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This set of lectures is intended to provide a flavor of the physical ideas un-
derlying some of the concepts of Quantum Statistical Mechanics that will
be studied in this school devoted to Open Qantum Systems. Although it is
quite possible to start with the mathematical definitions of notions such as
”bosons”, ”states”, ”Gibbs prescription” or ”entropy” for example and prove
theorems about them, we believe it can be useful to have in mind some of
the heuristics that lead to their precise definitions in order to develop some
intuition about their properties.

Given the width and depth of the topic, we shall only be able to give
a very partial account of some of the key notions of Quantum Statistical
Mechanics. Moreover, we do not intend to provide proofs of the statements
we make about them, nor even to be very precise about the conditions under
which these statements hold. The mathematics concerning these notions will
come later. We only aim at giving plausibility arguments, borrowed from
physical considerations or based on the analysis of simple cases, in order to
give substance to the dry definitions.

Our only hope is that the mathematically oriented reader will benefit
somehow from this informal introduction, and that, at worse, he will not be
too confused by the many admittedly hand waving arguments provided.

Some of the many general references regarding an aspect or the other of
these lectures are provided at the end of these notes.

1 Quantum Mechanics

We provide in this section an introduction to the quantum description of
a physical system, starting from the Hamiltonian description of Classical
Mechanics. The quantization procedure is illustrated for the standard kinetic
plus potential Hamiltonian by means of the usual recipe. A set of postulates
underlying the quantum description of systems is introduced and motivated
by means of that special though important case. These aspects, and much
more, are treated in particular in [GJ] and [MR], for instance.
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1.1 Classical Mechanics

Let us recall the Hamiltonian version of Classical Mechanics in the following
typical setting, neglecting the geometrical content of the formalism. Consider
N particles in Rd of coordinates qk ∈ Rd, masses mk and momenta pk ∈ Rd,
k = 1, · · · , N , interacting by means of a potential

V : RdN → R
q 7→ V (q). (1)

The space RdN of the coordinates (q1, q2, · · · , qN ), with qk,j ∈ R, j = 1 · · · , d
which we shall sometimes denote collectively by q (and similarly for p), is
called the configuration space and the space Γ = RdN × RdN = R2dN of
the variables (q, p) is called the phase space. A point (q, p) in phase space
characterizes the state of the system and the observables of the systems,
which are the physical quantities one can measure on the system, are given
by functions defined on the phase space. For example, the potential is an
observable. The Hamiltonian H : Γ → R of the above system is defined by
the observable

H(p, q) =
N∑
k=1

p2
k

2mk
+ V (q1, q2, · · · , qN ), (2)

where V (q1, q2, · · · , qN ) =
∑
i<j

Vij(|qi − qj |),

which coincides with the sum of the kinetic and potential energies. The equa-
tions of motion read for all k = 1, · · · , N as

q̇k =
∂

∂pk
H(q, p), ṗk = − ∂

∂qk
H(q, p), with (q(0), p(0)) = (q0, p0), (3)

where ∂
∂qk

denotes the gradient with respect to qk. The equations (3) are
equivalent to Newton’s equations, with pk = mk q̇k,

mk q̈k = − ∂

∂qk
V (q) with (q(0), q̇(0)) = (q0, q̇0),

for all k = 1, · · · , N . In case the Hamiltonian is time independent, i.e. if the
potential V is time independent, the total energy E of the system is conserved

E = H(q(0), p(0)) ≡ H(q(t), p(t)), ∀t. (4)

where (q(t), p(t)) are solutions to (3) with initial conditions (q(0), p(0)). More
generally, a system is said to be Hamiltonian if its equations of motions
read as (3) above. We shall essentially only deal with systems governed by
Hamiltonians that are time-independent.
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These evolution equations are also called canonical equations of motion.
Changes of coordinates

pk 7→ Pk, qk 7→ Qk, such that H(q, p) 7→ K(Q,P )

which conserve the form of the equations of motions, i.e.

Q̇k =
∂

∂Pk
K(Q,P ), Ṗk = − ∂

∂Qk
K(Q,P ), with (Q(0), P (0)) = (Q0, P 0),

(5)
are called canonical transformations. The energy conservation property (4) is
just a particular case of time dependence of a particular observable. Assuming
the Hamiltonian is time independent, but not necessarily given by (2), the
time evolution of any (smooth) observable B : Γ → R defined on phase space
computed along a classical trajectory Bt(q, p) ≡ B(q(t), p(t)) is governed by
the equation

d

dt
Bt(q, p) = LHBt(q, p), with B0(q, p) = B(q0, p0), (6)

where the linear operator LH acting on the vector space of observables is
given by

LH = ∇pH(q, p) · ∇q −∇qH(q, p) · ∇p, (7)

with the obvious notation. Observables which are constant along the tra-
jectories of the system are called constant of the motions. Introducing the
Lebesgue measure on Γ = R2dN ,

dµ = ΠN
k=1dqkdpk, with dqk = Πd

j=1qk,j , and dpk = Πd
j=1pk,j ,

and the Hilbert space L2(Γ, dµ), one checks that LH is formally anti self-
adjoint on L2(Γ, dµ), (i.e. antisymmetrical on the set of observables in
C∞0 (Γ )). Therefore, the formal solution to (6) given by

Bt(q, p) = etLHB0(q, p)

is such that etLH is unitary on L2(Γ, dµ). Another expression of this fact is
Liouville’s Theorem stating that

∂(q(t), p(t))
∂(q0, p0)

≡ 1,

where the LHS above stands for the Jacobian of the transformation (q0, p0) 7→
(q(t), p(t)). It is convenient for the quantization procedure to follow to intro-
duce the Poisson bracket of observables B,C on L2(Γ ) by the definition

{B,C} = ∇qB · ∇pC −∇pB · ∇qC. (8)

For example,
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{qk,m, pj,n} = δ(j,n),(k,m), {pj,n, pk,m} = {qj,n, qk,m} = 0, (9)

which are particular cases of

{qk,m, F (q, p)} =
∂F (q, p)
∂pk,m

, {G(q, p), pj,n} =
∂G(q, p)
∂qj,n

.

These brackets fulfill Jacobi’s relations,

{A, {B,C}}+ circular permutations = 0 (10)

and, as {H,B} = −LHB, we can rewrite (6) by means of Poisson brackets
as

d

dt
Bt = −{H,Bt}. (11)

Therefore, it follows that the Poisson bracket of two constants of the motion
is a constant of the motion, though not necessarily independent from the
previous ones.

Before we proceed to the quantization procedure, let us introduce another
Hamiltonian system we will be interested in later on. It concerns the evolution
of N identical particles of mass m and charge e in R3, interacting with each
other and with an external electromagnetic field (E,B).

Let us recall Maxwell’s equations for the electromagnetic field

∇B = 0, ∇∧E = −∂B
∂t
, ε0∇E = ρe, ∇∧B = µ0j +

1
c2
∂E

∂t
, (12)

where ρe and j denote the density of charges and of current, respectively,
the constant ε0 and µ0 are characteristics of the vacuum in which the fields
propagate, and c is the speed of light. A particle of mass m and charge e in
presence of an electromagnetic field obeys the Newtonian equation of motion
determined by the Lorentz force

mq̈ = e(E + q̇ ∧B). (13)

When N charged particles interact with the electromagnetic field, the rule is
that each of them becomes a source for the fields and obeys (13), with the
densities given by

ρe(x, t) =
N∑
j=1

eδ(x− qj(t)), and j =
N∑
j=1

eq̇j(t)δ(x− qj(t)). (14)

In order to have a Hamiltonian description of this dynamics later, we in-
troduce the scalar potential V and the vector potential A associated to the
electromagnetic field (E,B). They are defined so that

E = −∂A
∂t

−∇V, B = ∇∧A, (15)
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hence the first two equations (12) are satisfied, and

∂

∂t
(∇A) +∆V = −ε−1

0 ρe

1
c2
∂2

∂t2
A−∆A+∇(∇A+

1
c2
∂V

∂t
) = µ0j (16)

yield the last two equations of (12). There is some freedom in the choice of
A and V in the sense that the physical fields E and B are unaffected by a
change of the type

V 7→ V +
∂χ

∂t
, A 7→ A−∇χ,

where χ is any scalar function of (x, t). A transformation of this kind is called
a gauge transform. This allows in particular to choose the potential vector A
so that it satisfies

∇A = 0, (17)

by picking a χ solution to ∆χ = ∇A, if (17) is not satisfied. This is the so
called Coulomb gauge in which (16) reduces to

∆V = −ε−1
0 ρe ⇐⇒ V (x, t) =

1
4πε0

∫
dy
ρe(y, t)
|x− y|

1
c2
∂2

∂t2
A−∆A = µ0j −

1
c2
∂∇V
∂t

≡ µ0jT . (18)

The subscript T stands here for transverse, since ∇jT ≡ 0. Assume we have
N particles of identical masses m and identical charges e interacting with the
electromagnetic field satisfying (18) with (14) so that

V (x, t) =
e

4πε0

N∑
j=1

dy
1

|x− qj(t)|
. (19)

We want to write down a Hamiltonian function which will yield (13) back
when we compute the equation of motions for the particles as (3). It is just a
matter of computation to show that the following (time-dependent) Hamil-
tonian fulfills this requirement:

H(q, p, t) =
∑
j

1
2m

|pj − eA(q, t)|2 +
1

8πε0

∑
i 6=j

e2

|qi − qj |
. (20)

The only thing to note is that when one computes the part of the electric
field E that is produced by the ∇V part of (15) at the point qj(t), the double
sum that appears due to the form (19) of V contains an infinite part when
the indices take the same value, which is simply ignored .
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Remark: It follows also from the above that the momentum pj of the j’th
particle isn’t proportional to its velocity, but is given instead by

pj = mvj + eA(qj , t).

This is an important feature of systems interacting with electromagnetic
fields. As noted above, this Hamiltonian is time dependent. We can get a
time independent Hamiltonian provided one takes also into account the en-
ergy of the field in the Hamiltonian. This new Hamiltonian Htot reads

Htot = H(q, p, t) +
1
2

∫
dx
(
ε0|∂A(x, t)/∂t|2 + µ−1

0 |∇ ∧A(x, t)|2
)
,

where the first term in the integral is the contribution to the electric field that
is not provided by the Coulomb potential (19) (which is taken into account
in (20)) and the second term is the magnetic energy. It can be shown also
that the total energy Htot is conserved.

1.2 Quantization

The Quantum description of a general classical system is given by a set of
postulates we list here as P1 to P4. In order to motivate and/or illustrate
their meaning, we consider in parallel the typical Hamiltonian (2) to make
the link with its quantization by means of the traditional recipe.

P1: The phase space Γ is replaced by a Hilbert space H whose scalar
product is denoted by 〈 · | · 〉, with anti-linearity on the left. The state of the
system is characterized by a ray in this space, that is a unit vectors with an
arbitrary phase.

Actually, rays characterize the pure states of the system. When we con-
sider Quantum Statistical Mechanics, we will make a distinction between
pure states and mixed states that will be introduced then. However, in that
section, we will go on talking about states.

In case of our example, H = L2(RdN ), RdN being the configuration space.
The state of the system is characterized by a normalized complex valued func-
tion ψ(q) in L2(RdN ), also called the wave function of the system.

P2: The observables are given by (possibly unbounded) self-adjoint linear
operators on H obtained from their classical counterparts by a quantization
procedure.

The quantization procedure is not always straightforward. In particular, if
the phase space has a non trivial topological structure, sophisticated methods
of quantizations have to be applied. The link with the corresponding classical
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observables should be achieved, at a formal level at least, by taking the limit
~ → 0.

For our example, the formal substitutions

pk 7→ −i~∇k, qk 7→ multqk, k = 1, · · · , N (21)

are used. Here multqk denotes the operator multiplication by the variable
qk, which we shall simply denote by qk below, and ~ is Planck’s constant,
whose numerical value is about 1.055× 10−34J.s. In particular, the classical
Hamiltonian (2) gives rise to the (formally) self-adjoint operator

H =
N∑
k=1

− ~2

2mk
∆k + V (q1, q2, · · · , qN ) on H, (22)

where ∆k denotes the Laplacian in the variables qk. This class of operators
goes under the name Schrödinger operators and plays, for obvious reasons, an
important role in Quantum Mechanics. Note that the quantization of observ-
ables by the formal rule (21) may need to be precised by a symmetrization
procedure due to the non-commutativity of p and q,

[pj,n, qk,m] =
~
i
[∂qj,n

, qk,m] =
~
i
II , (23)

where II denotes the identity operator. The symmetrization can be performed
by hand in some concrete cases. For example, the dilation operator (for N =
1) is the (self-adjoint) quantization of p · q given by

p · q 7→ −i~
2

(∇qq + q∇q).

Note that in dimension d = 3, the angular momentum x ∧ p vector doesn’t
require symmetrization and yields the operator

x ∧ p 7→ J := −i~q ∧∇q, (24)

whose components satisfy the relations

[Ji, Jj ] = i~Jk, for (i, j, k) a permutation of (1, 2, 3). (25)

The (components of the) angular momentum are unbounded operators which
are known to have discrete spectrum, see below.

For a general classical observable B(q, p) (belonging to some reasonable
class of smooth real valued functions on Γ ' R2d, say) the Weyl quantization
procedure B 7→ BW defined by

(BWψ)(q) = (2π~)−d
∫ ∫

B

(
q + q′

2
, p

)
ei(q−q

′)·p/~ψ(q′)dq′dp
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is a good prescription to obtain the corresponding self-adjoint observables.
It maps functions of q ∈ Rd to the corresponding multiplication operators
and polynomials in pj to the same polynomials in the differential operator
~
i ∂qj

. Note, however, that there exits other quantization prescriptions that
have their own merits.

Also, in other cases, if the geometry of the classical phase space of the sys-
tem has more structure, the formal operator (22) needs to be supplemented
by boundary conditions determined by physical considerations. For example,
if the system is confined to a region Λ in configuration space, one customarily
provides ∂Λ with Dirichlet boundary conditions. In particular, the Hamilto-
nian of a particle in Rd confined to a cube Λ whose sides have length L is
given by

HΛ = − ~2

2m
∆ plus Dirichlet boundary condition at ∂Λ. (26)

P3: The result of the measure of an observable B on the quantum system
characterized by ψ ∈ H is an element b ∈ R of the spectrum σ(B) of the self-
adjoint operator B. Moreover, the probability to obtain an element in (b1, b2]
as the result of this measure on the state ψ is given by

Pψ(B ∈ (b1, b2]) = ‖PB((b1, b2])ψ‖2, (27)

where PB(I) denotes the spectral projector of the operator B on the set I ⊂ R.
Furthermore, once a measure of B is performed, and the result yields a value
in a set (b1, b2] ⊂ R, the wave function ψ is reduced, i.e. it undergoes the
instantaneous change

ψ 7→ PB((b1, b2])ψ
‖PB((b1, b2])ψ‖

. (28)

Another observable C is said to be compatible with B if B and C commute,
i.e. if

[PB(α), PC(β)] = 0, for any intervals α, β ⊆ R.

This postulate explains the importance of the efforts made by mathe-
matical physicists in order to determine the spectral properties of operators
related to Quantum Mechanics. As, in general, the spectrum of a self-adjoint
operator is the union of its discrete and continuous components, the result
of the measure of an observable may be quantized, even though its classi-
cal counterpart may take values in an interval. This justifies the adjective
Quantum for the theory.

Several examples of this fact will be discussed in the lectures on the spec-
tral theory of unbounded operators, in particular for Schrödinger operators
of the form −∆+V . Note that due to the Spectral Theorem, the expectation
value of an observable B in a state ψ can be written as
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Eψ(B) =
∫
σ(B)

b‖P (db)ψ‖2 =
∫
σ(B)

b〈ψ|P (db)ψ〉 = 〈ψ|Bψ〉.

The reduction processes of the wave function (28) after the measurement of
B insures that an immediate subsequent measure of B gives a result in the
same set (b1, b2] with probability one. The compatibility condition insures
that the observables B and C can be simultaneously measured, in the sense
that once B and C have been measured with results in the sets α and β
respectively, further successive measurements of B and C, in any order, will
give results in the same sets with probability one. Or in other words, B and
C can be diagonalized simultaneously. This is not the case if B and C do not
commute.

Let us introduce some very classical examples as illustrations of the above.
The interpretation of the wave function, in the setting where Γ = R2dN , is
that |ψ(q)|2dq is the probability that the system is at point q of configura-
tion space and if ψ̂(p) denotes the Fourier transform of ψ, |ψ̂(p)|2dp is the
probability that it has momentum p. This is just a particular case of the
above rule. Indeed, the operators qk,m, k = 1, · · · , N , m = 1, · · · , d all com-
mute and they have continuous spectra R, as multiplication operators. Hence
the interpretation of |ψ(q)|2 follows. That of |ψ(p)|2 is a consequence of the
fact that the Fourier transform is unitary on L2(RdN ) which transforms the
derivative into a multiplication by the independent variable. Note that (23)
shows that qj,n and pj,n cannot be simultaneously determined, an expression
of Heisenberg’s uncertainty principle. Actually, Heisenberg’s principle can be
put on more quantative grounds as follows. Let A and B be two self-adjoint
operators such that their commutator can be written as

[A,B] = iC, where C = C∗.

Then, denoting the variance of A in the state ψ by

∆ψ(A)2 = 〈ψ|(A− Eψ(A))2ψ〉,

we get the inequality

∆ψ(A)∆ψ(B) ≥ Eψ(C)
2

. (29)

Applied to the operators p and q, we get the familiar relation

∆ψ(p)∆ψ(q) ≥ ~
2
.

Similarly, the components of the angular momentum Jk, k = 1, 2, 3 are not
compatible, however it follows from (24) that Jk and J2 := J2

1 + J2
2 + J2

3

are compatible observables, for any k. Hence one can measure the third com-
ponent of the angular momentum and its length simultaneously. The result
of such measures belongs to the spectra of these operators which is discrete
as we recall here. If we denote by Kj the eigenspace of J2 associated with
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the quantum number j and consider the restriction of J3 to that subspace, a
classical algebraic computation shows that

σ(J2) = {j(j+1)|j ∈ N/2} and σ(J3|Kj
) = {−j,−j+1, · · · , j−1, j}. (30)

The effect of boundary conditions on the spectrum of operators can be quite
dramatic, as the following comparison shows. The Hamiltonian (22) (with
N = 1 for simplicity) with V ≡ 0, the so-called free HamiltonianH0 = − ~2

2m∆
is unitarily equivalent by Fourier transform to a multiplication operator

H0 ' mult k2 on L2(Rd).

Its spectrum is then σ(H0) = R+. The spectrum of the operator (26) is easily
computed to be

σ(HΛ) = {2π2~2

mL2
(n2

1 + n2
2 + · · ·+ n2

d) |nj ∈ Z} (31)

Another celebrated Hamiltonian is the harmonic oscillator, which will play a
prominent role in the quantization of classical fields. In one dimension, this
Schrödinger operator reads

p2

2m
+
γ

2
q2, where γ is a positive constant.

Performing the (canonical) change of operators P and Q by

P = (mγ)−1/4p, Q = (mγ)1/4q, so that [Q,P ] = i~,

the operator becomes

Ho =
ω

2
(P 2 +Q2), with ω =

( γ
m

)1/2

. (32)

The spectral analysis of (32) is essentially algebraic once one introduces the
creation and annihilation operators by

a∗ =
1√
2
(Q− iP ), a =

1√
2
(Q+ iP ), such that [a, a∗] = II . (33)

The operator (32) takes the form

Ho = ~ω(a∗a+
1
2
).

Then, defining the vacuum state state |0〉 as the (normalized) solution to the
differential equation

a|0〉 = 0 ⇐⇒ |0〉 =
(mω

~π

)1/4

e−
mω
2~ q

2
,



Introduction to Quantum Statistical Mechanics 11

one sets by induction

|n〉 =
(a∗)n√
n!
|0〉, n = 1, 2, · · ·

These vectors are normalized and take the form of a product of polynomials
of degree n, known as Hermite polynomials, by the gaussian |0〉. One sees
easily, using the so-called canonical commutation relations (33), that

Ho|n〉 = ~ω(n+
1
2
)|n〉 since a∗|n〉 =

√
n+ 1|n+ 1〉 and a∗|n〉 =

√
n|n− 1〉.

These eigenvectors are non-degenerate, such that ∆|n〉(p)∆|n〉(q) = ~(n +
1/2), and span L2(R).
P4: The time evolution of the system is determined by its Hamiltonian H,
the energy observable of the system. There are two equivalent standard de-
scriptions:
The Schrödinger picture, in which the state ψ evolves in time according to
the time-dependent Schrödinger equation in H

i~
d

dt
ψ(t) = Hψ(t), with ψ(0) = ψ. (34)

The Heisenberg picture, in which the state is fixed, whereas the observables
B evolve in time according to Heisenberg equation in the space of self-adjoint
operators on H

i~
d

dt
B(t) = −[H,B(t)], with B(0) = B. (35)

Introducing the unitary evolution group U(t) = e−itH/~ (Spectral The-
orem again), we get the relation between the Schrödinger and Heisenberg
pictures through the identity

Eψ(t)(B) = Eψ(B(t)), ∀t ∈ R,

which follows from

ψ(t) = U(t)ψ, and B(t) = U(t)∗BU(t).

As a consequence, ψ(t) remains normalized for all times and, since the Hamil-
tonian H commutes with the evolution group U(t) it generates, the observ-
able energy is constant in time. This is also true for observables which are
compatible with H, as (35) shows.

The motivations behind the first order linear evolution equation (34) stem
from physical observations leading to the so-called superposition principle
implying linearity and from the fact that ψ at time 0 should determine com-
pletely the state at any later time t. This equation is the quantum equivalent
of (3), whereas (35) is the quantum equivalent of (11).
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Applied to our example (2), the relation between (35) and (11) together
with (9) and (23) are in keeping with the so-called correspondence principle
stating that Poisson brackets are to be replaced by commutators in order to
achieve formal quantization in that setting:

{ · , · } 7→ [ · , · ]
i~

.

This yields another motivation for (35).
As an example, consider the case where the Hamiltonian has discrete non-

degenerate spectrum {Ej}j∈N with associated eigenvectors {φj}j∈N, as is the
case if the potential is confining. The time evolution of any initial state ψ
reads

ψ(t) =
∑
j∈N

cje
−itEj/~φj , ∀t ∈ R, where cj = 〈φj |ψ〉. (36)

Therefore, the probability of measuring the energy Ej0 ∈ σ(H) in the state
ψ(t) is given by

Pψ(t)(H ∈ {Ej0}) = ‖|φj0〉〈φj0 |ψ(t)‖2

= |〈φj0 |ψ(t)〉|2 = |cj0e−itEj0/~|2 = |cj0 |2

and is constant. We used the convenient notation PH({Ej}) = |φj〉〈φj |. Simi-
larly, the probability to obtain an energy in a subset E = {Ej0 , Ejn , · · · , Ejn}
of the spectrum of H is given by

Pψ(t)(H ∈ E) =

∥∥∥∥∥∑
k

|φjk〉〈φjk |ψ(t)

∥∥∥∥∥
2

=
n∑
k

|cjk |2. (37)

Note however, that the sole knowledge of the spectrum of H does not
allow in general to get precise information about the evolution of states that
are not eigenstates, due to the complicated interferences present in (36). A
nice and sometimes useful exception to this rule is the case of coherent states
for the harmonic oscillator. In the one-dimensional setting used in (32), these
normalized states depend on a complex number α and are defined as

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉.

They have the properties (which can be checked by means of (33) only)

a|α〉 = α|α〉, ∆|α〉(p)∆|α〉(q) = ~/2, |α〉|α=0 = |0〉.

Their explicit expression as functions of L2(R) reads as

|α〉 =
(mω
π~

)1/4

exp

(
−1

2
α(α+ α∗)− mω

2~
q2 +

(
2mω

~

)1/2

αq

)
.
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Then, using e−itH/~|n〉 = e−iω(n+1/2)t|n〉, we get

e−itH/~|α〉 = e−iωt/2|eiωtα〉.

Finally, we note also here that in case the Hamiltonian is time-dependent,
(34) gives rise under some regularity conditions to a two-parameter unitary
evolution operator U(t, s) on H satisfying

∂

∂t
U(t, s) = H(t)U(t, s), with U(s, s) = II

from which follows the relation

U(t, r)U(r, s) = U(t, s), ∀r, s, t ∈ R.

In such a case, the evolution operator is no longer an exponential and the
future of initial wave functions is usually harder to describe. But again, in
case the Hamiltonian is essentially a quadratic form in p and q, with time-
dependent coefficients, explicit solutions to the above equation can be ob-
tained, provided the initial conditions are of a coherent state type.

1.3 Fermions and Bosons

So far we have considered systems which have no internal structure or degrees
of freedom. Such internal degrees of freedom are introduced by taking a tensor
product of the original Hilbert spaceH withK, another Hilbert space in which
these degrees of freedom live, so that the system is now described by means
of the new Hilbert space H⊗K. An important internal degree of freedom is
the spin of a particle. It is a vector valued operator S in a finite dimensional
space K ' Ck whose components also satisfy the commutation relations (25),
and therefore displays the same spectral properties (30). A spin is half-integer
or integer, depending whether it is true for the maximal quantum number s
of S2.

Consider now the state of a collection of N identical particles, that is shar-
ing the same physical characteristics like masses, spins, charge, etc. In the
framework of our example and slightly abusing notations, it is described by
means of a wave function ψ(q1, s1; q2, s2; · · · ; qN , sN ) ∈ L2(RdN ) ⊗ KN . The
fact that the particles are identical is equivalent to saying that all observables
B(q1, p1, s1; q2, p2, s2; · · · , qN , pN , sN ) applied to such states are invariant un-
der permutations of their variables (qj , pj , sj). An example of such observable
is the kinetic energy part of (22), and it is also true of the potential part of
this Hamiltonian due to (2). Therefore, if Pjk is the operator whose action is
to permute the variables labeled j and k, one has

P 2
jk = 1, P ∗jk = Pjk, and [Pjk, B] = 0, ∀ B. (38)

Hence, σ(Pjk) = {+1,−1} and the observables and Pjk can be diagonal-
ized simultaneously. Thus we can first diagonalize Pjk and then describe the
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observables restricted to the corresponding subspaces of Pjk. It is a law of
nature that the eigenvalues of Pjk are either +1 for all pairs j, k or -1 for all
pairs j, k. Therefore, identical particles divide themselves into two distinct
sets of particles: those that are invariant under exchange of the variables of
their wave function, and those that undergo a sign change under this oper-
ations. Particles belonging to the former set are called bosons whereas they
are called fermions if they belong to the latter. As the properties (38) are
true for all pairs jk of labels, they are also true for arbitrary permutations
π ∈ PN in the group of permutations of N elements. In particular, if Pπ
denotes the permutation of indices corresponding to π, then Pπψ = ψ for
bosons and Pπψ = (−1)πψ for fermions, where (−1)π is the signature of the
permutation π. In other words, the above discussion shows that the physical
Hilbert spaces for bosons and fermions are not the N -fold tensor product HN

of the Hilbert space H of their one particle descriptions, but rather Hn
+ and

Hn
−, defined by

Hn
± = S±Hn where S± =

1
N !

∑
π∈PN

(±1)πPπ.

The operators S± are easily checked to be orthogonal projectors onto the
orthogonal subspace Hn

± of Hn and vectors in these spaces are characterized
by the properties described above. These characteristics will have important
consequences on the physical properties of collections of such particles. In
particular, antisymmetry forbids two independent fermions to be in the same
quantum state. Indeed, the sign change induced by exchange of these two
particles in the antisymmetrization procedure makes the vector vanish. This
goes under the name Pauli’s Principle.

It turns out that the fermionic or bosonic nature of particles is linked
to the properties of their spin. Indeed, it can be shown within the realm of
relativistic quantum field theory that fundamental requirements of Physics
as micro-causality and Lorentz’s invariance imply the so-called Spin-Statistic
Theorem asserting that particles with half-integer spin are fermions, whereas
those with integer spin are bosons. It is an experimental fact that no other
statistics is present in nature. Electrons are thus fermions and photons are
bosons (although the latter have an internal degree of freedom called helicity,
instead of a spin).

2 Quantum Statistical Mechanics

2.1 Density Matrices

We give here, in a particular setting, some heuristics behind the formal defini-
tion of state (or mixed state) in Quantum Statistical Mechanics which will be
used later on. The first approach is based on a time dependent point of view
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supplemented by a postulate on the behaviour of some phases, advocated in
[H], for example.

Let us start from (37) which says that in case the Hamiltonian H on H,
of a system is time independent, discrete and non-degenerate, i.e. when the
system is isolated from the rest of the world, its normalized wave function
can be written as

ψ(t) =
∑
j∈N

cj(t)φj , (39)

with explicit time dependent complex valued coefficients cj(t). The basic pos-
tulates of Statistical Mechanics are formulated for isolated systems. However,
in practice, one is often interested in a subsystem of the whole system only,
so that, certain degrees of freedom are not observed and are incorporated
in what we call the rest of the world. Thus Statistical Mechanics effectively
deals with systems that interact with the external world, so that the truly
isolated system is our initial system plus the rest of the world. The relevant
Hilbert space to describe this new system is the tensor product R⊗H, where
R is the Hilbert space of the rest of the world, and the corresponding scalar
product is the product of the respective scalar products on R and H. The
wave function of this larger isolated system can still be written as (39), with
the proviso that the c′js are now time dependent elements of R such that∑
j〈cj(t)|cj(t)〉R = 1, where the subscript specifies what scalar product is

used.
Now, if B is an observable acting on the original system only, technically

of the form II ⊗B as an operator on R⊗H, the instantaneous expectation
value of a set of measurements of this observable on ψ(t) is given by

〈ψ(t)| II ⊗Bψ(t)〉R⊗H =
∑
k,j

〈cj(t)|ck(t)〉R〈φj |Bφk〉H.

In an actual experiment, it is rather the time average of the above quantity
that is measured, over a time that is large with respect to the ”molecular
time scale”, but short with respect to the resolution of the measurement
apparatus. Therefore, the measured quantity is actually

〈B〉 =
∑
k,j

〈cj(t)|ck(t)〉R〈φj |Bφk〉H,

where the bar indicates time average.
One postulate concerns the scalar products of the cj(t)’s about which

we have minimal knowledge, since it deals with properties of the external
world. It is postulated that these scalar products producing interferences are
averaged to zero over the time scale on which we observe the system, this is
the Random phases postulate:

〈cj(t)|ck(t)〉R = 0, ∀ j 6= k.
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The consequence of this postulate is an effective description of the original
system by means of the non-zero scalars

λj = 〈cj(t)|cj(t)〉R, such that
∑
j

λj = 1, (40)

in the sense that the outcome of a measurement in that framework is given
by

〈B〉 =
∑
j

λj〈φj |Bφj〉H.

Therefore one says that the random phases postulate allows to regard the
state of the system as an incoherent superposition of eigenstates of H or a
mixed state.

As a consequence, it is possible to represent the mixed state by a density
matrix. Let ρ be the linear operator on H defined by

ρ =
∑
j

λj |φj〉〈φj |. (41)

It is a positive, trace class operator, of trace one, such that

〈B〉 = Tr (ρB).

This operator contains all the information we have about the mixed state
and allows to compute in a convenient way all expectation values by means
of the trace operation.
Note that a pure state χ as defined in the previous section corresponds to the
density matrix ρχ = |χ〉〈χ|. Actually, it is easy to see that a density matrix
ρ corresponds to a pure state if and only if it is a rank one projector.

Another approach of mixed states consists in noting that incomplete in-
formation about a system always leads to density matrices, without resorting
to delicate properties of the time evolution.

A first point of view consists in considering the system as an ensemble of
true eigenstates, to be considered one at a time, where the relative proportion
of the eigenstate φj is λj . The value λj ∈ [0, 1] is interpreted as the classical
probability to get the pure eigenstate φj in the mixed state. This statistical
interpretation ρ =

∑
j λj |φj〉〈φj | allows to avoid any consideration of effective

coupling between the system and the ”external world” and makes no use of
a priori knowledge about the time evolution.

A second interpretation of incomplete knowledge about the system con-
sists in splitting the total Hilbert space it lives in into R⊗H, where R con-
cerns the degrees of freedom that are not known. Therefore, if {ϕj ⊗ ψk}j,k
denotes an orthonormal basis of R⊗H made out of individual orthonormal
bases of R and H and ρ is any density matrix on R⊗H, one introduces the
corresponding reduced density matrix ρH on H by its matrix elements
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(ρH)ij =
∑
k

〈ϕk ⊗ ψi |ρ ϕk ⊗ ψj〉, ∀i, j.

The matrix ρH is designed so that for any operator of the form II ⊗ B, one
has

TrH(ρHB) = Tr (ρ II ⊗B),

where TrH denotes the trace in H. This formula is in keeping with our
ignorance of the degrees of freedom in R which are traced out. The point is
that one can easily check that if ρ = |Ψ〉〈Ψ | for some Ψ ∈ R ⊗ H, then, in
general, the corresponding reduced density matrix ρH characterizes a mixed
state.

Therefore we will adopt from now on the following definition:

A mixed state (or simply state) in Quantum Statistical Mechanics is a posi-
tive trace class operator on H of trace 1.

The time dependence of density matrices is governed by the following
equation in the subset of density matrices in T (H), the linear space of trace
class operators on H,

i~
d

dt
ρ = [H, ρ], ρ(0) = ρ0. (42)

This equation stems from the cyclicity of the trace and the relation which
must hold for all t and all observables B

Tr (ρB(t)) = Tr(ρ(t)B).

Note that (42) is in keeping with the evolution of the density matrix of a
pure state.

3 Boltzmann Gibbs

So far, we haven’t talked about equilibrium properties. The basic postulate
in Quantum Statistical Mechanics describes the density matrix of an isolated
system that has reached equilibrium.

Assume the energy of the system is known to lie within the range
[E,E + ∆], where ∆ << E. The Equal a priori Probability postulate, for-
malizing again our minimal knowledge of the total system, states within the
framework where the φj ’s represent eigenstates of the Hamiltonian H, that
at equilibrium, the λj ’s defining the density matrix ρeq are given by

λj =
{
λ ifE < Ej < E +∆
0 otherwise (43)
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The constant λ is normalized so that the trace of ρeq is one. Other ways of
writing ρeq are

ρeq = PH(E,E +∆)/Tr (PH(E,E +∆)) =

∑
E<Ej<E<∆

|φj〉〈φj |
#{j |Ej ∈]E,E +∆[}

. (44)

Note that as ρeq is a function of the Hamiltonian H, it is constant in time
due to (42), which is what we expect for the equilibrium density matrix.

This above prescription for ρeq corresponds to the micro-canonical en-
semble, where it is understood that the system under consideration has fixed
energy and fixed number of particles.

In this case, Boltzmann’s formula is used to define the entropy

The entropy of a system at equilibrium in the microcanonical ensemble reads

S(E) = k lnΓ (E), where Γ (E) = #{j |Ej ∈]E,E +∆[} (45)

and k ' 1, 38× 10−23J/K is Boltzmann’s constant.

The quantity Γ (E), which is the denominator in (44), gives the number
of quantum states that are accessible to the system. The entropy actually
depends on other variables such as the volume V of the system, the number
N of particles of the system, etc... that we omitted in the notation. The
definition (45) makes the bridge between equilibrium Statistical Mechanics
and thermodynamics, once the thermodynamic limit is taken. That is, once
it is demonstrated that Boltzmann’s formula fulfills the following conditions:
a) extensivity, so that the thermodynamical limit as V → ∞, N → ∞, E →
∞ exists i.e.

1
N
S(E, V,N) → s(e, v), where E/N → e, V/N → v, S/N → s

with e, s and v are the densities of energy and entropy and v is the specific
volume.
b) the fact that if exterior parameters of the system initially at equilibrium
are varied in such a way that the system can reach another equilibrium con-
figuration, then the difference of entropies between these configurations is
non negative. This is an expression of the second law of thermodynamics
which implies that the equilibrium state maximizes the entropy. We’ll come
back to this point shortly.

Without discussing thermodynamics, we mention that assuming the ex-
istence of entropy and that properties a) and b) hold, all thermodynamical
quantities can be computed from S(E, V,N) through the definitions:

1
T

=
∂S

∂E

)
V,N

defines the temperature, so that ,

U(S, V,N) ≡ E(S, V,N) the internal energy of the system exists and
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P = − ∂U

∂V

)
S,N

defines the pressure whereas

µ =
∂U

∂N

)
S,V

defines the chemical potential.

The above definitions yield the familiar differential

dU(S, V,N) = TdS − PdV + µdN, (46)

motivating the physical interpretations of these derivatives. The extensivity
property of U , i.e. homogeneity of degree one, associated with (46) implies

U = TS − PV + µN. (47)

In order to complete the picture, let us briefly recall that the first law of
thermodynamics asserts that the differential

dU = δQ− δW is exact,

where δQ is amount of heat absorbed by the system and δW is the work
done by the system in any transformation. A corollary of the second law of
thermodynamics says that the differential

dS =
δQ

T
is exact,

relating the experimental notion of heat to entropy. These two statements
imply the existence of the functions S and U at equilibrium.

It can be argued that the definition (45) satisfies requirement a), but we
shall not provide the argument here. Let us consider b). This last property
calls for a variational approach of the entropy. Hence we introduce a more
general definition of the entropy of a state by

The entropy of state ρ of a physical system is given by

S(ρ) = −kTr (ρ ln(ρ)), (48)

where the function x 7→ x ln(x) is defined to be zero at x = 0.

If {λj}j∈N denotes the set of eigenvalues of the density matrix

ρ =
∑
j

λj |φj〉〈φj |,

the entropy is given by

S(ρ) = −k
∑
j

λj ln(λj). (49)
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Therefore one sees that S(ρ) ≥ 0 with S(ρ) = 0 if and only if λj = δj,k
for some k, i.e. ρ corresponds to a pure state. Also, the entropy (48) of the
density matrix ρ describing two independent systems defined on H1 and H2

is the sum of the individual entropies, as expected. Indeed, in such a case,
ρ = ρ1 ⊗ ρ2 on H = H1 ⊗H2, where ρj , j = 1, 2 are the density matrices of
the individual systems. Using

ln(ρ1 ⊗ ρ2) = ln(ρ1)⊗ II + II ⊗ ln(ρ2),

and taking partial traces, one gets S(ρ) = S(ρ1) + S(ρ2). More generally, it
can be shown that for α ∈ [0, 1] and arbitrary density matrices ρ1, ρ2

S(αρ1 + (1− α)ρ2) ≥ αS(ρ1) + (1− α)S(ρ2),

which shows that S is concave as a function on the set of density matrices,
i.e. mixing density matrices increases the entropy. And, on the other hand,
the entropy is almost convex in the sense

S(αρ1 + (1− α)ρ2) ≤ αS(ρ1) + (1− α)S(ρ2)− α lnα− (1− α) ln(1− α).

More mathematical properties of the entropy are provided in [BR] or [S], for
example.

Now, maximizing (49) over the probabilities λj ’s shows that the entropy
is maximal when the eigenvalues are all constant. Thus, when the correspond-
ing eigenvectors φj are those of the Hamiltonian, we get back both the equal
a priori probability postulate and Boltzmann’s formula.

The micro canonical ensemble is convenient to motivate definitions, but
one often prefers to use the canonical ensemble for applications. In that set-
ting, the system under consideration interacts with a thermal reservoir whose
property is to remain at fixed temperature. Exchanges of energy are allowed
between the reservoir and the system, under the constraint that the aver-
aged energy of the system is kept fixed. The maximization of entropy in the
canonical ensemble leads to Gibbs prescription for the density matrix, as we
now (formally) argue.

Consider the functional over the set of density matrices.

F(ρ) = S(ρ)− kβ〈H〉ρ, (50)

where 〈H〉ρ denotes the expectation value of the energy computed by means
of the density matrix ρ, and β is a Lagrange multiplier associated with the
energy constraint.

We need to compute the first variation of F

δF(ρ) =
d

dt
F(ρ+ tη)|t=0,
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where the admissible variation η is any trace class operator of zero trace and
Tr (ρ) = 1. In order to do so, we first justify the following intuitive relation:

If A(t) is a t-dependent self-adjoint operator, such that A(t) = A(0) + tη,
then

d

dt
Tr (f(A(t))) = Tr (f ′(A(t))η). (51)

Indeed, Hellman-Feynman formula applied to A(t) whose eigenvalues and
normalized eigenvectors are denoted by (aj(t), ϕj(t)) reads

a′j(t) = 〈ϕj(t)|A′(t)ϕj(t)〉. (52)

Thus for any (reasonable) real valued function f ,

d

dt
Tr (f(A(t))) =

∑
j

f ′(aj(t))a′j(t) =
∑
j

〈ϕj(t)|f ′(A(t))ϕj(t)〉a′j(t). (53)

In the case under consideration, A′(t) = η so that, by (52), a′j(t) =
〈ϕj(t)|ηϕj(t)〉 and, using orthonormality of the ϕj ’s, the RHS of (53) equals∑

j

〈ϕj(t)|f ′(A(t))ϕj(t)〉〈ϕj(t)|ηϕj(t)〉

=
∑
j,k

〈ϕj(t)|f ′(A(t))ϕk(t)〉〈ϕk(t)|ηϕj(t)〉

=
∑
j

〈ϕj(t)|f ′(A(t))ηϕj(t)〉, which yields (51).

In our case, we get

δF(ρ) = −kTr (η(ln(ρ) + II + βH)),

which has to be zero for any admissible η if ρ extremalizes F . In particular,
we can choose η =

∑
j ηj |ϕj〉〈ϕj | where {ϕj} are the set of eigenvectors of

the self adjoint operator ln(ρ) + II + βH and {ηj} are a set of real numbers
satisfying

∑
j ηj = 0. For that η, we have

δF(ρ) = −k
∑
j

ηjvj ,

where the vj ’s denote the eigenvalues of ln(ρ) + II + βH. Choosing above
η0 = −η1 6= 0 and ηj = 0 if j ≥ 2, we get that δF(ρ) = 0 for any η0 implies
v0 = v1. Iterating, we get v0 = vj , for any j ∈ N. Hence

δF(ρ) = 0 ∀η ⇐⇒ ln(ρ) + II + βH = v0 II .

The constant v0 will be determined by the normalization of the state. There-
fore, exponentiating, we find as extremalizer the Gibbs distribution
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ρG =
e−βH

Tr (e−βH)
. (54)

Explicit computations that we do not present here show that the second
variation δ2F is negative. Hence we get that the Gibbs prescription yields
a maximum of the functional (50). Here the parameter β used to insure
constancy of the average energy of the system in that canonical ensemble
setting will be identified with the inverse temperature given by the usual
formula

β =
1
kT

. (55)

The normalization of the Gibbs distribution

Z := Tr (e−βH)

defines the (canonical) partition function. It is related to the internal energy
of the system 〈H〉ρG

by

〈H〉ρG
= −∂ ln(Z)

∂β
.

Again, in the thermodynamic limit, the partition function of Statistical Me-
chanics is directly linked to a thermodynamical quantity: the free energy F
of the system, defined as F = U − TS (see below), where U is the internal
energy 〈H〉ρG

of the system. To substanciate this claim, let us formally com-
pute by means of (54) (assuming the thermodynamic limit and extensivity
holds),

S = kβ〈H〉ρG
+ k ln(Z) so that

F := −kT lnZ (56)

defines the free energy in Statistical Mechanics.
Moreover, as a consequence of our variational approach, we get that the

free energy of a system is minimized by the equilibrium state, which together
with (56) are two familiar properties of the free energy.

More precisely, in thermodynamics, F is a function of (T, V,N), which is
the result of its very definition:
The thermodynamical free energy is the Legendre transform of the internal
energy U(S, V,N) with respect to the variable S

F (T, V,N) = (U − TS)(T, V,N) (57)

where S(T, V,N) is computed from ∂U
∂S

)
V,N

= T .

This operation allows to trade the entropy variable for the more natural
temperature variable. Recall that the Legendre transform of a one variable
function f : x 7→ f(x) is the function a : p 7→ a(p) defined by
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a(p) = f(x(p))− px(p),

where x(p) is obtained by inversion of

d

dx
f(x) = p(x).

There is no loss of information in the process as long as the inversion of f ′(x)
is possible and when f is concave, respectively convex, its Legendre transform
is convex, respectively concave. In case f depends on other variables y, one
has the identities

∂

∂p
a(p, y) = −x(p, y), ∂

∂y
a(p, y) =

∂

∂y
f(x, y)

allowing to recover all thermodynamic quantities from F via the relations

∂F

∂T

)
V,N

= −S, ∂F

∂V

)
T,N

= −P, ∂F

∂N

)
T,V

= µ.

We can now provide a justification of the identification (55) as follows,
assuming the thermodynamic limit is taken and extensivity holds. Indeed, by
means of that identification, we get by explicit computation on (56)

∂

∂T
F = −k lnZ − Tk

Tr ( ∂
∂β e

−βH)

Z

∂β

∂T
= −k lnZ − 〈H〉ρG

T
= −S,

which is identical to the first relation above.

Let us present here the classical computation of partition functions asso-
ciated with independent harmonic oscillators.

Let H be the Hilbert space spanned by the eigenvectors {|n〉}n=0,···,∞
of the Hamiltonian Ho in (32) corresponding to the energies εn = 1

2 + n,
n = 0, · · · ,∞ (we assume ~ω = 1, without loss). Working in the canonical
ensemble, the partition function of one harmonic oscillator reads

Z1(β) = Tr (e−βHo) = e−β/2
∞∑
n=0

e−βn =
1

eβ/2 − e−β/2
,

the internal energy U1(β) = 〈Ho〉ρG
is given by

U(β) = −∂ ln(Z1(β))
∂β

=
1
2

coth(β/2),

whereas the free energy F1(β) reads

F (β) = −kT ln(Z1(β)) = kT ln(eβ/2 − e−β/2).
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In case we work with a d-dimensional harmonic oscillator, or, equivalently,
with d independent oscillators with the same frequency, we denote by
|n1, n2, · · · , nd〉, nj ∈ N, j = 1, · · · , d, the eigenvector corresponding to the
energy d

2 + n1 + · · ·+ nd. Thus, the corresponding partition function reads

Z(β, d) = e−βd/2
∑

n1≥0,n2≥0,···,nd≥0

e−β(n1+···+nd) = Z(β)d,

so that the internal and free energies and are given by

U(β, d) = dU(β), Fd(β, d) = dF (β). (58)

Going from the micro canonical to the canonical ensemble, we have al-
lowed energy exchanges between the system under consideration and a ther-
mal reservoir. In a similar fashion, we can relax the condition that the num-
ber of particles in the system is fixed and allow particles exchanges with the
reservoir as well, assuming the their average number only is fixed. This cor-
responds to working in the grand canonical ensemble. As we will see later
on, allowing particles exchanges in Quantum Open Systems is essential, in
the sense that the statistical properties of these particles, i.e. their bosonic
or fermionic nature, have definite physical consequences.

This calls for a precision about the Hilbert space suitable to describe
such situations, the so-called second quantization formalism. The Hilbert
space allowing variable numbers of particles is either the symmetrical or anti-
symmetrical Fock space, depending on the statistics. These Hilbert spaces will
be object of much mathematical care later on, so we will briefly and infor-
mally describe here the bosonic and fermionic Fock spaces F±(H). If H is
the one-particle Hilbert space, the n-fold properly symmetrized tensor prod-
uct Hn

± is the n-boson or n-fermion subspace. An element Ψ of F±(H) is
a collection {ψ(n)}n∈N, where ψ(n) ∈ Hn

±, for all n > 0, ψ(0) ∈ C ≡ H0
±,

with the obvious linear structure and norm ‖Ψ‖2± =
∑
n ‖ψ(n)2‖±. Observ-

ables B on the Fock space can be constructed as B =
∑
nB(n), where the

B(n)’s acting on the n-particle subspaces are given, (with B(0) = 0). In par-
ticular, the number operator N defined by NΨ = {nψ(n)}n∈N has the form
N =

∑
n n II H± . Another case is that of one body operators. That is when

A =
∑
nA(n) with A(n) =

∑n
j=1Aj , where Aj = II ⊗ · · · II ⊗ A ⊗ II · · · II ,

and A acts on the j’th copy of H.
With these preliminaries behind us, let us assume we are given a Hamil-

tonian H with the structure above. The equilibrium state in that framework
is obtained by maximization of the entropy, under the constraints that both
the average energy and average number of particles are fixed. This leads to
the computation of the first and second variations of the functional G over
the density matrices defined by

G(ρ) = S(ρ)− kβ〈H〉ρ + kβµ〈N〉ρ,
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where β and µ are Lagrange multipliers associated with the imposed con-
straints. They will be identified in the thermodynamic limit, with the inverse
temperature and chemical potential, respectively. A maximizing procedure
quite similar to the one performed above that we will not detail here yields
the extremum

ρGC =
e−β(H−µN)

Z
where, due to the structure of H and N, the grand canonical partition function
Z can be written as

Z =
∑
n

eβµn TrHn
±
(e−βH(n)).

The quantity z = eβµ is also called the fugacity and with Zn the canonical
partition function, we can rewrite

Z =
∑
n

znZn.

One can also verify that the maximal value of G is

S(ρ
GC

)− kβ〈H〉ρGC
+ kβµ〈N〉ρGC

= k lnZ. (59)

To make the bridge with thermodynamics, consider the thermodynamical
grand potential Φ defined by the Legendre transform of F with respect to N ,
i.e.

Φ(T, V, µ) = (F − µN)(T, V, µ)

where ∂F
∂N = µ. One can then see by formal manipulations similar to those

performed above, assuming the thermodynamic limit and extensivity holds,
that Φ is minimal at equilibrium. From (59) and (47), we get that this mini-
mum is given by

Φ = −PV = −kT lnZ

and we further have the thermodynamical relations

∂Φ

∂T

)
V,µ

= −S, ∂Φ

∂µ

)
T,V

= −N.

The ensemble (microcanonical, canonical or grand canonical) chosen to
describe a specific system is largely made according to convenience for the
computations. Therefore it is comforting to know that the respective descrip-
tions are all equivalent. This is the statement known as the equivalence of
ensembles which says that in the thermodynamical limit, one can use either
the microcanonical or the canonical ensemble to perform calculations of ther-
modynamical quantities because the results will agree. Instead of providing
a justification of this statement here, we shall be content with the explicit
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verification of this fact for a system of independent harmonic oscillators con-
sidered in the microcanonical and canonical ensembles.

In the microcanonical ensemble, we compute the entropy by means of
(45). If we have N independent oscillators each of which has energy levels
j + 1/2, j ∈ N, we get for N large,

Γ (E) ' #

nj ∈ N, j = 1, · · · , N, |
∑
j

nj = E −N/2

 '
(
E +N/2

N

)
,

using the combinatoric formula

#

nj ∈ N, j = 1, · · · , N, |
∑
j

nj = M ∈ N

 =
(
M +N − 1
N − 1

)
.

Hence, by means of Stirling formula, we compute in term of the energy density
e = E/N ,

S(E,N) ' Nk

(
(e+

1
2
) ln(e+

1
2
)− (e− 1

2
) ln(e− 1

2
)
)
≡ Ns(e).

Therefore, the temperature is determined by

1
T

=
∂s(e)
∂e

= k ln
(
e+ 1

2

e− 1
2

)
,

so that we get the following formula for the energy density

e =
1
2

(
eβ + 1
eβ − 1

)
=

1
2

coth(β/2).

For the same system considered in the canonical ensemble, we obtained in
(58) with d = N ,

U(β,N) = NU(β) = N
1
2

coth(β/2),

which yields the same energy density e = U/N .

Let us consider now the computation of the grand canonical partition
function, in the simple bosonic/fermionic context where particles do not in-
teract with one another.
Consider the normalized vector |n0, n1, n2, · · · , nj , · · ·〉± ∈ F±(H) in the so-
called occupation number representation relative to the eigenstates states |n〉
in H of some nondegenerate hamiltonian H. This vector consists in a nor-
malized, fully (anti)symmetrized tensor product of states |n〉 ∈ H charac-
terized by n0 factors |0〉, n1 factors |1〉, · · · nj factors |j〉, etc. The num-
ber of particles N in such a state is obviously given by N =

∑
k nk. In
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case of bosons, nj ∈ N without restriction, whereas in case of fermions,
Pauli’s principle enforces nj ∈ {0, 1}, for any j. We’ll denote by N′ the
set of allowed values of the nj ’s , depending on the statistics. The collec-
tion {|n0, n1, n2, · · · , nj , · · ·〉±}n0∈N′,···,nj∈N′ forms an orthonormal basis of
F±(H). If one considers only the states with a fixed number of particles, one
gets that the set {|n0, n1, n2, · · · , nj , · · ·〉± |

∑
k nk = N } forms an orthonor-

mal basis of the subspace HN
± .

Let εn denote the eigenvalue of H corresponding to |n〉. Then the one
body observable H in F±(H) constructed from H satisfies

H |n0, n1, n2, · · · , nj , · · ·〉± =
∑
k

nkεk |n0, n1, n2, · · · , nj , · · ·〉±.

The corresponding physical system consists of a collection of independent
fermions or bosons individually driven by the Hamiltonian H. Though quite
simple, such systems allow to put forward the effect of the statistics. The
canonical partition function ZN (β) of N independent fermions/bosons is

ZN (β) =
∑

{nj |
P

j nj=N}

e−β
P

j njεj ,

where the restrictions on the nj ’s due to the statistics are implicit in the
notation. Hence, with z = eβµ,

Z(β, z) =
∑
N≥0

zN
∑

{nj |
P

j nj=N}

e−β
P

j njεj =
∑
N≥0

∑
{nj |

P
j nj=N}

∏
j

(ze−βεj )nj

=
∏
j

[∑
n

(ze−βεj )n
]

=
{∏

j(1− ze−βεj )−1 for bosons∏
j(1 + ze−βεj ) for fermions.

In particular, we compute

〈N〉ρGC
= z

∂

∂z
ln(Z(β, z)) =

{∑
j

ze−βεj

1−ze−βεj
for bosons∑

j
ze−βεj

1+ze−βεj
for fermions,

which allows to determine z. Similarly, the average occupation numbers can
be obtained as

〈nj〉ρGC
= − 1

β

∂

∂εj
ln(Z(β, z)) =

ze−βεj

1∓ ze−βεj

{
for bosons

for fermions.

Therefore, we get the expected relation

〈N〉ρGC
=
∑
j

〈nj〉ρGC
,

where we clearly see the effects of the statistics and temperature on the the
average occupation numbers.
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