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1 Introduction

The purpose of this first set of lectures about Linear Operator Theory is
to provide the basics regarding the mathematical key features of unbounded
operators to readers that are not familiar with such technical aspects. It
is a necessity to deal with such operators if one wishes to study Quantum
Mechanics since such objects appear as soon as one wishes to consider, say,
a free quantum particle in R. The topics covered by these lectures is quite
basic and can be found in numerous classical textbooks, some of which are
listed at the end of these notes. They have been selected in order to provide
the reader with the minimal background allowing to proceed to the more
advanced subjects that will be treated in subsequent lectures, and also ac-
cording to their relevance regarding the main subject of this school on Open
Quantum Systems. Obviously, there is no claim about originality in the pre-
sented material. The reader is assumed to be familiar with the theory of
bounded operators on Banach spaces and with some of the classical abstract
Theorems in Functional Analysis.

2 Generalities about Unbounded Operators

Let us start by setting the stage, introducing the basic notions necessary to
study linear operators. While we will mainly work in Hilbert spaces, we state
the general definitions in Banach spaces.

If B is a Banach space over C with norm ‖ · ‖ and T is a bounded linear
operator on B, i.e. T : B → B, its norm is given by

‖T‖ = sup
ϕ 6=0

‖Tϕ‖
‖ϕ‖

<∞.

Now, consider the position operator of Quantum Mechanics q = multx on
L2(R), acting as (qϕ)(x) = xϕ(x). It readily seen to be unbounded since
one can find a sequence of normalized functions ϕn ∈ L2(R), n ∈ N, such
that ‖qϕn‖ → ∞ as n→∞, and, there are functions of L2(R) which are no
longer L2(R) when multiplied by the independent variable. We shall adopt
the following definition of (possibly unbounded) operators.
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Definition 2.1. A linear operator on B is a pair (A,D) where D ⊂ B is a
dense linear subspace of B and A : D → B is linear.

We will nevertheless often talk about the operator A and call the subspace
D the domain of A. It will sometimes be denoted by Dom(A).

Definition 2.2. If (Ã, D̃) is another linear operator such that D̃ ⊃ D and
Ãϕ = Aϕ for all ϕ ∈ D, the operator Ã defines an extension of A and one
denotes this fact by A ⊂ Ã

That the precise definition of the domain of a linear operator is important
for the study of its properties is shown by the following

Example 2.1. : Let H be defined on L2[a, b], a < b finite, as the differential op-
erator Hϕ(x) = −ϕ′′(x), where the prime denotes differentiation. Introduce
the dense sets DD and DN in L2[a, b] by

DD =
{
ϕ ∈ C2[a, b] |ϕ(a) = ϕ(b) = 0

}
(1)

DN =
{
ϕ ∈ C2[a, b] |ϕ′(a) = ϕ′(b) = 0

}
. (2)

It is easily checked that 0 is an eigenvalue of (H,DN ) but not of (H,DD). The
boundary conditions appearing in (1), (2) respectively are called Dirichlet and
Neumann boundary conditions respectively.

The notion of continuity naturally associated with bounded linear opera-
tors is replaced for unbounded operators by that of closedness.

Definition 2.3. Let (A,D) be an operator on B. It is said to be closed if for
any sequence ϕn ∈ D such that

ϕn → ϕ ∈ B and Aϕn → ψ ∈ B,

it follows that ϕ ∈ D and Aϕ = ψ.

Remark 2.1. i) In terms of the the graph of the operator A, denoted by Γ (A)
and given by

Γ (A) = {(ϕ,ψ) ∈ B × B |ϕ ∈ D, ψ = Aϕ} ,

we have the equivalence

A closed ⇐⇒ Γ (A) closed (for the norm ‖(ϕ,ψ)‖2 = ‖ϕ‖2 + ‖ψ‖2).

ii) If D = B, then A is closed if and only if A is bounded, by the Closed
Graph Theorema.
iii) If A is bounded and closed, then D̄ = B so that it is possible to extend
A to the whole of B as a bounded operator.
iv) If A : D → D′ ⊂ B is one to one and onto, then A is closed is equivalent

aIf T : X → Y, where X and Y are two Banach spaces, then T is bounded iff
the graph of T is closed.
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to A−1 : D′ → D is closed. This last property can be seen by introducing the
inverse graph of A, Γ ′(A) = {(x, y) ∈ B × B | y ∈ D,x = Ay} and noticing
that A closed iff Γ ′(A) is closed and Γ (A) = Γ ′(A−1).

The notion of spectrum of operators is a key issue for applications in
Quantum Mechanics. Here are the relevant definitions.

Definition 2.4. The spectrum σ(A) of an operator (A,D) on B is defined
by its complement σ(A)C = ρ(A), where the resolvent set of A is given by

ρ(A) = {z ∈ C | (A− z) : D → B is one to one and onto, and
(A− z)−1 : B → D is a bounded operator.}

The operator R(z) = (A− z)−1 is called the resolvent of A.
Actually, A− z is to be understood as A− z II , where II denotes the identity
operator.

Here are a few of the basic properties related to these notions.

Proposition 2.1. With the notations above,
i) If σ(A) 6= C, then A is closed.
ii) If z 6∈ σ(A) and u ∈ C is such that |u| < ‖R(z)‖−1, then z + u ∈ ρ(A).
Thus, ρ(A) is open and σ(A) is closed.
iii) The resolvent is an analytic map from ρ(A) to L(B), the set of bounded
linear operators on B, and the following identities hold for any z, w ∈ ρ(A),

R(z)−R(w) = (z − w)R(z)R(w) (3)
dn

dzn
R(z) = n!Rn+1(z).

Remark 2.2. Identity (3) is called the first resolvent identity. As a conse-
quence, we get that the resolvents at two different points of the resolvent set
commute, i.e.

[R(z), R(w)] = 0, ∀z, w ∈ ρ(A).

Proof. i) If z ∈ ρ(A), then R(z) is one to one and bounded thus closed and
remark iv) above applies.
ii) We need to show that R(z + u) exists and is bounded from B to D. We
have on D

(A− z − u)ϕ = ( II − u(A− z)−1)(A− z)ϕ = ( II − uR(z))(A− z)ϕ,

where |u|‖R(z)‖ < 1 by assumption. Hence, the Neumann series∑
n≥0

Tn = ( II − T )−1 where T : B → B is such that ‖T‖ < 1, (4)

shows that the natural candidate for (A − z − u)−1 is R(z)( II − uR(z))−1 :
B → D. Then one checks that on B
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(A− z − u)R(z)( II − uR(z))−1 = ( II − uR(z))( II − uR(z))−1 = II

and that on D

R(z)( II − uR(z))−1(A− z − u) = ( II − uR(z))−1R(z)(A− z − u) =
( II − uR(z))−1( II − uR(z)) = II D,

where II D denotes the identity of D.
iii) By (4) we can write

R(z + u) =
∑
n≥0

unRn+1(z)

so that we get the analyticity of the resolvent and the expression for its
derivatives. Finally for ϕ ∈ D

((A− z)− (A− w))ϕ = (w − z)ϕ

so that, for any ψ ∈ B,

R(z)((A− z)− (A− w))R(w)ψ = R(w)ψ −R(z)ψ = R(z)R(w)(w − z)ψ,

where R(w)ψ ∈ D.

Note that in the bounded case, the spectrum of an operator is never empty
nor equal to C, whereas there exist closed unbounded operators with empty
spectrum or empty resolvent set. Consider for example, T = i ddx on L2[0, 1] on
the following dense sets. If AC2[0, 1] denotes the set of absolutely continuous
functions on [0, 1] whose derivatives are in L2[0, 1], (hence in L1[0, 1]), set

D1 = {ϕ |ϕ ∈ AC2[0, 1]}, D0 = {ϕ |ϕ ∈ AC2[0, 1] and ϕ(0) = 0}.

Then, one checks that (T,D1) and (T,D0) are closed and such that σ1(T ) = C
and σ0(T ) = ∅ (with the obvious notations).

To avoid potential problems related to the fact that certain operators
can be a priori defined on dense sets on which they may not be closed, one
introduces the following notions.

Definition 2.5. An operator (A,D) is closable if it possesses a closed exten-
sion (Ã, D̃).

Lemma 2.1. If (A,D) is closable, then there exists a unique extension (Ā, D̄)
called the closure of (A,D) characterized by the fact that Ā ⊆ Ã for any closed
extension (Ã, D̃) of (A,D).

Proof. Let

D̄ = {ϕ ∈ B | ∃ϕn ∈ D and ψ ∈ B with ϕn → ϕ and Aϕn → ψ}. (5)
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For any closed extension Ã of A and any ϕ ∈ D̄, we have ϕ ∈ D̃ and Ãϕ = ψ
is uniquely determined by ϕ. Let us define (Ā, D̄) by Āϕ = ψ, for all ϕ ∈ D̄.
Then Ā is an extension of A and any closed extension A ⊆ Ã is such that
Ā ⊆ Ã. The graph Γ (Ā) of Ā satisfies Γ (Ā) = Γ (A), so that Ā is closed.

Note also that the closure of a closed operator coincide with the operator
itself. Also, before ending this section, note that there exist non closable
operators. Fortunately enough, such operators do not play an essential role
in Quantum Mechanics, as we will shortly see.

3 Adjoint, Symmetric and Self-adjoint Operators

The arena of Quantum Mechanics is a complex Hilbert space H where the
notion of scalar product 〈 · | · 〉 gives rise to a norm denoted by ‖ · ‖. Oper-
ators that are self-adjoint with respect to that product play a particularly
important role, as they correspond to the observables of the theory. We shall
assume the following convention regarding the positive definite sesquilinear
form 〈 · | · 〉 on H × H: it is linear in the right variable and thus anti-linear
in the left variable. We shall also always assume that our Hilbert space is
separable, i.e. it admits a countable basis, and we shall identify the dual H′

of H with H, since ∀l : H → C, ∃!ψ ∈ H such that l(·) = 〈ψ| ·〉.
Let us make the first steps towards self-adjunction.

Definition 3.1. An operator (H,D) in H is said to be symmetric if ∀ϕ,ψ ∈
D ⊆ H

〈ϕ|Hψ〉 = 〈Hϕ|ψ〉.

For example, the operators (− d2

dx2 , DD) and (− d2

dx2 , DN ) introduced above
are symmetric, as shown by integration by parts.

Remark 3.1. If H is symmetric, its eigenvalues are real.

The next property is related to an earlier remark concerning the role of
non closable operators in Quantum Mechanics.

Proposition 3.1. Any symmetric operator (H,D) is closable and its closure
is symmetric.

This Proposition will allow us to consider that any symmetric operator is
closed from now on.

Proof. Let D̄ ⊇ D as in (5) and χ ∈ D, ϕ ∈ D̄. We compute for any such χ,

〈ϕ|Hχ〉 = lim
n
〈ϕn|Hχ〉 = lim

n
〈Hϕn|χ〉 = 〈ψ|χ〉. (6)

As D is dense by assumption, the vector ψ is uniquely determined by the
linear, bounded form lψ : D → C such that lψ(χ) = 〈ψ|χ〉. In other words,
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ψ is characterized by ϕ uniquely. One then defines H̄ on D̄ by H̄ϕ = ψ and
linearity is easily checked. As, by construction, Γ (H̄) = Γ (H) is closed, H̄
is a closed extension of H. Let us finally check the symmetry property. If
χn ∈ D is such that χn → χ ∈ D̄, with Hχn → η and ϕ ∈ D̄, (6) says

〈ϕ|Hχn〉 = 〈H̄ϕ|χn〉.

Taking the limit n→∞, we get from the above

lim
n
〈ϕ|Hχn〉 = 〈ϕ|η〉 = 〈ϕ|H̄χ〉 = lim

n
〈H̄ϕ|χn〉 = 〈H̄ϕ|χ〉.

When dealing with bounded operators, symmetric and self-adjoint oper-
ators are identical. It is not necessary true in the unbounded case. As one of
the most powerful tools in linear operator theory, namely the Spectral The-
orem, applies only to self-adjoint operators, we will develop some criteria to
distinguish symmetric and self-adjoint operators.

Definition 3.2. Let (A,D) be an operator on H. The adjoint of A, denoted
by (A∗, D∗), is determined as follows: D∗ is the set of ψ ∈ H such that there
exists a χ ∈ H so that

〈ψ|Aϕ〉 = 〈χ|ϕ〉, ∀ϕ ∈ D.

As D is dense, χ is unique, so that one sets A∗ψ = χ and checks easily the
linearity. Therefore,

〈ψ|Aϕ〉 = 〈A∗ψ|ϕ〉, ∀ϕ ∈ D,ψ ∈ D∗.

In other words, ψ ∈ D∗ iff the linear form l(·) = 〈ψ|A·〉 : D → C is bounded.
In that case, Riesz Lemma implies the existence of a unique χ such that
〈ψ|A·〉 = 〈χ|·〉. Note also that D∗ is not necessarily dense.

Let us proceed with some properties of the adjoint.

Proposition 3.2. Let (A,D) be an operator on H.
i) The adjoint (A∗, D∗) of (A,D) is closed. If, moreover, A is closable, then
D∗ is dense
ii) If A is closable, Ā = A∗∗

iii) If A ⊆ B, then B∗ ⊆ A∗.

Proof. i) Let (ψ, χ) ∈ D∗ ×H belong to Γ (A∗). This is equivalent to saying

〈ψ|Aϕ〉 = 〈χ|ϕ〉, ∀ϕ ∈ D,

which is equivalent to (ψ, χ) ∈M⊥, where

M = {(Aϕ,−ϕ) ∈ H ×H, |ϕ ∈ D},

with the scalar product 〈〈(ϕ1, ϕ2)|(ψ1, ψ2)〉〉 = 〈ϕ1|ψ1〉 + 〈ϕ2|ψ2〉. As M⊥

is closed, Γ (A∗) is closed too. Assume now A is closable and suppose there
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exists η ∈ H such that 〈ψ|η〉 = 0, for all ψ ∈ D∗. This implies that (η, 0) is
orthogonal to Γ (A∗). But,

Γ (A∗)⊥ = M⊥⊥ = M.

Therefore, there exists ϕn ∈ D, such that ϕn → 0 and Aϕn → η. As A is
closable, η = Ā0 = 0, i.e. (D∗)⊥ = 0 and D∗ = (D∗)⊥⊥ = H.
ii) Define a unitary operator V on H×H by

V (ϕ,ψ) = (ψ,−ϕ).

It has the property V (E⊥) = (V (E))⊥, for any linear subspace E ⊆ H×H.
In particular, we have just seen

Γ (A∗) = (V (Γ (A)))⊥

so that

Γ (A) = (Γ (A)⊥)⊥ = ((V 2Γ (A))⊥)⊥

= (V (V (Γ (A))⊥))⊥ = (V (Γ (A∗)))⊥ = Γ (A∗∗),

i.e. Ā = A∗∗.
iii) Follows readily from the definition.

When H is symmetric, we get from the definition and properties above
that H∗ is a closed extension of H. This motivates the

Definition 3.3. An operator (H,D) is self-adjoint whenever it coincides with
its adjoint (H∗, D∗). It is therefore closed.
An operator (H,D) is essentially self-adjoint if it is symmetric and its closure
(H̄, D̄) is self-adjoint.
Therefore, we have in general for a symmetric operator,

H ⊆ H̄ = H∗∗ ⊆ H∗, and H∗ = H∗ = H∗∗∗ = H̄∗.

In case H is essentially self-adjoint,

H ⊆ H̄ = H∗∗ = H∗.

We now head towards our general criterion for (essential) self-adjointness.
We need a few more

Definition 3.4. For (H,D) symmetric and denoting its adjoint by (H∗, D∗),
the deficiency subspaces L± are defined by

L± = {ϕ ∈ D∗ |H∗ϕ = ±iϕ} = {ϕ ∈ H | 〈Hψ|ϕ〉 = ±i〈ψ|ϕ〉 ∀ψ ∈ D}
= Ran(H ± i)⊥ = Ker(H∗ ∓ i).
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The deficiency indices are the dimensions of L±, which can be finite or infi-
nite.

To get an understanding of these names, recall that one can always write

H = Ker(H∗ ∓ i)⊕ Ran(H ± i) ≡ L± ⊕ Ran(H ± i). (7)

Note that the definitions of L± is invariant if one replaces H by its closure
H̄.

For (H,D) symmetric and any ϕ ∈ D observe that

‖(H + i)ϕ‖2 = ‖Hϕ‖2 + ‖ϕ‖2 = ‖(H − i)ϕ‖2 6= 0.

This calls for the next

Definition 3.5. Let (H,D) be symmetric. The Cayley transform of H is the
isometric operator

U = (H − i)(H + i)−1 : Ran(H + i) → Ran(H − i).

It enjoys the following property.

Lemma 3.1. The symmetric extensions of H are in one to one correspon-
dence with the isometric extensions of U .

Proof. Let (H̃, D̃) be a symmetric extension of (H,D) and Ũ be its Cayley
transform. We have

ϕ ∈ Ran(H ± i) ⇐⇒ ∃ψ ∈ D ⊆ D̃ such that ϕ = (H ± i)ψ = (H̃ ± i)ψ,

hence Ran(H ± i) ⊂ Ran(H̃ ± i), and

Ũϕ = (H̃ − i)(H̃ + i)−1ϕ = Uϕ, ∀ϕ ∈ Ran(H ± i). (8)

Conversely, let Ũ : M+ →M−, be a isometric extension of U , where Ran(H±
i) ⊆ M±. We need to construct a symmetric extension of H whose Cayley
transform is Ũ . Algebraically this means, see (8),

H̃ = (Ũ − II )−1 2
i
− i. (9)

Let us show that 1 is not an eigenvalue of Ũ . If ϕ ∈ M+ is a corresponding
eigenvenvector, and ψ = (H + i)χ, where χ ∈ D, then

2i〈ϕ|χ〉 = 〈ϕ|(H + i)χ− (H − i)χ〉 = 〈ϕ|ψ − Uψ〉
= 〈ϕ|ψ〉 − 〈Ũϕ|Ũψ〉 = 0.

By density of D, ϕ = 0, so that we can define H̃ by (9) on D̃ = (Ũ − II )M+.
It is not difficult to check that H̃ is a symmetric extension of H.

We can now state the
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Theorem 3.1. If (H,D) is symmetric on H, there exist self-adjoint exten-
sions of H if and only if the deficiency indices are equal. Moreover, the fol-
lowing statements are equivalent:
1) H is essentially self-adjoint
2) The deficiency indices are both zero
3) H possesses exactly one self-adjoint extension.

Proof. 1)⇒ 3): Let J be a self-adjoint extension of H. Then H ⊆ J = J∗ and
J ⊇ H̄. Hence J = J∗ ⊆ H̄∗ = H̄, so that J = H̄.
1)⇒ 2): We can assume that H is closed so H = H̄ = H∗. For any ϕ ∈ L± =
Ker(H∗ ∓ i),

0 = ‖(H∗∓ i)ϕ‖2 = ‖(H∓ i)ϕ‖2 = ‖Hϕ‖2 +‖ϕ‖2 ≥ ‖ϕ‖2, L± = {0}. (10)

2) ⇒ 1): Consider (H + i) : D → Ran(H + i). By (10) above, this operator
is one to one, and we can define (H + i)−1 : Ran(H + i) → D. By the same
estimate it satisfies

‖(H + i)−1ψ‖2 ≤ ‖(H + i)(H + i)−1ψ‖2 = ‖ψ‖2.

As H can be assumed to be closed (i.e. H = H̄) and L+ = {0}, we get that
Ran(H + i) is closed so that H = Ran(H + i), due to (7). Therefore, for any
ϕ ∈ D∗, there exists a ψ ∈ D such that (H∗ + i)ϕ = (H + i)ψ. As H ⊆ H∗,

(H∗ + i)(ϕ− ψ) = 0, i.e. ϕ− ψ ∈ Ker(H∗ + i) = {0},

we get that ϕ ∈ D and H = H∗, which is what we set out to prove.
3) ⇒ 2): if K is a self-adjoint extension of H, its deficiency indices are zero
(by 2)). Therefore, (see (7)), its Cayley transform V is a unitary extension
of U , the Cayley transform of H. In particular, V |L+ : L+ → L− is one to
one and onto, so that the deficiency indices of H are equal. That yields the
first part of the Theorem. Now assume these indices are not zero. By the
preceding Lemma, there exist an infinite number of symmetric extensions of
H, parametrized by all isometries from L+ to L−. In particular, there exist
extensions with zero deficiency indices, which by 2) and 1) are self-adjoint,
contradicting the fact that K is the unique self-adjoint extension of H.

Remark 3.2. It is a good exercise to prove that in case (H,D) is symmetric
and H ≥ 0, i.e. 〈ϕ|Hϕ〉 ≥ 0 for any ϕ ∈ D, then H is essentially self-adjoint
iff Ker(H∗ + 1) = {0}.

As a first application, we give a key property of self-adjoint operators for
the role they play in the Quantum dogma concerning measure of observables.
It is the following fact concerning their spectrum.

Theorem 3.2. Let H = H∗. Then, σ(H) ⊆ R and,

‖(H − z)−1‖ ≤ 1
|=z|

, if z 6∈ R. (11)
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Moreover, for any z in the resolvent set of H,

(H − z̄)−1 = ((H − z)−1)
∗
. (12)

Proof. Let ϕ ∈ D, D being the domain of H and z = x + iy, with y 6= 0.
Then

‖(H − x− iy)ϕ‖2 = ‖(H − x)ϕ‖2 + y2‖ϕ‖2 ≥ y2‖ϕ‖2. (13)

This implies

Ker(H − z) = Ker(H∗ − z) = {0} i.e. Ran(H − z) = H,

and H − z is invertible on Ran(H − z). (13) shows that (H − z) is bounded
with the required bound, and as the resolvent is closed, it can be extended
on H with the same bound. Equality (12) is readily checked.

As an application of the first part of Theorem 3.1, consider a symmetric
operator (H,D) which commutes with a conjugation C. More precisely:

C is anti-linear, C2 = II and ‖Cϕ‖ = ‖ϕ‖. Hence 〈ϕ|ψ〉 = 〈Cψ|Cϕ〉. More-
over, C : D → D and CH = HC on D.

Under such circumstances, the deficiency indices of H are equal and there
exist self-adjoint extensions of H.

Indeed, one first deduces that C(D) = D. Then, for any ϕ+ ∈ L+ =
Ker(H∗ − i) and ψ ∈ D, we compute

0 = 〈ϕ+|(H + i)ψ〉 = 〈Cϕ+|C(H + i)ψ〉 = 〈Cϕ+|(H − i)Cψ〉,

so that Cϕ+ ∈ Ran(H − i)⊥ = Ker(H∗ + i) = L−. In other words,
C : L+ → L−, and one shows similarly that C : L− → L+. As C is iso-
metric, the dimensions of L+ and L− are the same.

A particular case where this happens is that of the complex conjugation
and a differential operator on Rn, with real valued coefficients.

An example of direct application of this criterion is the following. Consider
the symmetric operator Hϕ = iϕ′ on the domain C∞0 (0,∞) ⊂ L2(0,∞). A
vector ψ ∈ D∗ iff there exists χ ∈ L2(0,∞) such that 〈ψ|Hϕ〉 = 〈χ|ϕ〉, for
all ϕ ∈ C∞0 (0,∞). Expressing the scalar products this means∫

χ(x)ϕ̄(x)dx = −i
∫
ψ(x)ϕ̄′(x)dx = iDxTψ(ϕ̄),

where Tψ denotes the distribution associated with ψ. In other words, we
have ψ ∈ W 1,2(0,∞) = D∗ and H∗ψ = iψ in the weak sense. Elements of
Ker(H∗ ∓ i) satisfy
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H∗ψ = ±iψ ⇐⇒ ψ′ = ±ψ ⇐⇒ ψ(x) = ce±x
{
6∈ L2(0,∞)
∈ L2(0,∞)

Hence there is no self-adjoint extension of that operator. If it is considered
on C∞0 (0, 1) ⊂ L2(0, 1), the above shows that the deficiency indices are both
1 and there exist infinitely many self-adjoint extensions of it.

Specializing a little, we get a criterion for operators whose spectrum con-
sists of eigenvalues only.

Corollary 3.1. Let (H,D) symmetric on H such that there exists an or-
thonormal basis {ϕn}n∈N of H of eigenvectors of H satisfying for any n ∈ N,
ϕn ∈ D and Hϕn = λnϕn, with λn ∈ R. Then H is essentially self-adjoint
and σ(H̄) = {λn |n ∈ N}.

Proof. Just note that any vector ϕ in L± satisfies in particular

〈Hϕn|ϕ〉 = ±i〈ϕn|ϕ〉 = λn〈ϕn|ϕ〉,

so that 〈ϕn|ϕ〉 = 0 for any n. This means that L+ = {0}, hence that H is
essentially self-adjoint.

Then H̄, as an extension of H admits the ϕn’s as eigenvectors with
the same eigenvalues and as the spectrum is a closed set, we get σ(H̄) ⊃
{λn |n ∈ N}. If λ does not belong to the latter set, we define Rλ by Rλϕn =

1
λn−λϕn, for all n ∈ N. Using the fact that H̄ is closed, it is not difficult to

see that Rλ is the resolvent of H̄ at λ, which yields the result.

As a first example of application we get that − d2

dx2 on C2(a, b) (or
C∞(a, b)) with Dirichlet boundary conditions is essentially self-adjoint with
spectrum

{
n2π2

(b−a)2

}
n∈N∗

, as the corresponding eigenvectors

ϕn(x) =
(

2
b− a

)1/2

sin
(
nπ(x− a)
b− a

)
, n ∈ N∗,

are known to form a basis of L2[a, b] by the theory of Fourier series.
Another standard operator is the harmonic oscillator defined on L2(R) by

the differential operator

Hosc = −1
2
d2

dx2
+
x2

2

with dense domain S the Schwartz functions. This operator is symmetric
by integration by parts, and it is a standard exercise, using creation and
annihilation operators b† = (x − ∂x)/

√
2, b = (x + ∂x)/

√
2 to show that the

solutions of
Hoscϕn(x) = λnϕn(x), n ∈ N,

are given by λn = n+ 1/2 with eigenvector



12 Alain Joye

ϕn(x) = cnHn(x)e−x
2/2, with Hn(x) = (−1)nex

2 dn

dxn
e−x

2
,

and cn = (2nn!
√
π)−1/2. These eigenvectors also form a basis of L2(R), so

that this operator is essentially self-adjoint with spectrum N+1/2. Note that
cannot work on C∞0 to apply this criterion here.

Another popular way to prove that an operator is self-adjoint is to com-
pare it to another operator known to be self-adjoint and use a perturbative
argument to get self-adjointness of the former.

Let (H,D) be a self-adjoint operator onH and let (A,D(A)) be symmetric
with domain D(A) ⊇ D.

Definition 3.6. The operator A has a relative bound α ≥ 0 with respect to
H if there exists c <∞ such that

‖Aϕ‖ ≤ α‖Hϕ‖+ c‖ϕ‖, ∀ϕ ∈ D. (14)

The infimum over such relative bounds is the relative bound of A w.r.t. H.

Remark 3.3. The definition of the relative bound is unchanged if we replace
(14) by the slightly stronger condition

‖Aϕ‖2 ≤ α2‖Hϕ‖2 + c2‖ϕ‖2, ∀ϕ ∈ D.

Lemma 3.2. Let K : D → H be such that Kϕ = Hϕ + Aϕ. If 0 ≤ α < 1,
is the relative bound of A w.r.t. H, K is closed and symmetric. Moreover,
‖A(H + iλ)−1‖ < 1, if λ ∈ R has large enough modulus.

Proof. The symmetry of K is clear. Let us consider ϕn ∈ D such that ϕn → ϕ
and Kϕn → ψ. Then, by assumption,

‖Hϕn −Hϕm‖ ≤ ‖Kϕn −Kϕm‖+ ‖Aϕn −Aϕm‖
≤ ‖Kϕn −Kϕm‖+ α‖Hϕn −Hϕm‖+ c‖ϕn − ϕm‖,

so that

‖Hϕn−Hϕm‖ ≤
1

1− α
‖Kϕn−Kϕm‖+

c

1− α
‖ϕn−ϕm‖ → 0 as n,m→∞.

H being closed, we deduce from the above that ϕ ∈ D and Hϕn → Hϕ.
Then, from (14), we get Aϕn−Aϕ→ 0 from which follows Kϕn → Kϕ = ψ.

The proof of the statement concerning the resolvent reads as follows. Let
ψ ∈ H, ϕ = (H + iλ)−1ψ and 0 ≤ α < β < 1. Then, for |λ| > 0 large enough

‖Aϕ‖2 ≤ (α‖Hϕ‖+ c‖ϕ‖)2 ≤ β2
(
‖Hϕ‖2 + λ2‖ϕ‖2

)
= β2‖(H + iλ)ϕ‖2 = β2‖ψ‖2.

Hence ‖A(H + iλ)−1ψ‖ ≤ β‖ψ‖.
This leads to the
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Theorem 3.3. If H is self-adjoint and A is symmetric with relative bound
α < 1 w.r.t. H, then K = H +A is self-adjoint on the same domain as that
of H.

Proof. Let |λ| be large enough. From the formal expressions

(H +A+ iλ)−1 − (H + iλ)−1 = −(H +A+ iλ)−1(A)(H + iλ)−1 ⇐⇒
(H +A+ iλ)−1 = (H + iλ)−1( II +A(H + iλ)−1)−1

we see that the natural candidate for the resolvent of K is

Rλ = (H + iλ)−1
∑
n∈N

(−A(H + iλ)−1)n.

By assumption on |λ|, this sum converges in norm and Ran(Rλ) = D. Routine
manipulations show that (H + A + iλ)Rλ = Rλ(H + A + iλ) = II so that
Ran(H+A+ iλ) = H. This implies that the deficiency indices of K = H+A
are both zero, and since it is closed, K is self-adjoint. Note that one uses the
fact that dim ker(K∗ − iλ) is constant for λ > 0 and λ < 0.

4 Spectral Theorem

Let us start this section by the presentation of another example of self-adjoint
operator, which will play a key role in the Spectral Theorem, we set out to
prove here. Before getting to work, let us specify right away that we shall not
provide here a full proof of the version of the Spectral Theorem we chose.
Some parts of it, of a purely analytical character, will be presented as facts
whose detailed full proofs can be found in Davies’s book [D]. But we hope to
convey the main ideas of the proof in these notes.

Consider E ⊆ RN a Borel set and µ a Borel non-negative measure on E.
Let H = L2(E, dµ) be the usual set of measurable functions f : E → C such
that ‖f‖2 =

∫
E
|f(x)|2dµ <∞, with identification of functions that coincide

almost everywhere.
Let a : E → R be measurable and such that the restriction of a to any

bounded set of E is bounded. We set

D = {f ∈ H |
∫
E

(1 + a2(x))|f(x)|2dµ <∞},

which is dense, and we define the multiplication operator (A,D) by

(Af)(x) = a(x)f(x), ∀f ∈ D.

Lemma 4.1. (A,D) is self-adjoint and if L2
c denotes the set of functions

of H which are zero outside a compact subset of E, then A is essentially
self-adjoint on L2

c.
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Proof. A is clearly symmetric. If z 6∈ R, the bounded operator R(z) given by

(R(z)f)(x) = (a(x)− z)−1f(x)

is easily seen to be the inverse of (A − z). Hence, σ(A) 6= C, so that A is
closed. Moreover, the deficiency indices of A are both seen to be zero:

A∗f = if ⇔ ∀h ∈ D
∫
Ahfdµ = i

∫
hfdµ

⇔
∫

(a(x)− i)hfdµ = 0,

⇔ f = 0 µ a.e.

So that A is closed and essentially self-adjoint, hence self-adjoint.
Concerning the last statement, we need to show that A is the closure of

its restriction to L2
c . If f ∈ D and n ∈ N, we define

fn(x) =
{
f(x) if x ∈ E, |x| ≤ n

0 otherwise.

Hence |fn(x)| ≤ |f(x)| and fn ∈ L2
c ∈ D. By Lebesgue dominated conver-

gence Theorem, one checks that fn → f and Afn → Af as n→∞.

Lemma 4.2. The spectrum and resolvent of A are such that

σ(A) = essential range of a = {λ ∈ R |µ({x | |a(x)− λ| < ε}) > 0,∀ε > 0}.

If λ 6∈ σ(A), then

‖(A− λ)−1‖ =
1

dist (λ, σ(A))
.

Proof. If λ is not in the essential range of a, it is readily checked that the
multiplication operator by (a(x)− λ)−1 is bounded (outside of a set of zero
µ measure). Also one sees that this operator yields the inverse of a − λ for
such λ’s, which, consequently, belong to ρ(A). Conversely, let us take λ in
the essential range of a and show that λ ∈ σ(A). We define sets of positive µ
measures by

Sm = {x ∈ E | |λ− a(x)| < 2−m}.

Let χm be the characteristic function of Sm, which is a non zero element of
L2(E, dµ). Then

‖(A−λ)χm‖2 =
∫
Sm

|χm|2|a(x)−λ|2dµ ≤ 2−2m

∫
Sm

|χm|2dµ = 2−2m‖χm‖2,

which shows that (A − λ)−1 cannot be bounded. Finally, if λ is not in the
essential range of a, we set

‖(a(·)− λ)−1‖∞ = essential supremum of (a(·)− λ)−1,
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where we recall that for a measurable function f

‖f‖∞ = inf{K > 0 | |f(x)| ≤ K µ a.e.}.

We immediately get that ‖a(·)− λ‖∞ is an upper bound for the norm of the
resolvent, as, for any ε > 0 there exists a set S ⊂ E of positive measure such
that |(a(x)− λ)−1| ≥ K − ε, ∀x ∈ S. Considering the characteristic function
of this set, one sees that the upper bound is actually reached and corresponds
with the distance of λ to the spectrum of A.

4.1 Functional Calculus

Let us now come to the steps leading to the Spectral Theorem. The general
setting is as follows. One has a self-adjoint operator (H,D), D dense in a
separable Hilbert space H. We first want to define a functional calculus,
allowing us to take functions of self-adjoint operators. If H is a multiplication
operator by a real valued function h, as in the above example, then f(H), for
a reasonable function f : R → C, is easily conceivable as the multiplication
by f ◦ h. We are going to define a function of an operator H in a quite
general setting by means of an explicit formula due to Helffer and Sjöstrand
and we will check that this formula has the properties we expect of such
an operation. Finally, we will also see that any operator can be seen as a
multiplication operator on some L2(dµ) space.

Let us introduce the notation < z >= (1+|z|2)1/2 and the set of functions
we will work with. Let β ∈ R and Sβ be the set of complex valued C∞(R)
functions such that there exists a cn so that

|f (n)(x)| =
∣∣∣∣ dndxn f(x)

∣∣∣∣ ≤ cn < x >β−n, ∀x ∈ R ∀n ∈ N.

We set A = ∪β<0S
β and we define norms ‖ · ‖n on A, for any n ≥ 1, by

‖f‖n =
n∑
r=0

∫ ∞

−∞
|f (r)(x)| < x >r−1 dx.

This set of functions enjoys the following properties:
A is an algebra for the multiplication of functions, it contains the rational
functions which decay to zero at ∞ and have non-vanishing denominator on
the real axis.
Moreover, it is not difficult to see that

‖f‖n <∞ ⇒ f ′ ∈ L1(R), and f(x) → 0 as |x| → ∞

and that

‖f − fk‖n → 0, as k →∞ ⇒ sup
x∈R

|f(x)− fk(x)| → 0, as k →∞.
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Definition 4.1. A map which to any f ∈ E ⊂ L∞(R) associates f(H) ∈
L(H) is a functional calculus if the following properties are true.

1. f 7→ f(H) is linear and multiplicative, (i.e. fg 7→ f(H)g(H))
2. f̄(H) = (f(H))∗, ∀f ∈ E
3. ‖f(H)‖ ≤ ‖f‖∞, ∀f ∈ E
4. If w 6∈ R and rw(x) = (x− w)−1, then rw(H) = (H − w)−1

5. If f ∈ C∞0 (R) such that supp(f) ∩ σ(H) = ∅ then f(H) = 0.

For f ∈ C∞, we define its quasi-analytic extension f̃ : C → C by

f̃(z) =

(
n∑
r=0

f (r)(x)
(iy)r

r!

)
σ(x, y)

with z = x + iy, n ≥ 1, σ(x, y) = τ(y/ < x >), where τ ∈ C∞0 is equal to
one on [−1, 1], has support in [−2, 2]. We are naturally abusing notations as
f̃ is not analytic in general, but it is C∞. Its support is confined to the set
|y| ≤ 2 < x > due to the presence of τ . Also, the projection on the x axis of
the support of f̃ is equal to the support of f . The choice of τ and n will turn
out to have no importance for us.

Explicit computations yield

∂

∂z̄
f̃(z) =

1
2

(
∂

∂x
+ i

∂

∂y

)
f̃(z) = (15)(

n∑
r=0

f (r)(x)
(iy)r

r!

)
(σx(x, y) + iσy(x, y))

2
+ f (n+1)(x)

(iy)n

n!
σ(x, y)

2
.

As supp(σx(x, y)) and supp(σy(x, y)) are included in supp(τ ′(y/ < x >), i.e.
in the set < x >≤ |y| ≤ 2 < x >, if x is fixed and y → 0,∣∣∣∣ ∂∂z̄ f̃(z)

∣∣∣∣ = O(|y|n),

which justifies the name quasi-analytic extension as y goes to zero.

Definition 4.2. For any f ∈ A and any self-adjoint operator H on H the
Helffer-Sjöstrand formula for f(H) reads

f(H) =
1
π

∫
C

∂

∂z̄
f̃(z)(H − z)−1dxdy ∈ L(H). (16)

Remark 4.1. This formula allows to compute functions of operators by means
of their resolvent only. Therefore it holds for bounded as well as unbounded
operators. Moreover, being explicit, it can yield useful bounds in concrete
cases. Note also that it is linear in f .

We need to describe a little bit more in what sense this integral holds.
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Lemma 4.3. The expression (16) converges in norm and the following bound
holds

‖f(H)‖ ≤ cn‖f‖n+1, ∀f ∈ A and n ≥ 1. (17)

Proof. The integrand is bounded and C∞ on C \ R, therefore (16) converges
in norm as a limit of Riemann sums on any compact of C \ R. It remains to
deal with the limit when these sets tend to the whole of C. Let us introduce
the sets

U = {(x, y) | < x >≤ |y| ≤ 2 < x >} ⊇ supp τ ′(y/ < x >)
V = {(x, y) | 0 ≤ |y| ≤ 2 < x >} ⊇ supp τ(y/ < x >).

We easily get by explicit computations that

|σx(x, y) + iσy(x, y)| ≤
cχU (x, y)
< x >

,

where χU is the characteristic function of the set U . Using the bound (11)
on the resolvent, (15), and the fact that |y| '< x > on U , we can bound the
integrand of (16) by a constant times

n∑
r=0

|f (r)(x)| < x >r−2 χU (x, y) + |f (n+1)(x)||y|n−1χV (x, y).

After integration on y at fixed x, the integrand of the remaining integral in
x is bounded by a constant times

n∑
r=0

|f (r)(x)| < x >r−1 +|f (n+1)(x)| < x >n,

hence the announced bound.
We need a few more properties regarding formula (16) before we can show

it defines a functional calculus.

It is sometimes easier to deal with C∞0 functions rather then with func-
tions of A. The following Lemma shows this is harmless.

Lemma 4.4. C∞0 (R) is dense in A for the norms ‖ · ‖n.

Proof. We use the classical technique of mollifiers. Let Φ ≥ 0 be smooth with
the same conditions of support as τ . Set Φm(x) = Φ(x/m) for all x ∈ R and
fm = Φmf . Hence, fm ∈ A and support considerations yield

‖f − fm‖n+1 =
n+1∑
r=0

∫
R

∣∣∣∣ drdxr (f(x)(1− Φm(x)))
∣∣∣∣ < x >r−1 dx

≤ cn

n+1∑
r=0

∫
|x|>m

|f (r)(x)| < x >r−1 dx→ 0, as m→∞.
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The next Lemma will be useful several times in the sequel.

Lemma 4.5. If F ∈ C∞0 (C) and F (z) = O(y2) as y → 0 at fixed real x, then

1
π

∫
C

∂

∂z̄
F (z)(H − z)−1dxdy = 0. (18)

Proof. Suppose suppF ⊂ {|x| < N, |y| < N} and let Ωδ, δ > 0 small such
that Ωδ ⊂ {|x| < N, δ < |y| < N}. We want to apply Stokes Theorem to the
above integral. Recall that

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,
∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
⇐⇒ dz̄ = dx− idy, dz = dx+ idy

so that dz̄ ∧ dz = 2idx ∧ dy = 2idxdy. Moreover, since ∂
∂z̄ (H − z)−1 = 0 by

analyticity,

d(F (z)(H − z)−1dz) =
∂

∂z
(F (z)(H − z)−1)dz ∧ dz

+
∂

∂z̄
(F (z)(H − z)−1)dz̄ ∧ dz

=
∂F

∂z̄
(z)(H − z)−1dz̄ ∧ dz.

Therefore, if I denotes (18), we get by Stokes Theorem

I = lim
δ→0

1
2πi

∫
Ωδ

d(F (z)(H − z)−1dz) = lim
δ→0

1
2πi

∫
∂Ωδ

F (z)(H − z)−1dz

= lim
δ→0

1
2πi

∫
y=δ

y=−δ
|x|<N

F (z)(H − z)−1dz.

Hence the bound

|I| ≤ lim
δ→0

1
2π

∫ N

−N
(|F (x+ iδ|+ |F (x− iδ|)1

δ
dx = lim

δ→0
O(δ) = 0,

where we used Taylor’s formula F (x, y) = y2

2 Fyy(x, θ(y, x)y) with θ(x, y) ∈
(0, 1), so that |F (x, y)| ≤ c(x)y2.

Remark 4.2. It follows from the above proof that if f has compact support,
we can write

f(H) = lim
δ→0

1
2πi

∫
∂Ωδ

f̃(z)(H − z)−1dz.

Neglecting support considerations, if f̃ was analytic, this is the way we would
naturally define f(H).

We can now show a comforting fact about our definition (16) of f(H).
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Lemma 4.6. If f ∈ A and n ≥ 1, then f(H) is independent of σ and n.

Proof. By density of C∞0 in A for the norms ‖ · ‖n and Lemma 4.3, we can
assume f ∈ C∞0 . Let f̃σ1,n and f̃σ2,n be associated with σ1 and σ2. Then

f̃σ1,n − f̃σ2,n =

(
n∑
r=0

f (r)(x)
(iy)r

r!

)
(τ1(y/ < x >)− τ2(y/ < x >)),

is identically zero for y small enough, so Lemma 4.5 applies. Similarly, if
m > n ≥ 1, with similar notations,

f̃σ,m − f̃σ,n =
m∑

r=n+1

f (r)(x)
(iy)r

r!
σ(x, y) = O(y2), as y → 0, x fixed,

and Lemma 4.5 applies again.
We are now in a position to show that formula (16) possesses the proper-

ties of a functional calculus.

Proposition 4.1. With the notations above,
a) If f ∈ C∞0 and supp(f) ∩ σ(H) = ∅, then f(H) = 0.
b) (fg)(H) = f(H)g(H), for all f, g ∈ A.
c) f̄(H) = f(H)∗ and ‖f(H)‖ ≤ ‖f‖∞.
d) rw(H) = (H − w)−1, w 6∈ R.

Proof. a) In that case, since the compact set supp(f) and the closed set
σ(H) are disjoint, we can consider a finite number of contours γ1, · · · , γr
surrounding a region W disjoint from σ(H) containing the support of f̃ . By
Stokes Theorem again

f(H) =
1
π

∫
C

∂

∂z̄
f̃(z)(H − z)−1dxdy =

1
2πi

r∑
j=1

∫
γj

f̃(z)(H − z)−1dz ≡ 0,

by our choice of γj .
b) Assume first f, g ∈ C∞0 , so that K =supp(f̃) and L =supp(g̃) are compact.

f(H)g(H) =
1
π2

∫
K×L

∂

∂z̄
f̃(z)

∂

∂w̄
g̃(w)(H − z)−1(H − w)−1dxdydudv

=
1
π2

∫
K×L

∂

∂z̄
f̃(z)

∂

∂w̄
g̃(w)

(H − w)−1 − (H − z)−1

w − z
dxdydudv.

Then one uses the formula (easily proven using Stokes again)

1
π

∫
K

∂

∂z̄
f̃(z)

dxdy

w − z
= f̃(w),

the equivalent one for g̃ and one gets, changing variables to z,
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f(H)g(H) =
1
π

∫
K∩L

(
g̃(z)

∂

∂z̄
f̃(z) + f̃(z)

∂

∂z̄
g̃(z)

)
(H − z)−1dxdy

=
1
π

∫
K∩L

∂

∂z̄
(f̃(z)g̃(z))(H − z)−1dxdy.

It remains to see that if k(z) = f̃(z)g̃(z)−f̃g(z), the integral of ∂
∂z̄k(z) against

the resolvent on C is zero. But this is again a consequence of Lemma 4.5,
since k has compact support and explicit computations yield k(z) = O(y2)
as y → 0 with x fixed. The generalization to functions of A is proven along
the same lines as Lemma 4.4 with Lemma 4.3.
c) The first point follows from (H − z)−1∗ = (H − z̄)−1, the convergence in

norm of (16) and the fact that ˜̄f(z) = f̃(z̄) if τ is even, which we can always
assume. For the second point, take f ∈ A and c > 0 such that ‖f‖∞ ≤ c.
Defining g(x) = c − (c2 − |f(x)|2)1/2, one checks that g ∈ A as well. The
identity ff̄ − 2cg + g2 = 0 in the algebra A implies with the above

f(H)f(H)∗ − 2cg(H) + g(H)g(H)∗ = 0
⇔ f(H)∗f(H) + (c− g(H))∗(c− g(H)) = c2.

Thus, for any ψ ∈ H, it follows

‖f(H)ψ‖2 ≤ ‖f(H)ψ‖2 + ‖(c− g(H))ψ‖2 ≤ c2‖ψ‖2,

where c ≥ ‖f‖∞ is arbitrary.
d) Let us take n = 1 and assume =w > 0. We further choose

σ(x, y) = τ(λy/ < x >),

where λ ≥ 1 will be chosen large enough so that w does not belong to the
support of σ and then kept fixed in the rest of the argument. The sole effect
of this manipulation is to change the support of τ , but everything we have
done so far remains true for λ > 1 and fixed. Let us define, for m > 0 large,

Ωm = {(x, y) | |x| < m and < x > /m < |y| < 2m}.

Then, by definition and Stokes,

rw(H) = lim
m→∞

1
π

∫
Ωm

∂

∂z̄
r̃w(z)(H − z)−1dxdy

= lim
m→∞

1
2πi

∫
∂Ωm

r̃w(z)(H − z)−1dz, (19)

where, since n = 1,

r̃w(z) = (rw(x) + r′w(x)iy)σ(x, y).

At this point, we want to replace r̃w(z) by rw(z) in (19). Indeed, it can be
shown using the above explicit formula that
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lim
m→∞

∣∣∣∣∫
∂Ωm

(rw(z)− r̃w(z))(H − z)−1dz

∥∥∥∥ = 0,

by support considerations and elementary estimates on the different pieces
of ∂Ωm. Admitting this fact we have

rw(H) = lim
m→∞

1
2πi

∫
∂Ωm

rw(z)(H − z)−1dz

= res(rw(z)(H − z)−1)|z=w = (H − w)−1,

due to the analyticity of the resolvent inside Ωm.
We can now state the first Spectral Theorem for the set C∞(R) of con-

tinuous functions that vanish at infinity

C∞(R) = {f ∈ C(R) | ∀ε > 0,∃K compact with |f(x)| < ε if x 6∈ K}.

Theorem 4.1. There exists a unique linear map f 7→ f(H) from C∞ to
L(H) which is a functional calculus.

Proof. Replacing C∞ by A we have existence. Now, C∞0 ⊂ A ⊂ C∞ and it is
a classical fact that C∞0

‖·‖∞ = C∞, [RS]. Hence A is dense in C∞ in the sup
norm. As ‖f(H)‖ ≤ ‖f‖∞ ∀f ∈ A, a density argument yields an extension
of the map to C∞ with convergence in norm. It is routine to check that all
properties listed in Proposition 4.1 remain true for f ∈ C∞. The uniqueness
property is shown as follows. If there exists another functional calculus, then,
by hypothesis, it must agree with ours on the set of functions R

R = {
n∑
i=1

λirwi
, where λi ∈ C, wi 6∈ R}.

But, it is a classical result also that the set R satisfies the hypothesis of the
Stone-Weierstrass Theoremb and R = C∞, so that the two functional calcu-
lus must coincide everywhere.

We shall pursue in two directions. We first want to show that any self-adjoint
operator can be represented as a multiplication operator on some L2 space.
Then we shall extend the functional calculus to bounded measurable func-
tions.

4.2 L2 Spectral Representation

Let (H,D) be self-adjoint on H.

bLet X be locally compact and consider C∞(X). If B is a subalgebra of C∞(X)
that separates points and satisfies f ∈ B ⇒ f̄ ∈ B, then B is dense in C∞(X) for
‖ · ‖∞
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Definition 4.3. A closed linear subspace L of H is said invariant under H
if (H − z)−1L ⊆ L for any z 6∈ R.

Remark 4.3. It is an exercise to show that if ϕ ∈ L ∩ D, then Hϕ ∈ L, as
expected.
Also, for any λ ∈ R, Ker(H − λ) is invariant. If is is positive, the dimension
of this subspace is called the multiplicity of the eigenvalue λ.

Lemma 4.7. If L is invariant under H = H∗, then L⊥ is invariant also.
Moreover, f(H)L ⊆ L, for all f ∈ C∞(R).

Proof. The first point is straightforward and the second follows from the
approximation of the integral representation (16) of f(H) for f ∈ A by
a norm convergent limit of Riemann sums and by a density argument for
f ∈ C∞(R).

Definition 4.4. For (H,D) self-adjoint on H, the cyclic subspace generated
by the vector v ∈ H is the subspace

L = span {(H − z)−1v, z 6∈ R}.

Remark 4.4. i) Cyclic subspaces are invariant under H, as easily checked.
ii) If the vector v chosen to generate the cyclic subspace is an eigenvector,
then, this subspace is Cv.
iii) If the cyclic subspace corresponding to some vector v coincides with H,
we say that v is a cyclic vector for H.
iv) In the finite dimensional case, the matrix H has a cyclic vector v iff the
spectrum of H is simple, i.e. all eigenvalues have multiplicity one.

These subspaces allow to structure the Hilbert space with respect to the
action of H.

Lemma 4.8. For (H,D) self-adjoint on H, there exists a sequence of orthog-
onal cyclic subspaces Ln ⊂ H with cyclic vector vn such that H = ⊕Nn=1Ln,
with N finite or not.

Proof. As H is assumed to be separable, there exists an orthonormal basis
{fj}j∈N of H. Let L1 be the subspace corresponding to f1. By induction, let
us assume orthogonal cyclic subspaces L1, L2, · · · , Ln are given. Let m(n) be
the smallest integer such that fm(n) 6∈ L1 ⊕ · · · ⊕ Ln and let gm(n) be the
component of fm(n) orthogonal to that subspace. We let Ln+1 be the cyclic
subspace generated by the vector gm(n). Then we have Ln+1 ⊥ Lr, for all
r ≤ n and fm(n) ∈ L1⊕· · ·⊕Ln⊕Ln+1. Then either the induction continues
indefinitely and N = ∞, or at some point, such a m(n) does not exist and
the sum is finite.

The above allows us consider each H|Ln
, n = 1, 2 · · · , N separately. Note,

however, that the decomposition is not canonical.
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Theorem 4.2. Let (H,D) be self-adjoint on H, separable. Let S = σ(H) ⊂
R. Then there exists a finite positive measure µ on S × N and a unitary op-
erator U : H → L2 ≡ L2(S × N, dµ) such that if

h : S × N → R
(x, n) 7→ x

, then ξ ∈ H belongs to D ⇐⇒ hUξ ∈ L2.

Moreover,

UHU−1ψ = hψ, ∀ψ ∈ U(D) ⊂ L2(S × N, dµ) and
Uf(H)U−1ψ = f(h)ψ, ∀ f ∈ C∞(R), ψ ∈ L2(S × N, dµ).

This Theorem will be a Corollary of the

Theorem 4.3. Let (H,D) be self-adjoint on H and S = σ(H) ⊂ R. Further
assume that H admits a cyclic vector v. Then, there exists a finite positive
measure µ on S and a unitary operator U : H → L2(S, dµ) ≡ L2 such that if

h : S → R
x 7→ x

, then ξ ∈ H belongs to D ⇐⇒ hUξ ∈ L2

and
UHU−1ψ = hψ ∀ψ ∈ U(D) ⊂ L2(S, dµ).

Proof. (of Theorem 4.3). Let the linear functional Φ : C∞(R) → C be defined
by

Φ(f) = 〈v|f(H)v〉.

The functional calculus shows that Φ(f̄) = Φ(f). And if 0 ≤ f ∈ C∞(R),
then, with g =

√
f , we have

Φ(f) = ‖g(H)v‖2 ≥ 0, i.e. Φ is positive.

Thus, by Riesz-Markov Theoremc, there exists a positive measure on R such
that

〈v|f(H)v〉 =
∫

R
f(x)dµ(x), ∀ f ∈ C∞(R).

Since in case supp (f) ∩ σ(H) = ∅, f(H) is zero, we deduce that supp (µ) ⊆
S = σ(H). Also, note that f above belongs to L2(S, dµ), since∫

|f(x)|2dµ(x) = 〈v|f(H)∗f(H)v〉 ≤ ‖f2‖∞‖v‖2 <∞.

Consider the linear map T : C∞(R) → L2 such that Tf = f . It satisfies for
any f, g ∈ C∞(R)

cIf X is a locally compact space, any positive linear functional l on C∞(X) is
of the form l(f) =

R
X

f dµ, where µ is a (regular) Borel measure with finite total
mass.
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〈Tg|Tf〉L2 =
∫
S

ḡ(x)f(x)dµ(x) = Φ(ḡf)

= 〈v|g∗(H)f(H)v〉H = 〈g(H)v|f(H)v〉H.

Defining
M = {f(H)v ∈ H | f ∈ C∞(R)},

we have existence of an onto isomorphism U such that

U : M → C∞(R) ⊆ L2 such that Uf(H)v = f.

Now, M is dense in H since v is cyclic and C∞(R) is dense in L2, so that U
admits a unitary extension from H to L2.

Let f1, f2, f ∈ C∞(R) and ψi = fi(H)v ∈ H. Then

〈ψ2|f(H)ψ1〉H = 〈f2(H)v|(ff1)(H)v〉H

=
∫
S

f̄2(x)f(x)f1(x)dµ(x) = 〈Uψ2|fUψ1〉L2 ,

where f denotes the obvious multiplication operator. In particular, if f(x) =
rw(x) = (x− w)−1, we deduce that for all ξ ∈ L2 and all w 6∈ R

Urw(H)U−1ξ = U(H − w)−1U−1ξ = rwξ. (20)

Thus, U maps Ran(H −w) to Ran(rw), i.e. D and {ξ ∈ L2 |xξ(x) ∈ L2} are
in one to one correspondence.

If ξ ∈ L2 and ψ = rwξ, then ψ ∈ D(h), where D(h) is the domain of the
multiplication operator by h : x 7→ x. Then, with (20)

UHU−1ψ = UHU−1rwξ = UHrw(H)U−1ξ = wrwξ+ ξ = xrwξ = hψ.

Proof. (of Theorem 4.2). We know H = ⊕nLn with cyclic subspaces Ln
with vectors vn. We will assume ‖vn‖ = 1/2n, ∀n ∈ N. By Theorem 4.2,
there exist µn of mass

∫
S
dµn = ‖vn‖2 = 2−2n and unitary operators

Un : Ln → L2(S, dµn) such that Hn = H|Ln
is unitarily equivalent to

the multiplication by x on L2(S, dµn). Defining µ on S × N by imposing
µ|S×{n} = µn and U by ⊕nUn, we get the result.

In case H = Cn and H = H∗ has simple eigenvalues λj with associ-
ated eigenvectors ψj , the measure can be chosen as µ =

∑
j δ(x − λj) and

L2 = L2(R, dµ) = Cn. Note also that µ̃ =
∑
j ajδ(x− λj), where aj > 0 is as

good a measure as µ to represent Cn as L2(R, d̃µ).

Let us now extend our Spectral Theorem to B(R), the set of bounded
Borel functions on R.
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Definition 4.5. We say that fn ∈ B(R) is monotonically increasing to
f ∈ B(R), if fn(x) increases monotonically to f(x) for any x ∈ R.

Thus, ‖fn‖ = supx∈R |fn(x)| is uniformly bounded in n.

Theorem 4.4. There exists a unique functional calculus f → f(H) from
B(R) to L(H) if one imposes s-limn→∞ fn(H) = f(H) if fn ∈ B(R) converges
monotonically to f ∈ B(R).

Recall that s-lim means limit in the strong sense, i.e. s-limAn = A in L(H)
is equivalent to limnAnϕ = Aϕ, in H, ∀ϕ ∈ H.

Proof. Consider existence first. By unitary equivalence, we identify H and
L2(S×N, dµ) and H by multiplication by h : (x, n) 7→ x. We define f(H) for
f ∈ B(R) by

f(H)ψ(x, n) = f(h(x, n))ψ(x, n) on L2(S × N, dµ),

which is easily shown to satisfy the properties of a functional calculus. Then,
by the dominated convergence Theorem, if fn converges monotonically to f :

lim
n→∞

fn(H)ψ(x,m) = f(H)ψ(x,m).

Uniqueness is shown as follows. Consider two functional calculus with the
mentioned properties. Let C be the subset of B(R) on which they coincide.
We know C∞(R) ⊂ C and C is closed by taking monotone limits. But the
smallest set of functions containing C∞(R) which is closed under monotone
limits is B(R), see [RS].

Remark 4.5. It all works the same if one considers functions fn that converge
pointwise to f and such that supn ‖fn‖∞ <∞

We have the following Corollary concerning the resolvent.

Corollary 4.1. With the hypotheses and notations above, σ(H) is the essen-
tial range of h in L2(S, dµ) and

‖(H − z)−1‖ =
1

dist (z, σ(H))

Proof. This follows from Theorem 4.3 and our study of multiplication opera-
tors.

Another instance where our previous study of multiplication operators is
useful is the case of constant coefficient differential operators on S(RN ), the
set of Schwartz functions. Such an operator L is defined by a finite sum of
the form
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L =
∑
α

aαD
α, (21)

where

α = (α1, · · · , αN ) ∈ NN , aα ∈ C, Dαj =
∂αj

∂x
αj

j

, Dα = Dα1 · · ·DαN ,

and L acts on functions in S(RN ) ⊂ L2(RN ). This set of functions being
invariant under Fourier transformation F , this operator is unitarily equivalent
to

FLF−1 =
∑
α

aα(ik)α, on S(RN ) ⊂ L2(RN ).

The function
∑
α aα(ik)α is called the symbol of the differential operator. It

is not difficult to get the following

Proposition 4.2. Let L be the differential operator on Rn with constant co-
efficients defined in (21). Then L is symmetric iff its symbol is real valued in
RN . In that case, L̄ is self-adjoint and

σ(L̄) = {
∑
α

aα(ik)α | k ∈ RN}.

Let us finally introduce spectral projectors in the general case of un-
bounded operators.

Theorem 4.5. Let (H,D) be self-adjoint on H and (a, b) an open interval.
Let fn be an increasing sequence of non-negative continuous functions on R
with support in (a, b) that converges to χ(a,b), the characteristic function of
(a, b). Then

s- lim
n
fn(H) = P(a,b),

a canonical orthogonal projector, independent of {fn}, that satisfies

P(a,b)H ⊂ HP(a,b), and P(a,b) = 0 ⇐⇒ (a, b) ∩ σ(H) = ∅

Proof. The existence of the limit is ensured by Theorem 4.4 and and its
properties are immediate.

Remark 4.6. The fact that P(a,b) is a projector follows from the identity
χ(a,b) = χ2

(a,b), which makes χ(a,b) a projector, when viewed as a multiplica-
tion operator.
These projectors are called spectral projectors and their range L(a,b) = P(a,b)H
are called spectral subspaces. These spectral subspaces satisfy

L(a,b) ' L2(E(a,b), dµ), where E(a,b) = {(x, n) | a < h(x, n) < b},
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and ' denotes the unitary equivalence constructed in Theorem 4.2
It is also customary to represent a self-adjoint operator H by the Stieltjes
integral

H =
∫ ∞

−∞
λdE(λ),

where E(λ) = P (−∞, λ) is projection operator valued. Let us justify this
in case H has a cyclic vector, the general case following immediately. By
polarization, it is enough to check that for ξ ∈ D

〈ξ|Hξ〉H =
∫
λd〈ξ|E(λ)ξ〉 =

∫
λd‖E(λ)ξ‖2.

By unitary equivalence to L2(R, dµ), if ψ = Uξ

d‖E(λ)ξ‖2 = d

∫ ∞

−∞
|χ(−∞,λ)(x)ψ(x)|2dµ(x)

= d

∫ λ

−∞
|ψ(x)|2dµ(x) = |ψ(λ)|2dµ(λ).

Hence
〈ξ|Hξ〉H =

∫
λ|ψ(λ)|2dµ(λ) = 〈ψ|hψ〉L2 .

We close this Section about the Spectral Theorem by some results in
perturbation theory of unbounded operators.

Definition 4.6. Let (H,D) and (Hn, Dn) be a sequence of self-adjoint oper-
ators on H. We say that Hn → H in the norm resolvent sense if

lim
n→∞

‖(Hn + i)−1 − (H + i)−1‖ = 0.

The point i ∈ C plays no particular role as the following Lemma shows.

Lemma 4.9. If z = x+iy ∈ C\R, and g(x, y) = suph∈R |(h+ i)/(h− x− iy)|
then, there exists a constant c such that

‖(Hn − z)−1 − (H − z)−1‖ ≤ cg(x, y)‖(Hn + i)−1 − (H + i)−1‖.

Proof. Once the identity

(Hn − z)−1 − (H − z)−1 = (22)
(Hn + i)(Hn − z)−1((Hn + i)−1 − (H + i)−1)(H + i)(H − z)−1

is established, the Lemma is a consequence of the bound following from the
Spectral Theorem

‖(H + i)(H − z)−1‖ ≤ g(x, y).

If one doesn’t take care of domain issues, (22) is straightforward. We refer to
[D] for a careful proof of (22).
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Remark 4.7. If z ∈ ρ(H) ∩ ρ(Hn), the result is similar.

Theorem 4.6. If Hn → H in the norm resolvent sense, then

lim
n→∞

‖f(Hn)− f(H)‖ = 0, ∀f ∈ C∞.

Remark 4.8. The result is not generally true if f ∈ B(R). Consider spectral
projectors, for instance. See also Corollary 4.2 below.

Proof. If f ∈ A, the definition yields,

‖f(H)− f(Hn)‖ ≤
1
π

∫
C

∣∣∣∣∣∂f̃(z)
∂z̄

∣∣∣∣∣ ‖(Hn − z)−1 − (H − z)−1‖dxdy

≤ 4c
π

∫
C

∣∣∣∣∣∂f̃(z)
∂z̄

∣∣∣∣∣ g(x, y)dxdy ‖(Hn + i)−1 − (H + i)−1‖.

It is not difficult to see that the last integral is finite, due to the properties
of ∂f̃(z)

∂z̄ and of g(x, y). The convergence in norm is established for f ∈ A and
the extension of the result to f ∈ C∞(R) comes from the extension of the
functional calculus to those f ’s and by density.

We have the following spectral consequences.

Corollary 4.2. If Hn → H in the norm resolvent sense, we have convergence
of the spectrum of Hn to that of H in the following sense:

λ ∈ R \ σ(H) ⇒ λ 6∈ σ(Hn), n large enough
λ ∈ σ(H) ⇒ ∃λn ∈ σ(Hn), such that lim

n→∞
λn = λ.

Proof. If λ ∈ R\σ(H), there exists f ∈ C∞0 (R) whose support is disjoint from
σ(H) and which is equal to 1 in a neighborhood of λ. Then, Theorem 4.6
implies ‖f(Hn)‖ → 0 and, in turn, the Spectral Theorem implies λ 6∈ σ(Hn)
if ‖f(Hn)‖ < 1. Conversely, if λ ∈ σ(H), pick an ε > 0 and a f ∈ C∞0 (R)
such that f(λ) = 1 and supp (f) ⊂ (λ − ε, λ + ε). From limn ‖f(Hn)‖ = 1
follows that σ(Hn) ∩ (λ− ε, λ+ ε) 6= ∅, if n is as large as we wish.

5 Stone’s Theorem, Mean Ergodic Theorem and Trotter
Formula

The Spectral Theorem allows to prove easily Stone’s Theorem, which charac-
terizes one parameter evolution groups which we define below. Such groups
are those giving the time evolution of a wave function ψ in Quantum Me-
chanics governed by the Schrödinger equation

i~
∂

∂t
ψ(t) = Hψ(t), with ψ(0) = ψ0,

where H is the Hamiltonian.
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Definition 5.1. A one-parameter evolution group on a Hilbert space is a
family {U(t)}t∈R of unitary operators satisfying U(t+ s) = U(t)U(s) for all
t, s ∈ R and U(t) is strongly continuous in t on R.

Remark 5.1. It is easy to check that strong continuity at 0 is equivalent to
strong continuity everywhere and that weak continuity is equivalent to strong
continuity in that setting.
Actually, we have equivalence between the following statements: the map
t 7→ 〈ϕ|U(t)ψ〉 is measurable for all ϕ,ψ and U(t) is strongly continuous, see
[RS] for a proof.

Theorem 5.1. Let (A,D) be self-adjoint on H and U(t) = eitA given by
functional calculus. Then
a) {U(t)}t∈R forms a one parameter evolution group and U(t) : D → D for
t ∈ R.
b) For any ψ ∈ D,

U(t)ψ − ψ

t
→ iAψ as t→ 0.

c) Conversely,

lim
t→0

U(t)ψ − ψ

t
exists ⇒ ψ ∈ D.

Proof. a) follows from the Functional Calculus and the properties of x 7→
ft(x) = eitx. Similarly b) is a consequence of the functional calculus (see
Theorem 4.4) applied to x 7→ gt(x) = (eitx − 1)/t and of the estimate |eix −
1| ≤ |x|.
c) Define

D(B) =
{
ψ | lim

t→0

U(t)ψ − ψ

t
exists

}
, and Bψ = lim

t→0

U(t)ψ − ψ

it
on D(B).

(23)
One checks that B is symmetric and b) implies B ⊇ A. But A ⊆ B ⊆ B̄ and
A = A∗ is closed, thus A = B.

Remark 5.2. The formula (23) defines the so-called infinitesimal generator of
the evolution group U(t).

The converse of that result is Stone’s Theorem.

Theorem 5.2. If {U(t)}t∈R forms a one parameter evolution group on H,
then there exists (A,D) self-adjoint on H such that U(t) = eiAt.

Proof. The idea of the proof is to define A as the infinitesimal generator on
a set of good vectors and show that A is essentially self-adjoint. Then one
shows that U(t) =iĀt.

Let f ∈ C∞0 (R) and define
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ϕf =
∫

R
f(t)U(t)ϕdt, ∀ϕ ∈ H.

Let D be the set of finite linear combinations of such ϕf , with different ϕ
and f .

1) D is dense: Let jε(x) = j(x/ε)/ε, where 0 ≤ j ∈ C∞0 with support in
[−1, 1] and

∫
j(x) dx = 1. Then, for any ϕ,

‖ϕjε − ϕ‖ =
∥∥∥∥∫ jε(t)(U(t)ϕ− ϕ)dt

∥∥∥∥
≤
(∫ ∞

−∞
jε(t)dt

)
sup
|t|≤ε

‖U(t)ϕ− ϕ‖ → 0 as ε→ 0.

2) Infinitesimal generator on D: Let ϕf ∈ D.

(U(s)− II )
s

ϕf =
∫

R
f(t)

U(t+ s)− U(t)
s

ϕdt

=
∫

R

f(τ − s)− f(τ)
s

U(τ)ϕdτ

s→ 0
−→ −

∫
R
f ′(τ)U(τ)ϕdτ = ϕ−f ′ .

Hence, we set for ϕf ∈ D,

Aϕf =
1
i
ϕ−f ′ = lim

t→0

U(t)− II

it
ϕf

and it is easily checked that

U(t) : D → D, A : D → D, and U(t)Aϕf = AU(t)ϕf =
1
i
ϕ−f ′(·−t).

Moreover, for ϕf , ϕg ∈ D,

〈ϕg|Aϕf 〉 = lim
s→0

〈
ϕf |

U(s)− II

is
ϕg

〉
= lim
s→0

〈
U(−s)− II

−is
ϕf |ϕg

〉
= 〈Aϕf |ϕg〉,

so that A is symmetric.
3) A is essentially self-adjoint: Assume there exists ψ ∈ D∗ = D(A∗) such
that A∗ψ = iψ. Then, ∀ϕ ∈ D,

d

dt
〈ψ|U(t)ϕ〉 = 〈ψ|iAU(t)ϕ〉 = i〈A∗ψ|U(t)ϕ〉 = 〈ψ|U(t)ϕ〉.

Hence, solving the differential equation,

〈ψ|U(t)ϕ〉 = 〈ψ|ϕ〉et.
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As ‖U(t)‖ = 1, this implies 〈ψ|ϕ〉 = 0, so that ψ = 0 as D is dense. A similar
reasoning holds for any χ ∈ Ker(A∗ + i), so that A is essentially self-adjoint
and Ā is self-adjoint.
4) U(t) = eiĀt: Let ϕ ∈ D ⊆ D̄ = D(Ā). On the one hand,

eiĀtϕ ∈ D̄ and
d

dt
eiĀtϕ = iĀeiĀtϕ,

by b) Theorem 5.1. On the other hand, U(t)ϕ ∈ D ⊂ D̄ for all t. Thus,
introducing ψ(t) = U(t)ϕ− eiĀtϕ; we compute

ψ′(t) = iAU(t)ϕ− iĀeiĀtϕ = iĀψ(t), with ψ(0) = 0,

so that d
dt‖ψ(t)‖2 ≡ 0, hence ψ(t) ≡ 0. As D is dense, eiĀt ≡ U(t).

Examining the above proof, one deduces the following Corollary which
can be useful in applications.

Corollary 5.1. Let (A,D) be self-adjoint on H et E ⊂ D be dense. If, for
all t ∈ R, eitA : E → E, then (A|E , E) is essentially self-adjoint.

Remark 5.3. i) In the situation of the Corollary, one says that E is a core for
A.
ii) The solution to the following equation, in the strong sense,

d

dt
ϕ(t) = iAϕ(t), ∀t ∈ R ϕ(0) = ϕ0 ∈ D

is unique and is given by ϕ(t) = eiAtϕ0.

In case A is bounded, the evolution group generated by A can be obtained
from the power series of the exponential. This relation remains true in a
certain sense when A is unbounded and self-adjoint. Indeed, if ϕ belongs
to the dense set ∪M≥0P (−M,M)H, where P (−M,M) denotes the spectral
projectors of A, we get

N∑
k=0

(itA)k

k!
ϕ→ eitAϕ, as N →∞.

This formula makes sense due to the fact that ϕ ∈ ∩n≥0D(An), where D(An)
is the domain of An. Stone’s Theorem provides a link between evolution
groups and self-adjoint generators, therefore one can expect a relation be-
tween essentially self-adjoint operators and the existence of sufficiently many
vectors for which the above formula makes sense.
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Definition 5.2. Let A be an operator on a Hilbert space H. A vector ϕ ∈
∩n≥0D(An) is called an analytic vector if

∞∑
k=0

‖Akϕ‖
k!

tk <∞, for some t > 0.

The relation alluded to above is provided by the following criterion for essen-
tial self-adjointness.

Theorem 5.3 (Nelson’s Analytic Vector Theorem). Let (A,D) be sym-
metric on a Hilbert space H. If D contains a total set of analytic vectors, then
(A,D) is essentially self-adjoint.

We refer the reader to [RS] for a proof and we proceed by providing a
link between the discrete spectrum of the self-adjoint operator H with the
evolution operator eitH it generates. This is the so-called

Theorem 5.4 (Mean Ergodic Theorem). Let Pλ be the spectral projector
on an eigenvalue λ of a self-adjoint operator H of domain D ∈ H. Then

Pλ = s− lim
t2−t1→∞

1
t2 − t1

∫ t2

t1

eitHe−itλdt.

Proof. One can assume λ = 0 by considering H − λ if necessary.
i) If ϕ ∈ P0H, then Hϕ = 0 and eitHϕ = ϕ, so that

1
t2 − t1

∫ t2

t1

eitHϕdt = ϕ = P0ϕ, for any t1, t2.

ii) If ϕ ∈ Ran(H), i.e. ϕ = Hψ for some ψ ∈ D, then

eitHϕ = eitHHψ = −i d
dt
eitHψ,

so that we can write

1
t2 − t1

∫ t2

t1

eitHϕdt = − i

t2 − t1
(eit2H − eit1H)ψ → 0 = P0ψ.

The result is thus proven for Ran(H) and Ran(P0). As the integral is uni-
formly bounded, the result is true on Ran(H) as well and we conclude by

H = Ran(H)⊕Ker(H) = Ran(H)⊕ P0H,

which follows from H = H∗.

With a little more efforts, one can prove in the same vein
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Theorem 5.5 (Von Neumann’s Mean Ergodic Theorem). If V is such
that ‖V n‖ ≤ C, uniformly in n and P1 projects on Ker(V − II ), then

1
N

N−1∑
n=0

V nϕ→ P1ϕ, as N →∞.

Remark 5.4. 0) The projector P1 is not necessarily self-adjoint.
i) The projection on Ker(V −λ) where |λ| = 1 is obtained by replacing V by
V/λ in the Theorem.
ii) It follows from the assumption that σ(V ) ⊆ {z | |z| ≤ 1}, since the spectral
radius spr(V ) = limn→∞ ‖V n‖1/n = 1.
iii) A proof can be found in [Y].

Another link between the spectrum of its generator and the behaviour of
an evolution group arises when a vector is transported away from its initial
value at t = 0 by the evolution exponentially fast as |t| → ∞ .

Proposition 5.1. Let (H,D) be self-adjoint on H and assume there exists
a normalized vector ϕ ∈ H such that, for any t ∈ R and for some positive
constants A,B,

|〈ϕ|eitHϕ〉| ≤ Ae−B|t|.

Then σ(H) = R.

Proof. Taking ϕ as first vector in the decomposition provided in Lemma 4.8,
we have by the Spectral Theorem, that on L2(dµ1), the restriction of L2(dµ)
unitary equivalent to that first cyclic subspace,

ϕ ' 1, eitHϕ ' eitx1,

so that
〈ϕ|eitHϕ〉 =

∫
eitxdµ1(x) ≡ f(t).

This f admits a Fourier transform ω 7→ f̂(ω) which is analytic in a strip
{ω | |=ω| < B}. Therefore, we have dµ1(x) = f̂(x)dx and the support of
dµ1 = R. Hence, σ(H) ⊃ R.

Let us close this Section by a result concerning evolution groups generated
by sums of self-adjoint operators.

Theorem 5.6 (Trotter product formula). Let (A,DA), (B,DB) be self-
adjoint and A+B be essentially self-adjoint on DA ∩DB. Then

ei(A+B)t = s- lim
n→∞

(
eitA/neitB/n

)n
, ∀ t ∈ R.

If, moreover, A and B are bounded from below,

e−(A+B)t = s- lim
n→∞

(
e−tA/ne−tB/n

)n
, ∀ t ≥ 0.
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Remark 5.5. The operator e−Ct, t ≥ 0 for C self-adjoint and bounded below
can be defined via the Spectral Theorem applied to the function f defined as
follows: f(x) = e−x, if x ≥ x0 and f(x) = 0 otherwise, with x0 small enough.

Proof. (partial). We only consider the first assertion under the significantly
simplifying hypothesis that A+B is self-adjoint on D = DA∩DB . The second
assertion is proven along the same lines.

Let ψ ∈ D and consider

s−1(eisAeisB − II )ψ = s−1(eisA − II )ψ + s−1eisA(eisB − II )ψ → iAψ + iBψ

as s→ 0 and

s−1(eis(A+B) − II )ψ → i(A+B)ψ as s→ 0.

Thus, setting K(s) = s−1(eisAeisB − eis(A+B)), the vector K(s)ψ → 0 as
s → 0 or s → ∞, for any ψ ∈ D. Due to the assumed self-adjointness of
A+B on D, A+B is closed so that D equipped with the norm

‖ψ‖A+B = ‖ψ‖+ ‖(A+B)ψ‖

is a Banach space. As K(s) : D → H is bounded for each finite s and tends
to zero strongly at 0 and ∞, we can apply the uniform boundedness principle
or Banach-Steinhaus Theorem d to deduce the existence of a constant C so
that

‖K(s)ψ‖ ≤ C‖ψ‖A+B , ∀s ∈ R, ∀ψ ∈ D.
Therefore, on any compact set of D in the ‖ · ‖A+B norm, K(s)ψ → 0 uni-
formly as s → 0. We know from Theorem 5.1 that eis(A+B) : D → D and
is strongly continuous, thus {eis(A+B)ψ | s ∈ [−1, 1]} is compact in D for
‖ · ‖A+B , for ψ fixed.

Hence
t−1(eitAeitB − eit(A+B))eis(A+B)ψ → 0

uniformly in s ∈ [−1, 1] as t→ 0. Therefore, writing((
eitA/neitB/n

)n
−
(
eit(A+B)/n

)n)
ψ =

n−1∑
k=0

(
eitA/neitB/n

)k [
eitA/neitB/n − eit(A+B)/n

] (
eit(A+B)/n

)n−1−k
ψ,

we get that the RHS is bounded in norm by

|t|max
|s|<t

∥∥∥∥∥
(
t

n

)−1 [
eitA/neitB/n − eit(A+B)/n

]
eis(A+B)ψ

∥∥∥∥∥ .
dIf X and Y are two Banach spaces, and F is a family of bounded linear operators

from X to Y such that for each x ∈ X , {‖Tx‖Y |T ∈ F} is bounded, then {‖T‖ |T ∈
F} is bounded.
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Thus, if ψ ∈ D, we get(
eitA/neitB/n

)n
ψ → eit(A+B)ψ, as n→∞.

The operators being bounded and D being dense, this finishes the proof.

6 One-Parameter Semigroups

This Section extends some results of the previous one in the sense that uni-
tary groups discussed above are a particular case of semigroups. The setting
used in this Section is that of a Banach space denoted by B. One parameter
semigroups will be used in the study the time evolution of Open Quantum
Systems.

Definition 6.1. Let {S(t)}t≥0 be a family of bounded operators defined on B.
We say that {S(t)}t≥0 is a strongly continuous semigroup or C0 semigroup
if
1) S(0) = II
2) S(t+ s) = S(t)S(s) for any s, t ≥ 0
3) S(t)ϕ is continuous as a function of t on [0,∞), for all ϕ ∈ B.

Remark 6.1. 3) is equivalent to requiring continuity at 0+ only.

Definition 6.2. The infinitesimal generator of the semigroup {S(t)}t≥0, is
the linear operator (A,D) defined by

D = {ϕ ∈ B | lim
t→0+

t−1(S(t)− II )ϕ exists in B}

Aϕ = lim
t→0+

(S(t)− II )ϕ
t

, ϕ ∈ D.

The main properties of semigroups and their generators are listed below.

Proposition 6.1. Let {S(t)}t≥0 be a semigroup of generator A. Then
a) There exist ω ∈ R and M ≥ 1 such that ‖S(t)‖ ≤Meωt, for all t ≥ 0.
b) The generator A is closed with dense domain D.
c) For any t ≥ 0, ϕ ∈ D, we have

∫ t
0
S(τ)ϕdτ ∈ D and

A

(∫ t

0

S(τ)dτ
)

= S(t)ϕ− ϕ.

d) For any t ≥ 0, S(t) : D → D and if ϕ ∈ D, t 7→ S(t)ϕ is in C1([0,∞))
and

d

dt
S(t)ϕ = AS(t)ϕ = S(t)Aϕ, t ≥ 0.

e) If {S1(t)}t≥0 and {S2(t)}t≥0 are two C0 semigroups with the same gener-
ator A, then S1(t) ≡ S2(t).
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Proof. a) By the right continuity at 0 and the Banach-Steinhaus Theorem,
there exists ε > 0 and M ≥ 1 such that ‖S(t)‖ ≤ M if t ∈ [0, ε]. For any
given t ≥ 0, there exists n ∈ N and 0 ≤ δ < ε such that t = nε+ δ, hence

‖S(t)‖ = ‖S(δ)S(ε)n‖ ≤Mn+1 ≤MM t/ε ≡Meωt, with ω =
lnM
ε

≥ 0.

c) For ϕ ∈ D, t ≥ 0 and any ε > 0,

(S(ε)− II )ϕ
ε

∫ t

0

S(τ)ϕ =
1
ε

∫ t

0

(S(τ + ε)− S(τ))ϕdτ

=
1
ε

∫ t+ε

t

S(τ)ϕ− 1
ε

∫ ε

0

S(τ)ϕ

which converges to S(t)ϕ− ϕ as ε→ 0.
d) For ϕ ∈ D, t ≥ 0 and any ε > 0, we have

(S(ε)− II )ϕ
ε

S(t)ϕ = S(t)
(S(ε)− II )ϕ

ε
ϕ→ S(t)Aϕ, as ε→ 0. (24)

Thus S(t)ϕ ∈ D and AS(t) = S(t)A on D. As a consequence of (24) , the
function t 7→ S(t)ϕ has a right derivative given by S(t)Aϕ which is continuous
on [0,∞). Therefore, a classical result of analysis shows that the derivative
at t ≥ 0 exists.
b) Let ϕ and define ϕε for any ε > 0 by ϕε = 1

ε

∫ ε
0
S(τ)ϕdτ . The vector

ϕε ∈ D, by c) and ϕε → ϕ and ε → 0, so that D is dense. Closedness of A
is shown as follows. Let {ϕn}n∈N be a sequence of vectors in D, such that
ϕn → ϕ and Aϕn → ψ, for some ϕ and ψ. For any n ∈ N and t > 0, d)
implies by integration

S(t)ϕn − ϕn =
∫ t

0

S(τ)Aϕndτ.

Taking limits n→∞ we get S(t)ϕ− ϕ =
∫ t
0
S(τ)ψdτ , therefore

lim
t→0+

t−1S(t)ϕ− ϕ = ψ.

In other words, ψ ∈ D and ψ = Aϕ.
e) Finally, for ϕ ∈ D, t > 0, we define, for τ ∈ [0, T ], ψ(τ) = S1(t− τ)S2(τ)ϕ.
In view of c) we are allowed to differentiate w.r.t. τ and we get

d

dτ
ψ(τ) = −S1(t− τ)AS2(τ)ϕ+ S1(t− τ)AS2(τ)ϕ = 0,

hence ψ(0) = ψ(t), i.e. S1(t)ϕ = S2(t)ϕ. The density of D concludes the
proof.
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Remark 6.2. If {S(t)}t≥0 is a semigroup that is continuous in norm, i.e. such
that ‖S(t) − II ‖ → 0 as t → 0+, it is not difficult to show that (see e.g. [P])
that there exists A ∈ L(B) such that S(t) = eAt for any t ≥ 0.

Definition 6.3. Semigroups characterized by the bound ‖S(t)‖ ≤ 1 for all
t ≥ 0 are called contraction semigroups .

Remark 6.3. There is no loss of generality in studying contraction semigroups
in the sense that if the semigroup {S(t)}t≥0 satisfies the bound a) in the
Proposition above, we can consider the new C0 semigroup S1(t) = e−βtS(t)
satisfying ‖S1(t)‖ ≤ M . At the price of a change of the norm of the Banach
space, we can turn it into a contraction semigroup. Let

|||ϕ||| = sup
t≥0

‖S1(t)ϕ‖,

such that ‖ϕ‖ ≤ |||ϕ||| ≤M‖ϕ‖ and |||S1(τ)ϕ||| ≤ |||ϕ|||.

The characterization of generators of C0 semigroups is given by the

Theorem 6.1 (Hille Yosida). Let (A,D) be a closed operator with dense
domain. The following statements are equivalent:
1) The operator A generates a C0 semigroup {S(t)}t≥0 satisfying

‖S(t)‖ ≤Meωt, t ≥ 0

2) The resolvent and resolvent set of A are such that for all λ > ω and all
n ∈ N∗

ρ(A) ⊃ (ω,∞) and ‖(A− λ)−n‖ ≤ M

(λ− ω)n

3) The resolvent and resolvent set of A are such that for all n ∈ N∗

ρ(A) ⊃ {λ ∈ C | <λ > ω} and ‖(A− λ)−n‖ ≤ M

(<λ− ω)n
, <λ > ω.

Remark 6.4. A proof of this Theorem can be found in [Y] or [P]. We simply
note here that A generates of a contraction semigroup, M = 1, ω = 0, if and
only if ‖(A−λ)−1‖ ≤ 1

<λ , <λ > 0. This is trivially true if A = iH in a Hilbert
space where H = H∗, as expected. Moreover, in that case, A and −A satisfy
the bound, so that we can construct a group, as we already know, generated
by iH.

Let us specialize a little by considering contraction semigroups on a
Hilbert space H. We can characterize their generator by roughly saying that
their real part in non-positive.

Definition 6.4. An operator (A,D) on a Hilbert space H is called dissipative
if for any ϕ ∈ D

〈ϕ|Aϕ〉+ 〈Aϕ|ϕ〉 = 2<(〈ϕ|Aϕ〉) ≤ 0.
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Proposition 6.2. Let A be the generator of a C0 semigroup {S(t)}t≥0 on H.
Then {S(t)}t≥0 is a contraction semigroup iff A is dissipative.

Proof. Assume S(t) is a contraction semigroup and ϕ ∈ D. Consider f(t) =
〈S(t)ϕ|S(t)ϕ〉. As a function of t, it is differentiable and 0 ≥ f ′(0) = 〈ϕ|Aϕ〉+
〈Aϕ|ϕ〉. Conversely, if A is dissipative, as we have S(t) : D → D, we get for
any t ≥ 0,

f ′(t) = 〈S(t)ϕ|S(t)Aϕ〉+ 〈AS(t)ϕ|S(t)ϕ〉 ≤ 0,

so f(t) is monotonically decreasing and ‖S(t)ϕ‖ ≤ ‖ϕ‖. As D is dense,
{S(t)}t≥0 is a contraction semigroup.

Actually, the notion of dissipative operator can be generalized to the
Banach space setting. Moreover, it is still true that dissipative operators and
generators of C0 contraction semigroups are related. This is the content of
the Lumer Phillips Theorem stated below.

Let B be a Banach space and let B′ be its dual. The value of l ∈ B′ at
ϕ ∈ B is denoted by 〈l, ϕ〉 ∈ C. Let us define for any ϕ ∈ B the duality set
F (ϕ) ⊂ B′ by

F (ϕ) = {l ∈ B′ | 〈l, ϕ〉 = ‖ϕ‖2 = ‖l‖2}.
By the Hahn-Banach Theorem, F (ϕ) 6= ∅ for any ϕ ∈ B.

Definition 6.5. An operator (A,D) on a Banach space B is called dissipative
if for any ϕ ∈ D, there exists l ∈ F (ϕ) such that <(〈l, Aϕ〉) ≤ 0.

The following characterization of dissipative operators avoiding direct du-
ality considerations can be found in [P]:

Proposition 6.3. An operator (A,D) is dissipative if and only if

‖(λ II −A)ϕ‖ ≥ λ‖ϕ‖, for all ϕ ∈ D and all λ > 0.

The link between dissipativity and contraction semigroups is provided by
the

Theorem 6.2 (Lumer Phillips). Let (A,D) be an operator with dense do-
main in a Banach space B.

a) If A is dissipative and there exists λ0 > 0 such that Ran(λ0 II −A) = B,
then A is the generator of a C0 contraction semigroup.

b) If A is the generator of a C0 contraction semigroup on B, then Ran(λ II −
A) = B for all λ > 0 and A is dissipative.

The proof of this result can be found in [P], for example.

We close this Section by considerations on the perturbation of semigroups,
or more precisely, of their generators. We stick to our Banach space setting
for the end of the Section.

We first show that the property of being a generator is stable under per-
turbation by bounded operators.
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Theorem 6.3. Let A be the generator of a C0 semigroup {S(t)}t≥0 on B
which satisfies the bound 1) in Theorem 6.1. Then, if B is a bounded operator,
the operator A+B generates a C0 semigroup {V (t)}t≥0 that satisfies the same
bound with M 7→M and ω 7→ ω +M‖B‖. Moreover, if B is replaced by xB,
the semigroup generated by A+xB is an entire function of the variable x ∈ C.

Proof. If A + B generates a contraction semigroup V (t), it must solve the
following differential equation on D(A+B) = D(A)

d

dt
V (t) = (A+B)V (t).

Introducing S(t), the solution of that equation must solve

V (t) = S(t) +
∫ t

0

S(t− s)BV (s)ds. (25)

Strictly speaking the above integral equation is true on D(A) only, but as
D(A) is dense and all operators are bounded, (25) is true on B, as a strong
integral. We solve this equation by iteration

V (t) =
∑
n≥0

Sn(t), (26)

where

Sn+1(t) =
∫ t

0

S(t− s)BSn(s)ds, n = 0, 1, . . . , and S0(t) = S(t).

All integrals are strongly continuous and we have the bounds

‖Sn(t)‖ ≤Mn+1‖B‖neωttn/n!

which are proven by an easy induction. The starting estimate is true by hy-
pothesis on S(t). Thus we see that (26) is absolutely convergent and satisfies

‖V (t)‖ ≤Me(ω+M‖B‖)t.

To show that V (t) defined this way is actually generated by A + B, we
multiply (25) by e−λt and integrate over [0,∞], assuming <λ > ω +M‖B‖,
to get

r(λ) =
∫ ∞

0

e−λtV (t)dt

=
∫ ∞

0

e−λtS(t)dt+
(∫ ∞

0

e−λtS(t)dt
)
B

(∫ ∞

0

e−λtV (t)dt
)

= −(A− λ)−1 − (A− λ)−1Br(λ).
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This yields (A+B−λ)r(λ) = − II and, as λ ∈ ρ(A+B) by our choice of λ, it
follows by computations we went through already that r(λ) = −(A+B−λ)−1.
We finally use Hille Yoshida Theorem to conclude. For any k = 0, 1, 2, · · ·,

‖(A+B − λ)−k−1‖ =
1
k!

∥∥∥∥ dkdλk r(λ)
∥∥∥∥ ≤ 1

k!

∫ ∞

0

tk|e−λt|‖V (t)‖dt

≤ M

k!

∫ ∞

0

tke−(<λ−ω−M‖B‖)tdt = M(<λ− ω −M‖B‖)−k−1,

which shows that the resolvent of A+B satisfies the estimate of the point 3)
of Hille Yosida’s Theorem.

Finally, we note that V (t) has the form of a converging series in powers
of B, which proves the last statement.

More general perturbations of generators of semigroups are allowed under
the supplementary hypothesis that both the unperturbed generator and the
perturbation generate contraction semigroups.

Theorem 6.4. Let A and B be generators of contraction semigroups and
assume B is relatively bounded w.r.t. A with relative bound smaller that 1/2.
Then, A+B generates a contraction semigroup.

For a proof, see [K], for example.
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