87)
exp {2lmty-(o1(0,eln)exp { T1m [ en-goaz,)dz } (1 + Ofesp {=7/e})

where N*(g) ~ 1 is the optimal stage and 7 is positive. We now have in hand an expo-
nentially decreasing leading order for the transition probability which is accurate up to an
exponentially small correction as ¢ — 0. But it should be noted that the leading order we
have is a discontinuous function of ¢, since the index N*(¢) is discrete.

1.5.2 Two Levels in a Gap

The most interesting outcome of the combination of the two approaches we have discussed
from the point of view of mathematical physics is, in our opinion, the following. Consider
an unbounded hamiltonian bounded from below, which is analytic in a strip S; and pos-
sesses limits H* and H~ as t — too to which it tends sufficiently rapidly. Assume that
its spectrum is such that there exist two non-degenerate eigenvalues e, (t) and e;(t) which
are bounded away from the rest of the spectrum for any time ¢t € IR . We consider now
a solution of the Schrodinger equation which coincides as ¢ — —oo with the eigenstate of
H~ corresponding to e;(—o0). Can we compute the transition probability P2 (&) at time
t = +oo to the eigenstate of H* corresponding to e3(+00) in the adiabatic limit ? We
already know that this transition probability is exponentially small but we would like to
have the leading order of its asymptotic form as ¢ — 0. On physical grounds we expect
that if the two levels e; and e, are sufficiently isolated in the spectrum, a reduction of
the problem to a two-level system should be justified so that the transition probability
computed for this sub-system, given by the formula (1.69)

2
Paa(e) = exp {2Imb; (0]7)} exp {;Im / el(z)dz} (1+0(e)) (1.88)
Y
should be accurate in the adiabatic limit. By using the two approaches we have discussed,

we can establish from a mathematical point of view, that this is indeed the correct pic-
ture [JP3]. Of course, we have to assume that there exists a complex crossing point zg
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of the analytic continuations in the complex plane of ¢;(t) and e;(¢) such that the corre-
sponding Stokes lines behave properly, in the sense described in the previous section. The
prefactor exp {2Imé,(0]v)} is computed by considering the analytic continuation along ¥
of the eigenvector ¢;(z), as in the two-level case. The main steps of the proof are the
following. Let us denote by Q(t) the projector on the two dimensional eigenspace of the
hamiltonian H(t) associated with e;(t) and e;(t). By means of this spectrally isolated
projector we can construct a superadiabatic evolution, as in the first section. Then we ex-
press the transition probability we are interested in by using this superadiabatic evolution
instead of the physical one, thus making an error of order exp(—7/¢). The error we make
here actually represents the transition probability out of the two-dimensional subspace
Q(+00)H and its decay rate  depends on the gap between the set {e;(t), ex(t)} and the
rest of the spectrum of H(t), as noted previously. The expression we get by making that
approximation coincides with the transition probability of an effective two-level system
living in a time independent subspace. The spectrum of the two-level effective hamilto-
nian we have to consider is the same as the spectrum of Hy+()(t,¢) given by the iterative
scheme, restricted to its two-dimensional eigenspace Qy-(.)(¢,¢)H. Thus we can prove by
perturbation theory that an asymptotic formula of the type (1.88) is valid for the effective
two-level systems. By retaining the lowest order in ¢ we get formula (1.88), provided the
eigenvalues e;(t) and e,(t) are sufficiently isolated in the spectrum, so that 7 is larger than
the exponential decay rate given by (1.88).

1.5.3 Avoided Crossing

This result gives a rigorous mathematical status to the approximation which consists in
computing transition probabilities between two isolated levels in the adiabatic limit by
using the corresponding formula for two-level systems. It also stresses that one has to
consider not only the eigenvalues in the complex plane, but also the eigenvectors in order
to compute the leading term of the transition probability. Coming to the hypotheses
under which formula (1.88) applies, they are all very general and natural except maybe
the condition on the behaviour of the Stokes lines in the complex plane. Now if we
look in the huge physical literature on the computation of transition probabilities in the
adiabatic limit, we see that in most of the cases considered, the two levels involved display
an avoided crossing at some time ¢, during the evolution. We may suspect that in the
limiting situation of one avoided crossing between the two levels, the last condition on
the Stokes lines should be automatically satisfied. Indeed, we expect in such a case the
presence of an eigenvalue crossing point zg very close to the real axis in a neighbourhood
of tog € IR, so that the transition probability should unmistakably be governed by the
eigenvalue crossing point 29. Moreover, when the local structure of the gap between e;(t)
and e;(t) around ¢y has a form of the type

ex(t) — ex(t) = 1/a2(t — t0)? + b262 + O((t - t)?) (1.89)

with § small, the transition probability in the adiabatic limit should coincide with the
Landau-Zener formula (1.6)

2.2
Pa(e) ~ exp {—i;r: } ase — 0. (1.90)

Let us describe mathematically an avoided crossing situation. We assume now that our
hamiltonian H(t) depends on time t and on a small parameter §. For any fixed value of
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§, H(t,8) is analytic in ¢ in a strip S, and has definite limiting values H+(§) and H~(§)
when ¢t — 400 to which it tends sufficiently rapidly. We also suppose that H(t,6), as a
function of the two real variables (t,§), is smooth enough. As before, we assume that its
spectrum contains two eigenvalues e;(t,8) and ez(t,8) which are bounded away from the
rest of the spectrum for any ¢t € IR and any § > 0. The avoided crossing between e; and
ez is described as follows. When & = 0, e;(¢,0) and e3(t,0) experience a unique genuine
crossing at time t = 0, i.e.

81(0,0) = 62(0, 0). (1.91)

This means that we have

e1(t,0) < e(t,0) fort <0,
e1(t,0) > e2(2,0) fort > 0. (1.92)

When § > 0, the degeneracy at t = 0 is lifted and we have e;(t,6) < ez(t,) Vt € IR, §
fixed. We may think of § as a parameter controlling a perturbation of the hamiltonian
H(t,0), which turns the genuine crossing between e¢; and e; to an avoided crossing of
order §. Let us go a little further and specify the local structure of the gap between the
eigenvalues for ¢t and é§ small we shall consider. We assume that

ea(t, 8) — ex(t,6) = /a2t? + 2ct6 + b28% + Ra(t, ) (1.93)

where Rs3(t,8) is a rest of order 3 in t and §. The quadratic form under the square root
is supposed to be positive definite, i.e. ¢ < a?b? and the constants a, b are positive. The
problem we want to solve is exactly the same as the previous one, with a supplementary
small parameter §. We assume § to be small but positive, and we prepare our system at
time ¢ = —oo in an eigenstate of H~(§) associated with the level e;(—00,5). We want to
compute the probability P»(¢,d) to find the system at time £ = 400 in an eigenstate of
H*(§) associated with e;(+00, §) in the adiabatic limit ¢ — 0.

For a fixed positive value of §, this situation coincides with the previously described
one, except that we make no hypothesis on the behaviour of the Stokes lines in the complex
plane. Thus we are left with hypotheses which correspond to the physics of the problem
only, which makes them more natural. Under these natural hypotheses we can turn the
heuristic justification of the formula (1.88) in an avoided crossing situation controlled by
the parameter § to a mathematical proof. We have for € and é§ small enough

Paale, ) = exp {2mé3 (0, 8lv)} exp {%Im /1 er(z, 5)42} 1+0()  (1.94)

where Im#,(0,4]7) and Im [ ey(z,8)dz both tend to zero when § — 0 and O(¢) is inde-
pendent of §. Here the loop v is based at the origin and encircles one eigenvalue crossing
20(8) which tends to z = 0 when § — 0. This is the situation we mentioned at the end of
the preceding section. Establishing this formula amounts essentially to show the existence
of a dissipative path above 2y(§). The idea here is to construct such a path above the real
axis for § = 0, a situation where the Stokes lines are known, and then to prove that this
path is still dissipative when § > 0 and small enough so that zo(§) is under the path.

1.5.4 The Landau-Zener Formula

Let us now come to the main point. When the gap between e,(t,§) and es(t, §) has the
generic form specified above for ¢ and § small, we can indeed compute the transition



1.6. Notes 23

probability by means of the Landau-Zener formula [JP5}:

82x (b2 2

Par(e, 8) = exp {--6—2- (— - —-) (1+ 0(5))} (1+0(8)+0())  (1.95)

a a°

where O(§), respectively O(¢), are independent of ¢, respectively §. If ¢ = 0, we have
the usual Landau-Zener formula. These last results, which we shall prove here in details,
have been announced in [JP5). The Landau-Zener formula is obtained by studying ex-
plicit §-dependent expressions for the decay rate and the geometrical prefactor in (1.94).
Expanding these quantities for § small, we see that Imé,(0, é|y) = 0 + O(8) and that the
decay rate reduces to the Landau-Zener decay rate to first order in 4.

We would like to make two remarks about the formula we have here. The first concerns
a previous work of Hagedorn [H2] on the Landau-Zener formula. Hagedorn considered a
case where the avoided crossing taking place between e; and e; is not of order §, with §
held fixed, but of order § = 1/, which means that the gap closes as ¢ — 0. He showed that
in this situation, the transition probability is given by the Landau-Zener formula (1.90)
with §2 = ¢. We can recover his result by simply putting /¢ in place of § in (1.95), which
yields a transition probability of order one when ¢ — 0

* [ 2
Poa(e, VE) = exp {—5 (— - ;;)} 1+ O(Ve)). (1.96)

a

The second remark is that since the estimates are uniform in §, we can insert § = 0 in
(1.95) and thus get the result

Pa(e,0) = (1 + O(¢)) (1.97)

in apparent contradiction with the adiabatic theorem. But it should be recalled that when
§ = 0 the eigenvectors undergo a change of label at ¢ = 0, in the sense that if €;(t,0) is
the lowest of the two levels for t < 0, it is the highest when t > 0. So that for t > 0,
@2(t,8) tends to a vector proportional to ¢,(,0) when § — 0 and thus Pz (¢, 0) gives the
probability to stay on the same instantaneous level when there is a real eigenvalue crossing
point at ¢ = 0. This probability in consequence must be close to 1 and actually we recover
the result of Born and Fock [BF] stating that in such a case, the transition probability is
of order ¢, instead of €2.

1.6 Notes

The results presented in the last three sections cover a period ranging from 1988 up to
now and they were obtained in the following chronological order. The iterative method
we described in section (1.3) is a tool which was developed in 1988 [JP1] independently
of the equivalent construction of Nenciu and Rasche [NR]. The first progresses on the
exponential suppression of transition probabilities in the adiabatic limit concerned n-
level systems. After Davis and Pechukas [DP] and Hwang and Pechukas [HP] dealt with
the real symmetric 2-level case, Berry [B3] and Joye, Kunz and Pfister [JKP1], [JKP2]
pointed out independently that the Dykhne formula must be completed by the geometrical
prefactor (1.69) for general 2-level hermitian hamiltonians. The detailed analysis of the
hypotheses leading to that formula, together with its purely geometrical interpretation was
given in [JKP2]. Exponential estimates on the transition probability for n-level analytic
hamiltonians satisfying natural conditions only can also be found in [JKP1] and {JKP2].
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The extension of this result to general unbounded hamiltonians depending analytically on
time was achieved later in [JP4] and gave the first proof of the folk adiabatic theorem
mentioned at the beginning of the introduction. Nenciu considered then a more general
class of unbounded C* hamiltonians and studied the corresponding Heisenberg equations
of motion for a spectral projector, in the spirit of Lenard [Len]. By estimating precisely
the coeflicients of the resulting asymptotic expansion of the solution, he could truncate
the series in an optimal way and obtain "exponentially” small bounds on the error. Then,
by a different procedure, he could construct from this truncated series a "superadiabatic”
evolution satisfying Nekhoroshev type estimates for the first time in this context [Ne3].
The analytic case becomes then a particular case of his more general results. We have
put some words between quotation marks because this is only when the hamiltonian is
analytic that they have the meaning we gave in the foregoing. Then came the refinements
on the asymptotic expression of the transition probability for two-level systems: higher
order corrections in [JP2] and interference phenomena in [JMP)]. After discussions with
G.Nenciu and correspondence with M.Berry, we adapted the optimal truncation procedure
to our iterative scheme in order to obtain superadiabatic evolutions from this scheme. This
allowed us to construct effective hamiltonians such that the combination of the results
on two-level systems together with Nekhoroshev type estimates for general unbounded
hamiltonians was made possible. From this combination result a justification of the use of
formulae obtained for two-level systems in more general situations [JP3], and a justification
of the well known Landau-Zener formula [JP5].

This work is organized as follows. In the second chapter we state precisely the hy-
potheses under which we shall work and establish some of their direct consequences. The
third chapter is devoted to the achievement of algebraic and exponential estimates on the
transition probability by means of our iterative scheme. We turn to two-level systems in
the fourth chapter where we compute asymptotic formulae for the transition probability
using the method of Landau. The way to obtain exponential estimates on the transition
probability by this method is explained in appendix for bounded operators. Then we show
in the fifth chapter how to take advantage of both methods, first to improve the results
about two-level systems, second to derive an asymptotic formula for the transition proba-
bility between two isolated levels in the spectrum of the hamiltonian. Finally, we consider
the avoided crossing situation and justify the Landau-Zener formula in the sixth and last
chapter. A detailed table of contents can be found at the end of this work.



Chapter 2

Preliminaries

2.1 Hypotheses

Let H(t), t € IR, be the hamiltonian of a system described by a separable Hilbert space
H. We study the time-dependent Schrodinger equation in the adiabatic limit, i.e

ie%¢,(t) = H(t)b(t), teR 2.1)

when € — 0. We suppose that the hamiltonian satisfies three conditions. The first one is
essentially that H(t) depends analytically on time.
I. Self-adjointness and analyticity
There ezists a band S, in the complez plane, S, = {t+1is : |s| < a}, and a dense domain
D C M such that for each z € S, , H(z) is a closed operator defined on D, H(z)p is
holomorphic on S, for each ¢ € D and H(2)* = H(Z). Moreover we suppose that H(t) is
bounded from below for t € IR.
The second hypothesis on the hamiltonian is that it must behave reasonably at infinity.
II. Behaviour at infinity
There ezist two self-adjoint operators HY and H™, defined on D and bounded from below,
and a positive function b(t) tending to zero as |t| — oo in an integrable way such that for
aloeD

sup [[(H (t+is) — H)oll < b(t)(llell + |1E*¢ll), t>0

s|<a

and
sup [[(H(t +1is) — H™ )pll < b(t)(llell + |1 H¢ll), t<O.

s|<a

We shall call such a b(t) an integrable decay function.

The last assumption is the usual gap condition.

II1. Separation of the spectrum

There ezists a positive constant g such that the spectrum o(t) of H(t) is separated into
two parts 0y(t) and o,(t) with

inf dist[o(t),02(t)] 2 ¢ > 0
telR
and the part 01(t) is bounded.

25
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2.2 Basic Estimates

We review here the main consequences of these three general hypotheses on the hamilto-
nian. In particular, we establish estimates which will allow us to control the variations of
the spectrum of H(z) with z.

2.2.1 Various Norms

Let z € S, and X € T'(z), the resolvent set of H(z). We denote by R(z,A) = (H(2)-A)™?
the resolvent operator and similarly we set R(%,)) = (H* -2)"1if A € T(1), T(&) being
the resolvent set of H*. Since the operator H(z) is closed, the domain D with the norm

lellz = llell + | H(2)ell (2.2)
is a Banach space. The same is true for the norms
el = llell + 1B ll. (2.3)

Let us denote by X, respectively X, the Banach space D equipped with the norm || - ||,
respectively ||-|l+. By the closed graph theorem the function z — H(z) is an analytic
map on S, taking values in B(X,/, H), respectively B(X4,H), the set of bounded linear
operators from X, respectively X4, to H for any 2z’ € S,. The norm in these spaces is
denoted by ||| *|||.r, respectively ||| |||+. For any ¢ € D we define the operator H(")(z) by

EO)2)p = = (H(2)p) (2.4)

This operator is symmetric when 2 € IR and can be expressed by means of the Cauchy
formula

n! H(Z)dZ
2mi [y (7 = 2+
where v is a simple closed path in S, around 2. The orientation of v is counterclockwise
as will be the orientations of all closed paths in this work, unless otherwise stated. As the
operator H(z) € B(X,,H), all the norms we have introduced are equivalent

lielle < (NE )= + 1) llell- (26)

Actually we can bound ||| H(z)|||,» uniformly in (2, 2’) so that these norms can be compared
by means of constants only. Moreover, this result together with condition IT allows useful
bounds on the decrease of H'(z) as |z| — oo to be obtained. There will appear many
integrable decay functions in the sequel which we shall denote generically by b(¢).

H")(2) = (2.5)

Lemma 2.2.1 If H(z) satisfies conditions I and I and if 0 < r < a, then there exists a
constant M and an integrable decay function b(t) such that

max{ sup |[|H(2)lll2, sup ||| H(2)|||+, sup ”lHi”Iz’} <M
2 2€5, /€S,

z2,2'€5aq

and
IH'(t +is)ell < b(2)llll.
foranyt€ IR, z' € S5 and |s| < 7.

Remark:

If condition I only is satisfied, we have sup, ,icq |[|H(2)|||,» < M where Q is a compact
subset of S; and b(t) must be replaced by a constant B. The proof of this lemma is given
in appendix.
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2.2.2 Stability of the Spectrum

As a direct consequence of lemma (2.2.1), if |s| < r < a, we have for any z € D(¢,7),
where D(t,7n) is a disc of radius 7 < r centered at t € IR

I(H(2) - H(®))ell < |2 = tlo(2)ll¢ell (2.7)

with b(t) an integrable decay function. This estimate allows us to compare the spectra
of H(z) and H(t) when |z — t] is small enough. Let A € T(¢) so that the operator
H(t)R(t,\) =I+ AR(t, A) is a bounded operator. From (2.7) we have

I(E(2) - H@)R(, M| < |2 - t{b(@) (|| R(2, M| + | H (&) R(2, M) (2.8)

and we define d(¢,)\) = ||R(¢,\)|| + ||H(t)R(¢,A)||]. Then we use the second resolvent
identity
R(z,)) - R(t,A) = —R(z, A)(H(z) - H(t))R(¢,)) (2.9)
to write
R(z,A) = R(t,\) @+ (H(z) — H(t))R(t,\))! (2.10)
provided |z — ¢|b(t)d(t,A) < 1. This means that in this case A belongs to the resolvent set
T(z) and we have the estimates

1

16z, M RN = =5y (211)
and — t|b(t)d(t, A)
IR, 3) - R(6 ) < IR M (212)

Now, if A € T(&), the resolvent set of H¥, it follows from condition II and similar
considerations that A € T'(t + is) if £¢f is large enough and

B(t)d(+, \)

|R(2 + is,A) — R(£,A)|| < IIR(i,)\)lli‘__b(mT,\‘)

Vis|<a (2.13)

where b(t) is the integrable decay function of condition IT and d(+,X) = ||R(%,A)|| +
|E*R(x, M)l

Let us suppose that H(t) satisfies conditions I, IT and III. The spectral projector P(t)
corresponding to the bounded part of spectrum o0y(t) is thus given by

P(t) = -2—;2 }(r R(t, \)dA (2.14)

where T is a simple closed path encircling o,(t). From the preceding estimates we show
the

Lemma 2.2.2 Lett € IR and T’ be as above. Then we can choose the width of the sirip
Ss sufficiently small so that the spectrum of H(z) is still separated into two parts Vz € S,.
Moreover, if |z — t| is small enough, the spectral projector corresponding to o,(z) is given
by

P(2) = —% }g R(z,\)dA

where the path T in (2.14) encircles the bounded set o,(z).




28 CHAPTER 2. PRELIMINARIES

Proof: We proceed as follows. From (2.13), there exist T' > 0 and T'_ and I'; € S; such
that

P(t) = _5.11;_ fr GRS (2.15)

if t 2 +T. Then we see from (2.12) that for any ¢ € [~T,T], the path T used in (2.14)
can be chosen locally independently of ¢. Thus, by compacity of [T, T] and (2.15) we
can define P(t) for any t € IR by choosing I' in (2.14) among a finite set only of paths
{T;; i=1,.--,n} withT; =T_ and T, = Ty. The length of these paths is uniformly
bounded and they satisfy dist[';,0(t)) > 7 > 0. As a consequence, if A belongs to
T; € T(t) for some time ¢, d(t,A) is uniformly bounded in ¢t and in A

dt,\) <1+ m:—l < K < 0. (2.16)

Thus, it follows from (2.11) that if we take the width a of the strip sufficiently small, so
that
asup b(t)K < 1, (2.17)
telR

then o,(t + is) is encircled by some I'; for any time t if |s| < a. The formula

P(2) = -% }41: R(z,A\)dA (2.18)

also results from (2.11) if |z — ¢| is small enough.
a

Regarding the regularity of the operators R(z, ) and P(z) for z € S, we have the

Lemma 2.2.3 For any z € S,;, a small enough, and any A € T(z), P(z) and R(z, ) are
holomorphic bounded operators and P(z) has limits P(+) as Rez — too to which it tends
in an integrable way. Let r < a and A € T(x). We have for any |s| < r , anyn > 0 for
|t| large enough

IR E +is, M) < ba()

IP™(E +ds)l| < b(2)
where b(t) and by(t) are integrable decay functions.

Proof: That the resolvent is analytic is a standard result obtained by considering identities
analogous to (2.9). Using formula (2.18) and the fact that the path I' can be chosen
locally independently of z we conclude that P(z) is analytic as well. The estimates on the
derivatives of R(z,)) and P(z) come from the application of Cauchy formula on (2.13)
and

P(t + is) - P(&) = -2—71& jﬁ (R(t +is,2) — R(%,\))d\. (2.19)

o
Finally, R(z,A) maps H into D for A € T(z2) by definition and we have that P(z) maps H
into D as well. Moreover, for any ¢ € D,

P(2)H(2)p = H(2)P(2)p = -5% fr AR(z, \)pdA (2.20)

is a bounded operator and when considered on P(2)H the spectrum of P(z)H (z) coincides
with o1(2). Similar results hold for the unbounded operator (I — P(z))H(2). (see e.g.
[Kat2] chapter III, paragraph (6.4)).
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2.2.3 Evolution Operators
Under the hypothesis I the solution ¥, (t) of the Schrédinger equation

. d
ie—de(t) = H(t)be(t), $e(s)=po€D telR (2.21)
can be written by means of the evolution operator U,(t, s) as

Ve(t) = Ue(t, s)po. (2.22)

The evolution U,(t,s) is a two-parameter family of unitary operators defined for all real
t and s, strongly continuous in ¢ and s, which leaves the domain D invariant. For all
t1,22,t3 we have

Ue(ty, t2)Ue(t2,t3) = Ue(ts,t3), Ue(ts,t1) =1 (2-23)
and U.(t, s) is strongly differentiable in ¢t and s on the domain D:
ie%U,(t, s) = H(t)U.(t,s) (2.24)
and s
ie-a—sU,(t, s) = —U.(t,s)H(s). (2.25)

For a proof of these properties, see [RS] section X12, for example.
Let us now turn to the solution of

iW'(t, to)

i[P'(t), P(t)]W(t,t0)
K(t)W(t, to), W(to, to) =I (2.26)

which defines the parallel transport operator. As the generator K(t) is a bounded self-
adjoint operator, W (t,1o) is given by the Dyson series

Wt to) =T+ i /t: dt; /t: “dty - /c K )E()--K(t)  (2.27)

and it is unitary. Moreover, if the projector P(t) admits an analytic extension P(z) in
some domain {2, then W (t,to) also admits an analytic extension in the same domain as is
readily seen on the series (2.27). The analytic extension W (z, 29), 2,20 € Q, is a bounded
operator satisfying all general properties of an evolution operator except unitarity. The
main characteristic of W(z, zp) is the intertwining relation

W(z, z0)P(20) = P(2)W(z,20) V2,20 € Q. (2.28)

It can be recovered by considering the derivative with respect to z of the right-hand side
and by making use of the identities P(2)P'(2)P(z) = 0 and P'(z) = P'(z)P(z)+P(z)P'(z).
We get

(P(2)W(z,20)) = (P'(2) - P(2)P'(2))W(z, 20)
P'(2)P(2)W(z, )

= [P'(2), P(2)](P(2)W (2, 20)) (2-29)
and we conclude by the unicity of the solution (2.26). Another interesting feature of
the parallel transport is that it leaves the domain D of the operator H invariant. This

property is indeed important since it allows a "bona fide” generator for the dynamical
phase operator to be defined (see (1.25)).



30 CHAPTER 2. PRELIMINARIES

Lemma 2.2.4 Let the H(z) satisfy conditions I, II and III. We assume a to be small
enough so that P(z) is analytic in S,

i) The operator W(z, z0) leaves the domain D invariant.

Let H(z) = W1(2,t0)H(2)W (2,t0) be defined on D, to € IR and let 0 < r < a. Then

i) H(z) is a closed operator on D, enalytic in S,, such that H*(z) = H(z).

i1i) There ezists an integrable decay function b(t) such that we have for any ¢ € D

I(H(2) - BE@)ell < |2 - ) E @)@l + llel)-
The proof of this technical lemma can be found in appendix.
We define then &.(¢,20), t,to € IR by
d -
i55§e(t, to) = H(t)@c(t,to), Qg(to,to) =1 (2.30)

Because of lemma (2.2.4), point ii), this dynamical phase operator is unitary and satisfies
the general properties of evolution operators as well. Since [H(t), P(to)] = 0 V¢, we
immediately have [®.(,%0), P(to)] = O Vt. Let us consider now the operator we called
adiabatic evolution which is defined by the product

V(t, to) = W(t,to)@,(t,to). (2.31)

It follows from the foregoing that V is strongly differentiable on D, maps D into D and
satisfies

iegt-V(t, to) = (H(t) + eK(t))V(t,t0), V(to,te) =1 (2.32)

By the properties of W and &., the adiabatic evolution is compatible with the decompo-
sition of the Hilbert space H into H = P(t)H & (I- P(t))H i.e.

V(t, to)P(to) = P(t)V(t, to). (233)
We shall recover in the sequel the adiabatic theorem of quantum mechanics

U2, t0) — V (£, to)]| = O(e). (2.34)



Chapter 3

Iterative Scheme

In this chapter, we study in details the recurrent construction we have introduced and its
applications. We first establish the main properties of this construction when the hamil-
tonian is analytic and in a second part, we use this iterative scheme to construct adiabatic
and superadiabatic evolutions. In the latter case, we analyse precisely the dependence of
the exponential decay rate on the width of the gap in the spectrum of the hamiltonian.

3.1 Algebraic Estimates

Let us first derive the properties which allow higher order adiabatic evolutions to be
constructed. Since we shall prove finer results later, we only sketch the proofs here.
Let H(2) satisfy conditions I and ITI. We set Ho(z) = H(z) and

Po(2) = P() = 5 fr Ro(z, \)dA (3.1)

where Ro(z,A) = (H(z) — A)~!. The closed path ' encircles the bounded part o;(z) of
the spectrum o(z) of H(z) and can be chosen a finite distance away from o(z). We drop
the e-dependence in the arguments and define for ¢ small enough

Hyz) = H(z)-eKp(2)
Pyz) = —ﬁ }g Ry(2,A)dA
Ki(z) = i[Pz),Py(z)] ¢21 (3.2)

with Ry(z,)) = (Hy(2) — A)7! for A € Ty(z), the resolvent set of Hy(z). Remark that
since K,_y(z) is bounded for any ¢, Hy(z) is closed and densely defined on the domain D
of H(z) (see theorem (1.1), chapter IV in [Kat2]). Let D(z,7) be a disc centered at z of
radius 7 so small that the path T' C T(2’), for any 2’ € D(z,7). It is indeed possible to
choose 7 in such a way since by the remark following lemma (2.2.1) we can write

(& (z") = H(2))R(z, A)|| £ Bl2' - 2|(| R(2, M| + || H (2) B(2, )]} = B|2' - z}d(2, A). (3.3)

Thus we have
R(Z,A) = R(z,A) T+ (H(') - H(2))R(z,))) ™! (3-4)

if B|z' — z|d(z,A) < 1.

31
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Proposition 3.1.1 Let H(z) satisfy conditions I and III and D(z,n) be as above. For
any ¢ > 1, there ezists €(g) and n(q) < n such that for all € < €(q)

|Ko(2') — Kqer(2)l < Boe® V2’ € D(2,n(q))-

Proof: This assertion is proved by induction in the following way: we consider the differ-
ence

Py(2') = Pg-1(2) = e Fy(2') (3.5)
and show that the estimate
IEM() = O(e*™!) Yn>0 (3.6)
holds for any 2z’ € D(z,7(q)) if € is smaller than some £(¢). Thus we immediately get
Ky(2') = Kou1(2) = it ([Fy(2), Pmr(2)] + [Pyoa(2), Fo(2)]) + €[Fy(2'), Fy(2)])
= 0(e9) (3.7

for any 2’ in the same disc. We have used the fact that

q-1 q-1
Poo1(2) = Po(2') + 3 Bi(#) = Pj-a(2) = Po(<) + ¢ Z Fi(z') = 0(1). (38)

The step ¢ = 1 with n = 0 is true by perturbation theory. Indeed, we have Hy(2') =
Ho(2') — eKo(z') where Ko(2') is bounded and from the second resolvent identity we get
for X € T(2")

Ry(2',A) = Ro(2',2) = Ro(2',A)(Ho(2') — H1(2'))Ra(2', 2)
= eRo(2', \)Ko(2)Ra(2', ). (3.9)

Thus if €||Ro(2', A)Ko(2')|} < 1, X € T1(2') as well and we can write

Ry(2',A) = ([- eRo(2', \)Ko(2')) ™" Ro(2', ). (3.10)
Now if € < £(1), €(1) small enough, T' C T3(2') and we have the bound
!
N iz Lo DR €Y (311)

1 - e[| Ro(2", M1 Ko(2')|
for any A € T and z' € D(z,7). Hence we can write

_L ' NRa('
o7 T ERo(z ,A)Ko(z )Rl(z ,A)dA

= eFi(Z) (3.12)

Py(2") — Po(2')

i

with Fy(2') = O(1) Vz' € D(z,n). Then we use Cauchy formula to obtain the estimate
Fl(")(z’) = O(1) for any n > 0 in a disc D(z,7(1)) slightly smaller i.e. with n(1) < 7. We
consider now the ¢ + 1°¢ step, assuming the proposition to hold for the ¢t* step. We have
by definition

Ho(2') — eKq4(2')
Hy(2') + e(Kq-1(2) — Ko(2)). (3.13)

H q+1(zl)
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We can use twice the second resolvent identity to obtain for A € T'(2’) and ¢ small enough

Rg41(2',A) = T- eRo(2', \K(2') ™ Ro(2', ) (3.14)
and
Rot1(2',0) = Ry(2',0) = eRy(2', A)(Ko(#') = Kq-1(2)) Rgsa(2', A).- (3.15)

As by induction hypothesis we have || K (2')|| = O(1) V' € D(z,%(q)), we can choose
¢(g + 1) sufficiently small to insure T' C Tp41(2') if € < ¢(¢+ 1) and

| Bo(2', M|

Ror1(Z, )| <
1Ra1 (=2 D S TR NN

=0(1) VZ' € D(z,7(q)), VA€T. (3.16)

Then we write

Pop1(2') = Py(2) = = f; eRg(2', A)(Bo(2') = Kq-1(2'))Rgsa(2', X)dA

2w
= eF(2) (3.17)
so that we get by induction hypothesis
Fya(2') = O(e?) V' € D(z,1(q)) (3.18)

and by Cauchy formula
F () = O(e%) Vz' € D(z,1(g+1)) (3.19)
with 7(g + 1) < n(q).

Remarks:

o If H(z) satisfies hypothesis II as well we can replace the constants 3, by integrable
decay functions (,(t) where ¢ is the real part of z, the center of the disc D(z,n(g))-

e This proposition is true on the real axis for hamiltonians satisfying less restrictive
smoothness assumptions.

The proof of proposition (3.1.1) in this setting is very short due to the repeated use of
Cauchy formula to compute the derivatives of the analytic quantities Fy(z). The price to
pay is that to apply Cauchy formula, we have to shrink the domain D(z,7) at each step.

3.1.1 Arbitrary Order Adiabatic Evolutions

We can now construct adiabatic evolutions of arbitrary order by means of our iterative
scheme. We assume that H(t) satisfies conditions I and IT and consider the proposition
for discs D(t,n) centered on the real axis. Thus the estimate || Kq(t) — Kq—1(2)|] < Bge?
holds on any compact subset of IR. We introduce the parallel transport Wy(t,s) by

W (t,8) = Kg(t)Wq(2,s), Wol(s,s) =T (3.20)
and the dynamical phase operator &,(t,s) by

ie®y(t,s) = W7Il(t, s)Hy(t)W,y(t, s)&4(2, s)
H(8)3,(t,3), ®,(s,8)=I (3-21)
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Since H,(t) satisfies conditions I and I if ¢ is small enough, these two evolutions have
the same general properties as W(t,s) and ®.(¢,s). We measure the difference between
the physical evolution U,(t, s) given by

ieUl(t,s) = H(t)U.(t,s), U(s,s)=I (3.22)

and the product W,(t, s)®.(t,s) = V,(t,s) by means of the operator Ay(t,s) defined by
the relation
Ue(t,s) = Wo(t, s)84(t, 8)Aq(t, s) = Vo(t, s)Aq(t, s). (3.23)

Proposition 3.1.2 Let H(t) satisfy conditions I and III and let U,(t,s) be the physical
evolution satisfying (3.22). Then the operator V(t,s) = Wy(t, s)B(t, s) where Wy and &,
are defined in (3.20) and (3.21) is an adiabatic evolution of order g, i.e. there ezists a
constant B, such that

ULt 8) = Valt, )| < Bee®le - sl.

Moreover, if H(t) satisfies condition II as well

+oo
sup [|U.(t,9) = Vet o)l S 0 [ By(t)at

t,s€
where By(t) is an integrable decay function.
Remarks:

e By construction of V; = W&, we have the intertwining relation
Py(t)Va(t, 8) = Vo(2, ) Po(s) (3-24)

which shows that an initial condition at time s belonging to the subspace P,(s)H
will be in P ()} at time ¢ up to a correction of order 9|t - s|.

o If H(t) satisfies condition II, so that the first remark under proposition (3.1.1) ap-
plies, the projectors Py(t) and P(t) coincide at infinity

I12,(t) = P(£)|| = 0 as t — %oo. (3.25)

This follows from the estimate

1Ko < 1Kol + D_ I1Kj(2) — Kja($)l] < D_Bi(t)e? — 0 as |t — oo, (3.26)

=1 =0

since the 3;(t)’s are integrable decay functions. Thus the hamiltonians H,(t) and
H(t) coincide at infinity. The last assertion of the proposition together with (3.25)
indicate that the transition probability P»;(¢) from P(¢;)H to (I- P(t;))H between
the times t; — —oo and ¢, — 400 is of order £29. But as the evolutions U,(t, s) and
®,(t, s) do not have limits as t — +o0o, we first have to express P2;(¢) in a suitable
way to prove this result.

Proof: The operator A,(t, s) is strongly differentiable on D and satisfies the equation

i4,(t,s) = V;—l(t» s)(Kq-1(t) — Ko(t))Vq(t, s)Aq(t, 8), Ag(s,s) =1 (3.27)
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Considering the equivalent Volterra equation and using the fact that A, and V, are unitary,
we get

¢
144(t,8) =21 < [ 1Eema(t) = Ko®)ldt’ Vt,5 € . (3.28)
Then, coming back to (3.23) and using proposition (3.1.1) we eventually obtain
102, 5) — Vitt, o)l < Beelt — (3.20)

if ¢ is small enough. If condition II is satisfied, we have ||Kg(t) — Kq-1(t)]} < B,(t)e?, with
B,(t) a rapidly decreasing function. Thus we immediately obtain from (3.28) the uniform
estimate

+oo
gty -mset [ Bty (3:30)
and the existence of well-defined unitary limits for A,(t,s) at infinity
[|Aq(2t, 8) — Ag(2o0, )] = 0ast — Foo. (3.31)

The last assertion follows from (3.23).

a
We now turn to the computation of the transition probability between infinite initial and
final times, in the spirit of the second remark following the proposition. Let us set s =0
and

Ag(+00,-00) = 4g(+00,0)A47 (—0,0). (3.32)

Lemma 3.1.1 Let,(t) be a normalized solution of the Schrédinger equation with 1.(0) =
o € D such that

Jim |IP(e)¢e(9)l = 1.
Then, there erists a 9™ € Py(0)H with ||4.|| = 1 such that
im0~ PE)(e)] = 1T~ Py(0)) Ael+00, ~00) Py (O}

so that
Pa1(e) = [[{T— Py(0))Ag(+00, —00) Py(0)].

From this lemma and the identity

A (400, —00) =I+1 /; i dtV;71(t,0)(Ko(t) — Kq-1(t))Vy(t,0)Aq(t, —00) (3.33)

(= -]

we immediately get the expected estimate
Pale) = O(e%9). (3.34)
Proof: By hypothesis and (3.25) we have

1

Jim || P(5)Va(t, 0) Ay(t, 0) ol

tlil_neo “Pq(t)vq(t’ 0)Aq(2, 0)ol|

JHm [|Ve(2, 0)Py(0)A4(2, 0) o

= ||P4(0)Ag(—00,0)e0ll- (3.35)
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Thus the normalized vector . = A4(—00,0)p0 € Py(0)H. Similarly
Jm (@ P(6))Ve(t,0)4(t, 0)poll = ,Lim || — Pyo(t))Vq(t, 0)Ag(2, 0) A7 (— 00, 0)3ul|

@~ Py(0))Aq(00,0) A7 (— 00, 0)¢u|
I - Py(0))Ag(00, —00)tu|l- (3.36)
o

We have been able to construct adiabatic evolutions of arbitrary order in a fairly simple
way but we cannot recover the adiabatic theorem yet

U(t,5) = W(t, 8)&.(t, s) + O(e). (3.37)

To do that, we have to improve our bounds on the difference ||U.(t, s) — Wy(t, s)®,(t, s)||
by a factor €. This can be achieved by means of an integration by parts formula as in
[ASY]. We give an integration by parts formula in the following lemma whose proof can
be found in appendix.

3.1.2 Improvement by a Factor ¢

Lemma 3.1.2 (Integration by Parts Formula) Let H(t) be a strongly C? self adjoint
operator densely defined on D, which is bounded from below and satisfies condition III
Let V(t) be an operator defined by

d
ied—tV(t) = (H(t) +E()V(t), V(0)=I
where E(t) is a bounded, strongly C?, self-adjoint operator. Moreover we assume that the

intertwining relation

V(t)P(0) = P()V(t)

holds. Let B(t) be a bounded operator, strongly C?, and z(t) a strongly C? vector of H
which belongs to D for all t. We introduce the operator

RB() = % fr R(t, \)B()R(t, \)d\ (3.38)

where T is a path surrounding the bounded part of the spectrum o1(t). Then we have
1) RB(t) is strongly C* and maps H into D. Moreover

P()RB(t)P(t) = T~ P(t))RB(t)I- P(t)) =0, k=1,2.
2
[} POV () B(s)V ()T~ P(O))z(s)ds =
~ieP(O)V (s) *RB(s)V (s~ P(0))2(s)[, +
ie /t “POV(s)™ (di’s-vw(s)) V(s)@~ P(0))z(s)ds +
ie /: P(0)V(s)~"RB(s)V(s){ - P(O))di’sz(s)ds -

e/: P(0)V () E(s), RB(s)]V(s)T~ P(0))z(s)ds.
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We have an analogous formula for [i(I— P(0))V(s)~1B(s)V (s)P(0)z(s)ds which is ob-
tained by exchanging P(0) and (T P(0)) and changing the sign in the right hand side of
the aebove formula.

By a direct application of this lemma at the step ¢ = 0 we obtain [ASY]

Proposition 3.1.3 (Adiabatic Theorem of Quantum Mechanics) Let H(t) satisfy
conditions I and III. Then

|Ue(2,0) — W(t,0)2.(t,0)]| = O(elt]).
Remarks:

o This result can be extended for any t € IR with O(¢) in place of O(¢|t]) if H(t) also
satisfies condition II.

¢ By definition, Wy(t,0) = W(t,0) and &4(t,0) = $.(¢,0) so that Vy(¢,0) = V(¢,0) =
W(t,0)2.(t,0).

Proof: We apply lemma (3.1.2) to the Volterra equation satisfied by A(¢,0) = Ao(t,0)
¢
iA(8,0) = &T— / V=1(s,0)K(s)V(s, 0) A(s, 0)ds. (3.39)
)

The evolution V(¢,0) satisfies the hypothesis of the lemma with E(t) = K(t) (see (2.32)).
Moreover, we have the identity

K(t) = P()K()IT- P(t)) + A - P(t))K(t)P(t), (3.40)

since P(t)P'(t)P(t) = 0, and the operator A(z,0) maps D into D. Thus we apply (3.39)
on a vector ¢o € D and use the integration by parts formula on

/0 V15, 0) K (s)V (s, 0)A(s,0)pods =
fo " POYV(s,0)K(s)V (s, 0~ P(0))A(s, 0)pods
+f "= P(0))V(s,0)K ()V (s, 0)P(0) A(s, 0)pods. (3.41)
‘We obtain for the first term
/0 * PO)V=1(s,0)K(s)V (s, 0)(T— P(0))A(s, 0)pods =
~ieP(0)V(s) "' RK (s)V(s){T- P(0))A(s, 0)go|, +
ie [ POV(s)? (ZRE(S)) V()@= P0)ALs, 0)pods -
e /o " POV (s)"RE(s)K (s)V (s, 0)P(0)) A(s, 0)pods (3.42)

making use of (3.39), (3.24), (3.40) and point 1) of the lemma. We have a similar result
for the second term so that we conclude

llA(, 0) — I = O(elt]) (3.43)



38 CHAPTER 3. ITERATIVE SCHEME

since ||RK(s)]| and || £R K (s)]| are of order 1 as ¢ — 0. This assertion and (3.23) imply
in turn the adiabatic theorem ||U,(t,0) — V(¢,0)|| = O(elt|).
a

Now we would like to perform the same type of calculations on the Volterra equation
satisfied by A,

46,0 = T= [ Vs, 00(Kyma(s) - K DVals, 0ol 0)s  (344)

when the hamiltonian satisfies conditions I and III. Let us define for an operator X (t) its
diagonal part with respect to P,(t) and (T— P,(t)) by

DoX (t) = Py(t)X (t) Po(t) + T — Fy(t) X ()T - Py(2)) (3.45)
and similarly, its antidiagonal part is defined by
Ag X (t) = Py(t) X ()T - Po(t)) + U~ Py(t)) X () Py(2). (3.46)

We see that in (3.44) the integrand contains diagonal terms of the type

V;-l(s, 0)Py(s)(Kq-1(8) — Kq(3))Py(s)Vq(s,0) =
Vq-l(s’ 0) Py(8)Kq-1(8)Py(s)Vy(s,0) =
P, (0)V;1(s,0)Ky-1(5)Vq(s,0)Py(0) (3.47)

which cannot be integrated by parts. To get rid of the diagonal terms in (3.44) we change
our dynamical phase operator &,(¢,0) in $,(t,0) defined by

iT,(t,0) = W;l(2,0) (Ho(2) + eDg Ko (£) Wy(t,0)8,(£,0), F(0,0)=L  (3.48)

This unitary operator has the same general properties as those of $,(t,0) and in particular,
the identity
(4(2,0), Py(0)] = 0 (3.49)

still holds. We introduce similarly the unitary operators V,(¢,0) and 4,(t,0) by the rela-
tions
UL(8,0) = Wo(t, 0)F,(t, 0)Z, (¢, 0) = Vi(t, 0Ay(,0). (3.50)

Theorem 3.1.1 Let H(t) satisfy conditions I and III and let U,(t,0) be the physical evolu-
tion satisfying (3.22). Then, if ¢ is small enough, the operator V ,(t,0) = W,(t,0)®,(t,0),
where W, is defined by (3.20) and B, by (3.48), is an adiabatic evolution of order ¢9+1
t.e

1U(£,0) = Vg(t, 0)ll = O(e+j¢])

and

-V_q(t’ O)Pq(o) = Pq(t)vq(t, 0).

Moreover, if condition II is satisfied, the above estimate is valid for any t € IR with O(e9t1)
in place of O(¢9+1|t]) and the transition probability Py1(e) defined in lemma (3.1.1) is such
that

Pa(e) = O(2).
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Proof: By construction, the operator 4,(t,0) satisfies the equation
A (6,0) = V7(5,0) (AgKa-1(t) - Ko(8) Vo(t, 0)Ag(2,0)
= Vi (6, 0)Ag(Ko-1(2) — Ko(t))Ve(t, 0)Ag(2, 0). (3.51)
We are thus led to consider the integrals
iAg(t,0)po — ipo =
[ PO (5, 00K ma(5) = Kols))Tils, 0= Py(0)V (s, O)ods +

@ P07 (6, 0)(g-1(6) — Kol o)Vals, OPO)Ei(s, Ohods (3.52)

where V, also satisfies the intertwining relation (3.24). Thus we can apply lemma (3.1.2)
to both integrals with H(t) replaced by H,(t), P(t) by P,(t) and V(¢) = V,(¢,0) so that

E(t) = K,(t) + DyK 1 (t) (3.53)
and B(t) = K,-1(t) — K,(t). By using (3.24) and point 1) of the lemma, we obtain for
the first integral

[ PO (5, 0)(K g 1(5) = Ko(6))Tals, O~ Py(0)) (s, 0)ods = (354)

—ie Py(0)7; ™ (5, O)R(Ko1(s) — Ko($))Ve(s, 00— Po(0))Zo(s, 0)gpo],

vie [ PO (6,0) (R (Kgma(s) ~ Kals))) Tals, 00T~ Po(0)) A, O)puds

+e [ PO (5, 0R(Ky-1(6) - Kols))(Kema(s) = Ko(s))Va(s,0)Po(0)Ex(s, O)ods

¢ [ PO (5, 0Kgma(5), R(Eg-1(6) ~ Ko(o)]Ta(5, 0~ Py(0)) (s, Oods.
As the resolvents R, are of order 1 in ¢ (see (3.16))

Ry(t,)) = OQ1), (3.55)

IR(Kq-1(s) — Eg(s))ll = O (| Kg-1(s) — Kq(s)l|) = O(¢7) (3.56)

by proposition (3.1.1) so that the above integral is of order £¢7+1. The same is true for the
second term of (3.52). Thus we have obtained the estimate

[[44(t,0) — I} = O™+ [¢]) (3.57)

from which the theorem follows. Finally, if condition II is satisfied as well, all integrals
are finite in the limit ¢ — +oo and they are still of order £9*!. We conclude by lemma
(3.1.1).

]

This theorem can be improved significantly by exploiting the analyticity of H(2) in
a more efficient way than what was done in proposition (3.1.1). Indeed it is possible to
obtain useful bounds on the behaviour in ¢ of the constants 3; appearing in the estimate

1Kq = Komall < Bye®. (3.58)
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3.2 Exponential Estimates

We prove here a proposition and show later that its hypotheses are fulfilled in our setting.
Let H(z) satisfy conditions I, I and III and let 2z € S,. The spectral projector of H(z) =
Ho(2) is given by (3.1)

1
Po(z) = -5 fr Ro(z,A)dA (3.59)
where T is a finite distance away from o(z). We choose 5 so small that Vz' € D(z,17),
T CcT(Z)and
,__j_f '
Po(#) = ~5= $ Ro(#', ) (3.60)

Proposition 3.2.1 Let z, T and n be given as above. Let us assume that there ezist
constants a, b, and ¢ such that for all integers p, all 2’ € D(z,m) and all A €T

. (») -

) RS = "d = Ro(2, M) < GCP(1+ o)
.. @)1 p!

i) RPN <o g

If ¢ is small enough, € < £* with ¢* given by (3.63), then there ezists a constant d, given
by (3.80), such that

@Y _ 5 ® (0 g ga.9+¢ P+ 9)!
”Kq (2') Kq-l(z M < be dicPt (1+p)?

for all 2’ € D(z,m) and all integers p and ¢ such that
< *
ptgs ecde] N

Here [z] is the integer part of z and e is the basis of the neperian logarithm. Moreover for
p+g<N*

®)( e P!
IKPE < bt s

Proof: Let a be the best constant such that for all integers n
1 1 a

< 3.61

st TF P e < [TF P (36

ny+n2=n

(1 < a £ 167%/3). We assume that ¢ is small enough so that cabz%; < 1 and we define
6(5) = < 0. (362)

Let £* be the largest ¢ so that

l)k <a (3.63)

Z <6(e)ea2abe i

k>1

where « is the constant of (3.61). From now on 0 < ¢ < ¢* and § = §(¢*) is independent
of .
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i) Let us do the first iteration. Since abe < 1 we can define, for all z' € D(z,7n) and all
A€eT,

(- eRoKo)™* = Y (¢RoKo)* (3.64)
k>0
and L
-1
|- eRoKo)™ || < 1= < &. (3.65)

Since Ro and K are bounded holomorphic operators on D(z,7), the same is true for
(H— eRoK o)—l.

Lemma 3.2.1 For allp € IN and 2’ € D(z,7)

I - eRols', VE) ] < S

Proof: We first estimate using (3.61)

k! (p—k)!
"(ROKO)(p)“ < abkz—;)( ) (L+ k)2 (1+(p-k))?
< aabey P 5 (3.66)
Then we use the formula
ar —1
dz, - A(2))
> ¥ (,,1 ? nk)ar— A(2) AT~ A(2)) A -
k=1 n;Zl....,ugg’l °te
- A(2)™) @~ A(2))7. (3.67)

Therefore we get
_ -1
u dz,,ar ¢ RoKo)™!) <

1 1 1
plcPé eSaab)* . <
k2=:1( ) u121§nk21 (1 + n1)2 (1 + n2)2 (1 + 1!.]¢)2

u1+...+nk=p

P
1
pIcP8 Y (ebaab)eak? : 3.68
3 (ebaab)et s (3.68)
The factor a*~! comes from the summation over n;, ..., nx, which is done iteratively as

follows

2 - L 1
np 21, .m; 21 (1 + n1)2 (1 + nz)z Tt (1 + nk)z

"l+"'+"k=7

Z 1 1 Z 1 1 <
ny 21,0, 0, _o21,m>2 (1 + n1)2 o (1 + nk—2)2 ng_y (1 + N1 )2 (1 + nk)2 -

21,n, 21
n;+...+nk_2+m=p np_ytng=m
1 1 1
a . (3.69)
ny Zl,ngzlz;.,nk_l 21 (1 + ! )2 (1 + ‘n'z)2 (1 + nk"l)2

By +n2 '"+”k—1 =p
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using (3.61). Since £ < ex we get

= (11 eRoKo) ™| < 62 (3.70)

(1 +p)2
a
We can define
Ri(2,2) = (T- eRo(2,A) Ko(2)) " Ro(z, ) (3.71)
which is the resolvent of Ho(z) — eKo(2) at A. Using lemma (3.2.1), Leibniz formula and
(3.61) we get

!
R 2, )| € adaP————. 3.72
" 1( )" ( p)z ( )
The next step is to estimate IIK?)(Z) - K((,P)(z)”. We have
15 - K <
I((P{ = P)P1)P|| + [|(Po( Py — Po))®|] +
(PP~ P)) PN + [|((Py — Po)Pg) ). (3.73)
Since all XA € T are in the resolvent set of H; we can write
Py(z) - Po(z) = 2; f (Ra(z,A) — Ro(z, A)dA
= - ﬁ Ro(z, ) Ko(2) Ra(z, \)dA. (3.74)
Using Leibniz formula we have
@[ < oPsa2be P 75
”(RoKoRl) " S aoa cp(l + )2 (3 )
and therefore
(P = Po)P| < Z-caPbatber —2 (3.76)
- 27 1+ p)?

where L is the length of the path I'. Using again a Riesz formula for the projectors Py
and P; and the estimates for Ry and R;, we get

@y« L P!
17071l < 5-ac? Tip)? (3.77)
and
1P < a6ac” a f it (3.78)

Lemma 3.2.2 ([Ne3]) Let A and B be two analytic bounded operators such that

AP} < a ,,“,(k +p)!

(1+p)?
and i )
B <b ,,,_p_-_i-p_..
18O < betr B
Then

kt+l+p (F+1+ P)!.

(»
I(AB)P| < aabek47 223
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Using this lemma and the above results we finally have
= p+1)!
IK®) - KP)| < ebder* ‘—((1 +p))2 (3.79)
with
- L\?2
i=2 (27) (a*6a* + a%5%a’)
L 2
< 4 (2_1r) a*6*a®=d (3.80)
(since a > 1, 8§ > 1). We can now estimate
UKD < 1&P - &P+ 1K)
+1)! P!
< et @D o
= (1P T +pp
= bc”(li oy (1 + ede(p + 1)
< Y (ecdN™)*
“a v +07 5
p! -k
be? e
- (1+p)? ,g,
_ e , p
= 1° +p) (3.81)

if p+1 < N*. With this last estimate we have finished the first step.

ii) By our hypothesis on ¢ (see (3.62) and (3.63)), we can define for all A € T' and all

z' € D(z,7)
(@- eRoK1)™ = Y (eRoK1)*

k>0

(3.82)

with ||~ eRoK1)™ || < § and lemma (3.2.1) holds for the operator (3.82). Therefore the

resolvent of H,(2) = H(z) — eK,(z) is given at X € T by

Ra(2,2) = ([~ eRo(2)K1(2)) ™" Ro(2)

and thus

p!
||—-Rz(z A < ou‘)'ac"(1 D

provided 1 + p < N*. Then we estimate ||(Ks ~ K1){)|| as above by writing

Py(z) = Pi() -% fr (Ra(2,A) = Ry(z,A))dA

~ 5z B Ra(2, (K(2) ~ Ko(2) Rz, 1))dA

We get, instead of (3.76)

(p+1)!
(P — PP < zbda“é"’ a?Ptt 77

(3.83)

(3.84)

(3.85)

(3.86)
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for p+1 < N* and by lemma (3.2.2)
1537 - K2

2 i)z 653 3042 (P+2)! _ 22 pi2(p+2)!
< e*db4 (27r a®8°a°c? T bed*cPt D (3.87)

and therefore forall2+ p < N*
BN < 1P - &P+ (& - K+ &)

]
< beflcp(l i’p)z. (3.88)
We can iterate this procedure since all estimates are reproduced as long as
p+q< N~ ‘ (3.89)
is satisfied.
o

Remark:
The constant d defined by (3.80) is independent of ¢.

3.2.1 Superadiabatic Evolution

We give a first application of proposition (3.2.1) by proving the existence of a superadia-
batic evolution. Let ¢ be some point of the real axis. Since H(t) is self-adjoint we have
for all A in the resolvent set of H(t)

1
&ist(X, o(t))

where o(t) is the spectrum of H(t). For each t we choose T'; as in figure (3.1), so that for
each A e T,

| Ro(t, A)|| = (3.90)

dist(}, o(t)) > %dist(al(t),az(t)) >4 (3.91)

From the estimates of section (2.2) and formula (2.11) it follows that there exists 0 < r < a

T
m R
G,
1
GZ v 02
Figure 3.1: The contour I'y for ¢ € IR.
such that for each z € D(¢,r), and each X € T}
IRo(z, Il < 2[[Ro(2, A)]
4 4
< = < - 3.92
= dist(o1(t),02(t)) g (3.92)
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and that there exists a constant C such that for all z € D(¢,r) and all t € IR
1 Ko(2)]] < CB(2) (3.93)

with b(t) the integrable decay function of condition I. Using Cauchy formula we get for
all z € D(t,n), n some small number < r,

1RGN < 5p (=) (3.99)
and L\
IKPEN < vt () - (3.95)

Therefore we can apply proposition (3.2.1) with a = 3, b= C'b(t), C' some constant and
c= ,§, provided that 7 is small enough. Indeed, to get the estimate

CP
PL— ¥ 96
STy 7 (3.96)

1

with é = P and ¢ = ré, for some r > 1, we must choose r in such a way that

r>(1+p)*/? vp (3.97)

which is satisfied for » = 4. Hence, with #§ < r/2, we obtain ¢ = 8/r. From the proposition
there exists ¢* independent of ¢ such that for all ¢ < £* the iteration scheme is well-defined
up to order N* = [(ecde)~!] with

d= -‘t—ziﬁa" =0O(L%®) =0 (g—:) (3.98)
where L is the supremum of the length of the paths I';. We set
H,.(t) := Hn+(t) = H(t) — eKn+_1(t) (3.99)
and 1
P.(t) 1= Pae(t) = — 5 fr Ry-(t, \)d. (3.100)

Since ||Kn+-1(t)]] £ O(b(2)), we have
t_l.irtncx> [|P«(t) — P(2)]| = 0. (3.101)
The superadiabatic evolution V, is defined by
Vi(t, 8) := V= (2, 8) = Wi (2, 5)8n-(2, ), (3.102)

where W+ and ®y. are the parallel transport and dynamical phase operators (3.20) and
(3.21).
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Theorem 3.2.1 (Nekhoroshev Type Estimates) Let H(t) satisfy conditions I, IT and
III. There ezists €* > 0 such that for ¢ < €* we can construct a superadiabatic evolution
V.(t, s) and projectors P.(t) satisfying

[|U(t, 8) — Va(t,s)|| < Mexp{-7/e} Vi, s€ IR
where T and M are two positive constants and
P.(t)V.(2,8) = Vi(t, s)Pu(s).

Moreover the transition probability Pjy(e) from P(—)H to (- P(+))H between the times
t1 = —o0 and ty = 400 satisfies

Pale) = O(exp{-27/e}).

Proof: Consider the estimate (3.28) for An+(t,s) = 7L(t, s)Wxi(t, s)U.(t, s), which
reads

t
lAn-(t,e) ~B1 < [ IKn-oa(#) = Kov- ()l (3:103)
From proposition (3.2.1) we have
[Kn-c1(t) = Kn-(@t)]] < C'b(t)e™N dV N N*
< C'b(t)(edeN*)N"
< C'b(t)e™N"
< Cleb(t)e~&&
= O(b(t)) exp{-7/e} (3.104)
withr=2=0 (é) =0 (%;-r) Since b(t) is integrable it follows that
V. (2, 8)U(t, ) =) < Mexp{-7/¢} (3.105)

for some constant M. The intertwining property is true by construction and considering
lemma (3.1.1) together with (3.33) we immediately get the estimate on Pj ().
0

Remark:
If H(t) satisfies conditions I and IIT only, the first two conclusions of the theorem are true
for s and ¢ in any compact subset of IR, whereas the last conclusion does not make sense.

We expect on physical grounds that the larger the gap g between o,(t) and o5(t), the
larger the exponential decay rate r. We show in the next section that this is indeed the
case.

3.2.2 Dependence in the Gap

Let us consider the family of hamiltonians H.(t) obtained from H(t) by shifting the part
of the spectrum o,(t) away from o,(t) by a distance ¥ > 0. We proceed as follows. The
part o(t) of the spectrum of H(t) is generally given by

oa(t) = o_(t)Uoy(t), whereo_(t)Noy(t)=0 (3.106)

and 04(t) is in between o_(t) and o,(t) (the part o_(t) being possibly absent). The
corresponding spectral projectors are P_(t) and P.(t) such that [P.(t), H(t)] = 0 and
P.(t) + P_(t) =I— P(t). We define

H,(t) = H)P-(t) + (H(t) + 7)P(t) + (H(t) + 27) P4 (2). (3.107)
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It is easily checked that

(H4(2) = X)) = Ry(2,2) =
R(t,\)P_(t) + R(t, A — 7)P(t) + R(t,A — 27)Ps(t) (3-108)

and that the spectrum of H,(t), denoted by o,(t), is given by
0(t) = T (1) U (on(t) +7)U (04(2) + 27). (3.109)
Thus if dist(o1(t), 02(t)) = g Vt € IR then
dist(014(t), o24(t)) 2 9 + 7 = 9(7) (3-110)

where 01,(t) = 0,(t) + v and 02,(t) = o(t) \ 01,(t). (See figure (3.2).)

Figure 3.2: The spectrum of H.,(t).

We consider now proposition (3.2.1) with H., in place of H, using the identity (3.107)
and paying attention to the dependence in 4 of the different quantities encountered. We

show that there exist constants a(y), b(y) and ¢(v) such that the following proposition
hold:

Proposition 3.2.2 If H(t) is replaced by H.,(t) then the exponéntial decay rate T is re-
placed by () such that

(7) > Cg(7), ¥r2=>0.

for some constant C.

This proposition shows that the larger the gap between ¢y and o5, the better the agreement
between U, and V,. This property will be important for other results to come and does
not follow from the estimates of lemma (3) and (4) in [Ne3].

Proof: The proof consists in finding a constant » independent of 4, possibly smaller
than the one of paragraph (3.2.1), such that the estimates corresponding to (3.92) and
(3.93) hold with the same b and with a(7) = O(g(7)~!). The constant ¢ will thus be
independent of 4.

As the spectral projectors of H and H., are identical, we can use the estimate (3.93)
which holds for any r > 0, yielding the same constant b as before. The hamiltonian H,(z)
is reduced by P_(z), P(z) and P4(z). Let W(z,t) be the solution of the equation

iW'(z,t) = i(PL(2)P_(2) + P'(2)P(2) + P.(2) Py (2))W(z, 1)
Wit t) =L (3.111)
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This equation generalizes the definition (2.26) in the sense that the intertwining property
is true for all three projectors

W(z,t)Ps(t) = Pe(2)W(z,t), W(z,t)P(t) = P(z)W(z,t). (3.112)
Note that
Sup IW(z,t)]| < oo, Sup W (z,t)]| < o0 (3-113)

as a consequence of condition II. Indeed this is true for z € IR by unitarity and for
z complex we use the decomposition W(z,t) = W(z,Rez)W(Rez,t). Then by lemma
(2.2.3) we can bound uniformly the corresponding Dyson series (2.27) for W(z,Rez). We
introduce H(z) = W~Y(z,t)H(z)W(z,t), which is a closed holomorphic operator in S,,
and which is reduced by P4 (t) and P(t) by lemuna (2.2.4). Instead of the path I'; we now
consider the path I';(y) defined similarly (see figure (3.3)).

L)

1Y

Figure 3.3: The path I';(y).

For a bounded operator B leaving P(t)X invariant we set

IBllp= sup 1Z¢l

3.114
vePn |l ( )

and we define || B||p, similarly. By definition of H., we have

R, (2,)) = W(z,t)R\(2, )W ~(z,t) (3-115)

with
R (2,2) = R(z,\)P_(t) + R(z, A — 7)P(t) + R(z, A = 27)P+(t). (3.116)

and B(z,)) = (H(z) - A)~L. Since Ps(t) and P(t) are orthogonal projections
IRz, Nell < W (2, )l By(2, W (2, )|
S NIW (2 Ol &y(2, A)(P-(2) + P(t) + PL(E))W (2, t)eol|
< Wz, )| max {1 B(z, Mllp_, 1Rz, A = 1llp, 1Bz A - 29)lle, } X
W=z )lllell- (3-117)

Since Py(t) and P(t) commute with H(z) and R(z,)) there exists, as above (see (3.92)
and lemma (2.2.4)), a constant r, independent of v, such that

I1R(z, Mlp, < 211R(E,Mps = 201R (2, A)llps (3.118)
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and _
IR(z, Ml < 2|R(¢, Mllp (3.119)
provided z € D(t,r). By taking A € T's(y) we have
2 2
Bz, \)|lp. < ——, [|B(z,)- <= 3.120
1 Nl € = 1A= lle < (3120)
and
R(z,A-2 < — 3.121
(2,2 - 29)le, < —— (3.121)
(see the end of paragraph (2.2.2)). Then, using Cauchy formula, we get
ENERVE 0(7)6’(1 Fs
HKo(2)l} < bc"(1 sy (3.122)

with a¢(y)= O (917 ), c=0 (-}:) and b = O (b(t)) independent of v. Thus we get

9(v)°\ _
T(7)=0 ( I(y )z) =0 (9(7)) (3.123)

since %;—'% — 1 as ¥ — oo by construction of T',(7).
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Chapter 4

Complex Time Method

Up to now we have dealt with very general systems for which we showed that the transition
probability P»;(¢) across a gap was exponentially small in the adiabatic limit ¢ — 0. We
have thus proved the folk adiabatic theorem quoted in the introduction. We want to
turn now to the study of the simplest interesting systems in this context, namely two-
level systems. Their relative simplicity will allow us to describe the transition probability
P21(¢) in the asymptotic regime ¢ < 1 in great details for such systems. Indeed, we shall
derive asymptotic formulae for P,1(¢), instead of mere bounds.

4.1 Spin-1/2 in a Time-Dependent Magnetic Field

4.1.1 Coordinate-Dependent Formulation of the Problem

Let H(t) be a 2 X 2 matrix which satisfies conditions I, II and III. Without restricting the
generality we suppose that the trace of H(t) is identically zero, so that we can write

H(t) = B(t)-s

= B;(t)% ( 2 (1) ) +Bz(t)% ( 2 _oi ) +B3(t)% ( (1) _01 ) . (41)

The hamiltonian (4.1) is interpreted as the hamiltonian of a spin-1/2 in a time-dependent
magnetic field B(t). By conditions I and II, the functions Bg(t) have analytic extensions

By(z) in S, satisfying Bx(Z) = Bi(z) and there exist real limits Bx(+) and an integrable
decay function b(t) such that

sup |Bi(t +is) — Br(Z)| < b(t) if 20 (4.2)
lsl<a
for k =1,2,3. Let p(z) = B?(z) + B2(z) + B2(z). The spectrum of H(z) consists of the

two values +1/p(z) where /- is the branch of the square-root which takes the value 1 at
z = 1. Condition IIT implies that p(t) > 0 for t € IR. We define

at) = {a(®)}=1{~5y/o0)}
n(t) = {0} = (5o} (43)

so that the corresponding spectral projectors are

51
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@~ P(t)) = Py(t) = % (11+ l;%) . (4.4)

We shall keep this notation in the sequel. Let us consider the solution .(t) of the
Schrédinger equation

iey,(t) = H(t)pe(t), %.(0) = o. (4.5)
As in the preceding chapter, we select a normalized solution having the property
Jim ([ Py(t)e(t)l| = 1 (4.6)

and we are interested in the transition probability
Pa(e) = Jim [|P()e(0)]. (47)

Since the hamiltonian is analytic in S,, the solution ,(t) possesses a univalued analytic
extension ¥.(z) in S, satisfying

ieYl(z) = H(2)Ye(2). (4.8)

In the previous chapter, we had chosen the width 2a of the analyticity strip S, in such a
way that 01(z)Nea(z) = 0 for all z € S,. Here, on the contrary, we want to make use of the
multivaluedness of the analytic extensions ex(z) and Py(z) of the eigenvalues and spectral
projectors when S, contains eigenvalue crossing points to compute P,;(¢). The eigenvalue
crossing points z; such that e;(z;) = e2(z;) coincide with the zeros of the analytic function
p(2) so that they are necessarily complex and come by complex conjugated pairs {z;, Z;}.
Moreover, there is a finite number of them since p(t + is) tends to positive limits p()
when t — +o00, uniformly in |s| < a, as can be seen from the identity

3
p(2) - p(£) = Y (Bj(2) - Bj(£))(Bj(z) + Bj())- (4.9)

=1

Let X denote the set of eigenvalue crossing points {z;, Ej}f-”;'ol. The expressions (4.3) and

(4.4) can be continued analytically from the real axis to the punctured strip S,\X, where
they give rise to multivalued analytic functions. Let us construct analytic eigenvectors
#k(t) of the hamiltonian H(t) by means of the parallel transport W (%, 0), solution of

iW'(t,0) = K(t)W(t,0), W(0,0)=1I (4.10)
Its generator is given by
B'(t) A B(t)
———————— s

p(t)

where B’ A B is the vector product of B’ and B and thus possesses a univalued analytic
extension K(z) in S;\X. But since S,;\X is not simply connected, the analytic extension
W (z,0) of the parallel transport is multivalued in $,\X. I order to deal with univalued
functions only we define a simply connected domain Q C S, by removing vertical lines
issued at z; and Z; and joining the boundary of S, (see figure (4.1)). Thus the real axis is

included in 2 and all analytic extensions encountered so far are univalued in Q. Let ¢;(0)
and @,(0) be two normalized eigenvectors of H(0),

H(0)px(0) = ex(0)pr(0), k=1,2. (4.12)

K(t) = i[P|(t), A(t)] = (4.11)
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I
Sl

Figure 4.1: The domain 2.

Using the parallel transport W(z,0), (we drop from now on the second argument of W),
we define

er(z) = W(2)px(0), k=1,2. (4.13)
This construction gives a choice of analytic eigenvectors of H(z) since
9
Pi(2)pi(2) = Pu(2)W(2)pi(0) = W(2) Pe(0)r(0) = pi(2)- (4.14)

Moreover the ¢i's have the property
P(2)pi(2)=0, kE=1,2 (4.15)

which reduces to the phase fixing condition (1.3) on the real axis. Indeed for any z €
we can write

P(2)p(2) = ~iPu(2)K(2)pu(z) = —iPu(DE()Pul2)pn() =0 (4.16)

since K(z) is antidiagonal and on the real axis we have

(2e(t)l@r(t)) = (Pe(t)pr(t)ei(t)) = {pr(t)| Pe(t)i(t)) = 0. (4.17)

Note also that W(z) has well-defined unitary limits W(+o0) as Rez — o0 and |Imz| < a.
It follows from lemma (2.2.3) that we can write || K (t+1s)|| < b(t) where b(t) is an integrable
decay function and by considering the Dyson series (2.27) for W(z) we easily get

lim sup |[W(t+ is) — W(xoo)|| = 0. (4.18)

t—Xoo I’I<¢

Hence, the eigenvectors ¢, (t + is) have limits @p(+o00) as t — oo which are independent
of s. Let

Au(z) = /o Cen()de  k=1,2 (4.19)
and
Aii(z) = Mi(2) = A5(2), i#7 (4-20)

where in (4.19) the integral is over any path in { starting at 0 and ending at z. We write
for2€ Q

2 .
Ye(2) = Y ej(z)e™ N Ppj(z) (4.21)

=1
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thus defining unknown coeflicients c;. These coefficients are the counterparts of the op-

erator A of the previous chapter whereas the phases e~ £ correspond to ®,, as already
noted. These coefficients satisfy

2 . .
E (C;'(Z)e—%A)'(z)<Pj(Z) + ¢j(2)e” Z‘Xj(Z)(p;(z)) =0 (4.22)

i=1

as a consequence of (4.8). Taking the scalar product of the expression (4.22) with the
vector (W(z)~?)" ¢r(0) we obtain, using (4.14) and (4.15)

2 )

ch(z) = Y anj(2)et 45 les(2), j # (4.23)
j=1
with
ai(z) = —(er(0)|W(2) " ¢j(2))

= {@r(0)|W(2) " K (2)W(2);(0)). (4.24)

Since ||W(z)|| is uniformly bounded, we have
larj(2)| S Cb(t) , z=t+1is (4.25)

for |Imz| < a and |Rez| large enough, where C is a constant. Although .(z) does not
have a limit as Rez — +o00, due to the presence of the phases A.(z), the vectors p.(z)
and the coefficients ci(2) have well-defined limits, as we are about to see. In particular
the boundary condition (4.6) for normalized ,(z) reads

Jm @) = f(-o) =1
tlir_noolcz(t)l = |ez(—00)| = 0. (4.26)

Our problem becomes equivalent to the determination of the coefficient c,(+00) since we
have

P21(€) = |c2(+oo)|2. (4.27)

The coefficients cx(z) are analytic functions on . They satisfy equation (4.23) or the
equivalent Volterra equations

c1(z) = c1(z0) + /z alg(z')efA"(")cz(z')dz’ (4.28)
2o

and
c2(2) = c2(z0) +/ azl(Z')eiA”(z’)cl(zl)dz' (4.29)
Z0

where the integration is over any path in Q starting at 2y and ending at z. Explicitly, if
u + y(u) is a path with y(up) = 2o and ¥(u) = z, then

c1(z) = e1zo) + .[: du'(w)ary(v(w))es 22 Doy (4(u')) (4.30)

and a similar expression holds for (4.29). From these equations and (4.25), we get
t_l}rﬁn@ ce(t +18) = cp(Eo0), k=1,2; [s|<a (4.31)

with cx(+00) independent of s.
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4.1.2 Analytic Continuation of W(z)

We consider here different analytic continuations of W(z) into the punctured strip S,\X
which will allow us to construct new families of analytic eigenvectors of H(z). As noticed
above, K (z) is meromorphic in S;\X so that the equation

iW'(z) = K(2)W(z) (4.32)

is well defined and has singular points at X. We want to consider solutions of (4.32) which
are analytic extensions of the solution W(z) defined on § previously. They are determined
by the initial value at z = 0, W(0) =I. Let 4; and 42 be two closed paths in S;\X based
at 0. We perform the analytic continuation of W along the paths v, and 4,. Coming back
at 0 the values of these analytic continuations are W(0|y;) and W(0]y2). They depend

only on the homotopy class of 4, and 4,. If 4, - 9; represents the closed path at 0 by first
following v; and then v,, we have

W(0l72 - 71) = W(0ly2) W (0lm). (4.33)

Thus W(0|y) gives a representation of the fundamental group II; (S,\X; 0) of S;\X at 0.
Note that if v is parameterized by u € [0, 1], then

W(0ly) =T+
Z(—i)"/o dun /ou“ i1+ "/:42 dur K (7(un))3(tn) - - - K (7(w1))7(wa). (4.34)

n>1

Let now v; and 9; be two paths starting at z = 0 and ending at z. The values of
the analytic continuations of W along 7;, respectively v, at the point z are W(z|y;),
respectively W(z|y;). They are related as follows :

W(zhre) = W(zn)W(zim)'W(zly:)
= W(zly)W(lhi' - 72) (4.35)
where 97} -7, is a closed path at 0. Let z be a point of X, which we shall assume to be a
simple zero of the function p(z), and let v be a simple closed loop based at 0 around the
branching point z5. Let {¢1(0),¥2(0)} be the basis of orthonormal eigenvectors of H(0)

chosen previously. We can transport the basis {¢;(0), ¢2(0)} along 4 by means of W(2z).
Coming back to the origin we have a new basis

{W(0lr)1(0), W(0]7)p2(0)}- (4.36)

Both basis vectors in (4.36) are eigenvectors of H(0). Since v is a simple closed loop and
Zo is a simple zero of p(2), the square root in (4.3) changes sign so that the eigenvalues
exchange their labels at the end of 4. Thus we have

H(0) (W(0]7)#1(0)) = e2(0) (W (0]7)¢1(0)) (4.37)
and
H(0) (W(0l7)2(0)) = ex(0) (W(0]7)42(0)) - (4.38)

We express the resulting proportionality between W(0}7)y;(0) and ¢x(0), k # 7, by phases
6;(0|7) defined as follows

W(0[7)p;(0) = e~ Mgy (0). (4.39)
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Since W(0|y) is not necessarily unitary, the new basis vectors are not normalized anymore
and the phases §; are in general complex. There exists a simple relation between 6, and
62 which can be obtained as follows. For the system of differential equation (4.32) we have
the general relation

det W(t) = det W(0) exp {% /: 'D‘K(s)ds} te IR. (4.40)

On the real axis, the trace of K(t) can be computed by means of the normalized vectors
wr(t) defined in Q. We obtain

2
T () = 3 (eI (Dea(t)) = 0 (4.41)
k=1

and with the initial condition W(0) = I, we get det W(t) = 1 V¢ € IR. By analyticity we
conclude

detW(z)=1 Vze S,. (4.42)
This is true in particular for W(0]y) which is represented in the basis {¢1(0), ¢2(0)} by
the matrix
0 exp {~i62(0}7)}
W(oly) = , . 4.43
(Of) ( ep{-ii0l)} 0 (443)
Hence the relation
exp {~i6,(0ly)}exp {-i62(0}7)} = -1. (4.44)

4.1.3 Circuit Matrix

We can replace these considerations in the framework of the theory of systems of differential
equations (see e.g. Wasow [Wa]). We have a system

W(z) = K(z)W(z) (4.45)

considered in S,\X, with generator K(z) meromorphic in S,. Let us denote by W+(z)
the analytic continuation of the solution W(z) of (4.45) such that W(0) = I obtained after
a revolution around a point of X, say zy. The matrix W(z) is still a solution of (4.45)
so that we can write

W*(z) = W(z)C* (4.46)
where Ct is the corresponding circuit matrix. Thus we have W(0]y) = C*. If V(z2) is
another fundamental solution of (4.45), i.e. V(z) = W(2)Y with Y a 2 X 2 matrix such
detY # 0, the circuit matrix D¥ obtained similarly for V is related to C+ by

Dt =Y~ICtY. (4.47)

Now, from the general theory [Wa], we know that for a regular singularity at 2, i.e. a
simple pole of K(z) at zg, there exists a fundamental solution of (4.45) of the type

V(2) = Q(2) exp {In(z - z0)x(z0)} (448)
where Q(z) is holomorphic at zp, det Q(z) # 0, and

B'(20) AB(z0) _

o0 (449)

K(z0) = lim K(2)(s — ) =



4.1. Spin-1/2 in a Time-Dependent Magnetic Field 57

For this solution the circuit matrix is given by

Dt = exp {+27ix(2)}, (4.50)

the sign being determined by the sense of rotation around z;. However, this knowledge
does not provide supplementary information about 6;(0[7) since the link between D+ and
W(0]y) is given by the matrix Y which is an unknown at that point.

4.1.4 Formula for 6;(0}y)

Nevertheless, we can obtain an explicit expression of 8;(0|y) in a way which emphasizes
its relationship with the geometrical phase obtained on the real axis for cyclic evolutions
[B1]. Consider the set of analytic eigenvectors of H(z)

¥i(z) = (Bs(z) +(-17y/p(2) » Bu(2) + iBz(z)) ji=1,2 (4.51)

associated with the eigenvalues

ej(z) = (—1)’%\/;Tz), i=1,2. (4.52)
Denoting by ;(0]7) the analytic continuations of ¥;(z) along v at the origin, we have
$3(017) = $u(0) with j # k. (4.59)
We define new analytic phases §;(z) in a neighbourhood of the origin by the relation
$i(2) = e?ilg;(2) (4.54)
with initial condition
e = ||g;(0)]. (4.55)
Applying the projector P;(z) to the identity
¥i(z) = i8i(2)i(2) + € l(2), (4.56)
we obtain by using property (4.15)
P;(2)¥5(2) = i8;(2);(2). (4.57)
Then, taking the scalar product of this expression with 1;(z), we get the identity
. . /
il(z) = W?Z ’(S?l’fi(z», (4.58)

Now, using property (4.53) and the definitions (4.54) and (4.55), we eventually obtain

#i(0l) = %My (0)
e~ *i%My;(0]y)
= exp {—z’ [ z)dz — isi(0) + wk(O)} e(0)

lix(0)Il [ ($i(2)|P(2)¥(2))
195001 {_2[7 ;)2 } x(0) (4.59)
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so that

=850k _ [1¥%(0)]] exp {—i/ (¢J(Z)IPJ(Z)¢;(Z)>} ) (4.60)

20T lI¥5(2)II?

It remains to insert the explicit formulae (4.51) in the above expression to obtain the
phases 8; as functions of the field B. The details can be found in appendix and the result
of this analysis is given in the following

Proposition 4.1.1 The phase 6,(0]y) defined by (4.39) for the vectors ;(0) defined by
(4.54) and (4.55) is given by the formula

exp {-i6:1(0[7)} =
e inw —1 By(2) (B1(2) B3(2) — B2(2)Bi(2)) z
xp{ /v 2/p(z) (B}(2) + B3(2)) 4 }

where n is an integer and v is chosen in such a¢ way that it contains no zero of B%(2) +

B2(z).

4.1.5 Asymptotic Formula for P, (¢c)

Let us denote by
pr(zlr) = W(zl7)er(0) (4.61)

the vector which is obtained by transporting ¢ (0) along 4 where 7 is a path from 0 to z.
Using (4.39) and (4.35) we have the following relation if 4; and v; are two paths from 0
to z and such that 971 - v, is a simple closed path based at 0 around z, (see figure (4.2))

er(zlyz) = e OMT M2y, k£ (4.62)

Now we can determine the coefficient ¢2(+00) = lim;_,», c2(t) of the solution .(t) of the

Figure 4.2: The paths v; and 72.

Schrodinger equation (4.5) subject to the boundary condition (4.6). The method consists
in controlling the solution v, along a path t — F(t) € S, parameterized by t € IR which
has the following properties:

o lim;,io0 Re'?(t) = £00, limi oo ImY(t) = 51, |s2| < a

e 7 passes over the branching point zg in the upper half plane.
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Since ¥ is not in Q we cannot use the decomposition (4.21)

2

Yel(z) = Y e5(2)e™ i py(2) (4.63)

j=1

along the whole path 7. But we can use it for t € —1. Then we make an analytic
continuation of (4.63) along 7. The resulting decomposition is written

2 .~
$elx) = 3 (2)eHi005;() (4.64)

j=1

where f means that we have made an analytic continuation of f along 7. The coefficients
¢x(2) satisfy now the analytic continuation of the equations (4.28) and (4.29) along J. Let
z be some point of 5 with ¢ > 1 (see figure (4.3)). Using (4.62), we see that

0 R

Figure 4.3: The paths 7, n and the point z € 7.

Pi(z) = e~ )y, (2) (4.65)
and .
F2(z) = e Oy (2) (4.66)

where 7 is the simple closed path at 0 of figure (4.3), which is homotopic to the path
47! - 72 of (4.62). Comparing (4.63) and (4.64), we obtain

$e(2) = a2)e ™ Ep(2) + co(2)e” gy (2) (4.67)
= G(2)em e 0 (2) 4 Gi()em MmO o)

and therefore we have the relation

cz) = e'io‘(ol")e'%)“-‘(‘)*‘%A’(‘)é}(z) (4.68)
7

exp {—6,(0|n)} exp {—g[’el(z)dz} é(z)

where f, e1(z)dz is the integral over 7 of the analytic continuation of e; along 7. Similarly
we have .
(1
€

c1(z) = exp {~iti(0l)exp { / ea(2)dz  &3(2). (4.69)

If we can control &7, then we gain information on ¢, and on the transition probability.
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The equation for ¢; is given in (4.30) where we must replace 4 by 4 and all quantities ap-
pearing in (4.30) are defined by analytic continuation along 5. We introduce the notations
& () for G(3(t)), As;(t) for Ag;(7(t)) and &;(t) for &;(7(t)). The boundary cond.mon
(4.6) is equivalent to lim,_,_o, &3(t) = c1(—0), le1(—o0)] = 1 and lim,,_o &2(2) =
With these notations the equations for ¢; and ¢; read

a(t) = ex(-o0) + / ; duy(w)aTs(w)et 512 (u) (4.70)
and . o
&(t) = /_«, duy(u)azi(u)es 4 ()& (u). (4.71)

We perform an integration by parts in equation (4.70) in order to use the fact that ¢ is a
small parameter.

a@) = cl(-oo)+”“(t) Bulg, ()

t Al,(1)
- $ [, e ( ) (w)e? 325 (u)
1= 12
_ ¢ / () P22 (1) (). (4.72)
tJ-eo AIu»
We recall that ' means 34; so that
Al(w) = A'u( Nz = 6(2) = 8z - (4.73)

Up to this point, we have only used the property that 9 must go over the branching point
Zg, in order to get the essential relation (4.68). To treat the second and third terms in
(4.72), we suppose that ¥ satisfies the new condition IV.

IV. Dissipative path

The path 3(t) is such that ImA1,(5(t)) is a non-decreasing function of t for all t € IR.
Condition IV is a strong condition since it is a global condition on . This requirement is
typical in the WKB method and we shall investigate it in details later on. Using it and
the identity Aj2 = —Aj;, We can estimate ¢;. Indeed, from (4.71), we have

t ) —_—
S0l < [ duiEwle e w)

— t . — —
< eHmA0 [ quf()lfa(u)jet A0 IR0 (u)

—— 400
< eHmAaOg) [ w)lEm(w)d (4.74)

where || || = sup,. [p | f(7(¢))|. Condition II implies that f|@;1(¢)|dt < oo (the proof is the
same as for (4.25)). Similarly [ IE;{/Z"I.‘,(t)Mt < o0o. Since ’Eﬁ/r'u is an analytic function
of z, we also conclude by the Cauchy formula that [ | (Ez'{/zrn),(t)]dt < oo. Inserting
(4.74) in (4.72) we have

|Gl < 1+ ekllal] (4.75)
where k is a constant, hence, taking the supremum over t € IR,

py3 <k (4.76)

1
AR
el < =
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for another constant k. Coming back to (4.72) we conclude
é(t) = ei(—o0) + O(¢), Vte IR (4.77)

which is nothing but the extension of the adiabatic theorem of Born and Fock to the
path ¥ in the complex plane for the coefficient ¢,. From (4.77) and (4.68), we obtain the
asymptotic formula

Jim [P0 = lim je()

exp {2Imé, (0|n)} exp {%Im/;el(z)dz} (1+ O(¢)) - (4.78)

This equation, which is the basic result of this section, is a generalization of the Dykhne
formula. Indeed, the exponential decay rate can be rewritten as

Im/;el(z)dz = Im/:o e1(z) — e2(2)dz (4.79)

where the integration path follows 7. Moreover, if the hamiltonian is real and symmetric
on the real axis, i.e. By(z) = 0, the geometrical prefactor exp {2Im6,(0|n)} reduces to 1,
see proposition (4.1.1), and we recover the usual Dykhne formula. However, in general

exp {2Imf, (0]n)} # 1 (4.80)

and the presence of this geometrical prefactor in (4.78) has been verified experimentally
by Zwanziger et. al. [ZRC].
Remarks:

e Formula (4.78) has been obtained under the boundary conditions ¢3(—o0) = 0 and
|e1(—o0)] = 1. Nevertheless, if we consider a solution ,(t) such that

lim [Py (te(®)l = 1, (4.81)
corresponding to |c2(—o0)| = 1 and |e;(—o0)| = 0, the transition probability
Puo(e) = lim_[[P(t)$e()I)" (4.82)

is still given by formula (4.78). Indeed, if (¢1(t), c2(t)) are solutions of (4.23) for t € IR
with ¢;(—00) = 1 and cz(—00) = 0, then (—T(t),1(2)) satisfy the same equation
with reversed boundary conditions as a consequence of the identity ax;(t) = —a;k(t)
Vt € IR.

o In the derivation of formula (4.78) we have chosen the origin as base point for . Of
course this choice has no influence on the transition probability. If 4, is a loop based
at tp € IR which encircles zg, we have the relation

W (toly0) = W (t)W (0l7)W (o)~ (4.83)
since we can deform the paths, and W(tp) is unitary. Consequently
Imf;(to|0) = Im6;(0}y). (4.84)

e We have assumed that 29 was a simple zero of p(z), which is generically the case.
But the important point in these considerations is the exchange of labels of the
eigenvectors along the loop 4 which leads to formula (4.68). Any zero of odd order
implies a similar relation but, as we are about to see, the requirement for 5 to be
dissipative (condition IV) can be fulfilled for simple zeros of p(z) only.
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4.1.6 Quadratic Differential

We have just seen that an asymptotic formula for the transition probability could be
obtained provided there exists a dissipative path above the eigenvalue crossing point z.
This requirement may seem to be merely technical but it is an essential condition for the
proof of (4.78) to hold. We study this global condition in this paragraph from a geometrical
point of view by means of the concept of quadratic differential. This analysis allows us to
express the formula giving the transition probability in purely geometrical terms.

The monotonicity condition IV involves the multivalued function A(z) = J7 /p(u)du
on S,\X, where the integration is performed along any path in §;\X leading from 0
to z. In particular, the level lines ImA(2) = cst will play an important role. Let us
recall the definition of quadratic differential and precise the link between this notion and
the function A(z). We follow closely Strebel’s monograph [St]. The function p(z) =
B2(z) + B2(z) + B%(z) is holomorphic in the simply connected domain S, and it defines
a quadratic differential p(z)d?z on S;. A point z € S, is called regular if p(z) # 0 and it
is called critical if p(z) = 0. A @-straight arc is a smooth curve t — ¥(t) in S, such that
for all ¢

arg (p(1(£))7%(2)) = 0 = cst. (4.85)
This implies in particular that p(y(t)) # 0 and therefore a straight arc contains only
regular points. If § = 0 the straight arc is horizontal and if § = 7 it is vertical. A maximal
horizontal arc is called a trajectory of the quadratic differential p, and on a trajectory we
have
p(v(1))73(t) > 0. (4.86)
By a reparameterization of the trajectory we see that it is a maximal solution of the
differential equation

p(2) (:—:)2 =1. (4.87)

The trajectories of the quadratic differential p(z)dz? coincide with the level lines ImA(z) =
cst as is seen from the following property. Let 2* € §;\X. A p-disc of center z* and radius
r is a region U C S;\X containing z* which is mapped homeomorphically onto a disc of
radius r by a branch of A(2), z* being mapped on the center of the disc. In the p-disc
U we can solve the differential equation (4.87) with initial condition 2* € U at ug. The
solution u — v(u) satisfies the equation

()
u—u==% /1 p(z)dz (4.88)
which can be rewritten as
u—1up = A(y(w)) - A(Z"). (4.89)
Note that if y(t) is a @ straight-arc such that 4(to) = z*, we have
t
A(r(#) = A=) £ exp {i0/2} | 11O/ alr(e)lat, (4.90)

the sign depending on the chosen branch. Hence, for a p-disc of radius r centered at a
regular point z*, the set of trajectories is homeomorphic to a set of horizontal lines in a
disc of radius r. In particular two different trajectories cannot cross. We can parameterize
globally the trajectory a passing through z* as follows. Let us choose a parameterization
u — a(u) in such a way that a(0) = 2*. With |u| < r, we get by (4.89)

a(u) = A"HA(z") + u). (4.91)
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Then we continue analytically the suitable branch of A(z) along «. By construction, we
obtain a function A,(z) whose restriction on « is injective (see (4.89)). The image of a
by A4 is the set

{fw=A(z")+u, ue€(u_,us)C IR} (4.92)

where the interval (u-,u4) is maximal and we have
a(u) = AZHA(Z") + u) (4.93)

for all 4 € (u—,u4). This parameterization is called a natural parameterization of a. By
definition a trajectory is called critical if limy,_,,_ a(u) or lim,_,, a(u) is a critical point
of p, i.e. in our setting, a point of X. Let us review the different type of trajectories we
can have close to a critical point. Let 2 be a zero of order n > 1 of the analytic function
p(2). In a neighbourhood of Z we can write

p(2)=au(z=2)"(1+ anu1(z—-2)+...) (4.94)

so that ,
[ p(w)du = ba(z = )32 (14 bagpa(z = 2) +..) (4.95)

with b, = 3,}?23 # 0. Thus the level lines ImA(z) = ImA(Z) for z in a neighbourhood of 2

are homeomorphic to the set of level lines Imfl'a"ﬁ = 0, for £ close to the origin. Thus there
are n + 2 critical trajectories which meet at z = . The tangents at Z of two consecutive
critical trajectories form an angle of value %‘;’5 When restricted to a neighbourhood
of z, the interior of the domain enclosed by consecutive critical trajectories is mapped
homeomorphically by A(z) — A(Z2) on a neighbourhood of the origin, in the upper or lower

half plane (see figure (4.4)). The critical trajectories are also called Stokes lines. These

Figure 4.4: The critical trajectories close to a zero of order n.

lines play an essential role in the analysis of the WKB method.
Let us introduce the metric associated with the quadratic differential p(z)dz?%, which

will turn out to be adequate for our problem. Let 4 be some rectifiable curve. Its p-length
is defined by

71 = [ 10(2)"1dz. (4.96)
v
If 2 and y € S, then the p-distance d,(z,y) between z and y is given by the infimum of

|¥1, where 4 is a rectifiable curve from z to y in S,. If v is contained in a p-disc U of radius
r then its p-length |v|, is equal to the euclidean length of the image of 4 by a branch of
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A defined on U. In particular a p-disc of radius = is a disc of radius r in the p-metric.
A natural parameterization of a is essentially the parameterization of the arc-length for
the p-metric (see (4.90)). Finally we call a curve t — ¥(t), a < t < b a geodesic if it is
locally shortest. This means that for every ¢ there is an interval [t;,¢;] such that ¢ € [t;,1,]
and the arc 4([t1,t2]) is the shortest connection of the two points ¥(¢;) and ¥(¢2). In a
neighborhood of any regular point a geodesic is a é-straight arc.

Teichmueller’s lemma will be our main tool to describe the global behaviour of the
critical trajectories (or Stokes lines). Before stating this lemma we need a last definition.
A geodesic polygon is a curve 4 composed of open straight arcs and their end points which
can be critical points of p. We quote Teichmueller’s lemma from [Let]. A more general
version for meromorphic quadratic differential is given in [St].

Lemma 4.1.1 (Teichmueller’s lemma) Let p be holomorphic in the closure of a do-
main A in the complez plane which is bounded by a simple closed geodesic polygon in the
p-metric, whose sides v; form interior angles 6; at the vertices, 0 < 8; < 2x. If m; and
n; denote the orders of the zeros of p in A and on 0A, respectively, then

9
Z (1— (n,+2)é;-) = 2+ Em,
7 s

This lemma is a consequence of the argument principle. The precise relation between
critical trajectories or Stokes lines and dissipative paths is provided by the following

Proposition 4.1.2 Let zg € X be a zero of p and 5 be a dissipative path above zy. Then
1) ¥ is a simple curve.
2) The open region T in S, between the path 5 and the real azis contains ezactly one
eigenvalue crossing point, zo, which is a simple zero of p.
3) There are three distinct critical trajectories ay, az, asz having zo as unique critical
point.
4) The trajectory a; is entirely inside ¥ and has a natural parameterization with u €
(—0,0) so that lim, ¢ a;(u) = zp, lim,—,_o Reay(u) = —o0.
The trajectory as is entirely inside T and has a natural parameterization with u € (0, 00)
50 that lim,_,¢ az(u) = zg, limy_,o, Reaz(u) = .
The trajectory as has e natural parameterization with u € (0,uy) so that
lim,,_,o ag(u) = zo. The set of u € (0,uy) such that as(u) is a point of ¥ is a non-empty
connected set.

Conversely, if there is a simple zero zy of p such that there ezists two critical trajectories
a1(t) and ay(t) in S,, having 2o as unique critical point, satisfying

tlignm Rea;(t) = oo, a{0) = a(0) = 2
and
Ima;(t)] <a, j=1,2,
then there exists a dissipative path 5 C S;\X passing above z,.
Remarks:

e This proposition allows the problem of the existence of a dissipative path above
an eigenvalue crossing point to be expressed in terms of Stokes lines or critical
trajectories. This is an important step since in concrete problems the properties of
these lines can sometimes be discussed analytically or at least numerically.
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o The line oy U a; forms an infinite horizontal geodesic through the critical point 2,
in the metric d,.

e Let us define an open simply connected domain ! C S, whose boundary is given by
MN=aUa U Uas. (4.97)

This set is then mapped homeomorphically to the strip [Imw| < [ImA;2(20)} by the
function Aj,(z) defined by (4.20).

We postpone the proof of this proposition to give the main theorem of this section and
to see through concrete examples how it applies. The proposition (4.1.2), together with
the last remark and formula (4.68) yield the following theorem, which we formulate in a
purely geometrical form.

Theorem 4.1.1 Let H(z) = (B1(z) - 81 + B2(z) - s2 + Bs(z) - s3) be a 2 X 2 matriz which
satisfies conditions I, IT and III on S,. Let ¢, be a normalized solution of the Schrédinger
equation ieyp. = Hi, such that lims,_o [|[Pi(t)¥(2)]| = 1. If there erists a horizontal
geodesic in S, (in the p-geometry, p = B? + BZ + B2), t — g(t), t € IR containing ezactly
one eigenvalue crossing point of H which is a simple zero of p, say zo, such that

t_ljrinoo Reg(t) = £

and
[Img(t)| < a, |t| large enough

then
iz |[Pa(e)elt)|P = exp {21mts (01} exp { 2 dy(a0, )} (14 O(6))

and for all eigenvalue-crossings z, k > 0, d,(zx, IR) > d,(20,IR). The geometrical factor
exp {2Im6;(0]y)} is given in proposition (4.1.1) and dy(2,IR) = Im [ e;1(z)dz.

Remark:

The adequacy of the metric d, for this problem is reflected by the expression giving the
exponential decay rate and by the fact that the relevant eigenvalue crossing point zp is the
closest to the real axis in this metric, whereas this may be wrong in the euclidian metric.
Note also that the formula giving d,(z,IR) holds because A(z) is univalued on Q. In

general A(z) is multivalued and we cannot expect a simple formula in terms of A(z) for
d,(zx,IR), k > 0.

4.1.7 Examples
Competition between eigenvalue crossing points

This example illustrates the problem of selecting the relevant eigenvalue-crossing for the
generalized Dykhne formula. In this example the relevant eigenvalue-crossing is not the
closest one to the real axis in the euclidean metric. This has the following consequence.
We could choose the width of the analyticity strip too small so that the strip contains only
the (irrelevant) closest eigenvalue-crossing to the real axis and its complex conjugate. A
local analysis of the problem as in [HP] is still valid but it leads to an incorrect result. Let
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H(z) = B(z) - s be defined by
_ 2(;: — ¢)? + b%tanh(z)

Bl(z) (z _ c)z n az (498)
_ .(z=¢)*tanh(z) — b?

By(z) = 2 G-t a (4.99)

Bi(z) = 0 (4.100)

witha> 3/2, 5> 0 and c € IR.
The singularities of H(z) are located at the points ¢ + ia and in /2 + kix, k = £1,+2,---.
Hence H(z) satisfies condition I in S3/; = {z = t 4+ is | |s| < 3/2}. One verifies that
B(t + is) tends to (2,2,0) as 1/t? when |t| = o0 in S3/2, so that condition II is satisfied.
The function

(z—c) +b*
((z=c)* +a?)

is strictly positive on the real axis and its zeros in S3/,,

p(z)=4 >(1 + tanh(z)?) (4.101)

b
Zl=i§, 22=C+%(—1+i), Z3=C+%(1+2)

and Z;, 23, Z3 are all simple. We define Q as the simply connected domain obtained from
the intersection of the upper half plane and S3/,, by removing three vertical cuts starting
at z;, 22, z3. In order to determine the relevant zero, we must study the Stokes lines
ImA;5(z) = ImA3(25), 7 = 1,2,3 in Q. We have computed these lines numerically for
certain values of the parameters a,b and ¢. For the choice a =4, b = 1.2, ¢ = 2 we have
the situation of figure (4.5) which shows that z; is the relevant eigenvalue-crossing and
that theorem (4.1.1) holds. Note that Imz; = /4 < 1.2/v/2 = Imz,.

Figure 4.5: The Stokes lines of the first example.

Remarks:

o Condition IT allows us to consider the Stokes lines in a compact subset of Q.
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o For the different values of the parameters we have considered, theorem (4.1.1) was
always true for some zero z.

o In this example Imf; = 0 since B3 = 0 (see lemma (4.1.1)).

Competition between eigenvalue crossing point and singularity

In this example we can control the position of a singularity of H in a fixed strip. Thus
the analyticity strip of the hamiltonian depends on its location. As before it is not the
fact that the singularity is closer or not to the real axis (in the euclidean distance) than
the eigenvalue-crossing which matters, but whether this is the case in the metric d, as we
shall see. Let B(z) be defined by

w

B(z) = 2(cos(a(2)),sin(a()), tanh(2)) with a(z) = § tanh (’ = c) (4.102)
where 0 < w < 1; ¢ € IR. The hamiltonian B(t + ¢s) - s is singular at the points
2w,e) = c+ 5323 +ikrw k= 41,42, (4.103)

in the fixed strip 53/, defined as above and tends exponentially fast to its limiting values
as |t| — oo with |s| < 3w/2. Hence H(z) is analytic in the strip Ss_zu_ . Moreover the
function

p(2) = 4(1 + tanh?(z)) (4.104)

is strictly positive for 2 € IR so that conditions II and III are verified. There is one pair
of eigenvalue crossing points given by z; = ir/4 and Z;. An important feature of this
example is that p is independent of ¢ and w. This implies that the p-geometry is also
independent of the location of the singularity z(w, c).

We first prove that any horizontal path y(t) over z) = i% is a dissipative path. Let
4(t) be parameterized by

7(t)=t+is,—oo$t$oo,§<s<g (4.105)
Such a path is dissipative if and only if
%ImAlz(‘)’(t)) = —Im\/m >0 Ve (4.106)
To see that this is true in our case, we consider the image of 7(t) by p(z). We compute
sinh?(2t) — sin?(2s) . 8sinh(2t)sin(2s)

pt+is)=4+4 (4.107)

(cosh(2t) + cos(2s))? + 1(cosh(2t) + cos(2s))?
thus V s € (x/4,7/2), the image of v by p looks like figure (4.6). By taking the square
root, the image of p(y(t)) is entirely in the lower half plane and condition IV is satisfied.
Remark:

The only property of the path p(7(t)) which is used is that this path does not cross the
positive real axis.

Since there exists a dissipative path we know from proposition (4.1.2) that there exists a
horizontal geodesic (in the p-geometry) passing through z; as in theorem (4.1.1). Moreover,
a qualitative study of the differential equation satisfied by the geodesic t — g(t) = ¢:(t) +

ig2(t)
91(8)Imy/p(9(t)) + g2(t)Rey/p(g(t)) = 0 (4.108)
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Figure 4.6: The image of 7 by p.
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Figure 4.7: The Stokes lines of the second example.

shows that the Stokes lines must behave as on figure (4.7). As

ImA,(ix/4) = -2 /;'/4 /1 — tan?(s)ds = ~x(v2 - 1) (4.109)

d,(z1, R) = 7(+/2 — 1). We have several cases:

o w>1/2.

In this case we can choose as dissipative path any horizontal path over the eigenvalue-
crossing z; and below the singularity z(w, c) of H. Therefore theorem (4.1.1) can be
applied.

o w<1/2

Here the above choice of 7 does not work because the singularity of H is always
below v, since 4 must go over z;. However, the Stokes lines are independent of w
and c.

~ Hence, as long as z(w,c) is above the Stokes lines, there exists an infinite

geodesic passing through z; which is entirely in the analyticity domain of H(z2)
and therefore theorem (4.1.1) is valid. We obtain

lim 12640l = exp { ~27(vE - 1) exp(2Emtn) } (1 + Oe)).  (4110)
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In this example it can be shown that we have a non trivial geometrical factor,
Imé; < 1, if w is not too small. Note that in the above two case

d,(z1, R) < d,(2(w, ¢), IR). (4.111)

— Finally, if the singularity is below the Stokes lines, we cannot prove the general-
ized Dykhne formula with the method described above, since the hypotheses of
theorem (4.1.1) are not fulfilled. Nevertheless, we can prove upper bounds for
the transition probability, using the complex time method as shown in appendix

(4).

Proof of proposition (4.1.2):

1) We assume that ¥ is parameterized by t € IR. Let us consider the branch of A such
that ImA(5(t)) is non-decreasing in t. The image of this part of ¥ by A is a simple path
from w; = A(5(t1)) to w2 = A(3(t2)). Indeed, if ImA(5(t)) is constant on some interval
then ReA(7(t)) is strictly increasing or decreasing on that interval. Elsewhere ImA(7(t))
is increasing. We choose ¢; and t, > ¢, and consider only the part of 7 for t € [t;,¢;]. We
can approximate this path from w; to w; by a polygonal line ¢ — p(t) made of horizontal
and vertical euclidean segments such that Imp(t) is non decreasing, see figure (4.8). Taking

L4

D

(0,0} =—=37

T

b {\,J}<—>-2—

o

Figure 4.8: The image of p(t) by A(z).

the image by A~1! of this line we get a geodesic polygonal line in the p-geometry which
approximates the path ¥ for ¢ € [t;,2] (The inverse map A~! is well-defined locally). Let
us suppose that ¥ is not simple. Then there exist ¢; and £, > t; so that J(t;,) = 5(¢;). We
can assume that ¢ € [t;,¢2] — () is a simple closed path. This path can be approximated
by a simple closed geodesic polygon. The interior angles of this polygon are equal to 7 /2
or 37/2 by conformal invariance. Since Imp(t) is non decreasing the number of interior
angles with §; = x/2, N(7/2), and the number of interior angles 8; = 3r/2, N(37/2),
satisfy the inequality

|IN(3%/2)— N(x/2)| < 2. (4.112)
Indeed, between two successive vertical segments of the image of p(t) by A, N(x/2) =
N(37/2). Then by considering the different possible configurations at the extremities of

A(p(t)) we obtain the above inequality (see figure (4.9)). The application of Teichmueller’s
lemama with n; = 0 and m; = 0 yields

1> Z (1 - 220—7’;) =2 (4.113)
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Figure 4.9: The different configurations at the extremities of A(p(t)).

so that we get a contradiction which proves 1).

2) The geometry of the trajectories is well-understood in the regions |Imz| < a and |Rez|
large enough. Indeed, in these regions p is essentially constant and tends to positive
values as |Rez| — o0. Therefore, the p-geometry is essentially the euclidean geometry.
The trajectories are essentially horizontal in the euclidean sense and the vertical straight
arcs are essentially vertical lines in the euclidean sense. Thus we can find a pair of points
z,, on the negative real axis, and z; = (t;) which can be joined by a vertical straight arc
71 in E. Similarly there exists a pair of points z,, on the positive real axis, and z; = (¢;)
which can be joined by a vertical straight arc 4, in ¥. Moreover the curve I' which is
composed of 7;, 72, [21,22] and the part of 5 for ¢ € [t;, 2] can be assumed to be simple
and closed (see figure(4.10)). For later purposes we denote by T’ the bounded region with
boundary I'. As above we approximate the curve by a geodesic simple closed polygon. In

i

Figure 4.10: The domain ¥'.

this case, by adding the interior angles §; = x/2 at 21,21, 22 and z;, we have (see figure
(4.10))
|N(3%/2) — N(x/2)] < 6. (4.114)

Hence by Teichmueller’s lemma
8
E,- m;+ 2 Ej (1 27r) <3 (4.115)

so that there is at most one critical point in £. There is in fact exactly one critical point
otherwise (4.65) and (4.66) could not be true.
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3) If a; and ay are not distinct, then they coincide. Let us suppose that this is the case.
Then a; and 2y, the critical point in X, form a simple closed geodesic polygon. Applying
Teichmueller’s lemma with one interior angle of value 8y = 27 /3 at zp with no = 1, we get
a contradiction.

4) Let us consider the set T’ with boundary I' defined in 2). Let A(z) be the analytic
continuation in ¥'\{zo} of the function

2 /Z e1(#')dz' (4.116)

defined in a neighborhood U of z (the integration path being in U). This function is
2-valued since zp is the only critical point and there exists C' < co such that

[ReA(z)| < C (4.117)

for any z € Z'\{20} and any value A(z) over z. If we follow a branch of A(z) along
then ReA is strictly increasing or strictly decreasing. More precisely, since

LImA((t) = ~Redi(t)lmy/ploa(0)) ~ Imds(t)Rey/p(au(?))
= 0 (4.118)

we can choose the parameterization

Reau(t) = Rey/(a)
Imés(t) = —Imy/p(o(?). (4.119)
In this case d
IaReA(a,-(t))I = |Aa(t))| > d > 0. (4.120)

Thus inequality (4.117) implies that a; must intersect I'. However, each vertical straight
arc 4; of T can be intersected by at most one a; and only once. This follows again from
Teichmueller’s lemma. Since the real interval [2;, 2;] is an horizontal straight arc it cannot
be intersected by a;, as or az. Thus one of the a;’s, say as, has to intersect ¥.

Let us suppose that «; intersects 5 at (¢3) and a; intersects at §(¢;). We may suppose
that #; < t;. Let o’ be the part of a; between 2z, and %(¢;) and a” be the part of a3
between F(t3) and zo, see figure (4.11). Then the path o' followed by the part of ¥ with
t € [t1,t3] and then followed by a” is a path along which ImA is non decreasing for the
analytic continuation of A along this path. By point 1) this path is simple and if we add to
it zo we get a simple closed path which can be approximated by a simple closed geodesic
polygon. The angle at zp, the critical point, is 27 /3 or 47 /3 and for the other angles
(4.112) holds. Again, we obtain a contradiction from Teichmueller’s lemma. Note that
the same argument shows that the set of intersection points of any a; with ¥ is connected.
From this fact the first part of the proposition is completed. We consider now the converse
statement. Let us first note that the hypothesis imply that there is no critical point in
the open set between the real axis and the geodesic ¢ = a; U a; (this follows again from
Teichmueller’s lemma). We know from the remark following the proposition that A is
univalued in this region and also that d,(2x, IR) > d,(20,IR) if k > 1. The result is proven
if we can find a path ¥ satisfying condition IV. We assume that the parameterization of
the geodesics a; are natural for j = 1,2. By hypothesis a; and a3 are critical trajectories.
Let a3 be the third critical trajectory having 2o as accumulation point. Let U be a small
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Figure 4.11: The segments &’ and a”.

Figure 4.12: The critical trajectories in U.

disc of center zyo. The three trajectories a;, a2 and a3 divide U into three sectors as in
figure (4.12).

Let 2/ € Uy and let u — v'(u), v € (u.,ul) be the trajectory passing through 2. We
assume that the parameterization is natural and is chosen in such a way that 7/(0) = z'.
Since condition II holds, we have that u/. = —co if 2’ is sufficiently close to z and that
7'(u) = ay(u) for all u < 0 if 2’ tends to zg. Similarly if 2/ € U,, then the trajectory 4"
through 2" can be parameterized by u € (u”, o) in such a way that v"(0) = 2" and v"(u)
tends to az(u), u > 0 provided 2” is near z9. Let 4" be the vertical straight arc through
2’ and let us choose 2" on 4"’. We can do this so that the trajectories 4’ and 7" have the
above properties. The path ¥ is defined as the composition of the path 4’ ,the part of 4"
between z' and 2", and 7”. Let Ay, be the analytic continuation of A, along 7, starting
from some disc V' containing 7'(u), © < 0. If u tends to —oo, then we have

ImA(7/(—0)) = ImA;12(7(—0)) < ImA;3(cy(~o0)) (4.121)
This implies that
ImA(z') < IInAlz(Zo) (4122)
and
M(Z”) > MAlz(Zo) (4123)

Therefore the path 5 has all required properties.
a
Now that we have dealt with the generic case, we turn to the study of situations where
several eigenvalue crossing points lie on the same Stokes line.
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4.2 Interferences

Suppose we have at hand a time reversal hamiltonian, H(t) = H(-t), driving a two-level
system which satisfies conditions I to III. The function p thus satisfies p(z) = p(-z), and
consequently the pattern of Stokes lines in the complex plane is symmetric with respect
to the real and the imaginary axis. Suppose there exist two zeros of p(z) in the upper half
plane, which are not on the imaginary axis. Then, either the Stokes lines do not cut the
imaginary axis, and thus will not meet, or they will cut the imaginary axis and connect
both zeros. The preceding argument shows that this situation is worth being studied
since realistic models are often time reversal (see [NU]), and it can occur for more general
systems as well.

Let H(z) be a two-level hamiltonian satisfying conditions I to Il and the new condition
V. Infinite Stokes line through N zeros
There exist N eigenvalue crossing points zg, - --,2N-1 which are simple zeros of p in the
upper half plane and a Stokes line t — 4(t), t € IR in S, passing through 2, --,zN_1
such that

t_l'l:rtnooRe'y(t) =100 end |Imy(t)| < a.

Proposition (4.1.2) shows that it is not possible anymore to find a dissipative path above
any of the zeros z;. Let us consider the domain Q whose boundary is given by 99 =
7 U¥. The interior of {2 contains no eigenvalue crossing point as is readily seen from
Teichmueller’s lemma. Indeed if |T'| is large enough, we can find two vertical straight arcs
v4 and v_ leading from v(£T) to 4(2T) and any zero 2; of p(2), j = 0,---,N — 1, is
such that |Rez;| < max|Rey(+T)|. Thus the boundary of the subset of  we have just
constructed is a geodesic polygon with interior angles = /2 at 4(+7T) and 4(£T) and 2x/3
at the zeros {z;,%;}, j = 0,...,N — 1. Applying Teichmueller lemma, we see that Q2
contain no eigenvalue crossing point. Thus, in this simply connected domain {2 containing
the real axis, the analytic functions with have encountered so far will be univalued.

The idea is to integrate the differential equation (4.23) for the coefficients in Q directly
along the Stokes line leading from —o0 to +o0. The main problem is that since equation
(4.23) is not defined at points of X, we have to leave the Stokes line in neighbourhoods
of z;, =0,...,N — 1, to avoid these singularities. Hence, in these neighbourhoods, the
paths we use to connect in ) two consecutive branches of Stokes lines which meet at z;,
cannot be dissipative. Nevertheless, we can express the solution of (4.23) on the second
branch of Stokes line as a function of the solution on the first branch and of the circuit
matrix W(0}y).

Let us consider the eigenvalue crossing zp. By condition V, in a neighbourhood of
zo we have the structure of Stokes lines depicted in the figure (4.13). The dashed lines
represent the level lines

ReA(z) = ReA(2) = cst (4.124)

of a branch of A(z) = [ \/p(u)du and are also called anti-Stokes lines. Let us fix a branch
of A(z) by requiring

Z

A(2) = Apa(2) = /0 _\Jo(u)du VzeQ, (4.125)

where /p(u) is the analytic continuation for u € © of \/p(t), t € IR. Now, we can continue
this branch of A around zp up to a cut which we introduce in order to deal with univalued
functions only. Thus we consider the situation represented in figure (4.14). The equation
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Figure 4.14: The cut neighbourhood of 2.

we are interested in reads
e (2) ay2(z) exp {%A(z)} c2(z)

c(z) = agl(z)exp{—éA(z)}cl(z) (4.126)

where ag; are given in (4.24). Since we are close to zg, we "normalize” the solution by
explicitly putting the value exp {iA(zo)} = exp {;;Ao} into the game, i.e. we consider

&(z) = al2) .
6‘2(2) = Cz(Z) exp {éAo} . (4.127)
satisfying

') = au()er{2(A6G)- A0} &)

&'(2) = an(z)exp {—%(A(z) - Ao)} a(z). (4.128)
Let us denote by V(z,z') a fundamental solution of the system
LA(z)- A
iV(z, Z) = 0 @r2(z) exp {‘( (2) 0)} V(z,2')
dz an(2) exp {-£(A(2) - Ao)} 0

(4.129)
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with initial condition V(2’,2') = I. Qur problem amounts to compute V({z,{o) to the
leading order in ¢ (see figure (4.14)).

4.2.1 Adaptation of Froman Froman’s Method

Let us perform an integration by parts in the Volterra equation corresponding to (4.128)

G5 = &)+ 22 wen {2(am - a0)} &W

z
z!

- a () wer{iaw- a0} aw - [ a2t waw
&) = a()- S Bwer{-Haw- s} aw],

+ 5[ 0 () e {-aw - 20} aw)

+ 3 / " 4B ()5 () (4.130)

Supposing there exists a dissipative path 4 from 2z’ to z, we can get information on the
leading term of V/(z,2') by the following method. Consider the solution of (4.128) with

initial condition oy
( 218% ) - ( (1) ) (4.131)

at z = 2. From (4.130) and the fact that ImA(z) is non decreasing along 4 we obtain
with the notation || f|| = sup,¢., |f(u)]

G < 1+ek (Jal+ e {28 - o)} &) vze, (4.132)

and

exp { A(2) - Ao) | &(2)

<et(lal+lem{ia-antal) 1)

where k is some e-independent constant. Taking the supremum over z € ¥ and summing
the resulting inequalities we have

i 1
&1 -(A- &) < <k .
liéll + Nl exp {e(A Ao)} Gl s 75z <% (4.134)
for ¢ small enough so that we can write
&i(z) =1+ O(e) a()=1

&(2) = O (cexp {2 In(A(z) - A0)}) &(#) =0 (4.135)
for any z € v. These relations give the leading order of the matrix elements v;;(z, z’) of
the first column of V(z,z'). Now consider (4.130) along a path 4’ leading from 2’ to z
which is antidissipative, i.e. such that ImA is non increasing along 4'.

By similar computations, we can get information in this case on the solution with
reversed initial conditions, i.e. &(2') = 0 and &(2’) = 1. We have

exp {-2(8() - A0) } 4(2)

<k (lal+lep {-2(a- a0} al)  (4139)
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and .
@@ <1+t (Ia]+ e {-2A-An)}all) Vaeq,  (428)
which implies, after taking the supremum over z € v/
~ i ~
Il + llesp {-2(A - A0)} &l < # (4138)
if € is small enough. Hence the estimates
-~ — 1 - 54 —_
G(:) =0 (¢ exp {~1 Im(A(2) - A0)}) a(2)=0 (4.139)
&(z) =14 O(¢) &) =1
for any z € 4'. From (4.135) we have along a dissipative path

Y oz, %) ) : (4.140)

V(z,2) = ( ) (s exp {% Im(A(z) - Ao)}) v22(z, 2')

Then we make use of the identity det V(z,2') = 1 to write
R 725 | " v22(z,7")  —v12(z,7)
V(z',2)=V7(2,2) = ( —on(z7)  vn(z2) | (4.141)

Remarking that as 4 is a dissipative path leading from 2z’ to z, the reversed path
v' = 47! from z to 2’ is antidissipative so that we can use (4.139) to obtain the leading
order of the second column of (4.141). Thus we can write

—vg(57) = O (e exp {-é Im(A(2') - Ao)}) (4.142)
recalling that the roles of z and 2’ are reversed here. Finally, if there exists a dissipative
path leading from 2/ to z, the solution of (4.129) has the form

V(z,2) = (4.143)
1+ 0(c) O (e exp {~1m(A(z) - Ad)})
( O (eexp {Lim(A(2) - Ao)}) 1+ O(c) + O (e* exp {2 Im(A(2) - A(2'))}) )

where we have used det V = 1 to estimate v,2(z, 2’). Moreover, we can compute exactly the
circuit matrix V({o, (¢) by means of the relations (4.68) and (4.69) obtained in paragraph
(4.1.5)

alz) = exp{~ia(0ln)}exp { - [ ea(2)dz  &3()

c2(z) = exp {—i91(0|no)}exp{—;/;oel(z)dz}éi(z) Vz € S\X. (4.144)

Let us recall that here 7 is a clockwise oriented loop around zp, which is based at the
origin, and &;(2) the analytic continuation of ¢;(z) obtained after a revolution around 2o
in the negative sense (see figure (4.3)). Passing to the variables ¢; we can write thanks to
(4.144)

G(6) ) _ &(G)
(3)) = veo(3E)
( exp {161 (Olno)}exp { £ f,, ex(2)dz} exp { £ A0} &(G0)

exp {#02(0|n0)} exp {% f,,o ez(Z)dz} exp {i'AO} (o) ) (4.145)
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Now we use the fact that

Do = Ags(z0) = /m ex(2)dz = — /m ex(2)dz (4.146)
to get
V0= ap iy 55 (4167

with the notation ;0 = 6;(0|no).

Lemma 4.2.1 Let V(z,2') satisfying (4.129) and (;, j = 1,---,6, be defined in figure
(4.21). Then we have the asymptotic behaviours

V(¢2,6) = ( 1 0 ) + O(¢)

exp{—ib o} 1
V6t = (apling 1)+00
V() = ((1] _exPi{iol’O})+O(e).

with 610 appearing in (4.147).

This lemma tells us how the solutions of (4.128) change when we pass from one branch
of Stokes line to another. We go on with the consequences of this lemma and we prove it
at the end of the section. It remains to estimate these solutions along Stokes lines with
any initial conditions of order 1 in ¢. Considering (4.143) along a Stokes lines 4 containing
no eigenvalue crossing, we obtain at once

(8)-(0)(8) o0 o

for all z € v, since ImA(z) = ImA(2z’) = ImAy on v, provided

G (')] + 1&(2') = 0(1). (4.149)

é(cz)
( &(¢2) )

Thus we can write

V(¢2,€0)V (¢o, —0) ( (1) )

( ! )+O(e) (4.150)

exp {_iol,O}

and by (4.127)

alz) \ _ ‘ 1+ O(¢)
( e2((2) ) B ( exp {~A(z0) } exp {~if0} (1 + O(¢)) ) - (415

Now, we repeat the whole procedure along the branch of Stokes lines leading from (> to
a neighbourhood of z;, defining a new &;(z) by exp {éA(zl)} c2(2). The local analysis
around z; is the same and it suffices to replace #; o by 61,1 = 61(0|m) where 7, is a loop
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based at the origin encircling z; with negative orientation. Note that the new initial
condition at {, for the new ¢;’s are

&(6) ) . 1+ O(e) ) B
( C';(C:) ) B ( exp { {(A(z1) — A(z0)) } exp {~ib10} (1 + O(e)) | = o) (4152)

so that we are exactly in the same situation we were in at —oo on the Stokes line. We can
thus summarize this analysis in the

Proposition 4.2.1 Let H be a two-level hamiltonian satisfying conditions I, 11, IIT and V.
Then, the coefficients c;’s defined by (4.21) with initial condition ¢;(—o0) = 1, ca(~o0) =0
have the asymptotic behaviours

a(+0) = 1+ 0(e)
ea(400) = "z"exp{-;m,-)}exp{-wl.,-no(eexp{;mw})

=0

where 6, ; = 6,(0|n;) are given in proposition (4.1.1), n; being a closed loop based at the
origin, encircling z; in the negative sens.

Note that in this formula ImA(z) = ImA(z;) < 0, = 0,---, N — 1. This proposition,
which is actually the main result of this section can be rephrased in geometrical terms
only by using the metric d,.

Theorem 4.2.1 Let H(t) be a two-level hamiltonian satisfying conditions I, II, III and
V and let 1.(t) be a normalized solution of the Schréodinger equation icyp, = H1p, such that
lim; oo || Py (£)¥e(t)|| = 1. Then the transition probability P2;(e) = Limy— 400 || P2(t)¥e(t)]|?
in the adiabatic limit is given by

N-1 i , : 2
Pale) = Z_‘a exp { -2 /n | el(z)dz}erp (i)} +0 (e exp {ZImA(zo)})
2 N-1 N-1
= exp {—;dp(zoJR)} {Z exp {2Im8;(0,7;)} + 2 ) exp {Im(6:(0, n;) + 61(0, m))}
7=0 i>k

X cos {%d,,(z,-, 22) + Re(81(0, 1) — 610, n,-))} + 0(5)] :

Remarks:

e When there is only one eigenvalue crossing point on the infinite Stokes line, we
recover theorem (4.1.1) without loss on the correction terms. This is not the case
when we use the standard stretching and matching techniques of asymptotics analysis
(see [TMP]).

¢ In this formula, the eigenvalue crossing points z; must be ordered according to their
index on the infinite Stokes line, zy being the closest to —oo and zy_; the closest to
+00.

e The loops 7; by means of which we compute the analytical continuations of the
dynamical phases and the geometrical phase factors are all based at the origin.
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Proof: The second formula is obtained by expanding the modulus. Then we use

A(zj) = - /ozj \/;(j)dz = /ﬂ e1(2)dz (4.153)

and the fact that the z;’s are located on a horizontal geodesic in the metric d,. Thus we
have d,(z;,IR) = d, (20, R) and

dp(20, R) = [ImA(2)| (4.154)

(see paragraph (4.1.6)). Moreover, we have
ReA(z;) — ReA() = Re / * Jo(z)dz (4.155)
zj

where the path of integration is in 2. Choosing the geodesic as integration path we obtain
the formula

ReA(z;) — ReA(z) = +d,(zj,22) if jSEk. (4.156)

Indeed, the geodesic v(t) is applied by A(z) on the straight line Imw = ImA(zp) < 0 and
we have lim¢ 1. ReA(y(t)) = Foo. As the z;’s are met along 4 from —o0 to +o0 in
sequence, the formula follows.

4.2.2 Example of Interferences

Let us now turn to a family of examples which will provide a wide variety of behaviours in
the leading term of the asymptotic transition probability, as well as emphasize the global
character of condition V. Let H(t) = B(t) - s be defined by

_[(t+at Bt 7't

where o/, #’ and 4’ are constants to be determined later and d is a large constant. Again,
hypotheses I to III are easily verified. The function p(2) is

26+2alz4+(a12+ﬂ12)z2+712 _ 26+a24+ﬂ22+7

p(z) = e = P (4.158)
and we choose the constants appearing in (4.158) in such a way that the simple zeros of
p(z) are z; = b+ ic, z; = ia, z3 = —b + ic and their complex conjugates. Thus we must

have

Y CEENICEEA[CEENEES A CEE GRS (6.159)

and by expanding and comparing the coefficients of the powers of z we obtain
a = 2a =a+42(c?-b?)
B = o?+p%=(+) +2d%(? - b?)
v = 42 = (b + ) (4.160)

Then the magnetic field B(t) is completely determined with

2
(B =x4/8 - QT 7 = 27 (4.161)

o =

R
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In order to have a real magnetic field for real values of z, we have to impose

az
B-520 (4.162)

which in terms of a, b and ¢ reads 2¢c > a. We choose the valuesa=1/2,c=1and d =2
and keep b as a parameter of the model. By analyzing the model we can see that there
are two different regimes characterized by b6 < 1 and b > 1 separated by a limiting case.
By a numerical investigation we have obtained for three values of b, b; = 3, by =~ 3.88,
by = 5, the Stokes lines displayed in figures (4.15), (4.16) and (4.17). These figures lead

o

/\jz2
R

Figure 4.15: The Stokes lines for b = b; = 3.

R

Figure 4.16: The Stokes lines for b = by ~ 3.88.

to the following conclusions about the leading term of the transition probability:
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R

Figure 4.17: The Stokes lines for b = b, = 5.

o In the case b = by, there is an infinite Stokes line passing through z; only, the closest
eigenvalue crossing to the real axis in the euclidean and the p-metric(see paragraph
(4.1.6)). Thus the leading term of the transition probability can be computed by
means of the analysis given in section (4.1).

¢ In the case b = by, there is an infinite Stokes line passing through z;, 2; and z3,
and the analysis developed in this section is necessary. Thus the leading term
of the transition probability will display the interference phenomenon described
above. Note that the euclidean distance between the real axis and z; (or 23) is

greater than between 2, and the real axis, although we have in the p- distance:
d,,(zl,m) =dp(z2,1R) =d,,(23,1R).

¢ In the case b = b;, there is an infinite Stokes line passing through z; and z3; only,
showing that: d,(z1, IR) =d,(z3, IR) <d,(22,IR) although the contrary is true in the
euclidean metric. In this case too, an interference phenomenon, governed by 2; and
23, will take place in the leading term of the transition probability.

We have also computed the values of exp {—; ;} numerically and plotted the lead-
ing terms of the tranmsition probability in the different cases considered. See figures
(4.18),(4.19) and (4.20).

P21(€) ~ €Xp {'i'lﬂlAlz(Zz)} ifb= bl =3 (4163)

Pale) ~ exp {%ImAlg(zl)} {exp {2Im6, ;} + exp {~2Imé; 1} + 1
+ 2exp {21m01'1} cos [%Re(Alg(Zz) - Alz(zl)) + Re(01,2 - 01,1)]

1
+ 2 exp {-—211’1‘101,1} cos [;Re(Alz(Zl) + A-m(Zz)) + Re(01,1 + 01’2)]




82

CHAPTER 4. COMPLEX TIME METHOD

+ 2cos [%ReAu(zl)]}
if b= by ~ 3.88

and

(4.164)

Pale) ~ exp {gImAw(z])} {exp {2Imb, 1} + exp {—2Imb, 1} + 2 cos [-f—ReAlz(zl)]}

ifb=10b, =5.
Pai(e)
1
o8
06 1
04 +
02}
1/e
2 4 6 8
Figure 4.18: Py (¢) forb=b, = 3.
5 -
[ Paale)
41 ”
3
2
il
1/e

2 4 6

Figure 4.19: P2;(¢) for b = by =~ 3.88.

(4.165)
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’ Pa(e)

Figure 4.20: P () for b = b, = 5.
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Proof of lemma (4.2.1:)
Let us consider the existence of dissipative paths around zp, passing through the different
points j, § = 0,---,6. As the points (; are in a neighbourhood of zp, we can easily
construct a ring of dissipative paths around z¢, as shown on figure (4.21), where the
arrows give their direction. Before starting the computations, let us describe the strategy

Sy

|
! &1
Figure 4.21: Ring of dissipative paths around zg.
we shall follow. We consider the identity

V(€1,60) = V(¢1,2)V(¢2, o) (4.166)

and we express three matrix elements of V((,, (o) as a function of the fourth one and of
the matrix elements of V((1,(2) and V((;,{o). For these matrices the estimates (4.143)
hold. Then we eliminate in these expressions the elements v22(u, ¢ ), for which we have
no useful estimation here, by means of the identity

det V((y, &) = 1. (4.167)

Finally we determine the fourth matrix element of V({2,¢{o), which will be v2;({3, (o),
by using algebraic identities on the matrices V((,,({,) and the explicit form (4.147) of

V(COa CG)
Let us introduce the short hand
vij (8, v) = 045(Gs G0)- (4.168)
We consider the general relation
V((u«l-h(u) = V(Cv+ly(v+2)V(Cu+27 Cu) v S 4 (4169)
and
detV((,, &) =1 Vy,p (4.170)

These equations lead after simple algebraic manipulations to the expressions

m(v + 1,v) N vi2(v+1, v+ 2)
011(V+1,V+2) ‘011(V+ 1,V+2)
vp2(v +2,v) = vl:}f:(-:i’;jf) + ::EZ -_:: i::;vn(" +2,v)

vi2(v + 1,v) N vi2(v + 1, v+ 2)
m(v+1,v+2) vi(v + 1,v)
via(v + 1, v)v2(v + 1,v + 2)

- 2,v). 171
vu(x/+1,y)vu(y+1’u+2)v21(v+ V) (4 )

m(r+2,v) = va1(v + 2,v)

vi2(v +2,v) =
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When v = 0 or ¥ = 4 we have the estimate (4.143) for V((,+1, () and V{41, (+2), and
by definition

ImA({) = ImA((42) = ImA,. (4.172)
For example the element v12(v + 1, v + 2) satisfies
va(v +1,042) = O (e exp {—%Im (A +2) - Ao)}) = 0(e). (4.173)

Thus we obtain the following asymptotic relations from similar computations on (4.171)

mv+2,v) = 14+0()+ O(e)va(v + 2,v)
vae(v + 2,¥) = 14+ 0(e)+ O(e)va(v + 2,v)

vg(v +2,v) = O(e) + O(e* v (v +2,v) (4.174)
when ¢ is small enough. At that point, we consider the formula
V(¢35 62)V (€2, €0)V (€0, C6) = V(€35 $a)V (€4, C6) (4.175)

and in particular the equation giving the 22- and 21-coefficients
'021(3, 2)'011(2, 0) exp {iol.o} + 022(3, 2)021(2, 0) exp {2'01,0} =
v21(3,4)v12(4, 6) + v22(3,4)v22(4,6)
V21 (3, 2)‘012(2, 0) exp {‘ioz,o} + 022(3, 2)022(2, 0) exp {i02‘0} =
v21(3, 4)v11(4, 6) + v22(3,4)v21(4,6). (4.176)

The matrix elements of V({3,{s) and V({3,(2) can be estimated by means of (4.141) and
(4.143) and we get in particular

v21(3,2) = 0(5) , ‘021(3,4) = 0(6),
v22(3,4) =1+ O(e) , v22(3,2) =1+ O(¢). (4.177)
Inserting these estimations together with (4.174) in the above two relations yield
‘021(2, 0) = €xp {—i01,o} + 0(6) + 0(6)021(6,4) + 0(62)‘021(2, 0)
v1(6,4) = —exp{ifso} + O(e) + O(e)v21(2,0) + O(e*)v21(6,4).  (4.178)
We have also used the identity V' ({s,{s) = V~1({s,{s) and and the fact that exp {i6;,0} is
independent of €. These expressions imply
[v21(2,0)] < k(L +elva1(6,4)| + €%|v2(2,0)])
lv21(6,4)] < k(1 + elva(2,0)| + €[v21(6,4)]) (4.179)

where k is some constant independent of ¢ and it remains to sum these inequalities to get
for £ small enough

[v21(2,0)| + {v21(6,4) < ¥, (4.180)
for k' another constant. Coming back to (4.178) we have

v21(2,0) = exp{-ibio}+ O(c)

‘021(6,4) = =—€xp {‘wz,o} + O(e) (4.181)
Thus, using these formulae in (4.174), the relation (4.44) and the identity
V(C4, CZ) = V((4, CG)V(CGa CO)V(CO3 42)7 (4182)

we eventually obtain the results of the lemma.
0
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Chapter 5

Combination of Both Methods

5.1 Full Asymptotic Expansion of Py (¢)

We come back in this section to generic two-level systems for which an asymptotic formula
for P21(€) can be obtained, using the complex time method of paragraph (4.1.5). We show
here that by combining the iterative scheme of chapter (3) and this complex time method
it is possible to obtain a more accurate asymptotic formula for P»;(¢). We first improve
the relative correction between the leading term and P;(¢), given by the ratio between
P21(¢) and this leading term, from € to €9, for any integer ¢. As a consequence we shall
see that the logarithm of P,;(¢) possesses an asymptotic expansion in powers of ¢, up to
any order. The second result, which is based on the optimal truncation of the iterative
scheme, yields a relative error term of order exp {—7/¢}, for some 7 > 0.

5.1.1 Iterated Two-Level Systems

Let H(t) be a two-level hamiltonian satisfying conditions I to ITI. Using the same notations
as in chapter (4) we recall that the eigenvalues and spectral projectors of H(t) = B(t) - s
are given by

es(t) = (~1¥3/p), o(t) = B(2) + BA(2) + B3(o),

P;(t) % (I+ (-1)"%) : (5.1)

An analytic choice of corresponding eigenvectors ¢;(t) is provided by

@;(t) = W(t,0)p;(0) (5.2)

with
B()AB(@)
p(t) ’
In chapter (4) we expanded the solution ,.(t) of the Schrédinger equation on the eigen-
vectors, and we made use of the multivaluedness of these quantities in an essential way to
obtain an asymptotic formula for P21(¢). The idea now is to construct a more suitable set
of basis vectors by means of the iterative scheme of chapter (3) on which we shall expand
the solution v.(t). Then we shall follow essentially the same strategy as above to obtain
an asymptotic formula for the transition probability P2;(¢). But the use of the iterative
scheme will allow us to obtain a better approximation of P2;(¢).

iW'(t,0) = K(t)W(t,0) = W(0,0)=I (5.3)

87
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Let X = {zk,fz';}f___'ol be the set of zeros of p(z) in S,. We assume that condition IV
holds for zp € X, i.e. that there exists a dissipative path 4 passing above z;. Let 2 be in
the complement of X. We consider now the iterative scheme (3.2) with

=

Ho(:)= H(z), Po(2)= Poa(s) = 5 (JI— B\(/Zﬂ) . (5.4)

At the first step we have

Hl(z,e) = H(z) - EKo(Z)

(B(z) + eB_(z)_,;/(_\z_)BM) .S
= Bj(z,¢)-s. : (5.5)

The 2 X 2 matrix H, is meromorphic in S,, and all its poles, if any, coincide with the
points of X. We thus see that the iterated hamiltonians are not necessarily holomorphic
in S;. Let

p1(Z,€) = B?,l(z’e) + B?.z(z’e) + B§,3(275)' (5°6)

The eigenvalues of H,(z,¢€) are given by

e1i(5,6) = (-5 /() i=1,2 (5.7)

where the branch of the square root is chosen so that
limer;(2,¢) = e5(z). (58)

Then we define P; j(z,¢),7 =1,2 by

(pe) = _1yiBuze) s
P j(z,€)= (I-{-( 1) %m) (5.9)

and we compute (see (5.3))

By(2,6) ABi(2¢) _

Ki(z,6) = 5.10
&= (¢10)
Thus by iterating the procedure we obtain at the ¢*® step
Hy(z,e) = By(z,¢)-s
B,-1(z,6) AB._,(z,¢€)

B.(z,6) = Bg_1(z,€) +e— 2

Q( ) q 1( ) pq-1(2,5)
pq(z, 6) = BZ’I(Z, 8) + Bg,z(z, 5) + Bg,z(z, 5) (5.11)

as long as z is not a zero of p;(2,€),j =0, -, ¢ — 1. The eigenvalues of Hy(z,¢) are given

by
0i(2:€) = (1) 31/pe(2,6). (5.12)

and the branch is fixed as above by imposing e, j(z,€) — e;j(z) when ¢ — 0. Let r be
some fixed small positive number and let

D(zi,r)={z:|2— z| < r} (5.13)
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be the disc of center 2, € X. We define the set

Q =25\ U D(z,r) (5.14)
5n€X
and we choose r so small that
D(z,r) C Ss (5.15)
D(z,7) N D(z,r)=0 Vk#1 (5.16)
D(zx,7) N R=10 (5.17)
D(z,r) N =0, Vk=0,---,N-1. (5.18)

where 4 is the dissipative path of condition IV going above 2. The next proposition
describes the general features of the iterated hamiltonians defined on §2.

Proposition 5.1.1 There ezist constants a, ¢ end d, an integrable decay function b(t)
and a positive €* such that for any e < €* and for allg < N*(e) = [ﬁ]

i) The hamiltonian Hy(z,e) = By(z,¢) - s defined by (3.2) and (5.11) is analytic in Q.
i1) There are no eigenvalue crossing points of Hy(z,€) in .

it1) The variation (in the positive sense) of the argument of

Po(z,€) = 33,1(3:5) + Bg,z(z’e) + B:,s(z»e)

around the boundary of D(z,7) is 27.
)
| Kq(2,8) ~ Kq—1(2,€)|| < B(t)e?d?c?q! Vz=t+is€ Q.
v)
1K o(z, )] < b(t)& Vz=t+is € Q.

Proof: We shall use proposition (3.2.1) to prove these results. Let z € Q. By construction
of 2 and by analyticity there exists 7(z) > 0 such that the hypotheses of proposition (3.2.1)
are verified for all z’ € D(z,7(z)) (see paragraph (3.2.1)). Note that the constants a, b
and ¢ in this case depend on 7(z). Moreover, it follows from condition II and lemma
(2.2.3) that there exists T > 0 and r > 0 such that proposition (3.2.1) holds in the sets
D4(T) = {z =t+is|t 2 +T, |s] < r} with b replaced by an integrable decay function b(t).
Now, as the set Q\(D; U D_) is compact, we can cover it by a finite number of open discs
D(z,7(z)). Thus adding D and D_ we obtain a finite covering.of by open sets in which
proposition (3.2.1) holds. Hence we can find constants a and ¢, which are independent
of z, and an integrable decay function b(t) such that proposition (3.2.1) holds for any
z=1t+is € Q. From this follow the existence of d and the definition of N*(¢) such that
point 1), iv) and v) hold if ¢ is smaller than some finite ¢;, provided ¢ < N*(¢). As a
consequence of v), we can write

Hy(z,€) = H(z) — €eKq_1(2,¢€) (5.19)

with K,-1(2,€) uniformly bounded in 2, € and ¢, if ¢ < €;. Thus we can apply perturbation
theory to show that point ii) holds provided € < ¢2 , where ¢, is uniform in z and ¢. Indeed,
by construction of £, there exists R > 0 such that p(z) given by (5.1) satisfies

le(z)| > R Vz € Q, (5.20)
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so that

le;(2)] = %]Mp(z)l > %\/ﬁ i=1,2. (5.21)

Since Hy(z,€) is traceless, the eigenvalue crossing points are characterized by e, ;(z) = 0.
Then by perturbation theory and uniformity of || K, ]|

leq,i(2,€) — ej(z)| < ke (5.22)

where k is a constant uniform in z and ¢ so that if ¢ < €3, |eg j(2,€)| > 1VR > 0 for any
z € Q, and ¢ < N*(e). To establish iii) we use the argument principle. From (5.11) and
v) again, we can write for ¢ < &,

By(2,€) = B(2) 4+ eRy(2,¢) (5.23)

where Ry(2,¢€) is an analytic vector such that max;-) 2 3|R, ;(2,€)| < R’ where R’ is a
constant uniform in z € Q and ¢ < N*(¢). As a consequence

pqe(2,€) = p(2) + erg(2,¢) (5.24)

with |rg(2,€)| < 7/, »' another uniform constant. Then, there exists €3 > 0 such that if
€ < €3, we have using (5.20)

Pa(z,€) I
————-1l<1 Vze. 5.25

p(z) (5.25)
Let 7 be the boundary of a disc D(z,r), k=0,---, N — 1, oriented in the positive sense,
and let G(z,¢) = po(2,€)/p(2). By (5.20) and point i), this is a well defined function on
1. The index of the image of 7 by G(z,¢) with respect to z = 0 is zero since the image
curve is contained in a disc of center z = 1 and radius smaller than 1. Thus

1 [ G'(z¢) 1 [ pg(z,€) 1 rp(2),

2ri Jn G(2,¢) 4z = %/,; pq(z,e)dz B ?ﬁ'./,; p(2) dz = 0. (5.26)
If n encircle D(29,7), 2o being a simple zero of p(z) (this follows from proposition (4.1.2)),
we obtain [ £%dz = 2x which proves iii). The proposition holds if we take ¢* =

. n p z
mmn;=1,23¢€;.

]

5.1.2 Superadiabatic Basis
Let € < ¢* and ¢ < N*(¢). We introduce for t € IR C § the operator W(t,¢) by
W, (t,€) = K (t,e)Wy(t,e), Wo(0,e) =T (5.27)

It follows from proposition (5.1.1), point v), that W,(t,¢) has unitary, e-dependent limits
We(too,e) when t — too. Let {¢g,1(0,¢€),q,2(0,€)} be an orthonormal basis of eigen-
vectors of Hg(0,¢). We set

‘Pq,j(t’e) = WQ(tve)?’q,j(an)' (5'28)

By the general properties of W(t,¢) (see (3.20)), ¢q,;(t,€) are eigenvectors of Hy(t,¢)
associated with ey ;(t,€) = (=1)71,/p4(t,€). Moreover, since ||K,(z,€)]| — 0 as Rez —
+oo the hamiltonians H,(t,¢) and H(t) coincide at ¢t = +oo so that

Pq.i(£00,€) = We(£o0,€)pq (0, €) (5.29)
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are normalized eigenvectors of H* associated with e;(+o00) = (~=1)73,/p(£00). We also
define generalized dynamical phases

t
Ag.i(t ) = / et e)dt’ j=1,2 (5.30)
()}
and we consider a normalized vector ¥.(t) satisfying

ieglt) = H((0)
Jdim PO = 1. (5.31)

We expand the solution ¥.(t) on the vectors we have just introduced as

Yelt) = 3 cag()exp { a6, past) (532)

i=1
with the suitable generalized dynamical phases and unknown coeflicients ¢, ; depending
on ¢. Rewriting (5.31) under the form

i€, (t) = (Ho(t,€) + eKg-1(t: €))¥e(?) (5.33)
and exploiting the fact that ¢, ; are eigenvectors of Hy, we obtain the equation
2 i i i
) (cf;,j exp {";’\qa’} Pq.j + €q,j €XP {‘;’\w‘} Pq.j T 14,5 €XP {—;'\q,j} Kq-l‘Pq.j) =0.

J=1

(5.34)
Taking the scalar product of this expression with (W; t, e))* ¢;(0,¢) and using (5.27)
for ¢ ; we get the differential equation for the ¢y ;’s

2 .
st = E a{;"(t, €) exp {iA{;" (¢, e)} cqk(t) (5.35)

i=1

where

aif(t,€) = i{pg, (0, €)W, (2, €) (Kq(t €) — Koma(t,€)) Wolt, )00 #(0,€))  (5.36)

and .
Ak, €) = Mg (t €) - Agalts €). (5.37)

By proposition (5.1.1) there exist limits for ¢4, j(t) at infinity and the boundary conditions
(5.31) are equivalent to

lega(=0)| =1, cg2(—00) =0 (5.38)
whereas the transition probability is given by
Pa1(e) = |eg,2(0)}. (5.39)

Let us consider the analytic continuation of these quantities in the complex plane. Let 9
be a loop based at the origin which encircles the disc D(zo,r) in the negative sense. By
proposition (5.1.1), point iii), the analytic continuation of the eigenvalue e, ;(0,¢) along 7
back to the origin coincides with egx(0,¢), k£ # 7, so that we have the same situation as
in paragraph (4.1). Thus, we define 0, ;(0,¢&|n) by

?q,3(0,€ln) = exp {-16,5(0,€|n)} P (0, ¢) (5.40)
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where $g;(0,¢|n) is the result of the analytic continuation of ¢, ;(0,¢) along 7, when we
come back to the origin. Then, as a consequence of the analyticity of the solution of the
Schrodinger equation (5.31), we can compare the coefficients c, j(+00) defined on the real
axis with ¢gk(+00), k # j obtained by integration of the analytic continuation of (5.35)
along the path 4 passing above D(2,7). The analytic continuation W(z,¢€) of W(t,¢)
defined by (5.27) along the path v of condition IV can be expressed by means of a Dyson
series. Applying point v) of proposition (5.1.1) to each term shows that

sup ||[Wy(z,€)|| < w < o0, sup ||Wq‘1(z,e)|| <w< o™ (5.41)
z€y zey

where w is independent of €. Thus the analytic continuations along  of the coefficients
agk defined by (5.36) satisfy the inequality

Iagk(z,e)l < wlb(t)e?d?eq!, z=t+is€q (5.42)

where we have used point iv) of proposition (5.1.1). The integrability of b(t) at infinity
insures the existence of ¢ ;(+o00). We have

caa(#00) = exp{ =% [ eqa(ze)d fexp (~i8ha(0,clm} (o)

cg1{+00) exp {—é/neq,z(z,e)dz} exp {—10,,2(0, €|n)} ¢q.2(+0) (5.43)

where [ eg,;(z,€)dz is the integral of the analytic continuation of e,,; along the loop %
encircling D(zo,r) considered above. It should be noted that 6,:(0,¢|n) can be computed
by means of the formula given by proposition (4.1.1) with By ;(z,¢) in place of B;(z). The
proof is the same. It remains to control ¢, along ¥ to obtain an estimation of P2 (¢)
(see (5.39)). But this will be an easy task now since we can apply the estimate (5.42) for
z € 7, and v is by hypothesis a dissipative path for A;2(z) = A}%(z,¢).

Theorem 5.1.1 Let H(t) satisfy the hypotheses of theorem (4.1.1). Then
i) For any integer q, there ezists €*(q) such that for all ¢ < £*(q) we have

Pas(e) = exp { T | eqa(z,€)d | exp {2Imfy (0,elm)} (1 + Oe?)

where eq,1(z,¢€) is defined by (5.12), 0,1(0,|n) is given in (5.40) and 1 is a loop encircling
D(zo,7). These expressions can be expanded to obtain

-1
Pa(e) = exp { > a,-e"} (1+0(e")

j=-=1

where

a_y = 2Im/ e;(2)dz < 0 , g = 2Iméy(0|n).
n

it) Moreover, there ezist ¢* > 0 and T > 0 such that for alle < ¢*

Pas(e) = exp {71 [ exe(oa(2, )z exp {2mbiv- o (0,¢)} (1 + Olexp {=r/e})).
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Remarks:

e Assertion i) results from a rough application of proposition (5.1.1) and shows that
the logarithm of P,;(¢) possesses an asymptotic power series in €, up to any order.
This assertion is, in a sense, the direct generalization of theorem (4.1.1) in which we
had computed the first two terms of the expansion, and it provides a constructive
method to compute the coefficients a;.

o The second assertion, giving an asymptotic formula for P2;(¢) accurate up to ex-
ponentially small corrections, comes from an optimal truncation of the iterative
procedure. It should be noticed that the leading term is in general a discontinuous
function of ¢ since the optimal integer index N*(¢) depends on &.

e As shown by proposition (4.1.2), the hypotheses of theorem (4.1.1) imply the exis-
tence of a dissipative path above zy satisfying condition IV.

Proof: Let v(t) be the parameterization of the path of condition IV. We introduce again
the notation f(t) = f(v(t)) for an analytic function f(z). We consider N*(¢) = [ﬁ?]

defined in proposition (5.1.1) and we choose a ¢ < N*(¢). The Volterra equation for the
coefficients reads (see (5.35))

il®) = cagl-o0)+ [ dsi(e)ai(s,e)eni(s)

+ /_t _dsi(s)aff(s,)exp {-:-Ag*(s, e)} carls): (5.44)
Let X, be defined by its components
Xea(t) = eqalt)
Xea®) = ewp{2aY(t,0) b eqalt) (5.45)

Inserting (5.45) in (5.44) we can write

¢
X,4(t) = Xg(—o0) + /_m dsi(s)A,(t, s,€)X4(s) (5.46)
where the matrix A,(t, s,¢) is given by
( . azl(s,€) ' ag*(s,¢) )
a2'(s,¢) exp {i (A;z(t,e) - A;z(s,e))} aZ?(s,¢) exp {3 (A;"’(t,e) - A;z(s,e))} ’
(5.47)
Now we can apply perturbation theory and proposition (5.1.1) to
Hy(z,e) = H(z) — eKq-1(2,¢) (5.48)
to obtain
eqi(2,6) = €j(2) + O(eb(t)) z=t=1is€Q (5.49)

where the correction term is uniformly bounded in ¢. Thus, for any 2z € ¥, we have
Al%(z,€) = Arz2(2) + O(e) with Ajz(2) = [y e1(2') — e2(2')d2’, where the analytic contin-
uations are performed along 4. By hypothesis, the path 4(t}) is dissipative for Ay, i.e.
ImA;2(y(t)) is non decreasing along ¥(t), so that

exp {é (A2(t,e) - A;Z(s,s))}\ <k (5.50)
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if t > s, where k is some constant uniform in ¢, t, s and ¢. It follows from these consider-
ations and (5.42), that there exists a constant a uniform in ¢ such that

t .
/ ()1 Ag(t, 3, €)|lds < aetdctql. (5.51)

From here the proofs of the two assertions differ. We finish the proof of assertion i).
Considering the initial conditions (5.38) and (5.51) we can write from (5.46)

I Xg(®)ll S 1+ exge? sup [IX,| (5.52)
te

where q, is a ¢-dependent constant. Thus, taking the supremum over ¢t € IR in (5.52) we
obtain the estimate

L_ <k, (5.53)

<
sup X, (0] < 7o <

te
if € is small enough. Then, coming back to (5.46) we finally get with (5.51)

X q(+00) — Xg(—00)|| < kge? (5.54)

for some constant k; independent of ¢. With the definition (5.45) we obtain from this last
estimate

|Cg1(+00) — Ega(—00)] = O(e?) (5.55)
which, together with (5.39), (5.43) and the initial condition |¢g;(—00)] = 1 yield the
first assertion of the theorem. To obtain the asymptotic expansion in powers of ¢ of the
logarithm of P2;(¢), it remains to write such an expansion for the quantities e, 1(z,¢) and
04,1(0,¢€|n). This creates no difficulty since all quantities to be expanded are analytic in z
and ¢ for z € 1, and |e| small enough, and uniformly bounded in z € Q. To obtain the
first two coefficients a_; and ag of the expansion, it suffices to note that

H,=H —eKo+e(Ko— Kqoo1) (5.56)

so that there is no term proportional to ¢ in e;;. Indeed, by perturbation theory and

proposition (5.1.1}, the term of order ¢ in e ; is given by
&(0,5(0)|Wo(z) " Ko(2)Wo(2)po,;(0)) =
&(0,5(0)|Wo(2) ™ Po,;(2) Ko(2) Po,;(2)Wo(2)0,5(0)) = 0. (5.57)

Note that for a fixed value of ¢, ¢ has to be smaller than some £*(g) in order to have
N*(e) > g and for the estimate (5.53) to hold. We now turn to the end of the proof of the

second assertion. Considering (5.51) with ¢ = N*(¢) = [;13] yields

t . N‘()
[ ol An-t,s,e)lds < a(edeN (o))"

< aexp{-N*(¢)} < aeexp {— e:de} = o'exp {—7/¢} (5.58)

where 7 = 3 > 0. With this estimate, we can bound [|X-.)(t)]| as before, to obtain

1
<k
a'exp{-7/e} ~

sup [|IXy-(e) ()l < 7 (5.59)
telR
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which together with (5.46) and (5.58) yield the exponential estimate

| Xar+0)a(+00) = Xiyee)a(~o0)| < ¥ exp {-7/e}. (5.60)

Considering the initial condition (5.38) and the definition (5.45), we eventually obtain the
desired estimate

len(e)1(+00) = ene(e)1(—00)| = Olexp {-7/e}) (5.61)

which ends the proof of the theorem.
0

5.2 Transition Probability Between Two Isolated Levels

5.2.1 Definition of the Problem

In this section we consider again general unbounded hamiltonians H(t) satisfying the
hypotheses I and II. But now we assume that the spectrum of H(t) contains two non de-
generate eigenvalues e;(t) and e,(t) which are bounded away from the rest of the spectrum
for any time t € IR. More precisely we suppose that condition VI below holds.

VI. Two levels in a gap

There ezists a constant g such that for any z € S,, the spectrum o(z) of H(z) consists in
two parts 0,(z) and o5(z) with

ziensfc dist[o1(2), 02(2)] = g.

Moreover, on the real azis, the part 01(t) consists of two non degenerate eigenvalues €;(t),

e2(t) such that
inf (e2(t) —e1(t)) 2 6 > 0.
telR

We denote by P;(t), j = 1,2, the one-dimensional projectors associated with e;(z). It
results from condition VI that the analytic continuation Q(z) of the two dimensional
projector Q(t) = Py(t)+ P,(t), is well defined everywhere in S,. We consider a normalized
solution t.(t) of the Schrédinger equation

e, (t) = H(t)Pe(t), ¥(0)=@o€ D (5.62)
such that
Jm [Pt} = 1. (5.69)
The transition probability P,;(e) between the two levels is given by
Pa(e) = Jim_[[P(e)be(t)I. (5.64)

We already know from section (3.2) that P3;(¢) decays exponentially fast to zero when
¢ — 0 but we want to obtain here an asymptotic formula for Pj;(¢), as for two level
systems, and not only bounds.

The strategy is the following. We introduce a superadiabatic approximation of the
physical evolution by means of which we can isolate in a certain sense the transitions
between the two levels from the transitions out of the two dimensional subspace they live
in. Actually, we can express the transition probability (5.64) as the transition probability of
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an effective two level hamiltonian plus a contribution of order exp {—7/¢}, 7 > 0. We study
the effective two level hamiltonian by the methods of chapter (4) which gives an asymptotic
formula for the corresponding transition probability. Finally we show that provided 7 is
sufficiently large, this procedure yields an asymptotic formula for the transition probability
of the initial problem. We shall also see that if the two levels are sufficiently isolated in the
spectrum, then 7 becomes large and the asymptotic formula holds. Moreover, the leading
term coincides with the formula we would have written down if the two levels ¢; and e, were
alone in the spectrum. From the analysis of two level systems performed in chapter (4) it
is clear that we have to impose conditions on the behaviour of the analytic continuations
e;(2) of the eigenvalues e;(t) in the complex plane. It follows from the analyticity of the
hamiltonian and condition VI that such multivalued analytic continuations exist, with
branching points {z;,%;}, 7 = 0,1, -+, N — 1 at the eigenvalue crossing point z; such that
e1(z;) = ez(2;). We define A;5(z) as in chapter (4) by

Bia(z) = /o " ei(?) — ea()d2'. (5.65)

This function is multivalued in S, with branching points at the eigenvalue crossing points
z;. The set of Stokes lines of the problem are given by the level lines

ImA;p(2) = ImAqp(25), j=0,---,N~1 (5.66)

for some branch of Aq,(2).

VII. Behaviour of the Stokes lines

There ezists an eigenvalue crossing point zy € S, with Imz, > 0 which is @ square root
type singularity for the functions e;(z). Moreover the Stokes lines associated with zo have
two branches a; and a, such that a; C S, goes from —oo to zp and az C S, goes from 2z
to 400, without meeting any other eigenvalue crossing point.

Let ¢;(t), j = 1,2, be the normalized analytic eigenvectors of H(t)

H(t)pj(t) = e;(t)p;(t) (5.67)
whose phases are fixed by the condition
(p;i(t)lpj(t)) =0 Vte R. (5.68)

We introduce a loop 7 based at the origin which encircles the eigenvalue crossing zo in the
negative sense. By using the same notations as in chapter (4) for the analytic continuations
of ¢;(0) and ¢;(0) along 7, we have as a consequence of VII,

é1(0ln) = e2(0)
#1(0fn) exp {—i0,(07)} #2(0). (5-69)

Theorem 5.2.1 Let H(t) satisfy conditions I, II, VI and VII, and let ¥.(t) be a normal-
1zed solution of the Schrodinger equation

g (t) = H(t)Pe(t), te(t) =o€ D

such that
Jm 1P () ()] = 1.
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Then,

'P21(€)

Jm [Pty )

= exp {2Imf; (0]n)}exp {§1m /,, el(z)dz} (1+0(¢))

provided the two levels are sufficiently tsolated in the spectrum of H(t).

Remarks:

¢ The condition on the spectrum, which is natural from a physical point of view, is
made explicit in the course of the proof (see (5.113)).

o This theorem is the direct generalization of theorem (4.1.1) dealing with two level
systems. A purely geometrical version of it, along the same lines as theorem (4.1.1)
can also be stated.

o The above result gives a full mathematical justification of the heuristic procedure
which consists in neglecting the rest of the spectrum when computing the transition
probability between two isolated levels in a gap, in the adiabatic limit.

o The geometrical prefactor exp {2Im6, (0|n)} can be explicitly computed by means of
a formula analogous the expression of proposition (4.1.1). This formula is derived in
a separate proposition given in the next chapter, proposition (6.2.6).

5.2.2 Reduction to an Effective Two-Level System

Proof: The first part of the proof consists in reducing the complete problem to a two
level effective system, by means of a superadiabatic evolution.

Let K(t) = i[Q'(t), Q(t)] where Q(t) = Pi(t) + P2(t). Then, as in section (3.2) and
with the same notations, we can construct a superadiabatic evolution V, = Wy+&y+, with
Q(t) in place of P(t). We recall the definitions of these evolutions

iWia(t) = Kn-@t)Wn-(t), Wx-(0)=I
ie®y.(t) = Wri(t)Hn-()Wn-(£)3n+(t), En-(0)=I (5.70)

where the derivatives are considered in the strong sense and on the dense domain D.
The operators Ky(t) and Hy(t) are defined by the iterative scheme (3.2) and N*(¢) =
[é—; is given in proposition (3.2.1). For notational convenience, we have dropped the
¢-dependence and the second argument of the evolutions, here 0. Both evolutions leave

the domain D invariant. We recall also the existence of the spectral projector @ n«(t) of
Hp-(t) such that

lim |lQn-(2) - Q@)|| =0 (5.71)

t—too

(see (3.101)) satisfying by construction

WNt(t)QNt (0) = QnN- (t)WN. (t) (5.72)

and
[QN‘(t)a QN'(O)] =0, Vte R (5'73)
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If ¢ is small enough, we can define P)¥"(¢), j = 1, 2, the one-dimensional spectral projectors
of Hy-(t) such that Qn-(t) = PN (t) + P{¥"(t) and

lim [|P}(#)~ Pi(t)ll = 0. (5.74)

t—too
By definition the operator Ay-(t) is given by
Uc(t,0) = Wy (t)En-(t)An-(2) (5.75)
where U,(t,0) satisfies
€U.(t,0) = H(t)U,.(¢,0), U.(0,0)=1I (5.76)
We have the essential estimate (see (3.103) and (3.104))
An+(t) =TI+ O(exp {—7/e}), 7> 0. (5.77)
Let us denote by E:(t) the self adjoint operator defined on D by
H.(t) = Wi(t)En-(t)Wy-(2). (5.78)
This operator commutes with Qx-(0) and if ¢ is small enough, Qn-(0) = B} () + P} (¢),
e Pi(t) = WRH()PY ()Wn-(2) (5.79)

denoting the spectral projectors of H.(t). As the equation (5.70) is a Schrédinger like
equation with H, in place of H, we can decompose &n+(t) as we did for Uc(t,0). We
introduce the evolution V,(t)

2
0= (Eo+ “EEOR0) T, Fo=T G
=1
and we set o
BN+ (1) := Va(t) Au(2). (5.81)
By construction V.(t) is compatible with the decomposition of Q.(0)H into
Q.(0)H = P (tyH & BF(t)H (5.82)
since N o
BVt = aF(0), 5=1,2 (5.83)

The operator A,(t) is the solution of the equation
i (t) = - (ffj“(t)i (f: ﬁ}"(t)ﬁ‘;(t)) V:(t)) A.(t), A0) =L (5.84)
i=1
Since || T2, f’;‘l(t)f’i‘(t)ll is integrable as t — +oo the operator A.(t) has well-defined
limits when ¢ — +o00. We define A, (400, —00) = Z.(-i—oo)z,_l(—oo).
Proposition 5.2.1 The transition probability P2 (c) defined by (5.64) is given by

Pai(e) = || P (0)A.(+00, —00) P (0)|]* + O(exp {~7/e}).
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Proof: Let .(t) with 1.(0) = ¢o € D be given. We have (using (5.74), (5.79), (5.81),
and (5.83))

1 = lm [|P()¢(t)l
= lim |2 (O)Wx-(6)En-(£) Au(t) ol
= lm [Wy-(&)P{(t)&x-()A- ()0l
= | lm [IP{()VU)A() A (t)poll
= ,lm IVa(£) P} (0) AL(£) Ax(t)poll
= ||P}(0)Ax(—00)As(~0)goll. (5.85)
Therefore we can write
o = A7 (~00)A. T (—00)ep. (5.86)
where . € P} (0)H and ||¢.]| = 1. By a computation similar to (5.85) we have
Jim [[P2(6)%e(t)]] =
1|25 (0) A.(+00) Au(+00) o]l =
153 (0)Ax(+00) Au(+00) AT} (—00) A (=00) B (0)]. (5.87)

The assertion follows from (5.77).

0
But as [&x-(t), Qn+(0)] = 0, the expression || P}(0)4, (400, —00) PF(0)|j? is the transition
probability of the following two-dimensional problem in Q.(0)* (see lemma (3.1.1) and
(5.78)).

Let ¢(t) be a normalized solution of the equation
. 8 T
zea<p(t) = H.(t)p(t) (5.88)

such that
Jim [IBF0)p(0)] = 1. (5.89)
Then

Pale) = ,lm B

= ||P;(0)A.(+00, —00) PF(0)|? (5.90)

is the transition probability from P}(—o0) to Pj(+00). Therefore, if T is large enough, we
have reduced the initial problem to an effective two-dimensional problem.

5.2.3 Asymptotic Formula for Py (¢)

In this paragraph we consider the operator H.(t) on the two-dimensional subspace Q.(0)H
only and we study the effective two-level system (5.90). If € is small enough, then H.(t) has
two separated eigenvalues e;(t) and e3(¢t) which coincide with the eigenvalues of Hy-(t).
As in the preceding section, we can apply perturbation theory and proposition (3.2.1) to
obtain

ej(t) = &(8)+ O (el Kn--1(t)l)
= e;(t)+ O(ed(t)), j=1,2 (5.91)
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with b(¢) an integrable decay function. We first have to show that the effective two level
problem we have arrived to can be studied in the strip S;, provided ¢ is small enough.

Lemma 5.2.1 Let 0 < @ < a be given. Then, there ezists e(a) > 0 such that for all
e < ¢(a), H.(t) has an analytic continuation in a neighbourhood of {z =t+is : |s| < a}.

Proof: It is sufficient to show that Ky._; and Ky- have analytic continuations in a
neighbourhood of {z = t + is : |s| < a}, since this implies that Hy+ and Wx. have
analytic continuations in the same neighbourhood. For large values of |t| the analytic
continuation follows from proposition (3.2.1), since we can apply it with D(z,7n) replaced
by {z=t+is: |s]<ea,t>T}or{z=t+1is: |s|] £ a,t < ~T}, by choosing T large
enough. Indeed we can verify the hypothesis of this proposition using condition II. Let us
consider the compact set w = {z =t+1s : |s] < a, |t| < T}. For each 2 € w we can find a
7(z) so that proposition (3.2.1) applies. Therefore the union of the open discs D(z,n(z))
is a covering of the compact set w and consequently we can cover w by a finite number of
discs D(z,7n(z)). Thus there exists a nonzero ¢(a) so that, for all ¢ < £(a), Kn+—; and
K- have analytic continuation in a neighbourhood of {z =t + is : |s] < a}.
a

In the strip S, there is an eigenvalue-crossing point for e;(z) and ey(z) at zo with
Imzp > 0. Let 0 < r < a be given with Imzy < r and p(z) = (e;(2) — e2(z))?. By
condition VII, this function is analytic in a neighbourhood of 25 and it is equal to zero at
Zo only in this neighbourhood. Similarly we set*p.(z) = (ej(z) — €3(2))%. From (5.91) we
have

pe(2) = p(2) + ru(2,€) (5.92)
where |r.(t+is,¢)| = O(eb(t)). Hence, an application of Rouché’s theorem states that there
is exactly one simple zero of p.(z) close to z9, which means that there is one eigenvalue
crossing point Z, for ej(z) and e3(z) in the strip {z =t + is|0 < s < r}, which is close to
zo, provided ¢ is small enough. Moreover the singularity of e}(z) at Z; is of the same type
as the one of e;(z) at zp. Let n be the closed path in figure (5.1) and ¢;(0), j = 1,2, be
two normalized eigenvectors of H(0) with eigenvalues ¢;(0). Let @(0), respectively 3(0),

Figure 5.1: The path 1 encircling 2o and Z,.

7 = 1,2, be two normalized eigenvectors of H.(0), respectively Hy-(0) with eigenvalues
€;(0). The phases of }(t) are fixed as in (5.68). We make an analytic continuation of
all these objects along the path 5 and we denote with a ~ the result of the analytic
continuation when we come back to the origin. We know that

&(0) = e(0) (5.93)
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and

71(0) = exp {61 (0lm)} ¢2(0). (5.99)
For ¢ small enough we also have

e1(0) = €3(0) (5.95)

and therefore

$17(0) = exp {-i67(0]n)} ¥3(0) (5.96)
and ~

&1(0) = exp {~i8(0ln) } #3(0) (5.97)

where 7}* = Wy+ ;. Since Wy-(2) is analytic in the strip we conclude that

63(0ln) = #(0ln). (5.98)

We can write, using perturbation theory,

©3(0) = ¢;(0) + x;(0), j=1,2 (5.99)

with
[lx; (0)|| = O(e). (5.100)
Therefore we have
?17(0) = &1(0)+x1(0)

exp {—i61(0[n)} ¥2(0) + X1(0)
exp {—i63(0n)} ¢3(0)
exp {—i67(0|n)} (¢2(0) + x2(0)) . (5-101)

After analytic continuation we still have ||x7(0)]| = O(¢), thus we conclude that

exp {i67(0}n) — 6:(0|n)} = 1 + O(e) (5.102)
so that
6;(0ln) = 6,(0ln) + O(e). (5.103)

It remains to show that the generalized Dykhne formula is valid for our effective prob-
lem. According to proposition (4.1.2), condition VII insures the existence of a dissipative
path 4 for the function A;; defined by (5.65). But here we need a dissipative path for the
function Aj,(z) which is defined as the analytic continuation of the function

/0 " (e3() - () d'. (5.104)

Nevertheless, even if 7(t) is not dissipative for A},(z), we can still control the phase factors
along ¥(t), as in the preceding section, (see (5.50)) so that we have

exp { AL (1) - Afar(e) f| < Ve > s (5.105)

where k is independent of . It is then straightforward to check that the integration by
parts procedure used in paragraph (4.1.5) can be carried over without changes and gives
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uniform bounds in ¢ when performed with H.. Therefore, there exists some ¢*, such that
foralle < &*

Paile) = exp {2EmBi(0l)} exp {§1m /,, e;(z)dz} (1+0().  (5.106)

Note that ej(t) is the eigenvalue of the operator Hy+(t) which can be written as

Hy+(t) = H(t)—eKo(t) + e(Ko(t) = Kn-_1(t))
= H(t) - eKo(t) + O(e?). (5.107)

Let ¢1(t) be the eigenvector of H(t) for the eigenvalue e;(t). Then
ei(t) = ex(t) - e{pa(t) Ko(t)pa(t)) + O(e?). (5.108)

The term of first order in ¢ vanishes because

P(B)[Q'(), Q) A() =0 (5.109)
since
Q(1)Q'(1)Q(t) = 0. (5.110)
Therefore we have
Pr(e) = exp {2mé, } exp {§1m /,, el(z)dz} (1+ 0(e)) (5.111)

provided ¢ is small enough.

5.2.4 Condition on the Gap
The above analysis yields the asymptotic formula

Paa(e) = exp {21ty (O} exp { 2 / ex(2)dz} (14 O(2)) + O (exp {-7/e}) (5.112)
which gives a definite leading term only if

1'>'2Im/e1
n

(5.113)

where 7 is given in paragraph (3.2.1). This is the meaning of the last condition on the
spectrum of H(t) in the hypotheses of theorem (5.2.1). We show in the next example how
it is possible to fulfill this condition by isolating the two levels e; and e; in the spectrum
of the hamiltonian. This remark ends the proof of this theorem.
m]

Example:

Suppose we have at hand a family of hamiltonians H.,(t) constructed from H(t) as in
paragraph (3.2.2), where H (t) satisfies all hypotheses of theorem (5.2.1) but (5.113). The
hamiltonians H.,(t) are obtained by shifting the part of spectrum o3(t) away from the two
levels oy (t) = {e1(t), e2(t)} without touching the spectral projectors. They are defined by

Hy(t) = B)Q-(t) + (H(t) + 7)Q(t) + (H (t) + 27)Q+(2). (5.114)
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Thus the gap g between the isolated levels and the rest of the spectrum is replaced by
g(7) = 9 + 7 and 7 is replaced by 7(7). But now, it follows from proposition (3.2.2) that

7(7) 2 Ce(v) > ‘2Im /ﬂ e1(z)dz (5.115)

for 4 large enough. It remains to check that if we replace H(t) by H,(t), in the spirit of
paragraph (3.2.2), the asymptotic formula (5.111) is still valid. But this is true because
this formula depends on the analytic continuations of the eigenvector ¢, (t) and eigenvalue
ei(t) of H(t) only. Indeed, ¢1(t) is also an eigenvector of H.,(t) associated with the
eigenvalue e;(t) + 7 so that the y-dependent two-dimensional effective hamiltonian will
yield the same asymptotic formula for the transition probability.
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Chapter 6

Landau-Zener Formula

We consider here again the transition probability P»;(¢) between two non-degenerate
levels e;(t) and ez(t) isolated in the spectrum of the hamiltonian under the same basic
assumptions as in the preceding section. But we shall assume, as is often the case in
physical applications, that the two levels display an avoided crossing during the evolution.
This means that at time ¢ = 0, for example, the gap between e;(0) and e2(0) is extremely
small, but finite, with respect to the typical energies of the system. Such situations occur
for example when a reference system displaying a real crossing of eigenvalues at ¢ = 0 is
slightly perturbed so that the degeneracy is lifted and a small gap between e;(0) and e2(0)
appears. In such circumstances, the transition probability from one level to the other is
still exponentially small but the exponential decay rate is related to the local structure
only of the energy levels close to the avoided crossing. This transition probability is
given by the well known Landau-Zener formula. Moreover we will show that the avoided
crossing assumption suffices to insure a good behaviour of the Stokes lines of interest. As
a consequence, the hypotheses under which the Landau-Zener formula can be rigorously
Jjustified, are very general assumptions on the analyticity and regularity of the hamiltonian
and the physically relevant condition on the existence of one avoided crossing between the
considered levels.

6.1 Formalisation of the Problem

6.1.1 Hypotheses

We consider a family of hamiltonians H(¢,§),t € IR and § > 0 a small parameter, defined
on the same separable Hilbert space . We suppose that the hamiltonians H (¢, ) satisfy
the following two conditions which are generalizations of conditions I and II.

The first condition is that the hamiltonian is analytic in time and sufficiently smooth
in t and §:
VIII. Self-adjointness, analyticity and smoothness
There ezist a strip S, = {t + is : |s]| < a}, an interval Ip = [0, A] and a dense domain D
in H such that for each z € Sz and § € Ia
t) H(z,8) ts a closed operator defined on D
tt) H(z,6)y is holomorphic on S,, for each ¢ € D and for each fized § € Ia
wi) H*(2,8) = H(Z,8); H(t,0) is bounded from below if t € IR
w) H(z,8)p is C! as a function of (z,8) € Sg X Ia for each ¢ € D.
The next condition states that H(¢,8) tends sufficiently rapidly to two limiting hamilto-
nians as ¢ — too. These limiting hamiltonians also have to be smooth in §.

105
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IX. Behaviour at infinity
There ezist two families of self adjoint operators H*(§), defined on D, strongly C! in §
and bounded from below and an integrable decay function b(t) independent of § such that

sup [|(H(t + is,8) = H*(8))ell < b(t)(llell + 1E*(8)ell), t>0

|s|<a
and

sup HH(t+is,8) = H(8))pll < b(e)(llell + | E~(6)ell) , t<O
for all o € D and § € In. Moreover, for each ¢ € D,

i)

I35
When § = 0, the derivatives with respect to § are to be considered as right derivatives.
Finally, the last condition expresses the fact that when the parameter § = 0, the levels e,
and e; display a real crossing at t = 0 and when § > 0, this crossing becomes an avoided
crossing.
X. Separation of the spectrum and avoided crossing
There exists a constant g independent of t and § such that the spectrum o(t,8) of H(t,9),
t€ IR, § € Ip, s given by

G’(t, 6) = al(t,6) U Uz(t, 5) N 0’1(t,6) = {el(t,ﬁ),ez(t,ﬁ)},

H(z,80)p|| N, V(z,8) € Sg xIa.

and satisfies
dist{1(t,8),02(t,8)] > g>0 Vte IR,§ € I4.

Moreover,
ex(t,6) —e(t,8)>0, Vt€ IR and § > 0

and if 6§ = 0,

ea(t,0) — ex(,0) > 0, Vt <0
ez(t,O) - el(t, 0) <0, VE>0
62(0, 0) = 61(0, O)

where t = 0 is a simple zero of the function e,(t,0) — €;(t,0) (see figure 6.1).

Figure 6.1: The levels ¢;(t,8) and ¢;(t,0).

The parameter § is to be considered as controlling a perturbation which turns the
genuine crossing between e;(¢,0) and e,(¢,0) at ¢ = 0 into an avoided crossing of minimum
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gap of order §. The corresponding one-dimensional projectors are denoted by P;(t, §) and
P»(t,§). By condition VII, the functions e;(z,8) and operators P;(z,§) are analytic and
multivalued in S; with branch points at the complex eigenvalue crossing points. If the
eigenvalue crossing point is real, e;(z,8 = 0) and Pj(2,§ = 0) are analytic at this point
as a consequence of a theorem by Rellich [R], so that the last condition makes sense.
It also implies, as we shall see, that there is a complex eigenvalue crossing point zo(4)
together with its complex conjugate in a neighbourhood of z = 0 if § is small enough
and that 2z(8) is a square root type branch point for the eigenvalues. We also define
Q(t,8) = Pi(t, 8) + P(t,§) which is analytic everywhere in S,.

To investigate the local structure of the hamiltonian close to the avoided crossing, we
need only consider the restriction of H(t,§) to the two dimensional subspace Q(¢t, §)H. We
specify in a fourth condition the generic form of avoided crossings to which the Landau-
Zener formula applies. The assumption is that the quadratic form giving the square of the
gap between the levels close to (t,8) = (0,0) must be positive definite.

XI. Behaviour at the avoided crossing
i) There exist constants a > 0, b > 0 and ¢ with ¢? < a?b?, such that

ea(t,6) — ex(t,8) = \/a?t? + 2¢t6 + b262 + Ra(2, ).

where R3(t, ) is a rest of onder 3 in (t,6).

i) Let o1 and ¢, form a basis of Q(0,0)H. The matriz elements (p;|Q(t,8)pr) and

(p;|H(,8)Q(2,8)pr), k,j = 1,2, are C? as functions of the two real variables (t,§).

Remark:

The point ii) of this condition is automatically satisfied if the hamiltonian H(t,4) is

strongly C? as an operator-valued function depending on the two real variables (%, 4§).
The avoided crossing considered can be rewritten as

es(,8) — e1(t,8) = Valt? + 2cté + b262 (1 + Ry(t, 5)) (6.1)

if t = O(§), with closest approach at #(6) = — % + O (§?) given by

e2(to(6), 8) — ex(to(6), 8) = 61/6% — ‘-‘;;(1 +0(8)). (6.2)

6.1.2 Main Results

We are interested in the normalized solutions in the limit ¢ — 400 of the Schrédinger
equation

ie D ult) = H(t,0elt) , $:(0) = po € D (6.3)

subject to the boundary condition
Jim_ [Pt 6)e(t)l] = 1. (64)

More precisely we want to compute the transition probability to the level e; at time t = 0o
given by

Pa(e,8) = lim [|Po(t, 6)dc(t)]l” (6.5)

in the limit of small ¢ and §. Let § be fixed and let  be a closed loop based at the
origin which encloses the complex eigenvalue zg(8) (Imz2o(8) > 0) as in figure (6.2). We fix
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z(®) / m
0 R

Figure 6.2: The loop 7 and the eigenvalue crossing zo($4).

the phases of the normalized eigenvectors ¢;(t,§) and p,(t,8) of H(t,§) associated with
e1(t,8) and e,(t,8) by the condition

(ps(t, )l gres(,8) =0, Vi€ IR (6.6)

Consider e;(0,8) and ¢,(0,5) and their analytic continuations along 7. If we denote by
€1(0,8) and ©1(0, ) the results of these analytic continuations at the end of the loop 7,
we have

€1(0,8) = e2(0,8)
%(0)6) = exp{—i01(6)}<p2(0,6) (6'7)

because zp(8) is a square root branch point for the energies. The phase 6, is now §-
dependent and we have used the notation 6,(8) for 6,(0, &|n).

Theorem 6.1.1 (Landau-Zener Formula) Let H(t,8) be a self-adjoint operator an-
alytic in t satisfying conditions VIII to X. Let ¢.(t) be a normalized solution of the
Schréodinger equation

ieg?,b,(t) = H(t,8)¢(t), ¥.(0)=9o€ D

such that
Jim [P, 8)e()l] = 1.

If ¢ and § are small enough,
Pu(e,6) = Jim [1Po(e, OOl

exp {26y ()} exp { 21m [ae 8)dz} (1 + O(e))

where O(¢) ts independent of § and
imIm [ e(z,8)dz=0
§—0 n
}E% Imé, () = 0.
Moreover, if condition XI is satisfied, we have

Pa(e, ) = exp {-52—” (ﬁ . —) 1+ 0(6))} (1+0(6) + O(e))

e2 \a a

where O(e), respectively O(§), are independent of §, respectively ¢.
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We can recover the results obtained by Hagedorn [H2] specialized to our setting as a direct
corollary:

Proposition 6.1.1 If the width § of the avoided crossing is rescaled according to § = /e,
then
2 2

Pa(e, Ve) = exp {-% (— - —)} (1 + O(Ve)).

a a3

Remark:

As already noticed in the introduction, if we set § = 0 in the above results, we get
P21(e,0) = (1+ O(e)). This behaviour is explained by figure (6.1), which shows that
#1(t,8) tends to an eigenvector associated with e;(¢,0) as § tends to 0. Thus Py(e,0) is
the probability to stay on the eigenstate associated with e;(t,0), which must be close to
1, according to the adiabatic theorem. The transition probability is therefore of order ¢,
as should be the case in presence of a real crossing [BF].

6.2 Proof of the Landau-Zener Formula

The rest of the chapter is devoted to the proof of theorem (6.1.1). Although the general
idea of the proof is quite clear, we want to apply theorem (5.2.1) and expand the result
to the lowest order in §, we have to go through the whole proof of that theorem again, to
check that it is valid uniformly in é, under our hypotheses VIII, IX, X. The structure of
the proof is the following. We first derive a generalization of lemma (2.2.1) from which the
variations of the spectrum of H(z, §) with § and 2 can be controlled and we investigate the
smoothness properties of the resolvent and of the spectral projectors. The second stage
consists in checking that proposition (5.2.1) holds for H(z,§), uniformly in §, so that the
reduction process to a two level effective system can be achieved up to errors of order
exp {—7/¢} with 7 > 0 independent of §. Next, we show perturbatively that the Stokes
lines associated with the effective two level problem allow the complex time method to
be applied and that the error terms are uniform in §. We eventually obtain the Landau-
Zener formula by inserting the local expressions given in condition XI in the result and by
expanding the formula to the lowest order in §.

6.2.1 Basic Estimates

This paragraph is devoted to the generalization of the results of section (2.2) when the
hamiltonian H depends on the supplementary parameter §. The techniques being similar
to the ones already used, we state the main results and give their proofs in appendix.

We introduce different norms, as in paragraph (2.2.1). Let ¢ € D. We define for
z€ S,and § € I,

lell-s = llell +1H (2, 8¢l
lellss = lell+IHE*@)e. (6.8)

The domain D equipped with any of these norms is a Banach space we shall denote by
X5, respectively X4 5. By the closed graph theorem again we have for any 2,2’ € S, and
8, L N

H(Zw 6) € B(Xz',6’vH)' (69)
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Similarly

H(z, 5) € B(Xi,al, 7‘()
H*%(8) € B(X 5, H)
H*(6) € B(X1 45, H). (6.10)

We denote the norms in these spaces of bounded operators by
[T zrsr and [} - []l,s- (6.11)
The norms in X, s are related by
liellzs < L+ NIE (2, O)lll8) Nl 60 (6.12)
where z or 2’ can also be replaced by + or —. We prove in appendix the following

Lemma 6.2.1 Under the assumptions VIII and IX, there ezists a constant M, indepen-
dent of z,2' € S, and §,8' € Ip such that

max (||| E(z,6)lllo-5 H (2, )l WEE(@E)| .57, NE=(8) M 2,60) < M

and there ezists an integrable decay function b(t) and a positive constant B, both uniform
tn 8, such that for all p € D

(7]
g, 2z 8¢l = |1H'(z,8)¢ll < b(tMlellss
7]
lzz 820l < Bllells
0
552> @)ell < Bllells
foranyz=t+1s,z2/ € S, and §,8' € Ia.

We use the notation
R(2,6,))= (H(z,6)- )} (6.13)

for A € T(2, 6), the resolvent set of H(z,8). It follows from the above lemma that

N(H(2,8) - H(t,0)¢ll <
I(H(2,8) - H(t, el + [(H(2,6) - H(t,0))ell
< (I2—tb(t) + 8B) llelleo (6.14)

so that, for A € T(¢,0) we can write

I(H(z,6) — H(¢,0))E(t,0,)]| <
(12— ¢o(t) + 6B) (| R(2, 0, )|l + [IH(2,0)R(2,0,M)])
= (Jz —t|b(t) + 6B) d(t,N). (6.15)

Now, if (|z — t|b(¢t) + § B) d(t,A) < 1 we have the identity

R(z,6,)) - R(t,0,)) = —R(z, 6, \)(H(z,8) — H(t,0))R(t,0,)) (6.16)
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showing that A € T'(2,§) as well and

IR(z 6N < 1= Tz —Hﬁf(tt)o ;'\;!?) AN (6.17)
182,63 - R0 < IR0 EZHOLBLED . (o.1q)
Similarly, if [Rez| 3> 1, we use condition IX, lemma (6.2.1) and (6.12) to write
I(H(2,8)— BX(0)pll < N(H(=6)— EX(8))ell +
I(#*(8) - BX(0)ell < b(t)llellzs + 6Bllelloo
< (1 + M)(b(t) + 6B)ll#ll+.0 (6.19)
where z = ¢ + is. Thus if A € T(,0) and (1+ M)(b(t) + §B)d(, \) < 1 where
d(£, ) = [|R(,0,N)|| + || HE(0)R(, 0, M)}, (6.20)
then A € T(z, §) as well and we have the estimates
IREEN < 7= Allll;z((f(t())-:?lB) 3N (6.21)
182,80 - ROV S RGOS ot s (622
For t € IR and § = 0, we define the two-dimensional projector Q(t,0) by
Q(t,0) = —% }i R(t,0,))dA (6.23)

where T encircles ay(t).

Lemma 6.2.2 Lett € IR and T be as above. We can choose the width a of the strip S,
and the length A of the interval In sufficiently small so that the spectrum of H(z,8) is
separated in two parts 01(z,8) and o3(z2,8) for any z € S,, § € Ia. Moreover, if |z ~ t|
and § are small enough, the spectral projector Q(z,8) corresponding to o,(z, ) is given by

1
Qz8)= -2 }é‘ R(z,6,\)d) (6.24)
where I' encircles o1(z2,6).

Proof: _
The proof of this lemma is made along the same lines as the proof of lemma (2.2.2) from
which we know that for ¢t € IR the paths I' can be chosen among the finite set

{Ts5 j=1,---,n} (6.25)

where I'_ =T, and 'y =T,. Moreover, if A € ' C T'(¢,0), respectively A e Iy if |t| > T,
we have the uniform estimate (2.16)

d(t,A\)< K < . (6.26)
Then by choosing a and A so small that

(a sup b(t) + AB) K<1 (6.27)
telR
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and
Q1+M)T)+AB)K <1 (6.28)

for T large, we have that T'; C T(t + is,§), respectively 'y C T(t + is, §), as well so that
the spectrum is still separated in two pieces.

=]
For later purposes we define
d(t,5, %) = [|B(t, 6, N[l + | H(t, 6)R(t, 8, V]| (6.29)
It follows from the foregoing that for any A € T'; C T'(¢, §)
d(t,8,2) < K < oo, (6.30)

where K is independent of §, A and . We shall assume from now on that a and A are so
small that the preceding lemma holds. We define limiting projectors by

Q(, 6) = -% }i R(+,8,\)d. (6.31)

The smoothness and regularity conditions on the hamiltonian imply the following be-
haviours for the resolvent and projector.

Lemma 6.2.3 Foranyz € S5, § € I and X € T(z2,6), R(2,6,) and Q(z,8) are strongly
C! as functions of (z,6) € S, X I, and R(%,8,)) and Q(=, §) are strongly C* in§ € I,.
Moreover, for a fized §, R(z,8,) and Q(z,8) are holomorphic bounded operators and there
ezist integrable decay functions b s(t) and b(t) independent of § such that if A € T(,4)

|R(t + is,8,\) = R(%,8,A)]] < bas(t)
IR™(E +4s,8, M) < Bas(t)
IQ(t +is,8) - Q(£,8)] < b(2)
10 +is, )l < b(r) t20, I1>1,

for any |s| < r < a and for any integer n.

The proof of this lemma is given in appendix.

6.2.2 Uniform Reduction Process

Let t € IR and let 'y € {I';; 7 =1,:--,n} such that T, € T(¢,0). By the choice (6.27) of
a and A, we have that T'; € T(2,8) V6 € I and Vz € D(t,r), provided » < a. Thus it
follows from (6.17) and (6.21) that there exists a constant N such that

sup sup sup ||R(z,8,A)|| < N. (6.32)
telR ’G‘é?;:') A€l

We define
K(z,8) =1[Q'(2,6),Q(z,8)] (6.33)

and by lemma (6.2.3) and the foregoing, there exists an integrable decay function b(t) such
that
sup [|K(z,8)|| < ¥2). (6.34)
)

2€D(t,r
‘eIA
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Hence, using Cauchy formula in discs D(t,n) with 7 < r, we have the estimates

p!

@)z 6.2 < —_—
|R¥(2,6,A)] < cp(1+p)2
!

IEDG0I < b s Ve€ Ditm), A€, (6.35)

for any t € IR, uniformly in § € Ia, with ¢ = 8/r, provided 7 is small enough. We can
again diminish the width of the strip S,, so that the above estimates hold uniformly in
z € S5, 6 € Ip. As a consequence proposition (3.2.1) holds uniformly in § for ¢ < £* where
¢* is independent of §. Then we introduce with the same notations as in the preceding
section, the operators Wy., ®y-

iWne(t,8) = Kn-(t,0)Wns(t,8), Wn<(0,8) =1,
ie®y.(t,6) = Wgi(t,8)HN+(t,8)Wn-(t,8)8nN-(t,6), ®n-(0,8)=T (6.36)

where N*(¢) is 6-independent and is defined in proposition (3.2.1). The operators K (¢, §)
and Hy(t, §) are defined by the iterative scheme (3.2). All these operators depend on € and
have the same general properties as in section (3.2). In particular, Kn-(t,§) is analytic in
2 € S, for any § € I and € < €* so that the same is true for Hy+(2,§) and for Wn+(z,9).
Moreover,

Wie(z2,6)@n+(0,9)
[&-(2,6), Qu+(0,5)]

The key point is that due to the uniform estimates (6.35) we have by proposition (3.2.1)

1K n-(2,8) — En--1(2,6)]| < eb(t) exp{—7/e}
Ko (2,0l € —

Qn+(2,8)Wn(z,0)
0 Vze S,. (6.37)

. 1b(t) V¢g<N (6.38)
where 7 is independent of § and 2z =t 4 is. Thus the operator Ay. defined by
U.(t,0) = Wi-(t,8)Bn-(t,8)An-(2, ) (6.39)
satisfies
AN-(t,8) =TI+ O(exp{-T7/¢€}) (6.40)
uniformly in §. Note that (6.38) also implies
IWne(2,0)| S w; [Wxi(z, )l < w (6.41)
where w is a constant uniform in ¢,6 and z € S,. Let
H.(,8) = Wg(t, ) Hn-(t, 5)Wn-(t, ) (6.42)
and _
P} (t,6) = Wrk(t,6)PN (t,6)Wn-(t,6) (6.43)

where PJN‘(t,b‘) are the spectral projectors of Hy«(t,6). Thus Qn-(0,8) = I”?(t,é) +
P;}(t, §). Moreover, since by (6.38)
Hy-(,8) = H(t,6)— eKn-_1(t,6)
= H(t,8)+ O(eb(t)) (6.44)
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where the correction term is uniformly bounded in §, we have
Jim [P (2,6) - Py(t, )]l =0. (6.45)

Note also that if § is very small, then close to t = 0, real eigenvalue crossing points of the
eigenvalues e3(t, §) of Hy+(t,6) could exist due to the correction term —e X N+-1(t,8) since
e}(t,8) —e;(t, 8) is of the same order as the perturbation. But we shall see later that there
are no real eigenvalue crossing points when § > 0 (see proposition (6.2.3)). We introduce
V.(t,8) such that _ _ _ _

Vi(t,86)P;(0,6) = P;(t,6)V.(t,6) (6.46)

by
Fea) - 2 - — - -
iV (t,6) = | Hu(t,8) +ie ) P} (t,8)P;(t,8) | Vu(t,6), V.(0,8)=I (6.47)
i=1
and we decompose ®n+(t,8) as follows
Bn-(t,8) = Vi(t,6)A.(8,6). (6.48)
This defines an operator 4.(t,§) satisfying
2
i) (8,6) = -V (t,8)i S BF (8, 8) B (1, )Valt, 6)Au(t, 8), A.(0,8)=T  (6.49)
=1
and possessing well defined unitary limits at infinity. We set
Au(+00, —00;8) = Au(+00,8) A (~o0, 8). (6.50)
Proposition 6.2.1
Pas(e, 8) = [|P5(0, 8) Au(+00, —00; 6) B (0, 8)||% + O(exp {~7/¢})
where O(exp {—7/€}) is independent of §.

The proof is identical to the one of proposition (5.2.1) and the uniformity in § is a conse-
quence of (6.40). We are thus led to the computation of the transition probability P2 (e, §)
of the effective two-level problem in Qn-(0,8)H

ie 2 9(0) = Fu(t,610(0), 9O =1,
Jim[IBE 30l = 1,
Pale,) = Jim B0
= B0 ) (+o0,~0,6) FF(0, )| (651)

6.2.3 Study of the Effective Problem

From now on we consider H.(t,8) restricted to the two dimensional subspace @ n-(0,8)H
and we recall that H.(z,) is analyticin z € S, for any § € I and € < €*. As

H.(2,6) = Wgi(2,8)Hpy+(2,6)Wh+(2,8) (6.52)
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its eigenvalues coincide with the ones of Hy+(z,8) and are given by perturbation theory
by (see (6.44))

e;(z,8) = ej(z,8) + O(eb(t)) (6.53)

where the correction term is uniformly bounded in §. We first deal with the eigenvalues
e;(t,8) of H(t,5). Let ¢, and ¢, belong to the range of Q(0,0). We define for t € IR

Q(t’ 6)(P1
V{p1lQ(t, 6)¢1)

Q(t,) (v - {EfFERD )
(o210t 5)(e: - 12 00))
These vectors form an orthonormal basis of Q(t,8)H for (t,8) close to (0,0). Moreover,
they are continuously differentiable in (¢,6) and they are analytic in ¢ for § fixed, by

assumptions VIII and IX. Without loss of generality we suppose that e;(¢,8)+e2(t,8) = 0,
so that we can write

¥1(t,6)

¢2(t,6) =

(6.54)

H(t,6)lg(esm = B(t,8)-s (6.55)

in the basis {¥1(¢,8),4.(t,8)} with s;, j = 1,2,3, the spin-1/2 matrices and with the
definitions

By(t,6) = 2Re(a(t,IH (L, S)a(t, b))

B2(t76) = -2Im(¢1(t’6)lH(ta6)¢2(t’6))
Bs3(t,8) = 2(¢(t,8)|H(t,8)(t, 6))- (6.56)
The expressions (o H(4,5)0(4,6)01)
$1 t7 t? 1
(@l 8)en) (657)
wad (PrlE (2, 5)Q(t, bt )
1 ) » 2\%y
(‘¢'1(t, 6)|H(ta 6)¢2(t’ 6)) = \/(‘PIW (6'58)

have analytic extensions in the complex plane, so that the same is true for their real or
imaginary parts considered as real analytic functions on the real axis. Thus the magnetic
field B(z,4) is analytic in z € S, for all § € I and it is continuously differentiable in
z and §. Moreover, as a consequence of condition IX there exist real limits B;(+o0, §),
j =1,2,3, which are C? in § and an integrable decay function b(t) independent of § such
that
sup |B;(t + is,8) — Bj(too,8)| < b(t). (6.59)
|sl<a
This is easily seen from the identity

1
H(z,8)Q(2,6) =~ }i AR(z, 6, \)d\ (6.60)
and lemma (6.2.3), for example. Hence the eigenvalues of H(t,8)Q(t,8) are given by the
relation 1
e;(t,6) = (=1 3/(2,8) (6.61)
where .
p(t,8)= 3" Bi(t,6) (6.62)

=1
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is analytic in 2 € S, for any § € I5 and is C! in (2,6) € Sa X Ia. Let us define the

function Aq,(t,§) by
t
A t,&:-/,/ ,6)du. 6.63
12(t, 6) o p(u,8)du ( )

Lemma 6.2.4 For any positive § small enough there ezxists a unigque eigenvalue crossing
point zo(8) such that Imzp(8) > 0 and 20(8) is a simple zero of p(2,68). As a function of
8, zo(8) is continuous and

}Ji]él) z9(8) = 0.

Proof: By assumption, p(2,0) has a double zero at z = 0. Let D(0, r) be a circle of radius
r > 0 centered at z = 0 and let us consider

p(z,8) = p(z,0) + (p(z,6) - p(2,0)). (6.64)
For any r sufficiently small,
lp(2,0)] > R >0, Vze dD(0,r) (6.65)

and there exists § small enough such that
le(2,8) - p(2,0)] < g— Yz € dD(0,r), (6.66)

by continuity of p(z,8) in z and é§ and compactness of dD(0,r). Applying Rouché’ s
theorem we see that p(z,§) has as many zeros as p(z,0) in D(0,r), counted with their
multiplicity. As p(¢,8) > 0Vt € IR if § > 0 and p(Z, §) = p(z,6) by Schwarz’s principle, we
conclude that there exists in D(0,7) a unique simple zero z(8) of p(z, §) with Imzo(5) > 0.
The continuity in & of 29(8) is proven in a similar way.

o
We come to the main proposition of this section.

Proposition 6.2.2 There ezists a dissipative path v5(t), t € IR for a branch of Aj2(z,6),
passing above 29(8), such that

tli:ltnw Revs(t) = 0
inf Imys(2) > kb > 0
telR

sup |75(t)| < k
t€

where h and k are independent of §.

We postpone the proof of this proposition to the end of the chapter and we use it to
compute the transition probability Py (e, 8) of the effective problem. The existence of a
dissipative path above zp(§) is sufficient to apply theorem (5.2.1) for a fixed value of §,
with ¢ < (), for £(§) small enough. But here we want uniformity in § and ¢ so that we
have to investigate the situation a little further. Consider the hamiltonian H,(z,§) given
by (6.52) restricted to Qn+(0,8)H. Its eigenvalues coincide with the eigenvalues e}(z, §)
of Hy+(z,8) which can be expressed by means of an analytic function p.(z,§), depending

on € as
* 1 .
ej(z,0) = (—1)’5\/p.(z,6) i=1,2. (6.67)
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The function p.(z,6) is constructed in the same way as p(z,§), by replacing Q(¢, §) and
H(t,8) by Qn<(t,68) and Hy-(t,8) in (6.56). Because of the relation (6.53), obtained by
perturbation theory, we can write

p«(2,8) = p(2,8) + Ru(2,8,¢€) (6.68)
where R.(z,8,¢) is a rest satisfying
|Ru(2,6,€)| < eb(t) Vz=t+1is€ S,, (6.69)
where b(2) is an integrable decay function independent of §.

Proposition 6.2.3 There ezists ¢* and §*, independent of § and ¢ respectively, such that
foralle <e*, § < 6*

i) if § > 0, there ezists a unique complex eigenvalue crossing point z5(8) of €;(z,8) with
Imz5(8) > 0 in S,,

#) if § = 0, there ezists a unique real eigenvalue crossing point z5(0) of €3(z,0).

In any case |z5(8)] < r.

Proof: We assume that § > 0 and we choose ¢, independently of §, in such a way that

|px(2,8) = p(2,8)| £ % Vz € S;\D(0,r), Vé€Ia. (6.70)
As
}i_t.r‘l)e;(t,b‘) = ¢(t,8), (6.71)

the real eigenvalue crossing points, if any, must appear by pairs in order to to have
ej(—00,8) < 0 and ej(+0,8) < 0. Recall that Hy.(t,§) and H(t,§) coincide at in-
finity. To show that actually there is no real eigenvalue crossing point we use the fact that
((6.66), (6.70))

2R
lpu(2,8) = p(2,0)| < 5= < |p(2,0)| (6.72)
if z € 0D(0,r) and we apply Rouché’s theorem to
pa(2,8) = p(2,8) + (pu(2,8) = p(2,0)). (6.73)

As there is one double zero of p(z,0) in D(0,r), at z = 0, there are either two simple
conjugate zeros z3(6) and z3(8) or only one real double zero of p.(z,6) in D(0,r). But the
latter case must be excluded because this corresponds to one crossing only. Recall that
a real crossing corresponds to a double zero of p*(z,4) because of the analyticity of the
eigenvalues at that point. If § = 0, the same type of argument shows that there is one real
double zero 25(0) of p.(z,0), in order to insure ej(—00,0) < 0 and e}(+00,0) > 0, which
corresponds to one real crossing of eigenvalue.
o

Let us define A},(z,6) by

AlL(z,6) = - /0 " o, 8)du (6.74)

which yields an analytic function in S}\D(0,r). The path of integration is the same as
the one defining Ay5(z,8). A direct consequence of propositions (6.2.2) and (6.2.3) is that
for any 0 < 8§ < 6* and £ < £* we can apply the complex time method to the effective
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two-level problem (6.51). Indeed, the main points to apply this technique are to have a
complex eigenvalue crossing point zg(§) and to control the quantity

exp { 11 (AL, (16(5),6) = Ana(x6(6),6) (6.75)

where s < t (see (4.74)). We can do this uniformly in § and ¢ since it follows from (6.53)
that

ImA7,(z,68) = ImAq2(z,8) + O(¢) (6.76)
and by construction ImA,,(z,8) is non decreasing along 45. Hence (6.75) is uniformly
bounded in s < t, ¢ and §. We define a loop B based at the origin by the path going from
0 to —r along the real axis, from —r to r along §D(0,r) and from r back to the origin
along the real axis again. By proposition (6.2.3), z5(¢) does not belong to 3, for any § > 0.
To obtain the asymptotic formula for Py (¢, §) (see (4.78))

Poi(e,6) = exp {-E-Im /B e(z, 6)dz} exp {2Imd3(6)} (1 + O(c)) (6.77)

where 07(6) is defined in (6.81) with a correction term O(¢) independent of §, it remains
to check that along the dissipative path v5(¢), we can bound the corresponding coefficients
a;;(2,8) uniformly in § (see (4.74)). In our case, these coefficients are defined as (see
(4.24))

* of % =1 Er 77 *
ai;(2,8) = {pi(0,8)|W. "(z,8)K.(z,6)W.(z,8)¢}(0,6)) (6.78)
where ¢5(0,8), k = 1,2, is a pair of normalized eigenvectors of E:(O,&)QN-(O,S),
E.(2,6) = Qn-(0,8)iF; (2,6), P} (2, 6)1Qn~(0, 6) (6.79)
and , . . .
iW. (2,8) = Ku(2,0)W.(2,8), W.(0,8) =I,.(05)n- (6.80)

Lemma 6.2.5 There ezists an integrable decay function b(t) independent of § and £ such
that
lak;(2,8)| S b(t) Vz=t+is€ SI\D(0,r).

This lemma shows that formula (6.77) is indeed true for the effective two-level problem
(6.51) with a correction term independent of §. The proof is given in appendix.

Let us denote the intersection of §D(0,r) with the upper half plane by C}. We can
replace 3 in the integral of (6.77) by C} without altering the formula, so that we have to
evaluate ej(z,d), on CF, far from the eigenvalue crossing point zo(§). Moreover, 8;(5) is
given by (see (5.98)) _

F1(0,6) = exp {~i8;(6)} #3(0,6) (6.81)
where ¢3(2, §) are the eigenvectors of Hy«(z,8) associated with €}(z, ), whose phases are
fixed by (#3(t,6)l93'(,8)) = 0, Vt € IR. Since these vectors are normalized on the real
axis, exp {Iméj(§)} represents the change of norm of the analytic continuation of ¢j(z, §)
from —r to r along C;}. For any z € C} we can use perturbation theory to obtain as in
the previous section

Im_/;e;(z,tﬁ)dz = Im‘/;el(z,b‘)dz-}- O(e)
Imé; (§) Imé, (8) + O(e) (6.82)

where 6,() is defined by (6.81) with ¢1(z,§), the eigenvector of H(z,§) associated with
e1(z, 8), in place of pj(z, §). Due to (6.38), the term O(¢) is uniformly bounded in §.

I
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Proposition 6.2.4 Assume that conditions VIII to X hold and consider Im f; e1(z,8)dz
and Im#,(8) defined above. Then

lim Im / ex(z,6)dz = 0
§—0 B
}in(z’lmol(i) = 0.

Remark:
This last proposition implies that for § small enough

I21m /;; ex(z, 8)dz

<, (6.83)

T being the exponential decay rate of the correction term in proposition (6.2.1). Thus we
have

Paa(e, 6) = exp {%Im /,3 ez, 6)dz} exp {2Imé: (6)} (1 + O(¢)) (6.84)

for £ and § small enough. This proves the first assertion of theorem (6.1.1).
Proof: The geometrical interpretation of (6.84) given in theorem (4.1.1) yields

= [ImA2(20(6), 6)[ = dy(20(8), IR). (6.85)

lIm/ e1(z,0)dz
B
As p(z,8) = p(z,0) and 2¢(§) — 0 when § — 0 (proposition (6.2.2)), we get
tim d, (0(8), 1) = 0. (6.86)
Let us introduce W(z,t; 8), z # z(8),t € IR, by

iW/(2,8,8) = i(P!(2,6)Pi(z,8) + Pi(z,8)Py(z,8) — Q'(z,8)T- Q(z,5))) W(z,t;6)
K(2,6)W(z,t;8), W(t,t;6) =L (6.87)

We have _
¢1(2,8) = W(z,0;8)p1(0, ), (6.88)

where ¢,(0, §) satisfies
H(0,8)p1(0,8) = 1(0,6)#1(0,6), |lea(0,8)l} = 1. (6.89)
Moreover, as noted previously
IW(r, ~r;8)¢a(~r, 8)|| = exp {Imé1(6)} (6.90)
where the path of integration of W(r, —r,8) from —r to r is along C;}. Let us show that
W(r,—r;8) = W(r, —r;0) (6.91)
strongly as § — 0. Consider the identity
(W"l(z, —r;8)W(z,-r;0) —I) p=

i [ W, -, 6) (R(2,0) - K(2,8)) W(', -7 0)pd2’ (6.92)
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where 2 and the path of integration are along C}. It follows from condition VIII (see
lemma (6.2.3)), that K(z §) is strongly continuous in z and §, Vz € SF\D(0,r) so that,
by compactness of Cf, K(z,8)y tends to K(z,0)¢ uniformly in z € C} when § — 0 and

sup ”W(Za -7 6)” <v ’ sup "W l(za =T 5)” <. (693)
Pl P

Now, the set of vectors
(W, —ri0)p; 2 ecCr} (6.94)

is a compact set in H because W(z' ,—7;0) is continuous in z’ so that we apply lemma
(3.4) of the introduction of [Kr] to obtain

lim ) s, I (R(2',8) - K(#,0)) W(2', -r; 0)p]| = 0. (6.95)

As a consequence
{ (W(z, -r;0) - W(Z, -r; 5)) ol <
(2, - ) (W= (2, —rs W (2, ~r; 0) ~ ) ]| <

wrr ,s:g I (K(z 5~ K(<, 0)) “(z,-r;0)¢|| (6.96)

showing that W(z, —r, §) is strongly continuous in § on C;}. Moreover, we can construct
a normalized eigenvector ¢,(—r,§) of H(—r,5) which is continuous in § by

Pl(—r’ 6)%("'"’ 0)

Pl = Lo, OB, Dl (—7,0) (©47)
where H(~7,0)py(—7,0) = e,(—r,0)p1(~r,0). Hence the estimate
W (z, =7 8)p1(~r,8) = W (2, —r; 0)pa(~r, 0)]| <
I (W(z,~r;8) = W(2,~7;0)) pr(~, 0)]| +
W (z,—7;8) (e1(~7,8) — 1 (-7, 0)) | (6.98)
from which follows that
W (z,-r;8)pr(—r,8) » W(z,—r;0)p1(~r,0) (6.99)

as § — 0. Since for § = 0, W(z, —r;0) is analytic for any z in D(0,r), W(4r, —r;0)
integrated along C;} coincides with W(-i-r —r;0) integrated along the real axis. Thus this
operator is unitary and we have ||W(4r, —r;0)py(—7,0)|| = 1, which together with (6.90)
imply

lim 6 (5) = 0. (6.100)

]
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6.2.4 Expansion in §

Let us turn finally to the last assertion of theorem (6.1.1) which deals with the actual
computation of Im [, e1(z, §)dz and Im#;(§) to the lowest order in §, when hypothesis XI
is fulfilled.

Proposition 6.2.5 Under hypothesis VIII to XI we have

2Im/ &0z = -5 (2 -Z)a+owe)
8 als0jez = 2\a a3
2Imé,(§) = O($).
Proof: By condition XI we have
p(z,8) = a2 + 2¢8z + b26° + Ra(z,6) (6.101)
with
& < a®b? (6.102)
where R3(z,4) is analytic and satisfies
|Rs(2,6)| < k(12| + 6%) (12| + 8) (6.103)

for k some constant. There will appear several other constants in the sequel, which we
shall denote generically by the same letter k. Let C,5 be the circle centered at the origin
of radius 24, where z is some real parameter. We can write

2 2
a? (z+ %) + (b’— c—z) §?
a a

|a®2% + 2¢62 + b26%)

2 cs|? 2 S|
> |a 2+ 3| - b —-;6 . (6.104)
If z is large enough, zé6 > lflé, and we have for any z € Cy;
cd ch cl
+ 5|2 -3 (z—%) 5. (6.105)

Thus we can always choose z sufficiently large so that

2 2
82 > (0,2 <z - laizl) - (b’e - %)) 2 >k2>0  (6.106)

where k is independent of § and arrive at the conclusion that for any z € C4

2

cé

2 s ¢
a‘iz4 — b — —
a2 a2

|a?2? + 2¢6z + b%6%| > k62, (6.107)
whereas
|R3(z,6)| < ké&°. (6.108)
on the same circle. By applying Rouché’s theorem for § small enough we have that
Jazbh — 2
A Lt i) (6.109)
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the zeros of a?22 + 2c6z + 5262, and zy(§), zo(8) are in Cys. Moreover, Vz € Cas,

Rs(z76) )
/ = 2,2 242
p(z,0) = \/az + 2¢dz + 626 (1+a222+2c6z+b"’62

= V222 + 2¢6z2 + b26%(1 + h(z2,6)) (6.110)
where |h(z, 8)|.ec,; < k6, since
R3(Z,5)
< . .
T 12 10757 S kd Vze Cus (6.111)
From these last estimates we can write
2Im/ ei(z,8)dz = —Im/ p(z,08)dz
B

= -Im / , V@2 ¥ 2chz 1 PRz + O(F).  (6.112)
Czi

Finally, we compute by deforming the path of integration to a vertical segment going from
z = Re(; to z = (4 and back to z = Re(y,

ﬁ-\/a'*‘y-;n c2
—Im/ Va2z? + 2c6z + b282dz = -2/ (62 - —) 82 — y2a2dy
o, 0 o
L L
§ 3 (a a3> . (6.113)

To bound Imé,;(§) by a term of order §, we need a little more work. The first step is to
derive a formula for Im#, (§) of the type given in proposition (4.1.1).

Proposition 6.2.6 Let v;(t,8), 7 = 1,2,3 and By(t,§) be defined by (6.54) and (6.56)
respectively and assume that conditions VIII to X hold. Then

Bs(z,6) (B1(z,8)B3(z,8) ~ Ba(z,6)By(z, 5))d
2v/p(z, 5(32(2,5) + Bz(z,ﬁ))
Bj(z,6) '
R [ (2 (e I 8) - (e 60
B(z,68) + iB>(z,4)
2v/p(2,8)

where the path o encircles zo(§) and contains no zero of B?(z,6) + B3(z,§).

Im6y(6) = Im /

’ B](Z, 5) - iBz(Z, 6) 7
(‘([)1(2,5)'1/)2(2,5)) + 2m (1[’2(276)'11’1(2’6)))

Remark:

This formula is of course true when the hamiltonian is independent of §, as in theorem
(5.2.1).

Proof: We introduce the vectors

xi(6:6) = (Bo(t,8)+ (<17 (6,8)) $1(8,8) + (Bu(t,6) + iBal(t,6))$alt,8)
a;(8,8)%1(2,8) + B(2, 6)¢2(t,6), 7=1,2, (6.114)
which satisfy by construction

H(t,6)x;(t,6) = ej(t, )x;(8,8), j=1,2. (6.115)
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Moreover, their analytic continuations along o, from the origin back to the origin, are
given by

x3(0,6) = xx(0,6) (6.116)
since the components Byi(t,§) and the basis vectors 1;(¢, §) have analytic continuations in

a neighbourhood of the origin, even at z = 29(#). As in paragraph (4.1.4) we write the
eigenvector ¢;(t, §) satisfying (p;(t, §)|¢(t, 6)) = 0 under the form

@j(t,6) = exp {—i6;(t,8)} x;(t,8), j=1,2 (6.117)

with exp {¢6;(0,8)} = [|x;(0, 8)||- It then follows from (6.116) that

Imé; (8) = Im ( [ 81(2,8) + 2(0,6) - 600, 5)) . (6.118)
We have by the same argument as in paragraph (4.1.4) (see (4.58))
(¢, 8)Ix(t, 8
i8l(t,6) = g‘c’g 5;:;2 a;; vt € IR. (6.119)

Due to the time dependence of the basis vectors ¢;(¢,6), we obtain here for §; (without
expliciting the arguments (¢,6), t € IR)

.ot 1
# = Gopren (5 B9 + o (P
+1BIX(balw) + TB(aIY) + Baj(val9y) } - (6-120)

The first term coincides with the previously computed one in paragraph (4.1.4). Using
the self adjointness of Q(¢,8) for t € IR, we check that the functions

(¥i(t, 8)l¥i(2,9)) te R (6.121)
have analytic continuations close to the origin, even at z = 2¢(§), which we denote by
(Wilr)(2, ). (6.122)

Multiplying (6.120) by M,using proposition (4.1.1) and (6.118) we obtain
+P+B;

)<t [ OB,
B; — B B2 B. BZ B
#Re | (( AT ity - BB 14y
2 i 2 2) i
(3121%25)'??:; )Bz) (1l92) + ta ;:/—Ii Bgil B2 )BZ) (¢zl¢1)) (6.123)

for a path o containing no zero of (B? + B%). This proves the proposition.
ju]

Our condition XI implies that the analytic functions B;(z,8) defined by (6.56) have
the form
B;(z,6) = ajz + b;6 + Ra(2,6) (6.124)
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where the real constants a; and b; satisfy

dai=d?, Y pi=1¥, Za,b =c (6.125)

J=1 J=1 i=1

and Rj(z,8) is a rest of order two in (z, §). Again we shall replace the path ¢ by CJ; since
on the real axis, the integrals in proposition (6.2.6) do not contribute to Im6,(§). But
here some care must be taken for the first integral since the integrand has poles at the
zeros of B?(z,8) + B2(z,8). But this is not the case for the other integrals in which the
replacement of o by CJ; is justified. As on C¥; we have (see (6.107))

Iy (2, 8)l 2 k8, |B;(2,8)| < ké and |[{9;le)(z,6)] < K, (6.126)
we immediately obtain
_ By (B1B; — B,B))
Imé,(6) = Im , "2 (B2 +B§) dz + O(98). (6.127)

To deal with the first term, we introduce
a?+al, B=43+b and v =a1b; + azb,. (6.128)

By the Cauchy-Schwartz inequality these quantities satisfy |y| < af. Actually, we can
assume without loss of generality that

0< |v] < aB. (6.129)
Indeed, the equality |y| = af implies
ay = yby, a; =yb; (6.130)

for some y # 0. This cannot be the case for any couple of indices since it would imply
ag = ybz as well, in contradiction with the condition |¢| < ab. Thus we can always
perform a change of basis vectors, which amounts to write H(t,§)Q(t,8) in a new basis
{S¥1(t,8), S¢2(t,8)} instead of {11(t,8),92(t,8)}, where S is a unitary matrix, so that
the components of the new field are such that (6.129) is verified. With these definitions
and (6.124) we can rewrite

B2(z,8) + B3(2,8) = a?2 + 296z + B%6% + Ry(z, ). (6.131)

As previously we have, for z € CJ;

2
|a222 + 276z + 5252| > |a? |2 t e 76 - |8 - %5 82 (6.132)

where ) 2 .
2 z+-‘-yi2$ > a? (z—-‘lzl) 8> ﬁ2_7_2 82, (6.133)

a a a

provided z is large enough, so that

|a2z2 +2v6z + ﬂ262| > ké2. (6.134)
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Hence,
|Rs(2,8)| < k8 < k8? < |a?2® + 2762 + B787| (6.135)

for § small enough, Vz € Cf;. Then it follows from Rouché’s theorem that Bf(z,6) +
B2(z,6) has as many zeros in C'*‘s as a2 + 2982+ 262, i.e. two (o(8) and (o(4), counting
multiplicities. Indeed, the roots of a®z? + 2v§z + 262 are given by &5,

¥, TP,

f:!:="_3t a?

which belong to C,s if z is large enough. Note that due to (6.129), Im{; > 0. Now we
can replace the contour of integration ¢ in (6.127) by CX, provided we take the residue
at (o(6) into account. Consider first the case where (o(8) # (o(é). Since Im(y(8) > 0, we

have
Imé; (§) = 27Re (Res (B;fffféz;BB"gi),co(a))) , (6.137)

(asz + bs5)(dzb1 -~ alb2)5 + Rs(z 5) dz
Ct, 2V/a25? + 2¢8z 4 BE63(a32? + 2762 4 P62 + Ra(z,6))(1 + h(z,6))

where |h(z,8)| < kb (see (6.110)) and Res(f, zo) is the residue of f(2) at the point z,. In
view of (6.134) and (6.110), we can estimate the remaining integral by

Im/ (asz + b3)(azbs — @1b,)d
ct, 2Va%2% 1 2c6z + b28%(a?2? + 2962 + 262)

(6.136)

+Im

+ O(6) (6.138)

when § is small. The integrand is now singular at {, and £, only, which both belong to
CY;, when z is large. Thus we can replace the contour of integration C}; by C%, the half
circle of radius R, which will ultimately tend to infinity, since on the real axis the integral
is real. On C} we have the estimates

262
|a®2% + 2céz + b%6%| = |2%]|a® + 2c8 —+ ﬂ > k(8)R? (6.139)
and
|a®2? + 276z + B26%| > k(6)R? (6.140)
which imply
/ (032 + bs&)(dzbl - a1b2)5 k(5) (6 141)
¢t 2va?z? 4 2c6z + b26%(a?2? + 296z + ,3262) R '

Taking the limit R — oo we are left with

B ! — B,B,
Im0,(§) = 2nRe (Res ( 257;(353 f;; ),(0(6))) + O(8). (6.142)

The residue is given here by the formula

B3 (B1B} - B;B})
4/p(B1B; + B; B;)
ie, H(B2B; + BiBY)
** 4(ByBj + B.B})

(B1B3 — B, By)
' 4(B,B| + B;B))

¢o(8) ¢o(8)

= 4- (6.143)
¢(6) 4
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where we have used the fact that

B} (¢o(8), 8) + B3(o(8),8) = 0, (6.144)
so that
V/P(Co(6), 8) = / B2(Col$), 6) = €1B5(¢o(6), 6) (6.145)
where ¢; = +1 and
Bl((o(é), 6) = ezz'Bz((o(6), 8) (6.146)

with £5 = +1 as well. Hence

Imé,(§) = O(9). (6.147)

Consider now the case (o(§) = (o(8). We come back to (6.127) and we use the fact that
B;(z,6) = Bj(z,6) by Schwartz’s principle and that z(5) a simple zero p(z,§) to write

B3 (BB} — B;B))
w25 (B + BY)

Imé, (5) = %Im /o + O(6) (6.148)

where 0 U7 form a closed path surrounding {o(6) and {o(4) (see figure (6.3)). By the same

8]
L ®

19

Figure 6.3: The integration path c U 7.

argument as before, we have

B;(ByB} — B, BY)
2P (B} + B3)

Imé;(8) = wRe (Res ( ,Co(6)>) + O(8). (6.149)

The residue is now given by

] (Bs(BlB; - BzB{)) 1
dz 2/p £ (B + BY)

since (o(6) is a double zero of B? 4+ B2. Moreover, as it located on the real axis, this
implies

, (6.150)
€o(6)

B1(Co(6)) = Bz(¢o(8)) = 0. (6.151)
Thus d [ Bs(ByB, - B,B})
71?( 3 12% 2By ) o =0 (6.152)
and

mé, (5) = O(6). (6.153)
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This last assertion ends the proof of proposition (6.2.5).
a

To bring the proof of theorem (6.1.1) to an end, it remains to show the existence of
the dissipative path 45 of proposition (6.2.2).
6.2.5 Existence of a Dissipative Path «;

Proof of proposition (6.2.2): To prove the existence of a dissipative path ;s for
Ajy2(z,8), we first show that there exists a dissipative path 4o for A;2(z,0). When 6 =0,

the function ; .
A ,o=/ .0) - ea(u, 0)d =—/ Je(w,0)d 6.154
12(2,0) A e1(,0) — ez2(u, 0)du o p(x,0) U ( )

is analytic in a neighbourhood of the real axis and behaves as 22 close to the origin. We
select the branch of the square root by requiring A;(¢,0) > 0 if t < 0. The Stokes lines
given by the level lines

ImAn(z, 0) =0 (6.155)
are homeomorphic to the lines depicted in figure (6.4) in a neighbourhood of z=0. As a

Z N

NIV

Figure 6.4: The level lines Im22? =cst.

consequence, there exist in this neighbourhood two points 2; and z, above the real axis
such that

IInAn(ZhO) = -
ImA2(22,0) = +a (6.156)

with a > 0 small which are connected by the level line
ReAlz(Z, 0) = ReAu(Zl, 0) (6.157)

Then, the idea is to take a small enough, and to complete this segment on the left by
the level line ImA;5(2,0) = —a and on the right by ImA;5(2,0) = +a which connect 2;
to —oo in S; and z; to +o0 in S,. If we can find such an a, we have at hand a path
70(t), whose parameterization can be chosen such that 4¢(¢;) = 2, 70(¢2) = z2 which is
dissipative for Aj3(2,0) (see figure (6.5)). Indeed, we have for any path

L imAs(r0(t), 0) = ~Redo(®)imy/p(70(1),0) — Ema(t)Rey/p(1(0),0)  (6158)
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/
\
| )

Figure 6.5: The dissipative path vo.

and

%ReAlz(’ro(t), 0) = —Rejo(t)Req/p(70(2), 0) + Imo(t)Im4/ p(70(2), 0). (6-159)

Thus, if we choose for t € [t;,12]

Refo(t) = —Imy/p(70(t),0)

Imyo(t) = -—Rey/p(70(t),0) (6.160)
then equation (6.159) is identically equal to 0 and
d 2
EImAn(‘yg(t),O) = [v/p(70(t),0)|* > d > 0. (6.161)

We can continue this path on the left and on the right as described by using the following

Lemma 6.2.6 For any u > 0, there ezists v > 0 such that on
Fy = {zIRez 2 +p, |[Imz| < u}

the function Aj2(z,0) is bijective.

Proof: Let px > 0. By continuity of p(z,0) and condition X, we can chose v sufficiently
small to insure Re /p(z,0) > R > 0 for any z € F_. Let us consider the rectangle R_(L)
whose border is defined by

OR_(L)=d(F_\{z : Rez< —L}). (6.162)

Along its horizontal segments we have that
t
ReAjo(t £ iv) = ReAja(—p 2 iv) + / dzRe,/p(z + iv) (6.163)
-p
is strictly monotonic. Similarly, along its vertical segments

ImA(—p + is) = ImA(—p) £ ‘/: dyRey/p(—pu % 1y) (6.164)

and ImA3(—L+1is) are strictly monotonic as well. Thus the image by Ay2(z,0) of GR_(L)
is a simple closed curve so that we can apply the argument principle which shows that
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Aj2(z,0) is bijective on R_(L). Since the length L of the rectangle is arbitrary, this proves
the first assertion of the lemma.
‘We proceed similarly for the positive part of the real axis and F,.
a

We shall assume from now on that the width a of the strip S; is smaller than v. Now that
we have constructed a dissipative path for A;,(z,0), we show that there exists a dissipative
path for Aj2(z,4) close to it. Let D(0, r) be the disc centered at the origin whose radius r
is such that D(0,r)Nyo = 0 and let S, (v) and S_(v) be tubular neighbourhoods of ()

for t > t; and ¢ < ¢, respectively, defined by their boundaries. These boundaries are given
by the level lines

3S_(v) = {z|ReA;z(z,0) > ReA;2(n,0), ImA;3(2,0)=-a v}
U {ZIReAn(Z, 0) = ReAlz(Zl,O), |IIILA12(Z, 0) +a| S v} (6165)

and 854+(v) is defined similarly (see figure (6.6)). We choose v sufficiently small so that
S+(v)Nn D(0,r) = 0. (6.166)

Consider the multivalued function

S_(v) 0 5,(v)

r D(@,r) R

0

Figure 6.6: The disc D(0,r) and the tubular neighbourhoods S_(v) and S4+(v) of 7.

Ayy(z,8) = - /oz v p(u,8)du. (6.167)

When restricted to
SI\D(0,7) = (S,\D(0,7)) N {z]Imz > 0}, (6.168)
Aq2(z,8) is an analytic univalued function provided § is so small that
|20(8)] < r. (6.169)

We fix a branch of Aj2(z,§) by requiring that the path of integration in (6.167) follows
the real axis from 0 to —r and that Ay,(¢,6) > 0 for t < —r.

Lemma 6.2.7 Let A15(z,0) and Aj2(z,8) be defined as above, and let z € SF\D(0,r).
PI’%IITIAH(Z,(” = ImAlz(Z, 0)

uniformly in z € SH\D(0,r).
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Proof: We first show that p(z,8) tends to p(z,0) uniformly in 2. Let ¢ > 0 and consider

|p(z,b') - p(z, O)I < Ip(Z, 6) - p(i°°a6)| +
lp(£00,8) = p(£00,0)| + |p(£00,0) - p(z,0)]. (6.170)

It follows from (6.59) that there exists T(¢) > 0 such that for any ¢ % +T(e)

lo(t +is,8) = p(£0,8)] < 3
lp(£0,0) - p(t +is,0)| < <. (6.171)
Since p(+o0, §) is continuous in 4, there exists 8;(¢) such § < §;(e) implies
€ € €
- A4 17
1p(2:8) = oz, 0)l < 5+ £+ 2 (6172)
for any |t| > T(¢). Now the set
Sa\ (D(r,0) U D+(T(¢))) (6.173)
where
Dy(T(e)) = {z[Rez 2 T(e)} (6.174)

is a compact set, so that p(z,d) is uniformly continuous in (z,§) for z in this set and
8 € Ia. Thus there exists §2(¢, T(e)) such that if |Rez| < T'(¢),

|p(2,6) — p(2,0)| < & (6.175)

if § < 85(e, T(€)). Since SF\D(0,r) is simply connected and contains no zero of p(z, §) for
any small § (see (6.169)), the analytic function \/p(z,8) tends to 1/p(z,0) uniformly in
z € SF\D(0,r), provided we select the suitable branches for the square roots. Our choice

is 1/p(t,8) and /p(t,0) positive if ¢ < —r. Consider now

Im‘/(;z \/;(u, 8) -~ \/p(z, 0)du

Let z =t+1is € S}\D(0,r). If t < ~r we can choose a path of integration going from 0 to
t < —r along the real axis and then vertically to t + is. If t > —r we take a path from —r
to ¢ following the boundary of D(0,r) and the real axis, if necessary, and then a vertical
path to t + is, see figure (6.7). Along the second path for t > 7, for example, we have

| ImAy2(z, §) — ImAqs(z,0)| = . (6.176)

| ImAz(2,6) - ImAsz(2,0)] < wrozgplt\/p(rexp{io},s)—\/Xrexp{io},on

+ asup |\/o(t +is,8) — \/p(t + is,0)| (6.177)
s|<a

where the second member tends to zero uniformly in z = ¢ 4 is as § tends to zero. The
result is the same when t < r.
[m]

As a consequence of this lemma we can assume that § is small enough so that we have

0(2,6) = p(z,0)| S 5 V2 € SAD(0,7) (6.178)
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[}
z = t+is
z'= tHis’
D@, R
- > —
-T 0 r
Figure 6.7: Particular integration paths.
where 0 < R = inf,¢5,\p(o.r) P(2,0) and
| ImA (2, 8) — ImAqa(z,0)| < g Vz € SH\D(0,r). (6.179)
Hence the level line
ImAn(z, 6) = IIIIAlz(Zl, 6) (6180)
cannot cross the level lines
I.mAn(z, 0) =-azxv (6181)
since this would imply
v
l ImA12(21,5) - ImA12(21,0)| =v> '3— (6.182)
Moreover, the line
ImAlz(Z, 6) = ImAlz(zl, 6) (6183)
cannot cross the segment
{z|ReA12(2,0) = ReA;2(21,0), | ImAj12(2,0)+ a| < v} (6.184)

if § is small, except at z = z;. Indeed, for § small enough Aj,(z1,8) # 0, so that Ay,(z,8)is
bijective in a §-independent neighbourhood V' of 2. Moreover A,2(2,6) tends to Aq,(z,0)
which has the same property in V' so that we can conclude. Note that a level line

ImAn(z, 5) = cst (6185)

is given by the solution ¥(t) of the following differential equation

3‘1 ImAq2(7(t),5) = 0 (6.186)
t
Rei(t) = Rey/p(1(2),)
mi(t) = —Imy/o(7(2),9) (6.187)
Thus d
% Rebnz(1(2),8)| = 10(1(0),6)] > R > 0 (6.188)

dt
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which implies that | ReA;2(y(t), §)| is strictly increasing along v(t). Hence the level line
ImA,2(2,8) = ImA,2(z;, §) leads from 2, to —oo in S_(v). Moreover, |(t)| = |v/p(7(2), 6)|
is uniformly bounded in §. Finally, we have along vo(t) for ¢ € (t1,1;]

dit ImA;2(70(t), 6) =

- (Re"ro(t)lm\/ p(70(t), §) + Imo(t)Rey/p(70(2), 5)) (6.189)

which is strictly greater than zero if § is sufficiently small, since v/p(z,8) = /p(2,0) and
by construction £ ImA,3(70(t),0) > d > 0 (see (6.161). Hence, the path 75 defined by

7o from 2; to 2 (6.190)

ImA,5(z,8) = ImA42(2,8) from — o0 to z
Y5 =
ImA12(2,6)= ImA12(32,6) from 2z to 4 o

is dissipative for A;2(z,6) and has all the properties announced in the proposition.
0

This completes the proof of theorem (6.1.1) as well.



Appendix A

Exponential Bounds via Complex
Time Method

We investigate here the possibility to get exponential bounds on the transition probability
by integrating the Schrddinger equation in the complex plane, without having to consider
the pattern of Stokes lines in .S;. We will show that this can indeed be done and not for two-
level systems only since we shall consider bounded hamiltonians in this appendix. Actually,
the method we shall develop can be generalized to deal with unbounded hamiltonians as
well and yields the same result, but we will treat here the bounded case only in order not
to burden the main ideas of the proof under technical problems. We refer the interested
reader to [JP4] for the extension of the proof to the unbounded case.

A.1 Bounded Case

We assume that H(z) is a bounded operator satisfying conditions I, IT and III. The part
o1(z) of its spectrum is associated with the projector P;(z) and we define P,(z) =I— P;(z).
The various evolutions U.(z,0), W(z,0) and &.(z,0) given by

i€U(2,0) = H(2)U.(z,0), U.(0,0)=I
iW'(z,0) K(z)W(z,0), W(0,0)=I
i€®.(2,0) = W (z,0)H(2)W(z,0)%.(2,0), $.(0,0)=I (A.1)

are now all analytic in S,, provided the width 2a of the strip is small enough (see paragraph
(2.2.2)), and they are given by Dyson series analogous to (2.27). Let us consider the
operator A(z,—o0) satisfying

A(z,~0) =T+ i.[-z 371, 00WL(,0)K(YW(Z,0)8.(2,0)A(2, —00)dz'. (A.2)

It allows the transition probability P2;(€) to be expressed in a convenient way (see lemma
(3.1.1)) by

Pai(e) = || P2(0)A(+00, —00) Py (0)]|*. (A.3)
To stress the similarity with the two-level case we have treated in chapter (4), we define

Ci(z) = Pi(0)A(z, —c0)Py(0)
Ca(z) = Py(0)A(z, —o0)Py(0) (A.4)
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with initial conditions C;(~o0) = P1(0), C2(—o0) = 0. The transition probability thus
takes the form
Pale) = [|Ca(+o0)|I2. (A.5)

We also introduce
®,(z) = P1(0)&.(2,0)P(0), ®2(z) = P2(0)®.(z,0)P;(0) (A.6)
and for an operator Y(z) we define

Yi2(2) = P(0)W™(z,0)Y(2)W(z,0)P,(0)
Yai(z) = P(0)W™Y(z,0)Y(2)W(z,0)Py(0). (A7)

We recall that due to [®.(z,0), P;j(0)] = 0 and P;(z)K(z)P;(z) = 0 for j = 1,2, we have
the identities

Q,(Z,O) = §1(Z)+§2(Z)
W(2,0)K(2)W(2,0) = Kia(2) + Kz1(2) Vz€ Sa. (A.8)

Equation (A.2) is equivalent to the system of equations for the C;’s
Ci(a) = PO)+i[ 87N Ku()8()Co()d’
Caz) = i / ; 851() B (2)8:1()Co(#')d7. (A.9)
We can apply the integration by parts formula (lemma (3.1.2)) to equation (A.2) to obtain
for 2z € IR with our definitions
Ci(2) = Pi(0)+e¥7 ! (2)R12(K)(2)22(2)Co(2)
- ¢ [ ERLE ()0
- /_ w 871 R KN ) B () 81() Co (') d=
Caz) = -3 (2)Ra(K)(2)21(2)C1(?)
+ e [ SHARL(EN)E()C()er
+ e / ; 851 () Roa (K ) () Kra(2)82(2')Cal(2')d' (A.10)
where we have used the notation
Ry (K)(z) = A= POIW (2, 0) = R(K)(2)W (2,0)P(0). (A1)

Moreover, it is not difficult to see that these equations hold along any path in the complex
plane as well since the gap hypothesis is true for any z € S, when a is small enough. The
point now is to find generalized dissipative paths in the complex plane along which we
can control the e-dependence of the dynamical phases ;(z), j = 1,2. In order to do this
we introduce a fictitious level e in the gap of the spectrum of H, which will be used as
a reference level. Under hypotheses I to ITI, there exists a positive constant § and real
valued smooth function 7o(t), ¢ € IR such that

dist(ro(t), o;(t)) = 6,

sup p1 <ro(t)< inf pu, Vi€ R (A.12)
w1 €ay(t) #2€02(t)
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and
|ro(t) — ro(£o0)| < b(2)
ra(8) < B(2), t<0, (A.13)

where b(t) is an integrable decay function. Actually, we can even take ro(t) = ro(Eoo) if
[t| is large enough. We define for ¢ € IR and |[s| < a two complex-valued functions by

eo(t,s) = ro(t) + isry(t)
Ao(t,8) = isro(2). (A.14)

These functions are obviously not analytic but we can assume that they are defined in
the complex plane considered as IR?. Thus we shall make the abuses of notation eo(z) =
eo(Rez,Imz) and Ao(2) = Mo(Rez,Imz). We introduce new operators X;(z), j = 1,2, by

Xy(z) = QI(z)exp{:ixo(z)} Ci(2)

Xy(z) = 'Iz(z)exp{-:-/\o(z)}Cz(z) (A.15)

which satisfy the equations (see (A.10))
X1(2) = &1(z) exp { 2ho(a) | + eRus(K)(2)Xe(2)

—e / ’ (Ql(z) exp{éz\o(z)} Ql_l(z')exp{—:;/\o(z')}) 1 (K)() Xo()d2!

-0

e [ ; (Ql(z) exp {:i,\o(z)} $71() exp {-é,\o(z')}) w(B)() En(#) X (£)d7

Xa(2) = —eﬁzl(K)(z?Xl(z) .
te [ (e {20} 87 exp { - 22a(e) }) Rea(BO() (2
tie /_ ; (@,(z) exp {é)\o(z)} 3;1(') exp {-2,\0(;')}) Ran(K)() Baa(2') Xa(£)d7'.
(A.16)
A dissipative path for &;(z) exp{f)\o(z)} is a path 70(t) = v9(t) + iv{(2), t € [a, 3],
defined by the property :
12,690 exp { DarO)} (23006 exp { ExalrP() }) <
Va<s<t<b. (A.17)

We have introduced indices on the dissipative paths because in general it is not possible to
find one path in the complex plane along which (A.17) is satisfied for both &, exp {é/\o}

and ¥, exp {-:'-Ao}. The real axis is of course a dissipative path for both operators.
Lemma A.1.1 There ezists a dissipative path v(2)(t) C S,, t € IR, such that
wht)=1
t%'rgz)(t) >h>0.

Moreover, in a neighbourhood of the real azis, any vertical path with upward, respectively
downward, orientation is dissipative for &, exp {%)\o}, respectively $, exp {%)\0}.
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We postpone the proof of this lemma to give the main proposition of this section.

Proposition A.1.1 Let Q C S, be defined by the simply connected domain bordered by
4(2) and the real azis and let the norm || - ||lq be define by

llAlle = sup [[A(2)] YA(2) € B(R).
ze

Then

IXille = OQ)
| X2l = O(e) as e—0.

Proof: Let z € Q. By lemma (A.1.1), the path a(t) defined by

t t < Rez
a(t) = { Rez 4+ i(t ~Rez) Rez<t < Rez+Imz (A.18)

(see figure (A.1)), is dissipative for &1 exp {£Xo} and §(t) defined by

(2
_J 190 t < Rez
ﬂ(t) - { 7(2)(Rez) -— i(t -— ReZ) Rez < t S Rez + Im7(2)(ReZ) - Imz (A.lg)

is dissipative for &, exp {£Ao}. In particular we have along o
3
B 10
)

o Z

oft) + R

> -

Figure A.1: The dissipative paths @ and S.

1) e { D@} < i e { Do)} (22 Rez)exn { xalmen)}) i x
181(Rez) exp { -:-Ao(Rez)} <1 (A.20)

Thus considering the first of the equations (A.16) along the same path « and using the
integrability of || K|| (see lemma (2.2.3)), we obtain

IX2(2)]) < 1+ e[ Raa(ElallXella
400 - _
s ([ atRa(K)ON + alea)la ) 1Xalo
s ([ atsa TN ONTr(0l + elRaa Nl Bl ) 1 sl
=1+ ek(|| X1lln + [ Xzlln) (A.21)
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where k is a constant independent of ¢ and z € Q. The two terms in the factors of ¢
come from estimating the integral over a by an integral over the whole real line and over
a vertical path up to the boundary of S,. Similarly we get from the second equation along
the path g

I%:() < elRar()llal Xl

+e ([ i OONRAE)I DO + alR (Kl ) sl

+e ([ ayelRa(GOEME OO + ol R (K)ol Brslla) 1 Kal
= ek(| Xafla + [ X2[ln) (A.22)

for any z € . Summing the two inequalities and taking the supremum over z €  gives

I Xalla + || X2lla < 1+ 2¢k(|| X1]ln + [|Xz2lla) (A.23)
from which follows 1
< <K )
1Xslla +1%Xallo < 5 S & (4.29)
if £ is small enough.
a

This proposition allows the desired result to be proven.

Theorem A.1.1 Let H(t) be a bounded operator satisfying conditions I, II and III, and
let ¢.(t) be a normalized solution of the Schrédinger equation iey. = Hv, such that
limg, —co [[P1(2)¥e(t)]| = 1. Then, there ezist two positive constants M and T such that
the transition probability P21(e) = lime 4 o0 || P2(t)1e(t)||? satisfies

Pa(e) < €M exp{~27/c}
tf ¢ s small enough.

Proof: From the preceding proposition we can write

x40l < 185 (1O +o0)) exp { 2o +oo))) | I XKaz (o))

IA

1
k|27 (koo { O reohro(roo)} . (A25)
The operator &;(z) satisfies the differential equation (see (A.1) and (A.6))

ie 2872 (2) = ~8; ()P OW (5, ) E (W (=, 00P(0), 5°(0) = Po(0).  (A.26)

In particular, along a vertical path oriented upwards we have

d . .4
ez‘i;l(t +1i8) =g a—z-i’zl(z)

= ~&;1(t + is)Ha(t + is) (A.27)

t4is

with Hz(z) = P,(0)W~1(z,0)H(z)W(z,0)Py(0). Let us compare &;(¢ + is) with
exp {—%ﬁz(t)} From

e% (@;l(t +is) exp {g—ﬁz(t)}) = 872t + is) (Hal(t) - Falt +is)) exp {Sﬁz(t)}
(&.28)
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we get by integration and by using lemma (2.2.4)

125+ is)exp { 2Balt)} - P20} <

8 ~ P
2 sup 85%(2)| sup l}exp { £2a(1)} 1562 (A29)
z€n tclR £
where E(t) — 0 when ¢t — +00. As the spectral theorem implies
“2E ) P0)| = exp{ -2 inf A.30
e {20} PO = exp{ - int s} (A30)

we can write (2)( )
lim 1N = _r7tx) .
B 187000 = e {-T0)

Now, since inf,¢,,(4+00) # = ro(+00) > § > 0 by construction of ro, we eventually obtain
with (A.5) and (A.25)

(A.31)

(2)
Pa(e) < €2k%k" exp {-—27—2-(;0.;)6-} (A.32)

(]
Remarks:

¢ When the hamiltonian is a 2 X 2 matrix, there is no need to introduce the fictitious
level ¢o and the notion of dissipative path is the same as the one defined previously.
In this case, the exponential decay rate 27 is given by 2{ImA(y(?)(+0))|, where A
is the function f; e1(u) — ez2(u)du defined in Q.

o In the case of an unbounded hamiltonian H, we consider bounded approximations
H,, of H for which we prove the theorem above by the same method. Then we show
that the bounds thus obtained are uniform in n (see [JP4)).

A.2 Existence of the Dissipative Path v

Proof of proposition (A.1.1): In order to prove the existence of dissipative paths for
®;exp {%Ao}, j = 1,2, we consider the differential equation these operators satisfy along

a path 7(t) = 1(t) + i72(2).
ie 28;(1(0) exp { - Lro(n(0)) ] = is01252(0)) exp { - oo} -
$2,(1(2)) Ga(Oroln(®) + (O (On(H) exp {-”e(”ro(yl(t))} =

(HOBGE) - #2Oretn®) - OO0 B 0) exp { - ro(n(e))
(A.33)

with initial condition &;(z)exp {%x\o(z)}l 0= P;(0). This equation can be viewed as an
z=
evolution equation in the subspace P;(0)X

2 (B6@em{20600}) = -28,66) (B e { 20Gw)]),

2,(0) exp { 230(0) | =T, o (4.34)

72()
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with

G;(1()) = YO H;(1(£) — § (F2(O)ro(11(8) + 11 (E}r2(O)ro(n () Ip, oy (A.35)

This form is very convenient because showing that the estimate (A.17) holds amounts to
prove that £G;(7(t)) generates a contraction semigroup on P;(0)H for any ¢t € IR and
that 0 belongs to its resolvent set (see theorem X.70 in [RS] and the first remark below
it). These conditions are verified if

Re(pliG;(1(t))¢) 20 Vo € (0K, |l¢ll = 1. (A.36)

and 0 € T(G;(7(t))), the resolvent set of éi_(7(t)) considered in P;(0)H. This means that
we have to control the numerical range of G;(7(t)). Along v we must have

Re(pliGi(1(8)e) = —in(t) (Tm{p|F;(7(t))e) - 2(t)rb(n(2)))
+ 92(t) (ro(n() - Re(plE;(1())p)) 0. (A.37)

Consider the case j = 2, and set y(t) = 91(t) + iy2(t) with ¥1(2) = t and 7,(t) > 0. We
get the condition

2(t)Re(| (F2(1(8)) - ro(®)) ) < - (Im{p Ho(1(8))0) - &)ro(ma(t))) - (A.38)
By lemma (2.2.4) there exists an integrable decay function 3(t) such that
1E2(v(9)) - Ex(0)]l < 12(0)B(2) (A.39)
so that

|l Ea(1(8))e) — el Ealt)e)]| <
12(t)b(t). (A.40)

Thus if sup,¢ jp 72(t) is small enough and by applying the spectral theorem to the self-
adjoint operator ﬁz(t) considered in P,(0)H, we obtain

Re(p| (B2(7(2) - rolt)) ) >
~ ~ )
(il (B2t) - a(t)) ) — sup 12(1)B(2) > 5 (A1)
telR
where & is the constant of (A.13). Similarly, we obtain from (A.40) and (A.13) the estimate
[tm{p B2(1(8))¢) — 12(8)ro(8)] < 7(8)B(2) (A.42)
where b(t) is an integrable decay function. We define v,(¢) by the differential equation
. 2;
32(t) = — 2b(Bha(t), 7a(=00) = 2 >0 (4.43)

with s_ small. Its solution is given by

va(t) = s_ exp {‘% /_ ; i,(s)ds} >0 Vi (A.44)
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so that if s_ is small enough (A.41) is satisfied and consequently, (A.38) holds as well for
any t € IR. We have thus proven the first part of lemma (A.1.1). Consider now a path
given by ¥(t) = 9o — it, where vy is a constant. Condition (A.37) for j = 2 now reads

= Re(g| (ro(10) - H:(7(t))) #) 2 0 (A.45)

and it holds sufficiently close to the real axis by (A 41). The corresponding assertion with
j = 1 is proven in the same way.

(]
Remark:
In this proof we have used the fact that H ; were bounded to prove that é,- generate
contraction semigroups on P;(0)H, j = 1, 2. But the analysis of the numerical range of H ;
can be performed without resorting to the boundedness of H and there exists a definition
of ¥(3)(t) depending only on the function b(t) of condition II. These aspects are treated in
details in [JP4].
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Proof of Lemma (2.2.1)

Let 2 be a convex compact subset in S, and consider the map form @ x @ — IR defined
by (z,2') = |||H(2)|||.+. We first show that this map is continuous in z and 2'. Let z € Q.
Then there exists a constant M(z) such that for any ¢ € D and 2’ in Q

12 (2)ell < M(z)lell-- (B.1)

Therefore, if z; and 2, € Q,

I(E (21) - H(z2))pll < M(2)lz1 - 22|l ¢l)- (B.2)

Let us choose z = z;. Then for any z; € Q such that |z — z;| is small enough

el < (1+ M(a)la - 2D)lell-
el = llellz + M(21)|21 = 2]l (B-3)

h
ence L

1
z S Pl < : B4
Tl < Wl S ol ®9)
From (B.4) we prove that [}]- |||, is continuous in 2. Indeed, if A € £(X,,,H) then

4ol < [l Alll=lIel=
< ANl (1 + M(21)l21 = z2[)ella- (B.5)

Thus we get from (B.5) an upper bound for |||A]||;,. In a similar way we derive a lower
bound. We have

[1Alll2(1 = M(z1)lz1 — 2z2]) < Il 4lllzy < ANl (1 + M(21)|21 - 22]) (B.6)

so that ()| |
M Z1)|z21 — 22
- <

1Az ~ Al < 1Al 7= M(z1)l% = 73]

which tends to zero as z; tends to z;. Using the estimate (B.6) we prove that the function
(2, 2') = [|H(2)|]],r is continuous.

(B.7)

AN — NEEI,| <
M(2)i2 — 2| ,
”lH(zz)I”z; 1-— M(Z{)llzi —2251 + M(zl)lzz -2 (B8)
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going to zero as (23, 23) — (21,2;). Let 2 be any compact subset of S;. Then

sup sup 18 (z1)ell = sup |[|H(z ||z S K <o (B.9)
v€ED 21,2,€0 lloll= 21,2;€0
and
llellz < (K + Dllellz, 21,22 € Q. (B.10)

On the other hand, using condition II, we can compare any norm ||¢||; with ||¢||+ or {[¢]]-
when |Rez| is large enough. Thus for any r, 0 < 7 < a, using (B.10) we show that there
exist constants M; and M, such that

Millell+ < llell: £ Mallell+, |Imz| < ». (B.11)

The operator H(z) € £L(X4,H) has limits when |Rez| diverges. Hence, for any r, 0 < r <
a, there exists a constant M, such that

EG < My, sl < v+ 257 (B.12)

By similar consideration about |||H(2)|||- we get the first assertion of the lemma. Now
using Cauchy formula and (B.12) we have

1Bt +is)ell < Millgll+, Is[ <7 (B.13)

On the other hand, if |¢| is large enough, we can use condition II instead of (B.12), and
apply Cauchy formula to the applications (H(z) — H*)p or (H(z) — H™ )y as above. We
get for |t| large enough

IH'(t + is)ell < CB(@)liells, sl <7 (B-14)

and

I1E'(t + is)oll < C'B(E)lell-, Is| < 7. (B.15)

In (B.13), (B.14) and (B.15) the constants depend on r only. Since we can compare any
norm with |[¢|+ by (B.11), we have finished the proof of the lemma.
a



Appendix C

Proof of Lemma (2.2.4)

The first part of the proof of this lemma is essentially given in [Kr] p. 308. We prove
the lemma for 2o = 0. Let 0 < r» < a. We consider first the operator H'(z)R(z, ) where
A € T(z2) for all z in the strip, with [Imz| < r. (e.g. X is negative and |A| large enough).
We show that for all z with {Imz| < » H'(2)R(z,)) is a bounded holomorphic operator.
Moreover, there exists a constant N such that

HH'(2)R(2,A)|| < Nb(t), Imz|<r (C.1)
with b(¢) the integrable function of lemma (2.2.1). We decompose the operator as
H'(z)R(z,) = H'(2)R(0, \)(H(0) - N)R(z,}) (C.2)

The factor H'(z)R(0,]) is a bounded holomorphic operator by condition I and lemma
(2.2.1). The other factor (H(0) — A)R(2,]) is a bounded operator, locally uniformly
bounded in z. Since (H(0) — A)R(z,]) is the inverse of the operator (H(z) — A)R(0,])
which is a holomorphic bounded operator, the operator (H(0) — A)R(z, A) is itself holo-
morphic and bounded. From lemma (2.2.1) we have

IH (2)R(z,M)ell < b(E)|IR(2, M)l
< () (1R(z, Ml + 1+ (A R(z, D)) el (C-3)

The result follows therefore from (C.3) and (2.11). Let us denote in the rest of this
proof P(t) by P(t) and I— P(t) by Py(t), for notational convenience. It follows from the
foregoing that the operator

G(2) = [Pi(2), Au(2)] + P(2)H'(2)R(2, \)Pi(2) + Po(2)H'(2)R(2,\)Po(2)  (C.4)

is a bounded holomorphic operator, provided that X is negative and || is large enough.
Moreover, there exists a constant N’ so that for |s] < r

IG(¢ +is)l| < N'B(2) (C.5)

with b(t) the integrable decay function of lemma (2.2.1). Therefore we can define S(z) by
the holomorphic solution of the equation

S'(z) = G(2)S(z), S(0)=L (C.6)
Besides S(z) we also introduce the operator
F(z) = R(z,A)S(=). (C.7)

143



144 APPENDIX C. PROOF OF LEMMA (2.2.4)

Let us compute the derivative of F(z),
F'(z) = R'(2,X)S(z) + R(z,))G(2)S(z). (C.8)

We know that
Pr(2)R(z,A) = R(z, A)Pi(2), k=1,2 (C.9)

so that by differentiating this identity we get
Pi(z)R(z,)) + Pe(2)R'(2,A) = R'(2,A)Pi(2) + R(z,A)P(2) (C.10)
Now, using (C.9), (C.10) and R'(z,X) = —R(z,A)H'(z)R(2, ) we have

R(z,M\)Pi(z) + R(2, A)Pe(2)B'(2)R(2,A) =
R(z,\)Pi(2) = Pe(2)R/(2,2) =
P(z)R(z,A) - R/(z, )\)Pk(z). (C.11)

Hence we can write

R(z,\)G(z)

2
R(2,2) | 32 Pl(2)Pu(2) + Pu(2) E'(2)R(z, J\)Pk(z))

=1

2
> Pi(2)P(2)R(2,)) — R'(z,A). (C.12)

k=1

i

Therefore the operator F(z) satisfies the differential equation

F() = (S AEAE) P

= [P{=(1z), Py (2)}F(z). (C.13)

At z = 0 we have F(0) = R(0, ) and by the uniqueness of the solution of (C.13) we have
F(z) = W(z,0)R(0,))

= R(z,))8(z). (C.14)

Therefore W(z,0) leaves the domain D invariant.
By definition

S()-5() = [ 6W)s@)ay (C.15)

where [7dy is a shorthand for fj dsfy(s) with y(s) = t + s(z — t) € €. Iterating this
equality we have

S(Z) - S(t) =
O IEVRRY R AR PR (C16)

and by (C.5) there exists a constant N” such that

1(5(2) - S(ANell < 1z - UN"b(t) exp{lz — tIN"B(2)}IS ()¢l (C.17)
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Using (C.14) we have
I(#(2) - H(£))R(©, M|l =
[(W(0,2)S(z) - W(0,8)S(t))ell <
W (0, z) - W(0,)llIS@)ell + W(0, 2)III(S(2) - S(E))ell- (C.18)

Since we can write
W(0,2)- W(0,) = ~i [ &W(0,»IPi(y), (o) (C.19)
we have by lemma (2.2.3) and estimate (C.17) the existence of a constant N such that
I(H(z) - BE)RO,Nell < |z - thEN"|S(E)ell
= |z~ tl()N"|I(H(t) - M)R(E, A)S(t)ell
= |z = th()N"||(E () - )W (2, 0)R(0, Vol
) = |z thON"W (2, 0)(E(t) - NR(O, g
< |z = tp)N"(| H@) RO, M)l + |MIR(0, A)elf). (C.20)
Finally, if ¢ € D,
H(z)p = W(0,2)S(2) + W(0, 2)AR(z, \)S(2)¥ (C.21)

for a ¥ € M, and this application is holomorphic because W(0,z), S(z) and R(z,]) are
bounded, holomorphic operators.

(®]
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Appendix D

Proof of Lemma (3.1.2)

In this appendix we derive the formula of integration by parts which is used in section
(3.1.1) and we give a generalization of this formula at the end of the appendix. Let us
also denote P(t) by P,(t) and I'— P(t) by P,(t) in this proof.
1) RB(t) is strongly C? because R(t, ) is C? (see [Kr] chap. IT) and B(t) is C. This
operator maps H into D because
R(t,A) = R(t,u) T+ (A — p)R(t, X)), ifpeT(t). (D.1)

Indeed, since we can find g € T'(¢) for all ¢ € IR we have

}i R(t, \)B() R(t, \)dA =

R(¢,u) fr @+ (X — p)R(t,N)) B(t)R(t, A)dX. (D.2)
By definition
Py(tyRB(t)Py(2) =
@ $.4, £, REXIRENBORENRE X)X (D.3)

where the paths I' | T and I’ are given in figure (D.1). We can write the integrand under

Figure D.1: The paths ', I and I'”".

the following form, using (D.1)

R(t,\)B()R(t,A) R(t,\)B(t)R(t,\")
A =M= T (=) (A=A

147
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R(t,\)B(t)R(t,\) R(t,A\)B(t)R(t,\")
T =)A= (M =2)(A-A")

(D.4)

Now, integrating each term over the variable that does not appear in the resolvents,
we obtain the result by the Cauchy formula. For the term P,(t)RB(t)P.(t) we use the
definition of P,(t) and the above result to obtain

P(t)RB(t)Py(t) = RB(t) — P,(t)RB(t) — RB(t)Pi(t). (D.5)
With the same paths as in figure (D.1) we compute

}{ }{ R(t,N)B(t)R(t,A)  R(¢,A)B(t)R(t, ) AN (D6)

- Pl(t)RB(t) = (27n.)2 - (X _ A) (A' - A)

and

— RB($)Pi(2) = (2“1—1)2 }i }( ' E@, "()/\?(_t)g(" A) _ R, ?l?_(f)g(t”\)d,\d,\' (D.7)

where the last term in (D.6) and (D.7) drops after an integration over X’. Let us perform
the integration over A in the first term of (D.6)

L R(t, \)B(H)R(t, ) , _

27 Jp (M =2)

by the Cauchy formula. Thus it remains

Py(t)RB(2)Py(t) =
1 R(t, A')B(t)R(t X') oin
R(t, A)B(t)R(t X) o
(21’1)2ff: (A_ A’) dad\' -

f R(t, N)B()R(t, N')dX + RB(t) (D.9)

2n:

where the first two terms vanish by the Cauchy formula and the last two by definition of
RB(t).
2) We have the following identities for k # j

i (Pk(O)V(s)'lRB(S)V(")PJ'(O)) =

(Pk(O)V(s)‘l ( d RB(s)) V(s)P; (0)>
ie Po(0)V(s) " [H (s), RB(s)]V(s) P;(0) +
iPk(O)V(s)-l[E(S)v RB(s)}V(s)P;(0) (D.10)

and

[H(s), RB(s)]

“71:7' ﬁ [H(s) - ), R(s, \)B(s)R(s, \)}dX
= —B(s)Pi(s) + Pi(s)B(s). (D.11)
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Therefore we get

/: P1(0)V(s)"1 B(s)V(s)Py(0)z(s)ds =
/t,t V(s)~*Pi(8)B(s)P2(s)V(s)z(s)ds =
/: P (0)V(s)"Y[H(s), RB(s)]V(s)P2(0)z(s)ds =

_ie /: % (ROV(s) " RE(s)V(s)P(0)) () +

ie /t t Py(0)V(s)™ (%RB(s)) V(s)Py(0)z(s)ds —

e [ V() P(S)E(), REEIP(6)V (s)2(s)ds =

—iePs (0)V(s)"RB(s)V (s)Po(0)z(s)], +

ie /: P(0)V(s)™ (-;;‘R,B(s)) V(s)Po(0)z(s)ds +

ie [ ' P1(O)V(s)'l'R,B(s)V(s)Pz(O)-:—sz(s)ds -

e [ POV () B(s), RBENV(5)Pr(0)e(s)ds (D.12)
where we have used the intertwining property V(s)Py(0) = Py(s)V(s).

Remark:
It is not difficult to generalize this formula to the following case:

Lemma D.0.1 Let V(t) be defined by
d
i€ :iZV(t) = (H(t)+E(t))V(t)
and V(0) =1 where H(t) is a strongly C? self-adjoint operator densely defined on D and
E(t) is a bounded, strongly C2, self-adjoint operator. Let B(t) be a closed operator defined
on D which is strongly C' on D and leaves the domain D invariant. Let z(t) a vector of

H which belongs to D for all t and which is C! Then
1) RB(t) is a bounded operator, strongly C* which maps H into D. Moreover

Pk(t)RB(t)Pk(t) =0, k£=1,2
2)
/ V() Pu(e) B(s)Pa(a)V (s)e(s)ds =
~ieV () Py(sYRB() Pa(s)V (s)a(s)|, +
i€ /t t V(s)"1Py(s) (%RB(s)) Py(s)V(s)z(s)ds +

i€ /: V(s)_lPl(s)‘R,B(s)Pz(s)V(s)%z(s)ds -
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e/: V(s) ' Py(s)[E(s), RB(s)]P2(s)V(s)z(s)ds +
e ‘/:V(s)'le(s) (displ(s)) RB(s)Py(s)V(s)2(s)ds +
ie /: V(s)~1Py(s)RB(s) (dispz(s)) Py(s)V(s)z(s)ds.

We have an analogous formula for [ V(s)~ Py(s)B(s)Py(s)V(s)z(s)ds which is obtained
by ezchanging Py(s) and P,(s) and changing the sign on the right hand side in the above

formula.
Note that V(t) in this case does not necessarily follow the decomposition of the Hilbert

space.



Appendix E

Proof of Proposition (4.1.1)

We perform here the last step to obtain an explicit formula for the phase 6;(0]|7) defined
by

W(07)e1(0) = e Mgy (0) (E.1)
in terms of the components B;(2) of the magnetic field. In order to do that we have to
insert the definition

¥3(2) = (Bo()+ (1P Vh(a) , Bula) +iBa()) 5 5= 1,2 (E2)

into the expression

On the real axis, Pj(z) is self-adjoint, so that
w0~ SR v
As $($;(8)|¥;(t)) = 2Re(9;(2)|(t)) we can write
i80) = 12 @sO(0) + Am A N5 (&35)

2adt (¥3(8)15(2))
From the expression (E.2) we compute
O10)) = 2/0(0) (o0 + (~17Bs(2)) (E:6)
and
Im(v;(2)[¥3(¢)) = B1(¢)Bs(t) — B2(t)By(2). (E.7)

Since both expressions possess an analytic continuation obtained by putting z € ¢ in place
of t € IR we eventually obtain

i5(z) = %3% ln24/p(2) (\/;G + (—1)"Bs(z)) (E.8)
;- B1(2)B3(z) — B2(2)Bi(2)
2ve(2) (VP(2) + (-1)3Bs(2))
- %&% In24/p(2) (\/@+ (—1)3'33(;)) + i;-—zln (————;8 - 228)
= -1y B2) (Bu(2)By(z) - Ba(2) By (2))
2v/p(2) (B} (2) + B3(2))

151




152 APPENDIX E. PROOF OF PROPOSITION (4.1.1)

Using (E.8) we get for the logarithm of (E.3)

. Bs(BlBé—BzBi)l / d (Bl—-iBz)
- S Ay @i g (5 o

- ag2/B(yF - Bs)(2)

(ol)
(E.9)

0

Here (0|7) denotes the endpoint of v. We have assumed a square root branch point for ,/p
at the eigenvalue-crossing zp so that By(z)£1B2(20) # 0 and /p(z0 )+ B3(2) # 0. Hence
we can choose a path v encircling neither singularities nor zeros of (By — iB2)/(B; + iB2)

and such that arg2,/p (/7 — Bs) (z)|g°h) = n27, n an integer. Thus we obtain for 6,(0]y)

exp {~i6(0]7)} =

o [ B BuB() - BB
e“’{ [ Ee i) "} (B10)

where B? + B2 # 0 on 4.



Appendix F

Proof of Lemma (6.2.1)

By definition
| H (2, 6)ell
H(z,0)|||zr 5 = sup ——=——. F.1
E (2,8}l = sup Fo 2o (1)
We first show that
B (2, 8)llles < M(Z,8). (F.2)

where M(2',8') is independent of z and §. As H(z,6) is strongly C! in B(X, s, H),
|H(z,8)¢]| is continuous in (z,8) € S, X Ia, so that

|H(2,8)¢ll £ Ma(p) V(z,8) €Ew x Ia (F.3)

where w = {z € S; : |Rez| < T} is compact. By applying the uniform boundedness prin-
ciple [Kr] we obtain the estimate

1H (2,0l < Mi(2, 8)||@llssr ¥(2,8) € w x Ia. (F.4)

Suppose z does not belong to w. Then by condition IX and by the uniform boundedness
principle again we have

WH(z,8)ell < b(t) (lell + HHEG)el) + 1 EE(8)ell
< up b(t) (llell + ME(9)) + ME(p) < Ma(p) (F.5)
te

for some My(p). Here we have used the compactness of Jo. As a consequence, there exists
M(2',8') such that

|H(z,8)ell < M2(2', &)l ]l 6 (F.6)
and it remains to take M(z’,§') = max(M,(2',§"), M2(Z,8")) to obtain (F.2). Note that
2’ can be replaced by + or — in (F.2). Using Cauchy formula, we immediately get

WE'(z,8)ell < N(2,6")|ell,6 (F.7)
so that

W(H (21,8) = B(22,8))¢ll £ |21 = 22| N (', 8|l 5 (F.8)

for any 2, 2, in a convex subset of S,. We need a similar estimate for the variations
of §. By assumption, %H(z,6)¢ is continuous in (z,6) € S, X Ia and we show that
%H(z,cﬁ)R(z', §’,)) is bounded as an operator from H to X, if A € T'(Z,4’). Indeed, by
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the closed graph theorem H(z,8)R(Z',8, ) is bounded and strongly continuously differ-
entiable in §, so that Banach Steinhaus theorem [Kr) implies that & H(z,§)R(2',8,}) is
bounded as well. Thus we have

IZH (80l = g H (= 6)R( 8, N)(E( ) - Aol
< lgpE ()R8, E 86l + M)
S lorB (5 8)R(8, ML+ M)ells (F-9)
so that
%H(z, 5) € B(Xy 1, H). (F.10)

Then, by condition IX and the uniform boundedness principle again, there exists N (#,8")
such that

i

§

HB_H(“"" 6)¢" S ﬁ(zla 6l)”‘P”z',6’ (Fl‘l)

which implies
I(H(z,6,) — H(z,82))¢ll < |62 = &I N (', 8')l| ]}, 5- (F.12)
From (F.8) and (F.12) follows the estimate
I(H (22, 81) — H(z2,82))¢ll < (121 — 22| + 161 — &2]) (', &)l ol o0 (F.13)
where C(2/,§') = max(N(2',8'), N(z',8")). Putting (',8') = (z,,8) we get

lellzzs, < "‘P"thsl + (|21 — 22| + |6 — 52|)C(z1,51)||<p||,1,51
NPz, S N@llzss + (121 — 22| + |81 = 82]) C(21, 61l 5 (F.14)

hence

”90"22,53 < ”‘p” 5. < ”‘P”zz.sz )
14 (|21 — zo| + 61 ~ 6:]) C(21,81) = "7 " T 1= (|21 — 22| + |61 — 5z|)C(21,5(112‘ 15)

These relations show that the application ||| - |||;s is continuous in (z,4). Let A belong to
B(X.s, H).

el < 1l1Alllz.6ll¢ll-.s
<l Alllzz6: (T + (1212 = 22| + |61 = &2]) C(21, 61)) Pl 1 .54 (F.16)

so that

A z.6 < WAlllz6 (14 (21 = 22| + |81 = 62]) C(21,6,)) - (F.17)
Similarly
1

Alllz, 5. < 1AM F.18
”I I” 2,02 |” ”I 1,611 _ (lzl - ZZI + I61 — 62,)0(21,51) ( )

so that

(|21 = 23| + 161 — 82]) C(21, 61)

A 2. - A z _<_. A F3 F.lg
““ “l 2,62 “I “l 1151' “l l“ 1:611 - (lzl - 22| + l61 _ 62')0(21,61) ( )
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which tends to zero as (23,82) — (21,8,). Finally, from (F.19), (F.2) and (F.13) follows
the estimate

1B (21, 80)l112g 57 = 1E (22, 821y 5 <
B (22, 82) g 87 = WL (22, 62) L5 | +

1B (21, 801127 87 = B (220 821y | <

(14 = 541 + 18, - 81) O(=4, )
I oo 8l T 1= v 1 - ) O )
1 a1,61) = Bz 8l g <

(14 = 341 + 18 - 81) O(:4, &)
~ (%= 1+ 18- 8D O(aL, &)
(lz2 = 21| + |62 = 1)) C (21, 87)- (F.20)

+

The last term in this inequality tends to zero as (z3,8;) — (21,6:) and (25, 85) — (=2{,8})
which shows that the application ||| H(z, 8)|||./ s in continuous as a function of (z, 2/, §, §').
Thus, on the compact set w? x I3 we have

sup |IIE(z,8)l|l5r < M’ (F.21)

(2.2 $,8")€wx I3

It remains to control this application when |z|,|z'| = o0 in S;. If |[Re| > T, T large, we
have by condition IX

ligllzs < (1 +8(£T)) el < Kallpll2s (F.22)

for K; some constant, and similarly

llllz,s

< MPU=E gl 6. F.23
lilles < s < Kollglls (F.23)
Moreover, from (F.12)
lellers < (1+AN(T,0)) [lellero < Kallgllsro
llellers < lpllsro

(1 - AF(T,0)) < Kallellaro (F-24)

provided A is small enough. Thus if |Rez| > T, |[Rez’| < T we can write with (F.21)
1H(z,8)ell < (1+&T))lelles <
(1 +b(xT)EK:Aellsrs < (1+ (T K1+ Moz s (F.25)

showing that
HIH (2, 8)lllo < (1+b(XT))K2(1 + M). (F.26)
Now if |Rez/| > T and |Rez| < T
|H(z,6)ell < Mpllzrs <
M'Killellsr < M'EiKo|ell s (F.27)

from which follows
11H(z,0)|-160 < M'K 1 K. (F.28)
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Finally if both |Rez| and |[Re2’| are > T, we use (F.24) as well to get

12 (2, 8)ell < (1+3(ET))Kall¢ll<rs
< (14 4+T))K KsKalloll17s0
S (1 + b(iT))K2K3K4K1Kz"lp”zf,sl. (F29)

Gathering these estimates, we eventually obtain

sup A (2, 8)illzr0 < M < o0. (F.30)
(.2 6.6)€SIXTE

The result is true if 2, or 2/ or both are replaced either by + or ~co.
The last assertions of the lemma are proven as follows. By condition IX and (F.30) we
have for z =t + is and any (2, §')

(B (z,6) = HX(8))pll < b(B)llell+.s < b(2)(1 + M)|l¢]lr 50 (F.31)
and we conclude by Cauchy formula that
NE'(2,8)¢ll < b(2)lleellzr s (F.32)

for any z = t + is with |s| < r < a, where }(t) is another integrable decay function.
Similarly, (F.11) implies

8 -
liz5 (2, 9)ell < N (0,0)llello0 (F.33)
so that by (F.30) again

E} -
352 (2, 6)¢ll < N(0,0)M|l¢l|.5- (F.34)

This finishes the proof of the lemma.



Appendix G

Proof of Lemma (6.2.3)

For a fixed z € S, and X € T(z,8) we have the strong derivative (see e.g. [Kr] paragraph
(1), chapter I1.)

3
36

where the bounded operators R(z,4,X), &H(z,48)R(0,0,7) and (H(0,0) — {)R(z,4, X) are
strongly continuous in 2z and §. Indeed, this is easily seen for R(z,4§,A) by considering
identities analogous to (6.18) and this is true by hypothesis for %E (z,6)R(0,0,%). Finally,
(H(0,0)—1)R(z,8,)) is the inverse of the bounded operator (H(z,8)—A)R(0, 0,¢) which is
continuous in norm, as can be seen from estimates of the type (6.14). Thus, by lemma (3.7)
of the introduction of [Kr], (H(0,0) —i)R(z,§,X) is bounded and even continuous in norm.
Hence the strong continuity of %R(z, 5, ) and of %R(z, 4, ), by similar considerations.
These properties are true for the projector Q(z,§) as well by passing the derivatives under
the integral of the formula in lemma (6.2.2). We now turn to the second part of the lemma.
Consider the identity

R(z,8,)) = —R(z,4, A)-%H(z,&)R(0,0,i)(H(0,0) ~9)R(z,6,))  (G.1)

R(Z’ 4, A) - R(:t’ 5, A) = —R(Z, 5, A)(H(Z, 6) - Hi(é))R(j; 6’ A) (Gz)
With condition IX and lemma (6.2.1) we obtain
b(t)d(+,4, )

- < .
1R (2,8,2) = RCx, 821 < IRGE 8 0= g5 5 (63)
for z =t + is, [t| large with the definition
d(+,8,2) = || R(£, 8, 2)|| + |[E*(5)R(,6,))||- (G4)

This defines the integrable decay function by s(t). The estimate on the derivatives are
consequences of the Cauchy formula. We define the projector Q(z, ) by using the finite
set of paths T';, introduced in the proof of lemma (6.2.2). If A € T'; we obtain from (G.3)
and (6.30)

1R(2.6,%) - B(£, 50| < —F20 <« geryery (G.5)

1-b(t)K ~

if |¢| is large enough. This estimate and Cauchy formula again finish the proof of the
lemma.

O
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Appendix H

Proof of Lemma (6.2.5)

We prove here that the coefficients a};(z,§) defined by

- * 51 b T 0]
a3;(z,8) = —(¢i(0, 8)|W. (z,S)K.(z,&)W,.(z,6)(,05(0,6)) (H.1)
are uniformly bounded by an integrable decay function b(t), independent of § for any
z=t+1is € S}\D(0,r). Remembering that

e, |

P}(z,8) = W. (2,6)P) (2,6)W.(z,0) (H.2)
we have
BH(2,8) = W. (2.8)P)"(2,6)Wu(z,9)
+ %v’vj“(z,s)[zv}“‘(z,s), Kne(2,6)[Wil2,6). (H.3)
As the operators are restricted to Qn-(0,8)H, the last term vanishes,
Qn-(0, ). (2, 6)[PI" (2, 8), Kn=(2, 6)]Wa(2, 6)@n~(0,6) =
W (2, 6)[PY " (2,8), Qn+(2,6)Kn~(2,6)Qn~(2, 8)]Wu(2,6) =0,  (H.4)
and we obtain using (6.41)
1B (2,8l < w|PY (2,8
1Bz, )l < 4w P (2, 6)[|PN(2,8)] = # 20(8) (H.5)

where w is independent of z, §, and &. It remains to show that P{¥°(z,§) is uniformly
bounded in ¢ and § along the dissipative path y5(t). By construction (proposition (6.2.2)),
95 € SF\D(0,r) if r is small enough, where there is no eigenvalue crossing point of €}(z, §)
and e;(z,6). Hence for any z € S}\D(0,r) the projections P}"(z,8) are given by means
of a Riesz formula 1

N* _ L .
PN (2,6) =~ ﬁ’_RN (2,6, \)dA (H.6)

where 7;, encircles both e}(z,6) and e;(z,§), a finite distance away from the spectra of
Hp+(z,6) and H(z,6). By an argument similar to the one given in lemma (6.2.2), we see
that we can pick 7v;, for any z € S}\D(0,r), among a finite set of paths which are all of
finite length and bounded away from the spectra of Hy+(z,6) and H(z,8). Then in view
of

Rn+(z,6,X) — R(z,8,\) = —Ry+(z,6, \)(Hn+(z,6) — H(z,6))R(z,6,)) (H.7)
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and (6.38) we obtain the estimate

1
1B+ (2, 8, Ml < |R(2, 8 Al (H.8)

S50
provided ¢ is small enough, and A € T'(z,6). By the continuity in norm of R(z,4,]) in
d, there exists §* such that ||R(z,4,A)|| is uniformly bounded in § < §* if A € vj, and
z € SI\D(0,r). When z = t + is, with |t| large, we use (G.3),

b(t)d(, 5, )
1- b(t)d(<, 5, \)

|R(2,8,2) = R(£,8,A)|| < [|R(, 6, )] (H.9)

and the fact that if X € v; C T(,0), there exists a constant k independent of § such that
d(£,6,\) < k. (H.10)
Hence the estimate

BOE _ oy, (H.11)

IIR(Z’ 5, A) = R(:i:,tf, A)” < FTT(t)F >

As a consequence of (H.7), (H.8), (H.11) and R(%,4,A) = Ry+(£,8,A) we have

|Rn+(2,6,A) ~ R(%,8,A)|] <
|RN+(2,6,2) — R(z,86, ]| + |IR(z,8,}) - R(£,8,A)|| <
=35(t)
2 Ee—l 1
<

e-1

k"b(2) (H.12)

where k" is independent of ¢ and 4. Thus we eventually obtain

K2, 6)|| < kb(t) Vz=t+ise ST\D(0,r) (H.13)
and .
IWa(z,8)|| <& V6< 6" (H.14)
so that
lax;(z, 8)| < wPkb(t) (H.15)

where b(t) is an integrable decay function.
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