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Abstract. We review mathematical results concerning Born–Oppenheimer

approximations in molecular quantum mechanics.

Introduction

The goal of this paper is to review rigorous mathematical results concerning
Born–Oppenheimer approximations. We make no attempt to cover the enormous
physics and chemistry literature on the subject.

We begin with a description of the development of the subject in Section 1
without any precise mathematical statements. We present more precise results con-
cerning the standard time–dependent Born–Oppenheimer approximation in Section
2. We describe the time–independent approximation in Section 3. In Section 4, we
discuss extensions of the time–dependent approximation to accommodate electron
energy level crossings. Finally, in Section 5, we discuss the analogous extensions to
accommodate avoided crossings with small gaps.

1. A Historical Introduction

In 1927, just one year after the publication of the Schrödinger equation, Max
Born and J. Robert Oppenheimer published a truly remarkable paper [5] on molec-
ular quantum mechanics. A year later, Fritz London published a little–known
paper [69] that contained the idea that a related approximation should apply to
the dynamics of molecules involved in a chemical reaction.

The paper [5] is famous, and essentially everything that is known about the
structure of molecular bound states relies on the approximation developed in it. By
contrast, paper [69] is almost unknown and hardly ever cited, but its ideas are the
basis for almost everything that is known about molecular dynamics.

Both of these papers exploit the disparity between the masses of nuclei and the
masses of electrons. The protons and neutrons that make up nuclei have masses that
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are 1836 times the mass of an electron. Using this large mass ratio, the two papers
develop the following physical intuition: Because of their much smaller masses,
electrons typically move very rapidly compared to the nuclei. So, the electrons can
quickly adjust their state in response to the slow nuclear motion. If they start in
their nth bound state, they stay in their nth bound state, determined as though
the nuclei were not moving. These electronic bound states and electronic energies
depend on the nuclear positions, and the electronic energy levels play the roles
of effective potentials for the nuclear motion. Furthermore, because of their large
masses, the nuclei obey a semiclassical approximation.

From this intuition, Born and Oppenheimer developed a quantitative model for
molecular bound states (in which the nuclei could vibrate and the whole molecule
could rotate), and London presented a qualitative model for understanding chemical
reactions.

These approximations agreed well with experimental results, but rigorous ver-
ification of their validity was not established for half a century. Mathematicians
had missed an enormous opportunity to make a contribution to chemical physics
much earlier.

Born and Oppenheimer recognized the role of the expansion parameter ε, where
ε4 was the electron mass divided by the mean nuclear mass. They expanded the
energy of a molecule formally through fourth order in ε and found a zeroth order
approximation for the full molecular wave function. Their expansion for the energy
was particularly beautiful. The zeroth order term was the electronic energy with
the nuclei at an optimal configuration. The first order term was zero. The second
order term was the energy of the harmonic approximation to the vibrational motion
of the nuclei. The third order term was zero. The fourth order term contained the
energies of the rotational motion, anharmonic corrections to the nuclear vibrations,
and non–adiabatic corrections to the electron energy.

The specta of small molecules reflect this structure. Electronic transitions are
typically in the ultraviolet or visible ranges. The much lower energy vibrational
transitions are in the infrared. Even lower still are the rotational transitions that
are in the microwave range.

Without going into technicalities, we can describe the zeroth and second order
terms more precisely. We let the vector X denote the positions of the nuclei in the
center of mass frame of reference. The electron Hamiltonian h(X) is then defined
as the sum of the quantum mechanical kinetic energy operator for the electrons
plus the total potential energy of the electrons and the nuclei. It is a self-adjoint
operator on the Hilbert space for the electrons that depends parametrically on X.
Discrete eigenvalues of h(X) (that are chosen to depend continuously on X) are
called electron energy levels.

Born and Oppenheimer assumed that some electronic level E(X) had a local
minimum at some point X0. The zeroth order term in their expansion was E(X0).
They then approxmated E(X) by its second order Taylor series near X0. This led
to an exactly solvable Harmonic oscillator problem that gave the vibrational levels
at second order in ε.

The first rigorous paper in this subject was published in 1973 by Seiler [88].
He verified the formal results of Born and Oppenheimer for an exactly solvable, but
unphysical, harmonic oscillator model. A rigorous proof of the validity of the con-
clusions of Born and Oppenheimer for a physically realistic model was announced
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[10] in 1975, and the proof was published by Combes, Duclos, and Seiler [11, 12]
in 1980.

The ideas of London’s work were made precise to leading order in ε and proved
in 1980, under the assumption that the potentials between the particles were smooth
[26].

The next developments came roughly five years later. In both the time–
independent [28] and time–dependent [27] situations, rigorous expansions were
developed to arbitrarily high order in ε under the assumption of smooth poten-
tials. These papers relied on the powerful bookkeeping tool called the “Method of
Multiple Scales” from the applied mathematics literature. The technique gave a
systematic way of separating adiabatic correction terms from semiclassical correc-
tion terms. In retrospect, Born and Oppenheimer had used their brilliant physical
intuition to do exactly this separation of terms, one by one, through the fourth
order calculation.

The high order results led to the question of whether or not one could do the
expansions to arbitrary order in ε for Coulomb potentials. This was a delicate
technical problem because the singularities of the Coulomb interactions between
the electrons and the nuclei gave rise to cusps in the electronic wave functions. As
a result, many expressions from the smooth potential case did not make sense in
the Coulomb case because of a lack of differentiablity.

In 1986, Hunziker [48] proved that electron energy levels were analytic as func-
tions of the nuclear positions, even in the Coulomb case. By exploiting his tech-
niques, Born–Oppenheimer expansions to all orders in ε were developed for the
time–dependent case in [30]. The time–independent expansion was developed to
arbitrary order for diatomic molecules in [29], and for general molecules in [66].
These papers were technically very complicated, but the underlying idea was quite
simple: Hunziker’s results showed that the electron wave function had directional
dervatives of all orders in certain directions in the nuclear configuration space. By
setting up the expansion in just the right way, one needed only those directional
derivatives.

Similar questions have arisen in scattering theory. For situations with smooth
potentials, see [62, 83, 64, 84]. For Coulomb potentials, see [65, 54].

Fairly recently, Nenciu, Martinez, Sordoni, Panati, Spohn, and Teufel [75,

81, 82, 91, 92, 94] have developed new approaches to the subject of the time–
dependent approximation. These papers consider isolated subsets of the spectrum
of h(X) that may be more general than a simple isolated eigenvalue. They do a
more general adiabatic approximation for the electrons, and take the semiclassical
limit for the nuclei as an independent step, only when necessary or desired. When
the chosen subset of the spectrum of h(X) contains many states, the associated
nuclear evolution can be complicated.

The underlying innovation of these papers is related to what is done in some
practical computations in chemical physics. The semiclassical approximation for the
nuclei can lead to larger errors than the adiabatic approximation for the electrons
in real systems. Thus, even when considering only one electronic level E(X), some
chemical computations handle the nuclei quantum mechanically using the effective
potential E(X). Since there are fewer approximations, this should be expected
to yield better results. From a technical point of view, pseudodifferential methods
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tend to be the most effective tools regarding these issues for providing mathematical
justification of these approximations.

The next development in this subject was the study of the effects of electron
energy level crossings for the time–dependent approximation. A basic assumption
of the standard theory was that if the electrons were in their nth energy level, then
this level was isolated from all other electronic levels.

The first step in addressing what would happen when this assumption was
not satisfied was to classify level crossings. Since the early days of quantum me-
chanics [95], it has been known that crossings generically occur on submanifolds
of various codimensions, depending on symmetry considerations. Generic crossings
of electronic levels with the minimal multiplicity allowed by the symmetry group
were classified in [32] and [33]. As expected, the most striking distinction between
these crossings was the codimension of the set of nuclear positions where the levels
crossed. These were codimensions 1, 2, 3, and 5.

The second step was to propagate molecular wave packets through each of these
crossings. This was first done in [33]. For codimension 1 crossings, the leading
order result is that the system simply follows the smooth energy level as though
no crossing had occurred. However, a new component of order ε can be created
that propagates according to the dynamics of the other smooth electronic level as
the wave packet moves through the crossing. In the higher codimension cases, the
leading order wave packet splits into two components as the system moves through
the crossing. One piece follows one electronic level and the other piece follows
the other level. In contrast to the codimension 1 cases, the final probabilities for
ending up on one surface or the other depend strongly on the detailed structure of
the nuclear wave packet just before it hits the crossing.

Propagation through crossings can play a significant role in chemical reactions
because it provides a mechanism for the electrons to move efficiently from one level
to another. For example, a key reaction in human eyesight relies on propagation
through a codimension 2 level crossing in the chromophore retinal in the protein
rhodopsin. See, e.g., [46] and the references cited there.

In the last several years, other approaches to the study of level crossings have
been developed. Fermanian–Kammerer and Gérard [16, 17, 18, 19, 20, 21] intro-
duced objects called two–scale measures that resolve the coupling of levels in an ε–
dependent neighborhood of the crossing submanifold. In subsequent works, Lasser
and Teufel [67, 68] lifted these results to Wigner functions. These approaches pro-
vide a very nice phase space description of propagation through level crossings. In
particular, they can accommodate quite general initial conditions at the price of
losing information on the phases of the wave function. For example, Fermanian–
Kammerer and Lasser [22] describe the time behavior of the wave function’s Wigner
measure for codimension 2 crossings, and Lasser and Teufel [68] have developed an
elegant branching process that describes the splitting of the wave function in the
codimension 2, 3, and 5 cases. For an application to the specific molecule Pyrazine,
see [23].

Colin de Verdière [7, 8] has developed another approach that can handle phase
space level crossings that are more general than those that occur in the Born–
Oppenheimer context. This approach is based on the construction of microlocal
normal forms for matrix valued symbols in a neighborhood of phase space level
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crossings. It provides a description of the propagation of WKB–type states as well
as semiclassical wave packets through the crossings.

A related subject is the motion through “avoided crossings.” These are nuclear
configurations where two electronic levels approach very close to one another, but
do not actually cross. A classification of generic avoided crossings is given in [34].
The authors have studied propagation though avoided crossings with small gaps
between levels in [36, 37]. In these papers, two electronic levels are assumed to
have an avoided crossing in which the gap between the two levels is O(ε). Under
these circumstances, the leading order wave function splits into two pieces, one that
propagates on the upper level and one that propagates on the lower level. In case
the levels involved in an avoided crossing are known only approximately through
perturbation theory in ε, Exner and Joye [14] show that the same conclusions hold
as well.

Rousse [85, 86] has generalized these results to study the case where the gaps
are O(εp) for p in an interval around 1. For p < 1 the leading order term ignores
the avoided crossing. For p > 1, the system behaves as though there were an actual
crossing. The critical case p = 1 is that studied in [36, 37].

There are recent results about pushing the standard time–dependent approx-
imation even further when the electronic Hamiltonian is analytic in the nuclear
configuration variable. In the absence of crossings, the authors proved [40] that by
optimal truncation of the time–dependent expansion, one obtains approximations
in which the errors behave like C1 exp

{
−C2/ε2

}
, where C2 > 0. The optimal

truncation involves the following: When expanding to order εN , the error terms
have norms CN εN . By very careful estimation of these errors, one can prove that
CN ≤ ABN

√
N !. The exponential estimates are obtained when N is chosen to

behave like N ∼ g/ε2 for an appropriate choice of g. Descriptions of exponentially
accurate results that use pseudodifferential operator techniques can be found in
[75, 76, 81, 91].

Under appropriate hypotheses, results with exponentially accurate error bounds
have been proved in the context of stationary scattering theory. See, e.g., [70, 60,

58, 2].
For some very special systems, the large time asymptotics of the leading or-

der exponentially small non–adiabatic correction terms for solutions to the time–
dependent Schrödinger equation have been determined in [42]. These transitions
are associated with avoided crossings with a fixed gap as ε → 0. The transition
amplitudes and the momenta of the nuclei after the transitions are larger than what
one might näıvely guess. Also the form for the nuclear wave function is not what
one might näıvely guess in some cases.

In [42], the time development is hidden. A very nice open problem is to under-
stand how these non–adiabatic terms arise as a function of time. Although this has
not been solved, preliminary steps towards the solution can be found in [41, 3, 4].

In the last decade, there have been more results concerning the time–indepen-
dent approximation. Sordoni [89] has examined highly excited rotational states of
diatomic molecules. Rousse [86, 87] has studied highly excited vibrational states
when the nuclei have one degree of freedom. In this case, a Bohr–Sommerfeld
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condition determines the correct vibrational levels for the nuclei. Rousse holds the
energy fixed as ε → 0, so the nuclei are in vibrational state n, where n = O(ε−2).

Very recently, Hagedorn and Toloza have applied optimal truncation techniques
to the time–independent Born–Oppenheimer approximation. They did this first
[44] for a toy model with just two electronic levels and the nuclei with one degree
of freedom. They generalized this to fairly realistic electron Hamiltonians [45], but
with the nuclei restricted to one degree of freedom.

In the last 25 years, many other interesting developments have occurred in
closely related areas.

Resonances. In traditional two–body scattering, tunnelling effects often give rise
to resonances. In molecular systems there are more such mechanisms. For example,
non–adiabatic transitions by the electrons can allow a system to escape from a
well. This leads to the theory of predissociation. Klein [63] studied predissociation
in 1987. Martinez studied resonances and proved that in many instances, they
had exponentially long lifetimes [71, 72, 73, 74]. Resonances associated with
codimension 2 level crossings have also been studied by Nédélec [77, 78, 79, 80]
and Fujiié, Lasser and Nédélec [24].

Resolvent Estimates. Many detailed results on scattering matrices and cross
sections depend on (weighted) estimates for the resolvent of the Hamiltonian near
its spectrum. For molecular systems, Jecko [49, 50, 51, 52] has studied these
estimates in a variety of circumstances, including situations related to level cross-
ings. These papers construct conjugate operators in the sense of Mourre for the
Hamiltonian, which is a challenge when the levels may cross.

Molecules Interacting with Laser Pulses. With the development of ultra-
short laser pulses, enormous amounts of information about molecular dynamics
can be obtained experimentally. Much of the theory related to these experiments
relies on the idea that electrons absorb photons on such a short time scale that
the nuclei do not have time to move. Jilcott [55, 56] has made this idea precise
and has proven its validity. Hagedorn, Rousse, and Jilcott [43] have corrected a
calculational error in [55, 56] and have examined transition amplitudes to different
vibrational levels for the nuclei when a laser pulse causes an electronic transition.
Electonic transitions typically excite O(ε−1) different vibrational states. The paper
[43] rigorously calculates the Franck–Condon factors that govern the strengths of
the associated spectral lines.

Results related to Berry Phases. Many papers on Born–Oppenheimer ap-
proximations assume the chosen electronic level E(X) has multiplicity 1, and that
the phases of the electronic eigenstates can be chosen in accordance with the “adia-
batic connection” on the bundle of eigenstates over the nuclear configuration man-
ifold. When this cannot be done, the system displays Berry phases. Herrin and
Howland [47] examine a diatomic model that has a Berry phase associated with
rotations of the whole molecule. They observe that the rotational energy levels are
altered in this case. In related work, Faure and Zhilinskii [15] demonstrate a precise
link between geometrical properties of electronic eigenspaces and the structure of
the spectrum of the full molecular Hamiltonian.
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Time–Independent Information about Crossings and Avoided Crossings.
Time–Independent techniques can yield information about transitions between lev-
els associated with avoided crossings. For example, in models where the nuclei have
only one degree of freedom and the electronic Hilbert space is finite dimensional, the
time–independent Schrödinger equation is equivalent to a system of ODE’s. In this
representation, the ε → 0 limit looks formally like an adiabatic problem where X has
become the time variable. The situation is more complicated than the standard adi-
abatic problem because the resulting Hamiltonian is not self–adjoint. However, in
some situations, exponentially small scattering amplitudes associated with avoided
crossings can be calculated quite explicitly. See, e.g., [70, 60, 57, 58, 9, 61].

Also, solutions to the time–independent Schrödinger equation near codimension
2 crossings have been found in [25].

Chemistry without the Born–Oppenheimer Approximation? One can ask
whether or not certain fundamental concepts used in chemistry can be formulated
without the Born–Oppenheimer approximation. For example, when there are iso-
mers and/or identical nuclei in the system, do chemical structure diagrams make
sense if the nuclei and electrons are simply treated as quantum particles? For a
recent discussion of this topic, see the review article [93].

2. The Standard Time–Dependent Approximation

In this section we describe the coherent state approach to the time–dependent
Born–Oppenheimer approximation in some detail. This approach yields a rather
simple, complete description of the molecular wave function, although it requires
special initial conditions and the semiclassical approximation for the nuclei. The
more sophisticated approaches described in Section 1 can allow more general initial
nuclear states and/or avoid the semiclassical treatment of the nuclei. However,
many of them study Wigner distributions on phase space rather than wave functions
for the nuclei.

To make precise statements, we need some preliminary notation and results
concering semiclassical wave packets for the nuclei. We have tried to minimize the
technicalities, but some are unavoidable.

2.1. Semiclassical Wave Packets. The “coherent state” approach to semi-
classical quantum mechanics makes use of generalizations of the usual harmonic
oscillator eigenfunctions. These wave packets are described in detail in [35]. Al-
though the notation is different, they coincide with “generalized squeezed states”
[13].

In d dimensions, these states are ϕj(A,B, ~, a, η, x), where j is an d–dimensional
multi-index, A and B are complex d×d matrices, a and η are d–dimensional vectors,
and x is the d–dimensional variable. We always assume A and B satisfy

Bt A − At B = 0, and

B∗ A + A∗ B = 2 I,

where the superscript t denotes the transpose. The first of these conditions is
equivalent to B A−1 being symmetric, i.e., (real symmetric) + i (real symmetric).

The second condition is equivalent to
(
Re B A−1

)−1
= AA∗. We let |A| denote

the positive square root of AA∗.
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When the multi-index j equals zero, these states are the complex Gaussians

ϕ0(A,B, ~, a, η, x) = π−d/4
~

d/4 [det A]−1/2

× exp

{
(x − a) · BA−1(x − a)

2~
+ i

η · (x − a)

~

}
.

Physically, a represents a classical position, and η represents a classical mo-
mentum. The position uncertainty is given by the covariance matrix ~

1/2 |A| and
the momentum uncertainty is given by ~

1/2 |B|. The choice of square root for
[det A]−1/2 is arbitrary, but is chosen to depend continuously on time when A
depends on time.

For non-zero values of j, the easiest way to define the semiclassical wave packets
is to introduce raising operators [35]. These act on Schwartz functions ψ by

(Am(A,B, ~, a, η)∗ ψ ) (x)

=
1√
2~

([
d∑

n=1

Bn m(xn − an) − i
d∑

n=1

An m(−i~
∂

∂xn
− ηn)

]
ψ

)
(x).

For any non-zero multi-index j, we define

ϕj(A,B, ~, a, η, · ) =
1√
j!

(A1(A,B, ~, a, η)∗)
j1 (A2(A,B, ~, a, η)∗)

j2

× · · · (Ad(A,B, ~, a, η)∗)
jd ϕ0(A,B, ~, a, η, · ).

For fixed a, η, A, and B, these functions form an orthonormal basis of L2(Rd),
indexed by j. Numerous properties of these functions are discussed in [35]. The
main property that we need is that modulo an O(~1/2) error,
eiS(t)/~ ϕj(A(t), B(t), ~, a(t), η(t), x) satisfies the time–dependent Schrödinger equa-
tion

(2.1) i ~
∂ψ

∂t
= − ~

2

2
∆ψ + V (x)ψ

if V ∈ C3(Rd) is bounded below, V (x) ≤ C eMx2

, and

ȧ(t) = η(t)(2.2)

η̇(t) = − (∇V )(a(t))(2.3)

Ṡ(t) =
η(t)2

2
− V (a(t))(2.4)

Ȧ(t) = i B(t)(2.5)

Ḃ(t) = i V (2)(a(t))A(t).(2.6)

Here V (2) denotes the Hessian matrix
∂2V

∂Xi∂Xk
. The solution to (2.2)–(2.6) is

completely determined by the classical phase space flow generated by the potential
V .

By taking time–dependent superpositions of the
eiS(t)/~ ϕj(A(t), B(t), ~, a(t), η(t), x) (with finitely many different j) this result can

be improved to give O(~m/2) accurate approximations for any m if V ∈ Cm+3(Rd).
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When V is analytic, these results can be improved by using optimal truncation tech-
niques to produce approximations with O(e−Γ/~) errors [38, 39]. Similar results
on the propagation of observables can also be found [6].

2.2. Electron Energy Levels and Phases of Eigenstates. A basic as-
sumption of the standard Born–Oppenheimer approximation is that the electron
Hamiltonian h(X), acting as a self-adjoint operator on the electronic Hilbert space
Hel, depends smoothly (in the strong resolvent sense) on X for all X in some
connected open set X ⊂ R

d. We further assume that h(X) has an isolated non–
degenerate eigenvalue E(X) that depends smoothly on X ∈ X . The function E(X)
is called an electron energy level.

For simplicity in this discussion, we assume that the eigenvector Φ(X) corre-
sponding to E(X) can be chosen so that

(2.7) 〈Φ(X), v · ∇X Φ(X) 〉 = 0

for any vector v. This condition is satisfied if X has trivial homology groups and
h(X) commutes with a conjugation for all X ∈ X . In this case (2.7) is satisfied
if Φ(X) is chosen to equal its conjugate. In more complicated situations with
Longuet–Higgins phases or Berry phases, we can use a time–dependent choice of
phase of Φ(X) to satisfy the appropriate analog of (2.7).

2.3. The Multiple Scales Technique for the Time–Dependent Ap-

proximation. One way or another, all the mathematical results on the time–
dependent Born–Oppenheimer approximation make use of two length scales in the
nuclear variables. The authors’ favorite way of doing this is to use the method of
multiple scales.

The choice of time variable for the time–dependent Schrödinger equation can be
made so that the nuclear motion has a non–trivial limit. After this and some trivial
rescaling of the nuclear variables, the equation we wish to solve can be written as

(2.8) i ε2
∂Ψ

∂t
= − ε4

2
∆X Ψ + h(X)Ψ,

where Ψ ∈ L2(Rd, Hel).
Since ε2 appears in (2.8) precisely where ~ appears in (2.1), we make use of the

semiclassical wave packets. The chosen electron energy level E(X) plays the role
of the potential in the equations (2.2)–(2.6) in the Born–Oppenheimer situation.

The method of multiple scales replaces the nuclear configuration variable X by
two variables

x = X and y = (X − a(t))/ε,

where a(t) describes the classical configuration for the nuclei. Rather than attempt-

ing to solve (2.8) directly, we first study solutions Ψ̃(x, y, t) to

i ε2
∂Ψ̃

∂t
= − ε4

2
∆x Ψ̃ − ε3 ∇x · ∇y Ψ̃ − ε2

2
∆y Ψ̃(2.9)

+ [h(x) − E(x)] Ψ̃ + E(a(t) + εy) Ψ̃.

Then we obtain a solution Ψ(X, t) to (2.8) as Ψ(X, t) = Ψ̃
(
X, X−a(t)

ε , t
)
.
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Anticipating the same dynamical phases as in the semiclassical wave packets,
we look for solutions to (2.9), of the form

Ψ̃(x, y, t) = eiS(t)/ε2 eiη(t)·y/ε χ(x, y, t).

Then χ(x, y, t) must satisfy

i ε2
∂χ

∂t
=

[
− ε4

2
∆x − ε3 ∇x · ∇y − ε2

2
∆y − i ε2η(t) · ∇x

+ [E(a(t) + εy) − E(a(t)) − ε (∇E)(a(t)) · y]

+ [h(x) − E(x)]

]
χ

We substitute a formal expansion

χ(x, y, t) = ψ0(x, y, t) + ε ψ1(x, y, t) + ε2 ψ2(x, y, t) + · · ·
into this equation, expand E(a(t)+εy) in its Taylor series in powers of ε, and equate
terms of equal powers of ε on the two sides of the resulting expression.
Order 0. The O(ε0) terms require

[h(x) − E(x)] ψ0(x, y, t) = 0.

Thus,

ψ0(x, y, t) = g0(x, y, t) Φ(x),

where g0 is, as of yet, not determined.
Order 1. The O(ε1) terms require

[h(x) − E(x)] ψ1(x, y, t) = 0.

Thus,

ψ1(x, y, t) = g1(x, y, t) Φ(x),

where g1 is, as of yet, not determined.
Order 2. The O(ε2) terms are much more complicated. They require

i ψ̇0 = − 1

2
∆y ψ0 + E(2)(a(t))

y2

2
ψ0 − i η(t) · ∇xψ0 + [h(x) − E(x)] ψ2,

where the dot ˙ denotes the time derivative, and E(2)(a)y2

2 denotes
1
2

∑
i,j

∂2E
∂xi∂xj

(a)yiyj . The utility of the multiple scales technique now becomes

evident because we can separate this equation into parts. The first part consists of
all components that are in the Φ(x) direction in the electronic Hilbert space. The
second part consists of all components that are orthogonal to Φ(x) in the electronic
Hilbert space. Equality must be satisfied for both of these components.

The two equations we obtain are

(2.10) i ġ0 + i η(t) · ∇xg0 = − 1

2
∆y g0 + E(2)(a(t))

y2

2
g0,

and

(2.11) [h(x) − E(x)]ψ2(x, y, t) = i g0(x, y, t) η(t) · (∇xΦ)(x).

For any j, equation (2.10) is solved by

g0(x, y, t) = ε−d/2 eiS(t)/ε2 φj(A(t), B(t), 1, a(t), η(t), y),
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where E(X) plays the role of the potential in determining the solution to (2.2)–(2.6).
Note that these solutions have no x dependence, and if we substitute (X − a(t))/ε
for y, they are normalized in L2(Rd). We henceforth assume that each such function
gn is independent of x. This removes some of the ambiguity of expressing functions
of X in terms of either x or y.

To solve (2.11), we note that [h(x) − E(x)] is invertible as an operator on the
orthogonal complement of the span of Φ(x). We denote this inverse by r(x), and
then,

ψ2(x, y, t) = ψ⊥
2 + ψ

‖
2 ,

where

ψ⊥
2 = i g0(y, t) r(x) η(t) · (∇xΦ)(x)

and

ψ
‖
2 = g2(x, y, t) Φ(x),

with g2(x, y, t) not yet determined.
Order n ≥ 3. The higher order terms are dealt with in the same way, although
the technical details are more complicated. We project the O(εn) equation into the
Φ(x) direction and into the direction perpendicular to Φ(x) in the electronic Hilbert

space. In the Φ(x) direction, we determine gn−2 and hence ψ
‖
n−2 by using techniques

associated with the semiclassical wave packets. In the orthogonal direction we
employ the reduced resolvent operator r(x) to determine ψ⊥

n . Thus, the multiple
scales bookkeeping allows us to separate terms that we treat by semiclassical
techniques from those that we handle by adiabatic techniques. For the details, see
[27, 31, 33].

After doing these formal calculations, a rigorous proof of the validity of the
time–dependent approximation is a consequence of the following lemma. We apply
this lemma to the function

Ψε(X, t) =

N∑

n=0

εn ψn

(
X,

X − a(t)

ε
, t

)

+ εN+1 ψ⊥
N+1

(
X,

X − a(t)

ε
, t

)
+ εN+2 ψ⊥

N+2

(
X,

X − a(t)

ε
, t

)

to obtain the result with an O(εN+1) error.

Lemma 2.1. Given a molecular wave function Ψε(X, t), define

ζε(x, t) = i ε2
∂Ψε

∂t
(X, t) +

ε4

2
(∆XΨε)(X, t) − h(X)Ψε(X, t).

If ‖ζ(·, t)‖ ≤ µ(ε, t), then Ψε(X, t) differs in norm from the exact solution to (2.8)

with initial condition Ψε(X, 0) by at most
∫ t

0
µ(ε, s) ds/ε2.

When h(·) satisfies an analyticity condition we can improve these results fur-
ther by employing an optimal trucation technique. We obtain a time–dependent
approximation with an error bound of the form O

(
exp(−Γ/ε2)

)
by using the above

construction and choosing N ∼ g/ε2 for an appropriate choice of g. The technical
details can be found in [40].
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3. The Time–Independent Approximation

We can use the Method of Multiple Scales to construct quasimodes and quasi-
energies for the time–independent Born–Oppenheimer approximation also. The
results of [11] show that under appropriate hypotheses, these quasienergies corre-
spond exactly to the low–lying eigenvalues of the full Hamiltonian. For simplicity,
we present the formal calculations near an isolated minimum of an electron energy
level. In most cases of interest, after the removal of the center of mass motion of the
molecule, there is still a two or three dimensional rotational symmetry that causes
the minimum to be attained on a non–trivial manifold (isomorphic to the two–
sphere S2 or the full rotation group SO(3)). This physical situation is technically
more complicated because degenerate perturbation theory is required.

In our example, we assume that an electron energy level E(X) has a local
minimum at some point X = a with the second derivative matrix E(2)(a) strictly
positive. Again, to avoid degenerate perturbation theory, we assume the square
roots ωk of the eigenvalues of this matrix are not rational multiples of one another.
We then introduce the two variables

x = X and y =
X − a

ε
.

We then look for approximate solutions to the equation

− ε4

2
∆xΨ̃ − ε3 ∇x · ∇yΨ̃ − ε2

2
∆yΨ̃ + [h(x) − E(x)]Ψ̃

+ E(a + εy)Ψ̃ +

∞∑

n=4

εn (Tn(x) − Tn(a + εy)) Ψ̃ = E(ε) Ψ̃.(3.1)

The operators Tn(·) will be chosen during the perturbation calculations so that
certain functions will be independent of x.

We now substitute formal series expansions

E(ε) = E0 + ε E1 + ε2 E2 + · · ·

Ψ̃ = ψ0 + ε ψ1 + ε2 ψ2 + · · ·
into (3.1). We then expand E(a+εy) and Tn(a+εy) in their Taylor series in powers
of ε and equate terms of the same orders on the two sides of the resulting equation.

Order 0. The order ε0 terms require

[h(x) − E(x)]ψ0(x, y) + E(a)ψ0(x, y) = E0 ψ0(x, y).

This equation has solutions

E0 = E(a),

and

ψ0(x, y) = g0(x, y) Φ(x),

where g0 is not yet determined. We later choose T4(x) so that g0 has no x depen-
dence.

Order 1. After some cancellations, the order ε1 terms require

[h(x) − E(x)]ψ1(x, y) + (∇E)(a) · y ψ0(x, y) = E1 ψ0(x, y).
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Since E(x) has a local minimum at a, (∇E)(a) = 0. Thus, we learn that

E1 = 0,

and

ψ1(x, y) = g1(x, y) Φ(x),

where g1 is not yet determined. We later choose T5(x) so that g1 has no x depen-
dence.

Order 2. After some simplification, the order ε2 terms require

[h(x) − E(x)]ψ2(x, y) − 1

2
(∆yψ0)(x, y) + E(2)(a)

y2

2
ψ0(x, y) = E2 ψ0(x, y).

We project this equation into the span of Φ(x) and into the direction orthogonal
to Φ(x) in the electronic Hilbert space to obtain two conditions:

−1

2
(∆yg0)(y) + E(2)(a)

y2

2
g0(y) = E2 g0

and

[h(x) − E(x)]ψ2(x, y) = 0.

The first of these equations is a harmonic oscillator problem. We obtain g0(y) as a
product of Hermite polynomials times a Gaussian, and

E2 =

d∑

k=1

(
nk +

1

2

)
ωk,

where each vibrational quantum number nk is a non-negative integer. The second
equation simply tells us that

ψ2(x, y) = g2(x, y) Φ(x).

We will choose T6(x) so that g2 has no x dependence.

Order 3. The order ε3 terms require

[h(x) − E(x)]ψ3 +

(
−1

2
∆y + E(2)(a)

y2

2
− E2

)
ψ1

− (∇yg0) · (∇xΦ)(x) + E(3)(a)
y3

3!
ψ0 = E3 ψ0.

We again project into the Φ(x) direction and the perpendicular direction in the
electron Hilbert space. For the terms in the Φ(x) direction, we also project into
the g0(y) direction and the perpendicular direction in L2(Rd, dy).

Thus, we get three conditions. From the terms orthogonal to Φ(x), we have

[h(x) − E(x)]ψ3 = (∇yg0) · (∇xΦ)(x).

By applying the reduced resolvent operator r(x) for [h(x) − E(x)], we obtain

ψ3(x, y) = g3(x, y) Φ(x) + r(x) (∇yg0) · (∇xΦ)(x).

We will choose T7(x) so that g3 has no x dependence. Since any homogeneous cubic
polynomial in y times g0(y) is orthogonal to g0(y), the terms in the direction of
g0(y)Φ(x), require

E3 = 0.
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The terms that are multiples of Φ(x) but orthogonal to g0(y) require
(
−1

2
∆y + E(2)(a)

y2

2
− E2

)
g1 = − E(3)(a)

y3

3!
g0.

We do not precisely normalize our quasimodes, so we can take g1 orthogonal to g0.
We then solve the equation for g1 by applying the reduced resolvent operator for(
− 1

2∆y + E(2)(a)y2

2 − E2

)
.

Order 4. The order ε4 terms require

[h(x) − E(x)]ψ4 +

(
−1

2
∆y + E(2)(a)

y2

2
− E2

)
ψ2

− (∇yg1) · (∇xΦ)(x) − 1

2
g0(y) (∆xΦ)(x) + E(3)(a)

y3

3!
ψ1

+ E(4)(a)
y4

4!
ψ0 + T4(x)ψ0 − T4(a)ψ0 = E4 ψ0.

We break this into three equations by taking the same projections as for the order
ε3 terms. The multiples of g0(y)Φ(x) yield

− 1

2
〈Φ(x), ∆xΦ(x)〉Hel

+ 〈g0(y), E(3)(a)
y3

3!
g1(y)〉y

+ 〈g0(y), E(4)(a)
y4

4!
g0(y)〉y + T4(x) − T4(a) = E4.

We can solve this equation by taking

T4(x) =
1

2
〈Φ(x), ∆xΦ(x)〉Hel

and

E4 = − T4(a) + 〈g0(y), E(3)(a)
y3

3!
g1(y)〉y + 〈g0(y), E(4)(a)

y4

4!
g0(y)〉y.

We solve the other two equations by applying the reduced resolvents of [h(x)−E(x)]

and
(
− 1

2∆y + E(2)(a)y2

2 − E2

)
as we did for the order ε3 terms.

Order n ≥ 5. At higher orders, we simply mimic what we did for the order ε4.
The order εn terms determine Tn(x), En, the component of ψn orthogonal to Φ(x),
and gn−2(y).

We do these formal calculations to any order n ≥ 2. We then drop the terms
in the wave functions and energy that have not yet been determined. Next, we

replace x by X and y by (X − a)/ε in Ψ̃ to obtain the quasimode Ψε. We easily
check that

‖H(ε)Ψε − E(ε)Ψε ‖ = O(εn+1),

where H(ε) is the full Hamiltonian. The spacing between levels is O(ε2) for our
simple model, so this yields non–trivial spectral information.

Hagedorn and Toloza attempted to apply optimal truncation techniques to this
expansion, but could not get the required estimates because of difficulties with the
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Tn(x). By abandoning the multiple scales technique and working just in the y
variable, they succeeded in applying optimal truncation techniques to a different
expansion. By doing so, they obtained quasimodes with errors of order exp(−Γ/ε2)
for some models [44, 45].

4. Propagation through Level Crossings

We present fewer details in this section because the subject is more technical.
Again, we present a summary of the authors’ work on the subject. The other
approaches deal with Wigner distributions on phase space instead of the wave
functions and rely heavily on pseudodifferential operator techniques and two–scale
measures.

Before studying propagation through level crossings it is necessary to study the
structure of different kinds of level crossings. This subject is studied in [32] and
Chapter 2 of [33], which we now briefly summarize without any proofs.

Symmetry considerations are central to the classification of different types of
crossings. In quantum mechanics, symmetry operations may or may not involve
time reversing operators, which are anti–unitary (i.e., they have all the properties
of unitary operators, except that they have U(λψ) = λU(ψ) instead of U(λψ) =
λU(ψ)). Thus, standard group representation theory is not sufficient, and one must
allow “corepresentations” which involve linear and anti–linear operators.

The relevant symmetry group G is the set of all X–independent unitary and
anti–unitary operators on the electron Hilbert space that commute with the elec-
tron Hamiltonian h(X) for all X. Each electron energy level is associated with
an irreducible representation (or corepresentation) of G. Minimal multiplicity irre-
ducible representations are one dimensional, and minimal multiplicity irreducible
corepresentations are either one or two dimensional. In standard situations, the two
dimensional irreducible corepresentations occur when electron spin is taken into ac-
count and the molecule has an odd number of electrons. We henceforth consider
only electronic levels of the minimal multiplicity allowed by the representations or
corepresentations.

Generic crossings of levels associated with inequivalent irreducible (co)represen-
tations are the simplest. The two eigenvalues are simply two different functions of
X, and they generically take equal values on a codimension 1 submanifold. Near the
crossing, the electronic eigenfunctions assoicated with the two levels can be chosen
to depend smoothly on X. So, in a basis that depends smoothly on X, the two
levels are described by a diagonal matrix. In [32, 33], these are crossings of types
A, C, D, E, F, G, and H. Crossings of type A involve eigenvalues corresponding to
inequivalent representations. The others come from eigenvalues that correspond to
inequivalent corepresentions, and irreducible corepresentations, themselves come in
three different types.

The situation is much more interesting when two levels associated with equiva-
lent (co)representations cross. In [32, 33], these are crossings of types B, I, J, and
K, and the manifolds where the levels are equal generically have codimensions 3, 2,
3, and 5, respectively.

The type B situation occurs when there are no time–reversing operators in the
symmetry group. Near the crossing, the behavior of the two levels is similar to that
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of the general traceless Hermitian matrix
(

X1 X2 + iX3

X2 − iX3 −X1

)
,

whose eigenvalues are ±
√

X2
1 + X2

2 + X2
3 . The eigenvectors cannot be chosen to

depend smoothly on X and have non–trivial Berry phases.
The type I situation comes from a one dimensional corepresentation. The

behavior of the levels near the crossing is similar to that of the general traceless
real symmetric matrix (

X1 X2

X2 −X1

)
,

whose eigenvalues are ±
√

X2
1 + X2

2 . The eigenvectors cannot be chosen to depend
smoothly on X, and they exhibit a degenerate Berry phase that is frequently called
a Longuet–Higgins phase. If the eigenvectors are locally chosen to be real, then
they pick up a minus sign as the parameter X is moved around the crossing mani-
fold. The chemists use the term “conical intersection” for these crossings. For our
specific example, the plot of the eigenvalues with (X1, X2) horizontally and energy
vertically yields the cone E2 = X2

1 + X2
2 with the crossing at the vertex.

The type K crossings come from a two dimensional irreducible corepresentation.
Their local behavior is like the direct sum of a type B matrix and its conjugate.
The canonical example is




X1 X2 + iX3 0 0
X2 − iX3 −X1 0 0

0 0 X1 X2 − iX3

0 0 X2 + iX3 −X1


 ,

whose eigenvalues are ±
√

X2
1 + X2

2 + X2
3 and are doubly degenerate.

Type J crossings occur on codimension 5 submanifolds. The canonical example
is the matrix




X1 0 X2 + iX3 X4 + iX5

0 X1 −X4 + iX5 X2 − iX3

X2 − iX3 −X4 − iX5 −X1 0
X4 − iX5 X2 + iX3 0 −X1


 ,

whose eigenvalues are ±
√

X2
1 + X2

2 + X2
3 + X2

4 + X2
5 and are doubly degenerate.

The bundles of eigenvectors have a “non–Abelian Berry phase” that is given by a
2 × 2 unitary matrix instead of a complex number. The complicated geometrical
structure of these bundles is described in [1].

The main results of [33] describe what happens when a standard time–depen-
dent Born–Oppenheimer wave packet encounters any of the types of generic, mini-
mal multiplicity crossings. At codimension 1 crossings, nothing interesting happens
to leading order in ε. The zeroth order wave packet follows the smooth electron
energy level as though the second level were not there. Depending on the behavior
of the derivatives of the electron states with respect to the nuclear coordinates, a
term of order ε associated with the second level can be created as the zeroth order
term passes through the crossing. All other levels of h(X) are involved only at
second order in ε, so they are irrelevant through first order.
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The higher codimension crossings cause much more significant effects because
the electronic states are singular near the crossings. In [33], propagation through
these crossings is studied by using matched asymptotic expansions. The analysis is
very technical, but the underlying idea is quite simple. One proves that there exist
two numbers ξ and ξ′ that satisfy 2

3 < ξ′ < ξ < 1, such that all of the following
results can be proven.

An incoming standard Born–Oppenheimer state away from the crossing is cho-
sen so that its associated classical position a(t) hits the crossing submanifold at
some time that we take to be t = 0. The leading order standard approximation
agrees with an exact solution up to errors of order εp1 for some p1 > 0 for all
t ∈ [−T, −εκ), for all κ < ξ.

Next, an “inner expansion” is derived that agrees with an exact solution up to
errors of order εp2 for some p2 > 0 when |t| < εξ′

. This wave packet is arranged so
that it agrees with the incoming wave packet up to errors of order εp3 with p3 > 0
for times t = −εκ with ξ′ < κ < ξ where both expansions are valid.

For small positive times εκ with ξ′ < κ < ξ, a similar matching is done to
outgoing standard time–dependent Born–Oppenheimer states that have errors of
order εp1 for t ∈ (εκ, T ], when κ < ξ. So, for any time t ∈ [−T, T ], at least one of
the three expansions is valid to leading order in ε.

The inner expansion is obtained by replacing the original time variable t by a
rescaled time s = t/ε and replacing the original variable X by y = (X − a(t))/ε. In
the new variables, a formal asymptotic expansion is substituted into the Schrödinger
equation. The leading order terms satisfy a hyperbolic PDE that has very simple
characteristics. Along each characteristic, it can be solved explicitly in terms of
parabolic cylinder functions of complex order and complex argument. The behavior
of these special functions is known well enough to yield a proof that the matching
can be done rigorously.

When a wave packet propagates through these crossings, it splits at leading
order, ε0, into two separate wave packets. One piece propagates according to the
dynamics of one electronic level involved in the crossing. The other piece has dy-
namics governed by the second level. These separate wave packets have complicated
phases, but their absolute values can be found in a relatively simple way because
the leading order equation for the inner solution is hyperbolic. Along each charac-
teristic one finds that a Landau–Zener formula dictates the probability to end up
on the upper or lower of the two levels. However, there is a different minimal gap
between the electronic levels felt along different characteristics. The parts of the
wave function that go right through the crossing manifold feel no gap, and they
follow the smooth electronic level. If they start on the lower level, they go to the
upper level, and vice versa. The pieces of the wave function that stay far from the
crossing (on a distance scale of order ε) obey the adiabatic theorem and stay on
the same level because they feel a relatively large gap. The Landau–Zener formula
gives the precise result for intermediate gaps.

The techniques underlying the crossing results of Fermanian–Kammerer, Gé-
rard, Teufel, and Lasser [16, 17, 18, 19, 20, 21, 22, 23, 67, 68] rely on two–scale
measures to resolve the behavior of solutions when they are a distance of order
ε from the crossing submanifold. By concentrating on Wigner functions instead
of wave functions, these techniques yield somewhat cleaner results because they
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do not yield phase information that is contained in the wave packets. Lasser and
Teufel have developed a very nice algorithm for the propagation of Wigner functions
through crossings.

5. Propagation through Avoided Crossings with Small Gaps

The authors have also studied what happens when wave packets go through
avoided crossings with small gaps. An avoided crossing is a situation where two
levels get close to one another, but do not actually cross. The expression “small
gaps” refers to levels that come an O(ε) distance from one another.

For this small gap situation, the electron Hamiltonian must depend on ε. That
may appear to be unphysical, but for real molecules, there is a fixed value of ε, and
levels can have avoided crossings that have gaps that are roughly equal to ε. Gaps
on the order of ε are the most interesting. As commented in Section 1, Rousse
[85, 86] has shown that avoided crossings with gaps of order εp with p < 1 yield
give rise to trivial phenomena to leading order. When p > 1, they behave like
actual crossings.

As in the case of crossings, there are several different types of generic, minimal
multiplicity avoided crossings. They are classified, and normal forms are found for
each type in [34]. In that paper, avoided crossings are defined as crossings that
have been perturbed in a generic way to produce avoided crossings. Canonical
examples of electron Hamiltonians of each type with gaps of size 2 δ are given by
the following matrices:

Type 1 E(X1) = ±
√

X2
1 + δ2 (multiplicity 1).

(
X1 δ
δ −X1

)

Type 2 E(X1) = ±
√

X2
1 + δ2 (multiplicity 2).




X1 δ 0 0
δ −X1 0 0
0 0 X1 δ
0 0 δ −X1




Type 3 E(X1,X2) = ±
√

X2
1 + X2

2 + δ2 (multiplicity 1).

(
X1 X2 + iδ

X2 − iδ −X1

)

Type 4 E(X1,X2) = ±
√

X2
1 + X2

2 + δ2 (multiplicity 2).




X1 X2 + iδ 0 0
X2 − iδ −X1 0 0

0 0 X1 X2 − iδ
0 0 X2 + iδ −X1



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Type 5 E(X1,X2,X3) = ±
√

X2
1 + X2

2 + X2
3 + δ2 (multiplicity 2).




X1 0 X2 + iX3 δ
0 X1 −δ X2 − iX3

X2 − iX3 −δ −X1 0
δ X2 + iX3 0 −X1




Type 6 E(X1,X2,X3,X4) = ±
√

X2
1 + X2

2 + X2
3 + X2

4 + δ2 (multiplicity 2).



X1 0 X2 + iX3 X4 + iδ
0 X1 −X4 + iδ X2 − iX3

X2 − iX3 −X4 − iδ −X1 0
X4 − iδ X2 + iX3 0 −X1




Papers [36, 37] study the propagation of wave packets through each type of
avoided crossings when δ is taken to be O(ε). The underlying basic idea is again
to use matched asymptotic expansions as in the case of actual crossings. Although
the analysis is quite similar, there is the additional technical complication that the
classical mechanics for the nuclei now depends on ε in a complicated way as ε → 0.

The results for each type of avoided crossing are somewhat similar to those
for codimension 2, 3, and 5 crossings. As the wave packet propagates through the
avoided crossing, it splits at leading order into two pieces. One piece propagates ac-
cording to the dynamics of the upper level and the other piece propagates according
to the dynamics of the lower level. The leading order inner solutions again involve
hyperbolic PDE’s whose solutions can be written in terms of parabolic cylinder
functions. A Landau–Zener formula describes the transition probability along each
characteristic.

Similar difficulties occur when the molecular Hamiltonian of [36] is known
only by means of perturbation series. However, the perturbation theory of Born–
Oppenheimer wave packets in presence of avoided crossings can still be performed.
See [14].

Although no one seems to have used them to do so, the techniques of Colin de
Verdière, Fermanian–Kammerer, Gérard, Lasser, and Teufel can almost certainly
produce analogous results.

If the gap is small and fixed, instead of being O(ε), then transitions associated
with avoided crossings are O(exp(−Γ/ε2)). Under rather restrictive hypotheses,
the large time behavior of the leading order non–adiabatic component is found
in [42]. The nuclear variable X is restricted to one dimension and the electron
Hamiltonian is an n × n matrix that depends analytically on X, with appropriate
limiting behavior as X → ±∞. In the remote past, the allowed incoming states
include the product of a semiclassical wave packet φj in X times an electronic
eigenfunction.

If the initial electronic level and a second level have a single avoided crossing
with a sufficiently small gap, then the leading order transition wave function on the
second level is Gaussian, with norm of order ε−j exp(−α/ε2) for a precise α > 0.
Both its amplitude and its average momentum are larger than what one would
obtain by treating the nuclei as classical point particles and applying the Landau–
Zener formula for the electrons.

The proof in [42] uses generalized eigenfunction expansions associated with the
full Hamiltonian and a WKB technique [57, 58] that is valid for complex X.
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Results of a similar nature, but for more general systems of PDE’s are obtained
in [59]. Further time–independent generalized eigenfunction results are obtained
in [60, 70, 58].

The results of [42] describe only the large time behavior. It is a beautiful open
problem to analyze the dynamics up to this exponential accuracy when the gap is
fixed and small.

Acknowledgements: We wish to thank B. Sutcliffe, S. Teufel, R. G. Wool-
ley, and the referee for their constructive comments and several references.
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