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1. Introduction and Model

A repeated interaction quantum system consists of a reference quantum
subsystem S which interacts successively with the elements Em of a chain
C = E1+E2+· · · of independent quantum systems. At each moment in time,
S interacts precisely with one Em (m increases as time does), while the other
elements in the chain evolve freely according to their intrinsic dynamics.
The complete evolution is described by the intrinsic dynamics of S and of
all the Em, plus an interaction between S and Em, for each m. The latter is
characterized by an interaction time τm > 0, and an interaction operator Vm
(acting on S and Em); during the time interval [τ1+· · ·+τm−1, τ1+· · ·+τm),
S is coupled to Em only via Vm. Systems with this structure are important
from a physical point of view, since they arise naturally as models for funda-
mental experiments on the interaction of matter with quantized radiation.
As an example, the “One atom maser” provides an experimental setup in
which the system S represents a mode of the electromagnetic field, whereas
the elements Ek describe atoms injected in the cavity, one by one, which
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interact with the field during their flight in the cavity. After they leave the
cavity, the atoms encode some properties of the field which can be mea-
sured on these atoms14 ,16 For repeated interaction systems considered as
ideal, i.e. such that all atoms are identical with identical interactions and
times of flight through the cavity, corresponding mathematical analyses are
provided in17 ,7 To take into account the unavoidable fluctuations in the
experiment setup used to study these repeated interaction systems, mod-
elizations incorporating randomness have been proposed and studied in8

and.9 With a different perspective, repeated quantum interaction models
also appear naturally in the mathematical study of modelization of open
quantum systems by means of quantum noises, see4 and references therein.
Any (continuous) master equation governing the dynamics of states on a
system S can be viewed as the projection of a unitary evolution driving the
system S and a field of quantum noises in interaction. It is shown in4 how
to recover such continuous models as some delicate limit of a discretization
given by a repeated quantum interaction model. Let us finally mention15

for results of a similar flavour in a somewhat different framework.

Our goal is to present the results of the papers7 ,8 and9 on (random)
repeated interaction quantum systems, which focus on the long time be-
haviour of these systems.

Let us describe the mathematical framework used to describe these
quantum dynamical systems. According to the fundamental principles of
quantum mechanics, states of the systems S and Em are given by normal-
ized vectors (or density matrices) on Hilbert spaces HS and HEm , respec-
tively,3,6a. We assume that dimHS < ∞, while dimHEm may be infinite.
Observables AS and AEm of the systems S and Em are bounded opera-
tors forming von Neumann algebras MS ⊂ B(HS) and MEm ⊂ B(HEm).
They evolve according to the Heisenberg dynamics R 3 t 7→ αtS(AS) and
R 3 t 7→ αtEm

(AEm), where αtS and αtEm
are ∗-automorphism groups of MS

and MEm , respectively, see e.g.6 We now introduce distinguished reference
states, given by vectors ψS ∈ HS and ψEm ∈ HEm . Typical choices for ψS ,
ψEm are equilibrium (KMS) states for the dynamics αtS , αtEm

, at inverse
temperatures βS , βEm

. The Hilbert space of states of the total system is
the tensor product

H = HS ⊗HC ,

aA normalized vector ψ defines a “pure” state A 7→ 〈ψ,Aψ〉 = Tr(%ψA), where %ψ =
|ψ〉〈ψ|. A general “mixed” state is given by a density matrix % =

P
n≥1 pn%ψn , where

the probabilities pn ≥ 0 sum up to one, and where the ψn are normalized vectors.



April 18, 2008 16:58 WSPC - Proceedings Trim Size: 9in x 6in qmath10

3

where HC =
⊗

m≥1HEm
, and where the infinite product is taken with

respect to ψC =
⊗

m≥1 ψEm . The non-interacting dynamics is the prod-
uct of the individual dynamics, defined on the algebra MS

⊗
m≥1 MEm

by αtS
⊗

m≥1 α
t
Em

. It will prove useful to consider the dynamics in the
Schrödinger picture, i.e. as acting on vectors in H. To do this, we first
implement the dynamics via unitaries, satisfying

αt#(A#) = eitL#A#e−itL# , t ∈ R, and L#ψ# = 0, (1)

for any A# ∈ M#, where # stands for either S or Em. The self-adjoint
operators LS and LEm

, called Liouville operators or “positive temperature
Hamiltonians”, act onHS andHEm

, respectively. The existence and unique-
ness of L# satisfying (1) is well known, under general assumptions on the
reference states ψ#.6 We require these states to be cyclic and separating.
In particular, (1) holds if the reference states are equilibrium states. Let
τm > 0 and Vm ∈ MS ⊗MEm be the interaction time and interaction oper-
ator associated to S and Em. We define the (discrete) repeated interaction
Schrödinger dynamics of a state vector φ ∈ H, for m ≥ 0, by

U(m)φ = e−ieLm · · · e−ieL2e−ieL1φ, (2)

where

L̃k = τkLk + τk
∑
n 6=k

LEn (3)

describes the dynamics of the system during the time interval [τ1 + · · · +
τk−1, τ1 + · · · + τk), which corresponds to the time-step k of our discrete
process. Hence Lk is

Lk = LS + LEk
+ Vk, (4)

acting on HS ⊗ HEk
. We understand that the operator LEn in (3) acts

nontrivially only on the n-th factor of the Hilbert space HC of the chain.
As a general rule, we will ignore tensor products with the identity operator
in the notation.

A state %(·) = Tr(ρ · ) given by density matrix ρ on H is called a normal
state. Our goal is to understand the large-time asymptotics (m → ∞) of
expectations

% (U(m)∗OU(m)) = %(αm(O)), (5)

for normal states % and certain classes of observables O that we specify
below. We denote the (random) repeated interaction dynamics by

αm(O) = U(m)∗OU(m). (6)
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1.1. Van Hove Limit Type Results

A first step towards understanding the dynamics of repeated interaction
quantum systems reduced to the reference system S was performed in
the work.2 This paper considers Ideal Repeated Quantum Interaction Sys-
tems which are characterized by identical elements Ek ≡ E in the chain
C, constant interaction times τk ≡ τ and identical interaction operators
Vk ≡ V ∈ MS ⊗ ME between S and the elements E of the chain. In
this setup, a Van Hove type analysis of the system is presented, in sev-
eral regimes, to describe the dynamics of observables on S in terms of a
Markovian evolution equation of Lindblad type. Informally, the simplest
result of2 reads as follows. Assume the interaction operator V is replaced
by λV , where λ > 0 is a coupling constant, and let m, the number of inter-
actions during the time T = mτ , scale like m ' t/λ2, where 0 ≤ t <∞ and
τ are fixed. Assume all elements of the chain are in a same thermal state
at temperature β. Then, the weak coupling limit λ→ 0 of the evolution of
any observable O acting on S obtained by tracing out the chain degrees of
freedom from the evolution (6) satisfies, after removing a trivial free evolu-
tion, a continuous Lindblad type evolution equation in t. The temperature
dependent generator is explicitely obtained from the interaction operator
V and the free dynamics. The asymptotic regimes of the parameters (λ, τ)
characterized by τ → 0 and τλ2 ≤ 1 are also covered in,2 giving rise to dif-
ferent Lindblad generators which all commute with the free Hamiltonian on
S. The critical situation, where τ → 0 with τλ2 = 1 yields a quite general
Lindblad generator, without any specific symmetry. In particular, it shows
that any master equation driven by Lindblad operator, under reasonable
assumptions, can be viewed as a Van Hove type limit of a certain explicit
repeated interaction quantum system.

By contrast, the long time limit results obtained in7 ,8 and9 that we
present here are obtained without rescaling any coupling constant or pa-
rameter, as is usually the case with master equation techniques. It is pos-
sible to do without these approximations, making use of the structure of
repeated interaction systems only, as we now show.

2. Reduction to Products of Matrices

We first link the study of the dynamics to that of a product of reduced dy-
namics operators. In order to make the argument clearer, we only consider
the expectation of an observable AS ∈ MS , and we take the initial state of
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the entire system to be given by the vector

ψ0 = ψS ⊗ ψC , (7)

where the ψS and ψC are the reference states introduced above. We’ll com-
ment on the general case below. The expectation of AS at the time-step m
is

〈ψ0, α
m(AS)ψ0〉 =

〈
ψ0, P eieL1 · · · eieLmAS e−ieLm · · · e−ieL1Pψ0

〉
, (8)

where we introduced

P = 1lHS

⊗
m≥1

PψEm
, (9)

the orthogonal projection ontoHS⊗CψC . A first important ingredient in our
analysis is the use of C-Liouvilleans introduced in11 , which are operators
Kk defined by the properties

eieLkAe−ieLk = eiKkAe−iKk , (10)

Kk ψS ⊗ ψC = 0, (11)

where A in (10) is any observable of the total system. The identity (10)
means that the operators Kk implement the same dynamics as the L̃k
whereas relation (11) selects a unique generator of the dynamics among
all operators which satisfy (10). The existence of operators Kk satisfying
(10) and (11) is rooted to the Tomita-Takesaki theory of von Neumann
algebras, c.f.11 and references therein. It turns out that the Kk are non-
normal operators on H, while the L̃k are self-adjoint. Combining (10) with
(8) we can write

〈ψ0, α
m(AS)ψ0〉 =

〈
ψ0, P eiK1 · · · eiKmPAS ψ0

〉
. (12)

A second important ingredient of our approach is to realize that the inde-
pendence of the sub-systems Em implies the relation

P eiK1 · · · eiKmP = P eiK1P · · ·P eiKmP. (13)

Identifying P eiKkP with an operator Mk on HS , we thus obtain from (12)
and (13),

〈ψ0, α
m(AS)ψ0〉 = 〈ψS ,M1 · · ·MmAS ψS〉 . (14)

It follows from (11) that MkψS = ψS , for all k, and, because the operators
Mk = P eiKkP implement a unitary dynamics, we show (Lemma 4.1) that
the Mk are always contractions for some suitable norm ||| · ||| on Cd. This
motivates the following
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Definition: Given a vector ψS ∈ Cd and a norm on ||| · ||| on Cd, we call
Reduced Dynamics Operator any matrix which is a contraction for ||| · |||
and leaves ψS invariant.

Remark: In case all couplings between S and Ek are absent, Vk ≡ 0,
Mk = eiτkLS is unitary and admits 1 as a degenerate eigenvalue.

We will come back on the properties of reduced dynamics operators
(RDO’s, for short) below. Let us emphasize here that the reduction process
to product of RDO’s is free from any approximation, so that the set of
matrices {Mk = P eiKkP}k∈N encodes the complete dynamics. In particu-
lar, we show, using the cyclicity and separability of the reference vectors
ψS , ψEk

, that the evolution of any normal state, not only 〈ψ0, · ψ0〉, can be
understood completely in terms of the product of these RDO’s.

We are now in a position to state our main results concerning the asymp-
totic dynamics of normal states % acting on certain observables O. These
result involve a spectral hypothesis which we introduce in the next

Definition: Let M(E) denote the set of reduced dynamics operators whose
spectrum σ(M) satisfies σ(M) ∩ {z ∈ C | |z| = 1} = {1} and 1 is simple
eigenvalue.

We shall denote by P1,M the spectral projector of a matrix M corre-
sponding to the eigenvalue 1. As usual, if the eigenvalue 1 is simple, with
corresponding normalized eigenvector ψS , we shall write P1,M = |ψS〉〈ψ|
for some ψ s.t. 〈ψ|ψS〉 = 1.

3. Results

3.1. Ideal Repeated Interaction Quantum System

We consider first the case of Ideal Repeated Interaction Quantum Systems,
characterized by

Ek = E , LEk
= LE , Vk = V, τk = τ for all k ≥ 1,

Mk = M, ∀k ≥ 1. (15)

Theorem 3.1. Let αn be the repeated interaction dynamics determined by
one RDO M . Suppose that M ∈ M(E) so that P1,M = |ψS〉〈ψ|. Then, for
any 0 < γ < infz∈σ(M)\{1}(1−|z|), any normal state %, and any AS ∈ MS ,

% (αn(AS)) = 〈ψ,ASψS〉+O(e−γn). (16)
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Remarks: 1. The asymptotic state 〈ψ| ·ψS〉 and the exponential decay rate
γ are both determined by the spectral properties of the RDO M .

2. On concrete examples, the verification of the spectral assumption on
M can be done by rigorous perturbation theory, see.7 It is reminiscent of a
Fermi Golden Rule type condition on the efficiency of the coupling V , see
the remark following the definiton of RDO’s.

3. Other properties of ideal repeated interaction quantum systems are
discussed in7 , e.g. continuous time evolution and correlations.

For deterministic systems which are not ideal, the quantity % (αn(AS))
keeps fluctuating as n increases, which, in general, forbids convergence, see
Proposition 5.3. That’s why we resort to ergodic limits in a random setup,
as we now explain.

3.2. Random Repeated Interaction Quantum System

To allow a description of the effects of fluctuations on the dynamics of
repeated interaction quantum systems, we consider the following setup.

Let ω 7→M(ω) be a random matrix valued variable on Cd defined on a
probability space (Ω,F ,p). We say thatM(ω) is a random reduced dynamics
operator (RRDO) if

(i) There exists a norm ||| · ||| on Cd such that, for all ω, M(ω) is a
contraction on Cd for the norm ||| · |||.

(ii) There exists a vector ψS , constant in ω, such that M(ω)ψS = ψS ,
for all ω.

To an RRDO ω 7→ M(ω) on Ω is naturally associated a iid random
reduced dynamics process (RRDP)

ω 7→M(ω1) · · ·M(ωn), ω ∈ ΩN∗ , (17)

where we define in a standard fashion a probability measure dP on ΩN∗ by

dP = Πj≥1dpj , where dpj ≡ dp, ∀j ∈ N∗.

We shall write the expectation of any random variable f as E[f ].

Let us denote by αnω, ω ∈ ΩN∗ , the process obtained from (6), (14),
where the Mj = M(ωj) in (14) are iid random matrices. We call αnω the
random repeated interaction dynamics determined by the RRDO M(ω) =
P eiK(ω)P . It is the independence of the successive elements Ek of the chain
C which motivates the assumption that the process (17) be iid.
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Theorem 3.2. Let αnω be the random repeated interaction dynamics de-
termined by an RRDO M(ω). Suppose that p(M(ω) ∈ M(E)) > 0. Then
there exists a set Ω ⊂ ΩN∗ , s.t. P(Ω) = 1, and s.t. for any ω ∈ Ω, any
normal state % and any AS ∈ MS ,

lim
N→∞

1
N

N∑
n=1

% (αnω(AS)) = 〈θ,ASψS〉 , (18)

where θ = P ∗1,E[M ]ψS .

Remarks: 1. Our setup allows us to treat systems having various sources
of randomness. For example, random interactions or times of interactions,
as well as random characteristics of the systems Em and S such as random
temperatures and dimensions of the Em and of S.

2. The asymptotic state 〈θ, · ψS〉 is again determined by the spectral
data of a matrix, the expectation E[M ] of the RRDO M(ω). Actually, our
hypotheses imply that E[M ] belongs to M(E), see below.

3. The explicit computation of the asymptotic state, in this Theorem
and in the previous one, is in general difficult. Nevertheless, they can be
reached by rigorous perturbation theory, see the examples in7 ,8 and.9

3.3. Instantaneous Observables

There are important physical observables that describe exchange processes
between S and the chain C and, which, therefore, are not represented by
operators that act just on S. To take into account such phenomena, we
consider the set of observables defined as follows.

Definition: The instantaneous observables of S + C are of the form

O = AS ⊗rj=−l B(j)
m , (19)

where AS ∈ MS and B(j)
m ∈ MEm+j .

Instantaneous observables can be viewed as a train of l+ r+1 observables,
roughly centered at Em, which travel along the chain C with time.

Following the same steps as in Section 2, we arrive at the following
expression for the evolution of the state ψ0 acting on an instantaneous
observable O at time m:

〈ψ0, α
m(O)ψ0〉 = 〈ψ0, PM1 · · ·Mm−l−1Nm(O)Pψ0〉 . (20)
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Here again, P is the orthogonal projection onto HS , along ψC . The operator
Nm(O) acts on HS and has the expression (Proposition 2.4 in9)

Nm(O)ψ0 = (21)

P eiτm−l
eLm−l · · · eiτm

eLm(AS ⊗rj=−l B(j)
m )e−iτm

eLm · · · e−iτm−l
eLm−lψ0.

We want to analyze the asymptotics m → ∞ of (20), allowing for ran-
domness in the system. We make the following assumptions on the random
instantaneous observable:

(R1) The operators Mk are RRDO’s, and we write the corresponding iid
random matrices Mk = M(ωk), k = 1, 2, · · · , .

(R2) The random operator Nm(O) is independent of the Mk with 1 ≤
k ≤ m − l − 1, and it has the form N(ωm−l, . . . , ωm+r), where
N : Ωr+l+1 → B(Cd) is an operator valued random variable.

The operator Mk describes the effect of the random k-th interaction on
S, as before. The random variable N in (R2) does not depend on the time
step m, which is a condition on the observables. It means that the nature
of the quantities measured at time m are the same. For instance, the B(j)

m

in (19) can represent the energy of Em+j , or the part of the interaction
energy Vm+j belonging to Em+j , etc. Both assumptions are verified in a
wide variety of physical systems: we may take random interaction times
τk = τ(ωk), random coupling operators Vk = V (ωk), random energy levels
of the Ek encoded in LEk

= LE(ωk), random temperatures βEk
= βE(ωk) of

the initial states of Ek, and so on.
The expectation value in any normal state of such instantaneous ob-

servables reaches an asymptotic value in the ergodic limit given in the next

Theorem 3.3. Suppose that p(M(ω) ∈ M(E)) 6= 0. There exists a set
Ω̃ ⊂ ΩN∗ of probability one s.t. for any ω ∈ Ω̃, for any instantaneous
observable O, (19), and for any normal initial state %, we have

lim
µ→∞

1
µ

µ∑
m=1

%
(
αmω (O)

)
= 〈θ,E[N ]ψS〉 , E[N ] ∈ MS . (22)

Remarks 1. The asymptotic state in which one computes the expectation
(w.r.t the randomness) of N is the same as in Theorem 3.2, with θ =
P ∗1,E[M ]ψS .

2. In case the system is deterministic and ideal, the same result holds,
dropping the expectation on the randomness and taking θ = ψ, as in The-
orem 3.1, see.7
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3.4. Energy and Entropy Fluxes

Let us consider some macroscopic properties of the asymptotic state. The
systems we consider may contain randomness, but we drop the variable ω
from the notation.

Since we deal with open systems, we cannot speak about its total en-
ergy; however, variations in total energy are often well defined. Using an
argument of7 one gets a formal expression for the total energy which is
constant during all time-intervals [τm−1, τm), and which undergoes a jump

j(m) := αm(Vm+1 − Vm) (23)

at time stepm. Hence, the variation of the total energy between the instants
0 andm is then ∆E(m) =

∑m
k=1 j(k). The relative entropy of % with respect

to %0, two normal states on M, is denoted by Ent(%|%0). Our definition
of relative entropy differs from that given in6 by a sign, so that in our
case, Ent(%|%0) ≥ 0. For a thermodynamic interpretation of entropy and
its relation to energy, we assume for the next result that ψS is a (βS , αtS)–
KMS state on MS , and that the ψEm

are (βEm
, αtEm

)–KMS state on MEm
,

where βS is the inverse temperature of S, and βEm
are random inverse

temperatures of the Em. Let %0 be the state on M determined by the vector
ψ0 = ψS ⊗ ψC = ψS

⊗
m ψEm

. The change of relative entropy is denoted
∆S(m) := Ent(% ◦ αm|%0) − Ent(%|%0). This quantity can be expressed in
terms of the Liouvillean and interaction operators by means of a formula
proven in.12

One checks that both the energy variation and the entropy variations
can be expressed as instantaneous observables, to which we can apply the
results of the previous Section. Defining the asymptotic energy and entropy
productions by the limits, if they exist,

lim
m→∞

%

(
∆E(m
m

)
=: dE+ and lim

m→∞

∆S(m)
m

=: dS+, (24)

we obtain

Theorem 3.4 (2nd law of thermodynamics). Let % be a normal state
on M. Then

dE+ =
〈
θ,E

[
P (LS + V − eiτL(LS + V )e−iτL)P

]
ψS

〉
a.s.

dS+ =
〈
θ,E

[
βE P (LS + V − eiτL(LS + V )e−iτL)P

]
ψS

〉
a.s.

The energy- and entropy productions dE+ and dS+ are independent of the
initial state %. If βE is deterministic, i.e., ω-independent, then the system
satisfies the second law of thermodynamics: dS+ = βEdE+.
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Remark: There are explicit examples in which the entropy production can
be obtained via rigorous perturbation theory and is proven to be strictly
positive, a sure sign that the asymptotic state is a NESS, see7 .

As motivated by (14), the theorems presented in this Sections all rely
on the analysis of products of large numbers of (random) RDO’s. The rest
of this note is devoted to a presentation of some of the key features such
products have.

4. Basic Properties of RDO’s

Let us start with a result proven in7 as Proposition 2.1.

Lemma 4.1. Under our general assumptions, the set of matrices {Mj}j∈N∗

defined in (14) satisfy MjψS = ψS , for all j ∈ N∗. Moreover, to any φ ∈ HS
there corresponds a unique A ∈ MS such that φ = AψS . |||φ||| := ‖A‖B(HS)

defines a norm on HS , and as operators on HS endowed with this norm,
the Mj are contractions for any j ∈ N∗.

Again, the fact that ψS is invariant under Mj is a consequence of (11) and
their being contractions comes from the unitarity of the quantum evolution
together with the finite dimension of HS .

As a consequence of the equivalence of the norms ‖ · ‖ and ||| · |||, we get

Corollary 4.1. We have 1 ∈ σ(Mj) ⊂ {z | |z| = 1} and

sup {‖MjnMjn−1 · · ·Mj1‖, n ∈ N∗, jk ∈ N∗} = C0 <∞

Actually, if a set of operators satisfies the bound of the Corollary, it
is always possible to construct a norm on Cd relative to which they are
contractions, as proven in the next

Lemma 4.2. Let R = {Mj ∈ Md(C)}j∈J , where J is any set of indices
and C(R) ≥ 1 such that

‖Mj1Mj2 · · ·Mjn‖ ≤ C(R), ∀{ji}i=1,··· ,n ∈ Jn, ∀n ∈ N. (25)

Then, there exists a norm ||| · ||| on Cd, which depends on R, relative to
which the elements of R are contractions.

Proof: Let us define T ⊂Md(C) by

T = ∪n∈N ∪(j1,j2,···jn)∈Jn Mj1Mj2 · · ·Mjn . (26)
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Obviously R ⊂ T , but the identity matrix I does not necessarily belong to
T . Moreover, the estimate (25) still holds if the Mji ’s belong to T instead
of R. For any ϕ ∈ Cd we set

|||ϕ||| = sup
M∈T∪I

‖Mϕ‖ ≥ ‖ϕ‖, (27)

which defines a bona fide norm. Then, for any vector ϕ and any element N
of T we compute

|||Nϕ||| = sup
M∈T∪I

‖MNϕ‖ ≤ sup
M∈T∪I

‖Mϕ‖ = |||ϕ|||, (28)

from which the result follows.

Remark. If there exists a vector ψS invariant under all elements of R, it is
invariant under all elements of T and satisfies ‖ψS‖ = |||ψS ||| = 1.

5. Deterministic Results

In this section, we derive some algebraic formulae and some uniform bounds
for later purposes. Since there is no probabilistic issue involved here, we shall
therefore simply denote Mj = M(ωj). We are concerned with the product

Ψn := M1 · · ·Mn. (29)

5.1. Decomposition of the Mj

With P1,Mj the spectral projection of Mj for the eigenvalue 1 we define

ψj := P ∗1,jψS , Pj := |ψS〉〈ψj |. (30)

Note that 〈ψj |ψS〉 = 1 so that Pj is a projection and, moreover,M∗
j ψj = ψj .

We introduce the following decomposition of Mj

Mj := Pj +QjMjQj , with Qj = 1l− Pj . (31)

We denote the part of Mj in QjCd, by MQj
:= QjMjQj . It easily follows

from these definitions that

PjPk = Pk, QjQk = Qj , (32)

QjPk = 0, PkQj = Pk − Pj = Qj −Qk. (33)

Remark. If 1 is a simple eigenvalue, P1,Mj
= Pj and (31) is a (partial)

spectral decomposition of Mj .
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Proposition 5.1. For any n,

Ψn = |ψS〉〈θn|+MQ1 · · ·MQn , (34)

where

θn = ψn +M∗
Qn
ψn−1 + · · ·+M∗

Qn
· · ·M∗

Q2
ψ1 (35)

= M∗
n · · ·M∗

2ψ1 (36)

and where 〈ψS , θn〉 = 1.

Proof. Inserting the decomposition (31) into (29), and using (32), (33),
we have

Ψn =
n∑
j=1

PjMQj+1 · · ·MQn +MQ1 · · ·MQn .

Since Pj = |ψS〉〈ψj |, this proves (34) and (35). From (33), we obtain for
any j, k,

MQjMQk
= MQjMk = QjMjMk. (37)

Hence, Ψn = P1M1 · · ·Mn + Q1M1 · · ·Mn = |ψS〉〈M∗
n · · ·M∗

2ψ1| +
MQ1 · · ·MQn , which proves (36). �

5.2. Uniform Bounds

The operators Mj , and hence the product Ψn, are contractions on Cd for
the norm ||| · |||. In order to study their asymptotic behaviour, we need some
uniform bounds on the Pj , Qj , . . . Recall that ‖ψS‖ = 1.

Proposition 5.2. Let C0 be as in Corollary 4.1. Then, the following
bounds hold

(1) For any n ∈ N∗, ‖Ψn‖ ≤ C0.
(2) For any j ∈ N∗, ‖Pj‖ = ‖ψj‖ ≤ C0 and ‖Qj‖ ≤ 1 + C0.
(3) sup {‖MQjn

MQjn−1
· · ·MQj1

‖, n ∈ N∗, jk ∈ N∗} ≤ C0(1 + C0).
(4) For any n ∈ N∗, ‖θn‖ ≤ C2

0 .

Proof. It is based on Von Neumann’s ergodic Theorem, which states that

P1,Mj = lim
N→∞

1
N

N−1∑
k=0

Mk
j .
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The first two estimate easily follow, whereas the third makes use of (37) to
get MQjn

MQjn−1
· · ·MQj1

= QjnMjnMjn−1 · · ·Mj1 , so that

‖MQjn
MQjn−1

· · ·MQj1
‖ ≤ ‖Qjn‖C0 ≤ C0(1 + C0).

Finally, (36) and the above estimates yield ‖θn‖ ≤ C0‖ψ1‖ ≤ C2
0 . �

5.3. Asymptotic Behaviour

We now turn to the study of the asymptotic behaviour of Ψn, starting with
the simpler case of Ideal Repeated Interaction Quantum Systems.

That means we assume

Mk = M, ∀k ≥ 1. (38)

If 1 is a simple eigenvalue of M , then P1,M = |ψS〉〈ψ|, for some ψ s.t.
〈ψ|ψS〉 = 1, and

Ψn = Mn = |ψS〉〈ψ|+Mn
Q (39)

Further, if all other eigenvalues of M belong to the open unit disk, Mn
Q

converges exponentially fast to zero as n→∞.
Consequently, denoting by spr(N) the spectral radius of N ∈Md(C),

Lemma 5.1. If the RDO M belongs to M(E),

Ψn = |ψS〉〈ψ|+O(e−γn), (40)

for all 0 < γ < 1− spr(MQ).

Two things are used above, the decay of Mn
Q and the fact that θn = ψ is

constant, see (34). The following result shows that in general, if one knows
a priori that the products of MQj ’s in (34) goes to zero, Ψn converges if
and only if Pn = |ψS〉〈ψn|, does.

Proposition 5.3. Suppose that limn→∞ sup{‖MQjn
· · ·MQj1

‖, jk ∈
N∗} = 0. Then θn converges if and only if ψn does. If they exist, these
two limits coincide, and thus

lim
n→∞

Ψn = |ψS〉〈ψ∞|,

where ψ∞ = limn→∞ ψn. Moreover, |ψS〉〈ψ∞| is a projection.

In general, we cannot expect pointwise convergence of the θn, but we
can consider an ergodic average of θn instead. This is natural in terms of
dynamical systems, a fluctuating system does not converge.



April 18, 2008 16:58 WSPC - Proceedings Trim Size: 9in x 6in qmath10

15

The previous convergence results relies on the decay of the product
of operators MQj . Conditions ensuring this are rather strong. However,
Theorem 6.1 below shows that in the random setting, a similar exponential
decay holds under rather weaker assumptions.

6. Random Framework

6.1. Product of Random Matrices

We now turn to the random setup in the framework of Section 3.2. For
M(ω) an RRDO, with probability space (Ω,F ,p), we consider the RRDP
on ΩN∗ given by

Ψn(ω) := M(ω1) · · ·M(ωn), ω ∈ ΩN∗ .

We show that Ψn has a decomposition into an exponentially decaying
part and a fluctuating part. Let P1(ω) denote the spectral projection of
M(ω) corresponding to the eigenvalue one (dimP1(ω) ≥ 1), and let P ∗1 (ω)
be its adjoint operator. Define

ψ(ω) := P1(ω)∗ψS , (41)

and set

P (ω) = |ψS〉〈ψ(ω)|, Q(ω) = 1l− P (ω). (42)

The vector ψ(ω) is normalized as 〈ψS , ψ(ω)〉 = 1. We decompose M(ω) as

M(ω) = P (ω) +Q(ω)M(ω)Q(ω) =: P (ω) +MQ(ω). (43)

Taking into account this decomposition, we obtain (c.f. Proposition 5.1)

Ψn(ω) := M(ω1) · · ·M(ωn) = |ψS〉〈θn(ω)|+MQ(ω1) · · ·MQ(ωn), (44)

where θn(ω) is the Markov process

θn(ω) = M∗(ωn) · · ·M∗(ω2)ψ(ω1) (45)

= ψ(ωn) +M∗
Q(ωn)ψ(ωn−1) + · · ·+M∗

Q(ωn) · · ·M∗
Q(ω2)ψ(ω1),

M∗(ωj) being the adjoint operator of M(ωj). We analyze the two parts in
the r.h.s. of (44) separately.

Theorem 6.1 (Decaying process). Let M(ω) be a random reduced dy-
namics operator. Suppose that p(M(ω) ∈M(E)) > 0. Then there exist a set
Ω1 ⊂ ΩN∗ and constants C,α > 0 s.t. P(Ω1) = 1 and s.t. for any ω ∈ Ω1,
there exists a random variable n0(ω) s.t. for any n ≥ n0(ω),

‖MQ(ω1) · · ·MQ(ωn)‖ ≤ Ce−αn, (46)

and E[eαn0 ] <∞. Moreover, E[M ] ∈M(E).
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Remarks. 1. The sole condition of M having an arbitrarily small, non-
vanishing probability to be in M(E) suffices to guarantee the exponential
decay of the product in (46) and that E[M ] belongs to M(E).

2. Actually, E[M ] ∈ M(E) is a consequence of spr(E[MQ]) < 1, which
comes as a by product of the proof of Theorem 6.1. From the identities

E[M ] = |ψS〉〈E[ψ]|+ E[MQ], 〈E[ψ]|ψS〉 = 1, E[MQ]ψS = 0, (47)

which do not correspond to a (partial) spectral decomposition of E[M ],
and this estimate, we get

E[M ]n = |ψS〉〈 E[ψ] + E[MQ]∗E[ψ] + · · ·E[MQ]∗n−1E[ψ] |+ E[MQ]∗n

→
n→∞ |ψS〉〈(I− E[MQ]∗)−1E[ψ]| ≡ P1,E[M ]. (48)

3. Our choice (41) makes ψ(ω) an eigenvector ofM∗(ω). Other choices of
(measurable) ψ(ω) which are bounded in ω lead to different decompositions
of M(ω), and can be useful as well. In particular, if M(ω) is a bistochastic
matrix, ψ(ω) can be chosen as an M∗(ω)-invariant vector which is indepen-
dent of ω.

6.2. A Law of Large Numbers

We now turn to the asymptotics of the Markov process (46).

Theorem 6.2 (Fluctuating process). Let M(ω) be a random reduced
dynamics operator s.t. that p(M(ω) ∈ M(E)) > 0. There exists a set Ω2 ⊂
ΩN∗ s.t. P(Ω2) = 1 and, for all ω ∈ Ω2,

lim
N→∞

1
N

N∑
n=1

θn(ω) = θ, (49)

where

θ = lim
n→∞

E[θn] = P ∗1,E[M ]E[ψ] = P ∗1,E[M ]ψS . (50)

Remarks: 1. The ergodic average limit of θn(ω) does not depend on the
particular choice of ψ(ω). This follows from the last equality in (50).

2. The second equality in (50) stems from

E[θn] =
n−1∑
k=0

(E[MQ])kE[ψ], (51)

by independence, and which converges to P ∗1,E[M ]E[ψ] by (48). The third
equality follows from (47).



April 18, 2008 16:58 WSPC - Proceedings Trim Size: 9in x 6in qmath10

17

3. Comments on the proof of these Theorems are provided below.

Combining Theorems 6.1 and 6.2 we immediately get the following result.

Theorem 6.3 (Ergodic theorem for RRDP). Let M(ω) be a random
reduced dynamics operator. Suppose p(M(ω) ∈ M(E)) > 0. Then there
exists a set Ω3 ⊂ ΩN∗ s.t. P(Ω3) = 1 and, for all ω ∈ Ω3,

lim
N→∞

1
N

N∑
n=1

M(ω1) · · ·M(ωn) = |ψS〉〈θ| = P1,E[M ]. (52)

Remarks 1. If one can choose ψ(ω) ≡ ψ to be independent of ω, then we
have by (36) that θn(ω) = ψ, for all n, ω. Thus, from (44)-(46), we get
the stronger result limn→∞M(ω1) · · ·M(ωn) = |ψS〉〈ψ|, a.s., exponentially
fast.

2. This result can be viewed as a strong law of large numbers for the
matrix valued process Ψn(ω) = M(ω1) · · ·M(ωn).

Comments: The existence of (ergodic) limits of products of random op-
erators is known for a long time and under very general conditions, see
e.g.5 ,13 . However, the explicit value of the limit depends on the detailed
properties of the set of random matrices considered. The point of our anal-
ysis is thus the explicit determination of the limit (52) which is crucial for
the applications to the dynamics of random repeated interaction quantum
systems.

The more difficult part of this task is to prove Theorem 6.1. The idea
consists in identifying matrices in the product Ψn(ω) which are equal (or
close) to a fixed matrix M that belongs to M(E). Consecutive products
of M give an exponential decay, whereas products of other matrices are
uniformly bounded. Then one shows that the density of long strings of con-
secutive M ’s in a typical sample is finite. Once this is done, a self-contained
proof of Theorem 6.3, is not very hard to get8 .

On the other hand, given Theorem 6.1 and the existence result of5 ,
we can deduce Theorem 6.3 as follows. Let us state the result of Beck and
Schwarz in our setup. Let T denote the usual shift operator on ΩN∗ defined
by (Tω)j = ωj+1, j = 1, 2, · · · .

Theorem 6.4 (Beck and Schwartz5). Let M(ω) be a random reduced
dynamics operator on Ω. Then there exists a matrix valued random variable
L(ω) on ΩN∗ , s.t. E[‖L‖] <∞, which satisfies almost surely

L(ω) = M(ω1)L(Tω), (53)
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where T is the shift operator, and

lim
N→∞

1
N

N∑
n=1

M(ω1) · · ·M(ωn) = L(ω). (54)

Further assuming the hypotheses of Theorem 6.1, and making use of the
decomposition (44), we get that L can be written as

L(ω) = |ΨS〉〈θ(ω)|, (55)

for some random vector θ(ω). Now, due to (53) and the fact that ψS is
invariant, θ(ω) satisfies

θ(ω) = θ(Tω) a.s. (56)

The shift being ergodic, we deduce that θ is constant a.s., so that

θ(ω) = E[θ] a.s. (57)

which, in turn, thanks to Proposition 5.2 and Lebesgue dominated conver-
gence Theorem, allows to get from (46)

E[θ] = lim
n→∞

E[θn] = P ∗1,E[M ]ΨS . (58)

6.3. Limit in Law and Lyapunov Exponents

We present here results for products “in reverse order” of the form Φn(ω) :=
M(ωn) · · ·M(ω1), which have the same law as Ψn(ω). They also yield infor-
mation about the Lyapunov exponent of the process. The following results
are standard, see e.g.1 . The limits

ΛΦ(ω) = lim
n→∞

(Φn(ω)∗Φn(ω))1/2n and ΛΨ(ω) = lim
n→∞

(Ψn(ω)∗Ψn(ω))1/2n

exist almost surely, the top Lyapunov exponent γ1(ω) of ΛΦ(ω) coincides
with that of ΛΨ(ω), it is constant a.s., and so is its multiplicity. It is in
general difficult to prove that the multiplicity of γ1(ω) is 1.

Theorem 6.5. Suppose p(M(ω) ∈ M(E)) > 0. Then there exist α > 0, a
random vector

η∞(ω) = lim
n→∞

ψ(ω1) +M∗
Q(ω1)ψ(ω2) + · · ·+M∗

Q(ω1) · · ·M∗
Q(ωn−1)ψ(ωn)

(59)
and Ω4 ⊂ ΩN∗ with P(Ω4) = 1 such that for any ω ∈ Ω4 and n ∈ N∗∥∥∥Φn(ω)− |ψS〉〈η∞(ω)|

∥∥∥ ≤ Cωe
−αn, for some Cω. (60)

As a consequence, for any ω ∈ Ω4, γ1(ω) is of multiplicity one.
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Comments: While the Theorems above on the convergence of asymptotic
states give us the comfortable feeling provided by almost sure results, it is
an important aspect of the theory to understand the fluctuations around
the asymptotic state the system reaches almost surely. In our iid setup, the
law of the product Ψn(ω) of RRDO’s coincides with the law of Φn(ω) which
converges exponentially fast to |ψS〉〈η∞(ω)|. Therefore, the fluctuations are
encoded in the law of the random vector η∞(ω). It turns out it is quite
difficult, in general, to get informations about this law. There are partial
results only about certain aspects of the law of such random vectors in
case they are obtained by means of matrices belonging to some subgroups
of Gld(R) satisfying certain irreducibility conditions, see e.g.10 However,
these results do not apply to our RRDO’s.

6.4. Generalization

A generalization of the analysis performed for observables acting on S only
described above allows to establish the following corresponding results when
instantaneous observables are considered.

The asymptotics of the dynamics (20), in the random case, is encoded
in the product

M(ω1) · · ·M(ωm−l−1)N(ωm−l, . . . , ωm+r),

where N : Ωr+l+1 →Md(C) is given in assumption (R2).

Theorem 6.6 (Ergodic limit of infinite operator product).
Assume M(ω) is a RRDO and (R2) is satisfied. Suppose that p(M(ω) ∈
M(E)) 6= 0. Then E[M ] ∈ M(E). Moreover, there exists a set Ω5 ⊂ ΩN∗ of
probability one s.t. for any ω = (ωn)n∈N ∈ Ω5,

lim
ν→∞

1
ν

ν∑
n=1

M(ω1) · · ·M(ωn)N(ωn+1, . . . , ωn+l+r+1) = |ψS〉〈θ| E[N ],

where θ = P ∗1,E[M ]ψS .

As in the previous Section, a density argument based on the cyclicity and
separability of the reference vector ψ0 allows to obtain from Theorem 6.6
the asymptotic state for all normal initial states % on M given as Theorem
3.3
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