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Abstract

Joye, A., Proof of the Landau—Zener formula, Asymptotic Analysis 9 (1994) 209-258.

We consider the time dependent Schrodinger equation in the adiabatic limit when the Hamiltonian is an analytic unbounded
operator. It is assumed that the Hamiltonian possesses for any time two instantaneous non-degenerate eigenvalues which
display an avoided crossing of finite minimum gap. We prove that the probability of a quantum transition between these two
non-degenerate eigenvalues is given in the adiabatic limit by the well-known Landau—Zener formula.

1. Introduction

During the last few years, significant progresses have been made on the rigorous aspects of the
adiabatic regime of the Schrodinger equation. This regime is characterized by the singular limit
e — 0 of the evolution equation

ic a% Utys) = HOULL ), Uuls,9) =1, (1.1)

where the generator or Hamiltonian H(t), t € R, is a smooth family of self-adjoint operators
defined on the same separable Hilbert space M. It is assumed that for any ¢ € R, the spectrum
of H(t), o(t), is composed of a bounded part ¢(¢) separated from another part o,(¢) by a finite
gap g > 0. The corresponding spectral projectors @(¢) and (I — Q(t)), defined by a Riesz formula,
form a smooth orthogonal decomposition of the Hilbert space H for any ¢ € R:

H=Q® e (I- Q®)H. (12)

In 1987, Avron, Seiler and Yaffe [1] constructed an approximation V (¢, s) of the evolution Uc(t, s)
under very general hypotheses on the unbounded Hamiltonian H(t) generalizing earlier results [4,
18, 24]. This approximation satisfies the estimate

|V, ) = Ue(t, s)|| = O(elt — s|) (1.3)
for any ¢, s in some bounded interval I € R and possesses the intertwining property
V(t, Q) = QV(E, s). (1.4)
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As a consequence, the so-called transition probability across the gap, P(e), defined by

P(e) = [T — Q) Veltz, Q)| (1.5)

vanishes as €2 in the adiabatic limit ¢ — 0. They also proved that when all derivatives of the

Hamiltonian H(t) vanish at ¢; and ¢,, the transition probability tends to zero faster than any power
of ¢

P(E) = O(Snltl - tz,), Vn. (16)

Assume now that the Hamiltonian H(t) depends analytically on time ¢ and that it tends sufficiently
rapidly to limits H* when t — :co. In this case we can take the limits ; — —oo, t; — +oo in
(1.5) and the transition probability turns out to be exponentially small:

P(e) = O(exp{—7/e}), 7>0. (1.7)

This result was proven in the matrix case by Joye, Kunz and Pfister [11] and then extended to the
unbounded case by Joye and Pfister [13]. Moreover, when the Hamiltonian H(t) is a Hermitian
2 X 2 analytic matrix, the leading term of the asymptotic expansion of P(¢) can be explicitly
computed [3, 11], provided some supplementary condition is satisfied (see [11]):

P(e) = exp{2Im§; } exp{—2v/e}(1 + O(e)), ~ > 0. (1.8)

This result justifies and generalizes the so-called Dykhne formula [S, 6, 9, 28] for P(e) which
is valid if H(¢) is a real symmetric 2 X 2 matrix. The Dykhne formula is obtained from (1.8)
by replacing the e-independent prefactor by 1. The presence of the prefactor exp{2Im6;} in
the Hermitian case has been measured experimentally in [32]. Generalizations of this case were
also investigated: The full asymptotic expansion of the quantity InP(e) is computed in [14] and
non-generic situations are considered in [12].

Another important concept in adiabatic dynamics is the notion of superadiabatic evolution,
introduced by Berry [2] for two-level systems and generalized by Nenciu [26]. Such an evolution
Vi(t, s) is characterized by the fact that it approximates the evolution U.(¢, s) for exponentially
long times:

||V*(t, s)— Us(t,s)” = O(exp{~r/e}|t —s]), >0, (1.9)

for any ¢t,s € I C R, and by the existence of projectors Q«(t), t € R for which V.(, s) possesses
the intertwining property

Va(t, 9)@+(8) = Q) Vi(t, s). (1.10)
In general, Vi and Q. depend on ¢ and it can be shown that if

dn

—H(?) =0, Vngm, (1.11)

dt t=t0

then

Qu(t0) = Q(to) + O(e™). (1.12)
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The origin of this notion is to be found in [7, 25, 27, 30] where evolutions V4(t, s) approximating
U(t,s) up to corrections of order ¢? are constructed by means of different iterative schemes.
However, the existence of a superadiabatic evolution satisfying the estimate (1.9), which bears
some resemblance with the estimates proven in [23] in a classical context, was proven rigorously
by Nenciu [26] using a method inspired from [22] when H(?) is analytic. Similar results hold if
H (%) belongs to some class of C*™ operators. Another construction of superadiabatic evolution
based on another iterative scheme was proposed later in [15]. This construction allows to improve
the estimates on the superadiabatic approximation as a function of the gap g between o7 and o5.
Consequently, Joye and Pfister could solve the following problem. Assume

a1(t) = {e1(t), e2(®)} (1.13)

where e;(t), j = 1, 2, are non-degenerate eigenvalues and let P;(t) be the associated one-dimensio-
nal projectors such that

Py(t) + Py(t) = Q(2). (1.19)

The quantity of interest here is the transition probability between the two levels embedded in the
spectrum

Paule) = lim lim || Pat2)Ue(tay t1) Py (1) - (1.15)
1—>—00 ty=>+00

The question is to compute explicitly the leading term of this transition probability in the limit

e — 0, as for two-dimensional systems. The idea is to first use a superadiabatic evolution to

reduce the initial problem to an effective two-dimensional problem, modulo corrections of order

O(exp{—r/e}). Then, the effective problem is analyzed by the methods developed in [11]. The

end result has the same structure as for genuine two-dimensional systems [15]:

Paa(e) = exp{2Im b} exp{~2y/e} (1 + O(e)) + O exp{~r/c}). (1.16)

Here + coincides with the decay rate of two-dimensional systems and Im #; contains in addition to
the expression valid for two-dimensional systems an explicit contribution coming from the global
time dependence of the spectral subspace Q(#)H in H. Of course, in order to have a definite
formula, the remainder O(exp{—7/¢c}) has to be negligible with respect to the leading term. The
estimate of 7 as a function of the gap g given in [15],

7(g) > cg, ¢>0, (1.17)

shows that this is the case provided the two levels e; and e, are sufficiently isolated in the
spectrum. Again, in addition to the natural hypotheses quoted above, we need a supplementary
technical condition for this result to hold.

In this paper we consider the same general situation under the supplementary assumption that the
two levels of interest e; and e; become nearly degenerate at some time during the evolution. This
condition is often referred to as an avoided crossing condition in the physics literature and it occurs
in many applications where the adiabatic limit is involved (see [16] and [10] for references). If
the avoided crossing takes place at t = 0 and if the minimum gap between the levels is of order 4,

ex(t) — e1(t) ~ Va?t2 + 5262, ,6 K0, (1.18)
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an approximate formula known as the Landau—Zener formula [21, 31], states that the transition
probability P,1(e) between the two levels e; and e; depends on the local features of the difference
e2(t) — e;(t) around ¢ = O only and that it is given by

2b2

Pai(e) ~ exp{ _ 6

Sas } as € — 0. (1.19)

Although this formula is believed to hold under quite general conditions, no rigorous proof of it
is available in the literature. An important step in that direction was however performed recently
by Hagedorn in [8]. By an asymptotics matching procedure, he proved that if the minimum gap ¢
between e;(0) and e;(0) is e-dependent and closes in the limit ¢ — 0 according to the scaling law
§ = /€, the leading order of the transition probability P;;(¢) is given by (1.19) with 6 replaced
by . It is the aim of this work to provide a rigorous mathematical status to the Landau—Zener
formula for small but finite minimum gap 6, under very general and natural hypotheses. These
results have been announced in [16] and [17] where further details and references about the physics
behind the Landau—Zener formula can be found.

We also believe that our detailed proof provides a fairly general account of the main methods
developed recently in the theory of the exponential suppression of transition probabilities in the
adiabatic limit. Indeed, the general idea of the proof is quite simple: We want to apply formula
(1.16) and expand the result to the lowest order in §, where § ~ e;(0) — e;(0). However, we have
to go through the whole proof of (1.16) in order to control the dependence in é of the quantities
and remainders encountered. The structure of the proof is as follows: After formulating our main
result precisely in Section 2 we give in Section 3 a set of basic estimates used throughout this paper
which are generalizations of those in [13]. In Section 4 we review the iterative construction of [14,
15] and we give its main properties. Then we show in Section 5 how it yields a superadiabatic
evolution Vi and the corresponding projector 0., whose dependence in §é is controlled. Following
[15] we use this result to reduce the initial problem to a two-dimensional effective problem in
Section 6, which we study with the methods of [11] exposed in Section 7. We exploit in particular
the presence of the small parameter 6 in the problem to show that the above mentioned technical
hypothesis needed for (1.16) to hold true is satisfied for § small enough. We also check that the
remainders in the asymptotic formula (1.16) are uniform in §. We eventually obtain the Landau—
Zener formula by inserting a local expression for e,(t) — e;(t) given below in condition IV in the
result and by expanding the formula to the lowest order in §.

2. Formalisation of the problem
2.1. Hypotheses

We consider a family of Hamiltonians H(¢,6), t € R and § > 0, a small parameter, defined
on the same separable Hilbert space H. We suppose that the Hamiltonians H(z, §) satisfy the
following regularity conditions.

The first one is that the Hamiltonian is analytic in time and sufficiently smooth in ¢ and é.

I. Self-adjointness, analyticity and smoothness.
There exist a strip So = {t +is: |s| < a}, an interval 14 = [0, A] and a dense domain D in 'H
such that for each z € So and § € 14
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i) H(z,6) is a closed operator defined on D,

ii) H(z,6)p is holomorphic on Sa, for each ¢ € D and for each fixed § € 14,
i) H*(z,8) = H(z,6); H(t,6) is bounded from below if t € R,
iv) H(z,6)p is C* as a function of (z,6) € Sa X I for each ¢ € D.

The next condition states that H(t,6) tends sufficiently rapidly to two limiting Hamiltonians as
t — Foo. These limiting Hamiltonians also have to be smooth in 6.

I1. Behaviour at infinity.

There exist two families of self-adjoint operators H*(8), defined on D, strongly C! in 6 and
bounded from below and a positive function b(t) tending to zero as |t| — oo in an integrable way,
independent of §, such that

sup [|(H(t +is,6) = HF(9))e| <b@®)(llell + |ET(®)ell), ¢ >0,

|sj<a

and

sup | (H +is,8) — H=(®)e|| <@ (el + |H (6)ell), t <0,

for all ¢ € D and § € Io. Moreover, for each ¢ € D,

2

<N, Y(z,6) € Sa X Ia.

We shall call such a function b(t) an integrable decay function.

When § = 0, the derivatives with respect to é are to be considered as right derlvatlves Finally,
the last condition expresses the fact that when the parameter 6§ = 0, the levels e; and e, display a
real crossing at ¢ = 0 and when § > 0, this crossing becomes an avoided crossing.

I11. Separation of the spectrum and avoided crossing.

There exists a constant g independent of t and é such that the spectrum o(t,6) of H(t,6),t € R,
6 € 1,4, is given by

a(t,6) = a1(t, 6) U ox(t, 6), o1(t, 6) = {e1(t, 8), e2(t, 6) },
and satisfies

dist[o1(¢,6),05(t,8)] > g >0, VteR,§¢€l,.
Moreover,

ex(t,6) —ey(t,6) >0, VieRandé >0,
and if § = 0,

e2(t,0) — e1(1,0) >0, Vi<O,

e2(t,0) —e1(¢,0) <0, V>0,

e2(0, 0) = €1(0, 0),

where t = 0 is a simple zero of the function e,(t,0) — e,(t,0) (see Fig. 1).
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e (t,0 e (t,0)
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el(t,O) ez(t, 0

Fig. 1. The levels ¢;(2,6) and e;(t,0).

The corresponding one-dimensional projectors are denoted by P(t,6) and P,(¢,6). By con-
dition I, the functions e;j(z,6) and operators P;(z,6) are analytic and multivalued in Sy with
branch points at the complex eigenvalue crossing points. If the eigenvalue crossing point is real,
e;(z,6 = 0) and P;(z,6 = 0) are analytic at this point as a consequence of a theorem by Rellich
[29], so that the last condition makes sense. It also implies, see Lemma 7.2, that there is a complex
eigenvalue crossing point zo(8) together with its complex conjugate in a neighbourhood of z = 0
if 6 is small enough and that zy(6) is a square root type branch point for the eigenvalues. We also
define Q(t,8) = Py(t, §) + P»(t, §) which is analytic everywhere in Sa.

To investigate the local structure of the Hamiltonian close to the avoided crossing, we need
only to consider the restriction of H(t, §) to the two-dimensional subspace Q(t,8§)H. We specify
in a fourth condition the generic form of avoided crossings to which the Landau~Zener formula
applies. The assumption is that the quadratic form giving the square of the gap between the levels
close to (¢, ) = (0, 0) must be positive definite.

IV. Behaviour at the avoided crossing.
i) There exist constants a > 0, b > 0 and ¢ with ¢? < a%b?, such that

ex(t,8) —e(t,6) = \/a2t2 + 2cté + b28% + Ry(t, 6),

where R3(t,6) is a rest of order 3 in (t,6).
ii) Let @1 and ¢, form a basis of Q(0,0)H. The matrix elements (p;|Q(¢, 6)pi) and

(w;|H(t, 8) Qt, 6)pk), k,j=1,2,

are C? as functions of the two real variables (t, 6).

Remark. The point ii) of this condition is automatically satisfied if the Hamiltonian H(t,§) is
strongly C? as an operator-valued function depending on the two real variables (t, 6).
The avoided crossing considered can be rewritten as

ea(t, 8) — e1(t, 6) = v a2t2 + 2ct§ + b262(1 + Ry(t, 6)) (2.1)
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if t = O(6). The minimum gap between the eigenvalues is given at to(6) = —c8/a® + O(6%) by

ea(t6),) = ex(to(8),8) = 6482 — (14 0(8). 22)
2.2. Main result

We are interested in the normalized solutions in the limit ¢ — +oo of the Schrodinger equation

. 0

le 3t Ye(t) = H(t, 6)pe(t), %e(0) = o € D, (2.3)
subject to the boundary condition

Jim | Pyt O)et)]| = 1. (2.4)

More precisely we want to compute the transition probability to the level e; at time ¢t = oo given
by
2
Pale, 6) = | Pa(t, 8)e(t) (2.5)
in the limit of small ¢ and é. Let § be fixed and let n be a closed loop based at the origin which

encloses the complex eigenvalue zg(6) (Imzo(6) > 0) as in Fig. 2. We fix the phases of the

normalized eigenvectors ¢4(2, §) and ¢,(t, 6) of H(t,6) associated with e(t, 6) and e, (2, §) by the
condition

lim l
t—+00

<(pj(t,5)l—éa-t-90j(t,5)> =0, VteR, j=1,2. (2.6)

Consider e;(0, §) and (0, §) and their analytic continuations along 7. If we denote by €(0, §)
and ©1(0, §) the results of these analytic continuations at the end of the loop 7, we have

€1(0, 8) = €3(0, 9),
21(0,6) = exp { — i01(8) } (0, 6),

because z(6) is a square root branch point for the eigenvalues. Note that the term 8, is §-dependent.

2.7)

%(9) n
0 X

Fig. 2. The loop n and the eigenvalue crossing zo(8).

Theorem 2.1 (Landau—Zener formula). Let H(t,6) be a self-adjoint operator analytic in t sat-
isfying conditions 1 to 1IL. Let 1.(t) be a normalized solution of the Schrodinger equation

ie 5 9e() = HEO(t), $e(0) = po € D,
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such that
im || Py, )ge(t)]| = 1.

If € and é are small enough,
— 1 2
PZl(ea 6) = t—l}inoo ||P2(ta 6)¢5(t)”

= exp {2Im;(6) } exp {% Im/ e1(z, 6) dz} (1 + O(e))
n

where O(e) is uniformly bounded in § and

lim I §)dz =0
65%m/nel(z,)z X

i 6 = 0.
gl_l}})lm 1(%)

Moreover, if condition 1V is satisfied, we have

fr(f 2
a a3

Pute.d) =enp { - 22 (% - 5) 1+ 06) } 1+ 0 + 06)
where O(e), respectively O(6), are uniformly bounded in é, respectively .

Here fn e1(z, 6) dz is the integral along 7 of the analytic continuation of e;(t, §). We can recover
the results obtained by Hagedorn [8] specialized to our setting as a direct corollary.

Proposition 2.1. If the width § of the avoided crossing is rescaled according to é = /€, then

Pa(e, Ve) = eXp{ - g(g— i)}(l + 0(/%)).

a3

Remark. As the estimates are uniform in 6, we can set § = 0 in the above results and we obtain
P21(g, 0) = (14 O(¢)), in apparent contradiction with the adiabatic theorem of quantum mechanics.
This behaviour is explained by Fig. 1, which shows that the eigenvectors ¢;(¢, 6) undergo a change
of labels in the limit § — 0, for t > 0. Hence ¢ (¢, §) tends to an eigenvector associated with
ex2(t, 0) as 6 tends to O so that P,;(¢,0) is the probability to stay on the eigenstate associated with
e1(t, 0), which must be close to 1, according to the adiabatic theorem. The transition probability
is therefore of order e, instead of £, as should be the case in presence of a real crossing [4].

The rest of the paper is devoted to the proof of the Landau—Zener formula, as stated in Theo-
rem 2.1.
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3. Basic estimates

This paragraph contains the generalization of the preliminaries of [13] when the Hamiltonian
H depends on the supplementary parameter 6. The techniques being similar to the ones of [13],
we state the main results and give their proofs in the technical Appendix A.

We use the notation

R(z,6,)) = (H(z,6) - \) " (3.1)

for A € T(z, 6), the resolvent set of H(z, §).
For t € R and § = 0, we define the two-dimensional projector Q(t, 0) by

1
t,0)= —— ¢ R(t,0,))dX 3.2
Q.0 = 5 § R(,0.Y) (32
where I' encircles o,(2, 0).

Lemma 3.1. Let t € R and I' be as above. We can choose the width o of the strip S, and the
length A of the interval I sufficiently small so that the spectrum of H(z, ) is separated in two
parts 01(z,6) and o,(z,8) for any z € Sa, § € Ia. Moreover, if |z — t| and é are small enough,
the spectral projector ()(z,8) corresponding to o1(z, ) is given by

1
Q) = —5= jé" R(z,6,))d) (3.3)
where I encircles o4(z, §).

We assume from now on that o and A are so small that the above lemma holds. Let us define
limiting projectors by

Qe 8) = 5 fr R(<, 6, \) d). (3.4)

The smoothness and regularity conditions on the Hamiltonian imply the following behaviours for
the resolvent and projector.

Lemma 3.2. For any z € Sy, § € I5 and A € T(z,6), R(z,6,)) and Q(z, 8) are strongly C? as
functions of (z,68) € Sa X I, and R(%,6,)) and Q(£, 6) are strongly C' in § € In. Moreover,
for a fixed §, R(z,6,)) and Q(z, §) are holomorphlc bounded operators and there exist integrable
decay functions by 5(t) and b(t) independent of § such that if X € T(%, §)

| R(t + is, 6, A) — R(%, 6, M| < by 5(2),
H —R(t + is, 6, )\)“ = [|R™( + s, 6, V|| < bas(d),
|Qt +is,6) — Q(%, 6)|| < b(2),
Q™ +is,6)|| < (), t20, |t >1,
Jor any |s| < r < a and for any integer n.

The proofs of these lemmas are given in appendix.
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4. Iterative scheme

Consider the iterative scheme defined for any 2z € S,, § € I4 as follows:
Hy(z,6) = H(z,6) 4.1)
with associated spectral projector Q(z, §) = Q(z,6). Let
Ko(z,6) = i[Qb(z, 6), Q(z, 6)] (4.2)
where ’ denotes d/d2. We set
Hi(z,6,¢) = H(z,6) — eKy(z, 6). (4.3)

By perturbation theory, for ¢ small enough, the spectrum of H,; is separated into two distinct
pieces, one of which is bounded. We denote by Q(z, 6, ¢) the spectral projector associated to the
bounded part of spectrum. Defining

Kl(z’ 6’ 5) = I[Qll(za 5s€)a Ql(z’ 6’ 5)] (44)
we set
Hy(z,6,6) = H(z,6) — e K (z,6,¢). (4.5)

Again, by perturbation theory, we can define a spectral projector associated with the bounded part
of the spectrum of H; if € is small enough and we can go on with the construction. At the g-th
step we have (dropping the € dependence in the arguments)

HQ(Z’ 6) = H(z,$6) - 5Kq—1(z7 6),
Qu(n0) = =5 § Rala8, ), (46)
I(Q(z’ 6) = I[QQ(Z, 6)7 Qq(z’ 5)] ’ vq 2 1:

with Re(z,6, ) = (Hy(z,6) — A)~! for A € Ty(z, 6), Ty(z,8) being the resolvent set of Hy(z, §).
Remark that since K,_1(z,6) is bounded for any ¢, Hy(2,6) is closed and densely defined on
the domain D of H(z,6) (see [19, Chapter IV, Theorem 1.1]). We quote from [15] the main
proposition regarding this iterative scheme, when the parameter ¢ is absent. Let D(z,7) be the
disc

D(z,m)={eC: |7 = 2| < n} C Sa (4.7)

and assume that there exists a simple closed path I' in the complex plane, counter-clockwise
oriented, such that for all 2’ € D(z, n) the spectrum o(z’) of H(z") can be divided into two disjoint
parts o1(2') and o5(2'), with ¢;(2) in the interior of I'. We have the
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Proposition 4.1. Let D(z,n) and I as above and let a, b and ¢ be constants such that for all
integers p, all z' € D(z,7)

. P!

i) ”R(p)(z )‘)” = “a—,; Ry(<, )H c? At p? AeT,
T ®)¢,! p__ P!

ii) ”KO (z)” < be T Ael.

Then there exists €*, depending on a and b, and there exists a constant d depending on a, b and
|I'| such that for ¢ < €*

1 9)!
| 6P - K2, < betater? g’T;;_z_

and

(») p!
”K (z)H\ebc (1+ o

for all 2’ € D(z,7), all integers p and q such that
1
< |—=|=N".
PFas [ecds]
Here [z] is the integer part of x and e is the basis of the Neperian logarithm.

We prove in our technical Appendix A a lemma showing that the hypotheses of this proposition
are satisfied uniformly in é under our assumptions I to III:

Lemma 4.1. There exists a constant N such that

sup sup sup | R(z,6,))| < (4.8)
teR zeD(tr) Ael
sela
We define
K(z,6) = i[Q'(,6), Q(z, 8)]. (4.9)
By Lemma 3.2, there exists an integrable decay function b(t) such that

sup || K(z,6)| < b(). (4.10)
z€D(t,r)

§€IA

Hence, using the Cauchy formula in discs D(t,7) with < r, we have the estimates

(?) p!
IR (z,é,A)H<Nc”<l+ )2,

| KPz0)]| < O =5

(4.11)

for any t € R, uniformly in § € Ia, with ¢ = 8/r, provided 7 is small enough. We can again
diminish the width of the strip S, so that the above estimates hold uniformly in 2 € Sa, 6 € 14.
As a consequence Proposition 4.1 holds uniformly in é for ¢ < ¢* where ¢* is independent of é.
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5. Superadiabatic evolution

In this section we show how the iterative scheme (4.6) yields a superadiabatic approximation
V. of the actual evolution U. and consider in particular its dependence in §. As a consequence
of our hypothesis I on H(t, é), the operator Uc(t, s) (in which we omit the dependence in §) is
a two-parameter family of unitary operators, strongly continuous in ¢ and s and which leave the
domain D invariant. For all t, 1,, t3

Ue(t1,t2)Ue(t2, t3) = Ue(t1,t3), Ue(t1,t1) =1, (5.1)
and U, is strongly differentiable in ¢ and s on the domain D,

ie % Us(t, s) = H(t, §)Ue(t, s) (5.2)
and

ie % Ua(t, s) = —Us(t, s)H(s, 6) (5.3)

(see, e.g., [20, Chapter 2]). From now on we set s = 0 and we omit this variable in the notation.
We define two operators Wy s, O+ by

iWie(t,6) = Kn+(t, ) Wns(t,8),  Wne(0,6) =1, (5.4)

e (t, 6) = Wit(t, ) Hyo(t, )Wi+(t, )Bn+(t,6),  n+(0,6) =1, (5.5)

where N*(e) is §-independent and is defined in Proposition 4.1. The operators K(t, §) and Hy(t, 6)
are defined by the iterative scheme (4.6). The operator Wi+(z, ) is unitary for real ¢ and it is
given by a convergent series since Kn+(%,6) is bounded. From Proposition 4.1 we know that
Kn+(z,6) is analytic for any 2 € Sa, § € I4 so that the same is true for Wy«(z, §). Moreover,
there exists a constant w, independent of €,6 and z € S, such that

[Wre(z 8 <w, Wiz 8)] < w, (5.6)

as is easily seen from the series representing Wx.. For any z € Sa, Wn+(z,6) satisfies the
same differential equation (5.4) where ' means d/3z and as a consequence, it has the intertwining
property [19, 20]

Whns(z,6)QN+(0, §) = QN+ (z, ) Wn+(z, 6). (5.7)

Another important property of Wy« is that it leaves the domain D invariant so that the generator
WJ'\}} Hpn«Wps of @+ is well defined on D. Moreover, it can be shown that

Wi (z, ) Hn+ (2, 6) Wy (z, )

is analytic in z ({13, Lemma 5.1]). Hence the unitary operator ®n+(t, §) shares the properties of
an evolution operator for real values of ¢ and it satisfies

[®n+(,6),Qn(0,6)] =0, VteR. (5.8)
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We define our superadiabatic evolution by
V"(t’ 6) = WN"'(ta 6)¢N'(t7 6) (59)

To measure the difference between U and Vi we introduce another unitary operator A« by the
identity

Ud(t) = Wi (t, §)B (1, 6) Ault, 6). (5.10)

In consequence, A. satisfies the integral equation
t
A, 6) =T +i / Vs, 6)(Kye (5, 8) — Knye—1(s, 6))Va(s, 6) Ax(s, 6) ds. (5.11)
0

Now Proposition 4.1 and the definition of N* imply

| Knve (8, 6) = Knecr(t, 6)|| < b(t)(ede)™ N7t < b(t)(ede N 512
<b(t)exp{ — N} < eb(t)exp{—1/e} .
where
1
is independent of 6. Hence
i
A, 6)—I|| <e / b(s)ds|exp{—7/c} (5.14)
0

which together with (5.8) and (5.7) yield the

Proposition 5.1. If conditions 1 to 111 hold, there exist €* > 0 and ™ > 0 defined by (5.13), both
independent of 6§, such that Ve < &*

||U¢(t) - V*(t,é)“ = O(exp{-r/e}), VteR,
where the correction term is uniformly bounded in § and V.(t,6) has the intertwining property
Vu(t, H)QN+(0,6) = Qn-(t, 6)Vi(t, 6), VteR.

Remarks.

1) In the decomposition Vi(t,6) = Wn«(t, 6)Pn+(t,6), the operator Wy+(t,§) describes the
transitions between the subspaces Qn+(0,8)H and (I — Qn+(t,8))H and ®n+(¢,8) describes the
evolution inside the time-independent subspace Qn+(0, §)H.

2) The superadiabatic evolution Vi satisfies the equation

i€V (t,6) = (Hn+(t,8) + e Kns (8, 8)) Vilt, 6)

= (H(t’ 5) + E(I(N*(t, 5) — I{N‘_..l(ta 6)))‘/*(751 6), Vk(o’ 5) =L (515)
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3) By perturbation theory and Proposition 4.1 we have
Hyn«(t,6) = H(t,6) — eKpn._1(t,6) = H(t,6) + O(r—:b(t)) (5.16)

so that, for € small enough, there exist spectral projectors P]N "(t, 6) defined by Riesz formula such
that:

P (5,8 + Py (t,6) = Qne(t, 6) (5.17)
and
. N*
Jim | P (¢, 8) — Fi(t,6)| =0,

Jim [|Qn(2,6) - Q¢ 0)] =0, (5.18)
uniformly in ¢ and 6.
6. Reduction to an effective problem

Let us write the generator of ®+(t, 6) as

Ha(t, 6) = W2, 6)Hy(t, )W+ (2, 6). (6.1)
Its spectral projectors I/’}(t, 6), given by

P3(t,6) = Wii(t, )P (¢, )Wi(t, 6) (6.2)
where PJN "(t, 8), the spectral projectors of Hy-(t, 6), are such that

Qn+(0, 6) = P (1, 6) + P(2, 6). (6.3)

It is therefore possible to decompose the evolution @x+(t) as we did for U.(t). We introduce the
evolution Vi(t) by

2
ie % Vo) = (ff\*(t) +ie > % ﬁ}*(t)ﬁ}(t)) Vo), Vi(0)=1, (6.4)
J=1
and we set
B+ () := Vo) AL(2). (6.5)

By construction Vi(t) has the intertwining property [19, 20]
PFVa) = VaPF(0), 5=1,2. (6.6)

The operator Zk(t) is the solution of the equation

2

o ) = - (ff:-lm i ( > f’?(t)l”?(t)) ”V?m) A0, LO=1 ©7

i=1
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Since

209 ~ —~
> 5 BEOPQ)
j=1

is integrable as ¢ — oo the operator ;ﬂ(t) has well-defined limits when ¢ — Zoco. The reduction
to an effective two-dimensional problem is provided by the following proposition.

Proposition 6.1. Let ¢(t) be a normalized solution of

ie o () = H(t,6)p(0)
satisfying the boundary condition

Jim_|Pi(s 8)6(0)] = 1.
If € is small enough, then

Pale, 8) = lim | P2, 8)e®)|* = Paile, 8) + O(exp{—7/e})

where ‘52\1(5, 8) is the transition probability of the following two-dimensional problem in Qn+(0, §)H:
Let 4(t) be a normalized solution of

ie o5 () = Halt, 6)9(0)
such that
Jim || B¢, 6)p(0)] = 1.
Then
Pale,8) = lim_||B5(t, 6y 0)|I"
The correction term O(exp{—7/e}) is uniformly bounded in §.

Proof. Let ¢(t) with ¢(0) = ¢ be given. We have (using (5.18), (6.2), (6.5), and (6.6))

1= lim_ | Pyt 6)e)]

= lim |[P]"(t, 5)Wie(t, §)Bn+(t, §) Ault, 6)"

t——o00

= lim ||Wn=(t,§)P(t, §)B (1, 6)Au(t, )"

t——o0

L (6.8)
= lim || P¥(t, 5)Vilt, §)Au(t, 6)Au(t, §)¢"

t——00

= lim | Vi(t, §)PF(0)Ax(t, 8)Au(t, §)¢"

t=—s-00

P (0)Ax(— o0, 6) Au(— 00, 6)p"
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Therefore we can write

* - —~-1
" = ATl (~00, 6)A. (=00, 6)1p (6.9)
with ¢ € }3\;‘(0, 6)H. By a computation similar to (6.8) we have

Jim | 22,0900

lim || P72, 8)e ()|

- - (6.10)
= ’ P(0, §)Ax(co, 6) Ax(o0, 6)p™
= | B30, 6)@x(c0, 8) A (o0, 6) A (—o0, §)A. " (=00, ) PF(0, |-
Using the equation (5.11) for the unitary operator A, and the estimate (5.14) we get
Pas(e,6) = | B30, 6)Ax(o0, DA (=00, FF(0,8) + Oexp{~r/e) | o

B30, 6) (0o, 6) A2 (—o0, §)FH(0, 5)”2 1+ O(exp{=r/e})

where the correction term is uniformly bounded in §. Then one checks by the same type of
computation that

Parle,8) = | B (0, (00, )&~ (=20, )BF(Q, 5)“2. (6.12)
O

7. Study of the effective problem

From now on we consider ff\*(t, 6) restricted to the two-dimensional subspace @ n+(0, §)H and
we recall that Hu(z, §) is analytic in z € S for any 6 € I and € < €*. As
Hu(z,6) = Wii(z, ) Hn+(z, )Wie(2, 6) (7.1)

its eigenvalues coincide with the ones of Hy+(z,6) which we denote by €j(z,6), 7 = 1,2. We
define

A%y(t, 6) = /0 ds(€;(s, 6) - €3(s,6)), tER, (7.2)

and A7,(z,6) by analytic continuation for z € S,. Note that A7,(z,6) is multivalued in S,. Let
us consider a set of corresponding eigenvectors of Hu(t,6), ¢} (¢, 6) such that

<{p§(t, 5)).% =, 5)> = 0. (7.3)
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Assume that there exists an eigenvalue crossing point z*(6) in the complex plane with Im z*(§) > 0
which is a square root type singularity for ej(¢, ). As explained in Section 2, if we perform the

analytic continuation of ¢7(0, §) along a loop 7 based at the origin encircling z*(6), we will obtain

at the end of the loop a vector g/a\’;(O, §) such that

7(0,8) = exp { — iF3(8)} (0, 6). (7.4)

As 2%(6) is an eigenvalue crossing point for Hy«(z,6) as well, we can perform the same type of
analysis for its eigenvectors.

Lemma 7.1.
i) Let ¢3(t, 6) be normalized eigenvectors of Hn+(t, §) satisfying

x* a *
(#it0]5e8) =0
Then
@32, 8) = Wn+(t, 6)¢5(t, 6)-
ii) Let 87(6) be defined by

©3(0,6) = exp { — i67(6)}23(0, 6).
Then

exp{ —i67(8)} = exp{ — 17(6)}.

Proof. For t € R, 33(t, 6) € Qn+(0, 6)H
(#t.0] 5 #t0)
= (Wi (0,550, 8)| 2 (Wa-(. 0750, 0)) ) =
< O 5)%I(N-(t, §YWie(t, 5)97;(t,5)> -
+ < (¢, 5)[WN.(t §Ws(t, §) at% o, 5)> |
= (6 DIWRE, Q- (1, K- (t, Q- (6, W-(0, 8532, 5)
+ <;§(t,5)‘% {a}(t,a)> =0

since QN*(t, 6)QN"I(t’ 6)QN*(t, 6) =0.
(ii) is a consequence of (i) and of the analyticity of Wi+(2,6), V2 € So. O
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The asymptotic computation of the transition probability 732\1(5, §) as ¢ — 0 for two-level
systems has been studied in details in [11] under the same general hypotheses I to III adapted
to two-dimensional systems. The method consists in expanding the solution of the Schrédinger

equation 1(t) along the eigenvectors c,/o?(t, 8) as
2 . .
P(t) = ; ci(t, 6) exp{ - -6—/0 e;(s, 6) ds}c,o;f(t, 8), (7.6)

where c;(t, §) are unknown coefficients to be determined. Then we study the system of equations
they satisty

* * i L3 *
ci'(t, 8) = aly(t, 6) exp{; 12(t,5)}02(t,5),

) (7.7)

56,6 = a9 exp{ - L A1) i)
where

ai(t, 6) = -<;§(t,5)|;‘;'(t, 5)) (1.8)
which is equivalent to the Schrodinger equation. The boundary conditions are

ci(—o00,8) =1, c3(—o0,8) = 0, (7.9)
and

Pale, §) = |e3(—o0, 6)|". (7.10)

The idea is to make use of the generic multivaluedness of the eigenvalues and eigenvectors at
the eigenvalue crossing point described above by integrating this system of equations along a
carefully chosen path in the complex plane going above the crossing point. There are however
two supplementary conditions. The first is the genericity condition:

A. There exists an eigenvalue crossing point 2"(§) which is a square root type singularity for the
eigenvalues €j(z, 6).

Second, we need a technical condition (although crucial, see [11] for examples) expressed
through the function A7,(z, 6).

B. There exists a path in the complex plane
t > 75(t) € Sa N {z: Imz >0} = ST (7.11)
such that
i) t—luizll:noo Re~s(t) = £oo
ii) ~s(t) passes above z"(6)

iii)  sup sup exp {llm(A’Iz (vs(s), 8) — ATz (v6(1), 5))} <k < oo. (7.12)
e>0 sgteR €

(See [11, condition IV and Eq. (2.56)]). We quote from [11] the
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Proposition 7.1. Under conditions 1, I1, III, A and B, there exists €*(8) > O such that the transition
probability P,,(e, §) for fixed positive é is given by

Pa(e, 8) = exp {2Im 83(6) } exp {% Im/ e}(z, 6) dz} (1 + Os(e)) (7.13)

provided € < €”(6).

Remarks. At that stage, £*(6) and the bound on the remainder Os(e) are §-dependent. We prove
in the sequel that both the supplementary conditions A and B are satisfied under our assumptions
I to III for § small enough, § < §%, with é" independent of e. Moreover we show that actually
the expression ¢*(6) is independent of § and that the remainder Og(¢) is uniformly bounded in §
(Proposition 7.4).

We first show that conditions A and B are satisfied for Q(z, §) H(z, 6) and then, by perturbation,
that they are satisfied for Qn+(0, 6)1?{:(z, ) as well. Let us deal with the eigenvalues e;(¢, ) of
H(t,6). Let 1 and ¢, be a basis of the range of (0, 0). We define for t € R

¥, 6) = Q.o
(1QC, 8)¢1)

_ {p1]Q, 6)pa)
o, 6)(802 (<P1|Q(t’5)901)%> (7.14)

N O )

These vectors form an orthonormal basis of Q(t, §)H for (¢, ) close to (0, 0). Moreover, they are
continuously differentiable in (¢, §) and they are analytic in ¢ for § fixed, by assumptions I to III.
Without loss of generality we suppose that e;(t, §) + ez(t, §) = 0, so that we can write

H(t, 8)| o o = B(t: 6) s (7.15)

¢2(t’ 6) =

in the basis {¥1(t, 6), ¥2(t, §)} with s;, j = 1,2, 3, the spin-1/2 matrices and with the definitions

Bjy(t, 8) = 2Re (1 (t, )| H(t, 6)y(t, 6)),
By(t, 6) = =2Im(:(t, 6)| H(t, §)ia(t, 6)), (7.16)
Bs(t, 6) = 2{¢u(t, )| H(t, §)yu(2, 6)).

The expressions

(‘Pl'H(t’ 6)Q(t> 6)991)
(p1lQ(t, 6)ep1)

(7.17)

and

(901 |H(t’ 6)Q(ta 6)¢2(ta 5))
L) H(t, 6)(t, §)) = :
(¥a(t, O H(t, 6)¢a(t, 6)) AR (7.18)
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have analytic extensions in the complex plane, so that the same is true for their real or imaginary
parts considered as real analytic functions on the real axis. Thus the vector field B(z, é) is analytic
in z € S, for all § € I4 and it is continuously differentiable in z and §. Moreover, as a consequence
of condition II there exist real limits Bj(+o0,§), j = 1,2, 3, which are C' in 6 and an integrable
decay function b(t) independent of é such that

sup | B;(t + is, 6) — Bj(£00,6)| < b(2). (7.19)
|s|<a

This is easily seen from the identity

H(z 6)Q(z,6) = ——= ]f AR(z, 6, 3)dA (7.20)
2mi r
and Lemma 3.2, for example. Hence the eigenvalues of H(2, §)Q(t, §) are given by the relation
i1

ej(t,6) = (=1) 3 V(% 6) (7.21)

where
3
p(t,6) =Y Bi(t,6) (7.22)
i=1

is analytic in z € S, for any 6§ € I4 and is Clin (2,6) € Sq x I5. Let us define the function
AIZ(ta 6) by

t t
A1p(t, 6) = /0 ds(e1(s, 6) — ea(s, 6)) = ——/0 v/ p(u, 6)du. (7.23)

Lemma 7.2. For any positive § small enough there exists a unique eigenvalue crossing point zj(6)
such that Im zo(8) > 0 and 2o(6) is a simple zero of p(z,6). As a function of §, zo(6) is continuous
and

Ii §)=0.
51—%20( )

Proof. By assumption, p(z,0) has a double zero at z = 0, since ej(z,0) is an analytic function.
Let D(0,r) be a circle of radius » > 0 centered at z = 0 and let us consider

p(Z, 5) = P(Z, 0) + (p(z7 6) - p(Z, O)) (7'24)
For any r sufficiently small,
|p(z,0)| > R >0, VzedD(,r), (7.25)

and there exists § small enough such that
|0z 8) = o, 0) < &, Vz € 3D(0,), (7.26)

by continuity of p(z,6) in z and 6 and compactness of 9D(0,r). Applying Rouché’s theorem
we see that p(z,d) has as many zeros as p(z,0) in D(0,r), counted with their multiplicity. As
p(t,8) > 0,Vt € R, if § > 0 and p(z, §) = p(2, §) by Schwarz’s principle, we conclude that there
exists in D(0,r) a unique simple zero zy(§) of p(z,8) with Im zy(§) > 0. The continuity in § of
zo(6) is proven in a similar way. O
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It follows from this lemma that A,(¢,§) admits an analytic continuation Aj;(z,6) for any
z € So \ D(0, 7). We come to the main proposition of this section.

Proposition 7.2. There exists a path v5(t), t € R, passing above zy(6), such that Im Aq2(z, )|z
is a non-decreasing function of t for a branch of A(z,6) and

,lim Re () = +oo,
i >
inf Im¥5(t) > h > 0,

sup|45(t)| < k
teR
where h and k are independent of 8. Such a path will be called a dissipative path.

We postpone the proof of this proposition to the end of the section and we use it to compute the

transition probability 7321(5 6) of the effective problem. Consider now the Hamiltonian H...(z d)
given by (7.1) restricted to Qn+(0, 6)H. Its eigenvalues coincide with the eigenvalues e}(z, 6) of
Hp+(z, 6) which can be expressed by means of an analytic function p«(z, §), depending on ¢ as

(56 = (1) 2 VA, =12 (7.27)

The function p«(z, §) is constructed in the same way as p(z, §), by replacing Q(t, §) and H (%, §) by
Qn+(t, 6) and Hy+(t,6) in (7.16). By perturbation theory and Proposition 4.1, we can write

p*(z’ 6) = p(Z, 6) + R*(Z, 6’ 5) (728)
where R.(z,§,¢) is a remainder satisfying
IR*(Z, f, s)‘ Lebt), Vz=t+is€ Sa, (7.29)

and b(t) is an integrable decay function independent of §.

Proposition 7.3. There exists €* and §*, independent of § and e, respectively, such that for all
e<e*, §< 6"

i) if § > 0, there exists a unique complex eigenvalue crossing point z5(6) of €j(z,6), of square
root type, with Im z;(8) > 0 in Sq,
ii) if § = 0, there exists a unique real eigenvalue crossing point z5(0) of €;(z,0).
In any case |25(6)| < r.

This lemma shows that condition A is satisfied and that z*(§) € D(0, ) Vé small enough where
D(0, ) is the circle of radius » > 0 centered at the origin.

Proof. We assume that § > 0 and we choose ¢, independently of 6, in such a way that

|o«(2, 6) — p(z,8)| < 5 Vz € 8o\ D(0,7), V6 € Ia. (7.30)
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lin?) e;(t,8) = e;(t, 6), (7.31)
e—

the real eigenvalue crossing points, if any, must appear by pairs in order to to have ej(—oc, §) < 0
and ej(+o00,6) < 0. Remember that Hy«(t,8) and H(t,§) coincide at infinity. To show that
actually there is no real eigenvalue crossing point we use

2R
|pu(,6) = p(2, 0)| < 5= < [p(2,0)| (7.32)
if 2 € 9D(0, ), see (7.26), (7.30), and we apply Rouché’s theorem to
p+(2,8) = p(z6) + (pu(z, 8) — p(2,0)). (7.33)

As there is one double zero of p(z,0) in D(0,7), at z = 0, there are either two simple conjugate
zeros 2;(6) and z(6) or only one real double zero of p.(z,6) in D(0,r). But the latter case must
be excluded because this corresponds to one crossing only. Recall that a real crossing corresponds
to a double zero of p*(z, ) because of the analyticity of the eigenvalues at that point. If § = 0,
the same type of argument shows that there is one real double zero z;(0) of p«(z,0), in order to
ensure ej(—o0,0) < 0 and e](+400,0) > 0, which corresponds to one real crossing of eigenvalue.
a

With our definitions, we have
4
A 8) = - [ Vow B u (7.34)
0

which yields an analytic function in S \ D(0,r). The path of integration is the same as the one
defining the branch of A5(z, §) considered in Proposition 7.2 (see the proof of that proposition).
A direct consequence of Propositions 7.2 and 7.3 is that forany 0 < § < §* and 0 < ¢ < " we
can apply Proposition 7.1 to our effective two-level problem. Indeed, we can control the quantity

1 * *
exp { Hm(A32(06(5.6) = 232 (26(01.9)) } (735)
where s < ¢, uniformly in é and ¢ (condition B): It follows from (7.28) and (7.29) that
Im Al,(z,6) = Im A 5(2, 6) + O(e) (7.36)

and by construction Im A,(z, §) is non-decreasing along ~s. Hence (7.35) is uniformly bounded
in s < t, ¢ and 6. We define a loop 8 based at the origin by the path going from 0 to —r along
the real axis, from —r to r along 8D(0, r) and from r back to the origin along the real axis again.
By Proposition 7.3, z5(é) does not belong to 8, for any 6§ > 0. To obtain the asymptotic formula

for T’Z(s, 6)
Py1(e, 6) = exp {%Im /ﬂ ei(z, 6) dz} exp {2Im87(6)} (1 + O(e)) (7.37)

with a correction term O(¢) uniformly bounded in 6, it remains to check that along the path
75(t), we can bound the corresponding coefficients ag;(z, §) defined in (7.8) uniformly in 6 and ¢

(see [11]).
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Lemma 7.3. There exists an integrable decay function b(t) independent of § and € such that
Iazj(z, )| <bt), Vz=t+ise ST\ D(0, 7).

This lemma shows that formula (7.37) is indeed true for our effective two-level problem with a

correction term uniformly bounded in é. Its proof is given in Appendix. Let us express 7/32\1(5, 6)
as a function of H(z, é) only.

Lemma 7.4.

Im/ e1(z,6)dz = Im/ e1(z,6)dz + 0(62),
B ]

Im 67(8) = Im 61(6) + O(e),
where 01(8) is defined by (2.7).

Proof. Let us denote the intersection of 3 D(0, r) with the upper half-plane by C;f. We can replace
B in the integral of (7.37) by C;F without altering the formula, so that we have to evaluate €}(z, §),
on C;t, far from the eigenvalue crossing point zo(§). Moreover, as 65(6) is given by

#1(0,6) = exp { ~ 61(8)}5(0, 6) (7.38)

and as the vectors ;(0, 6) are normalized on the real axis, exp{Im 67(6)} represents the change
of norm of the analytic continuation of ¢3(z, §) from —r to r along C;. For any z € C; we can
use perturbation theory to prove the lemma. Indeed, we have by Proposition 4.1

Hpe(t,8) = H(t,6) — eKo(t, 6) + £ (Ko(t, 6) — Kn+_1(2, 6))
7.39
= H(t,6) — eKy(t,6) + 0(52) 739

where O(e?) is uniformly bounded in 6. Let (¢, §) be the eigenvector of H(t, §) for e;(t, §). Then
ei(t, 6) = es(t, &) — e(1(t, )| Ko(t, §)p1(t, 6)) + O(?). (7.40)
But the term of first order in ¢ vanishes identically since
Py(t,6)[Q'(2, 8), Q(t, §)] Pu(t, 6)
= Pi(t,)Q(t, 6)[Q'(2, 6), Q(t, 6)]Q(t, ) Py(t, §) = 0.
By perturbation theory again, we can write the eigenvector ¢7(z, §) associated with e](z, §) as
¢1(2, 6) = ¢1(2, 8) + x1(2, 6) (7.42)

with ||x1(z, 6)|| = O(¢) uniformly in § if z € S\ D(0, 7). Denoting by ;o?(r, 8) the vector obtained
by analytic continuation of ¢}(—r, 6) along C;, we have

exp {2Im 07(6)} = l

(7.41)

Fi(r, 5)“ - “G’{(r, 8) + xi(r, 5)“ (7.43)
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and similarly

exp {2m 0,(6)} = |7i(r, ). (7.4
Hence

exp {2Im 67(6)} — exp {2Im6,(6)} < ||x1(r, 8)|| = O(e) (7.45)
and

Im 67 (6) = Im 8,(6) + O(e) (7.46)

where O(e) is uniformly bounded in §. O
Summarizing these considerations we arrive at the conclusion:

Proposition 7.4. Under conditions 1 to 11, there exist €* > 0, §* > 0 independent of § and e,
respectively, such that for all € < €*, 6§ < §%,

Pai(e, 8) = exp {2Im 6,(8)} exp {% Im /[; ei(z,6) dz}(l + O(¢))

where the term O(¢) is uniformly bounded in é.
7.1. Behaviour in §
Let us now turn to the dependence in § of these quantities.

Proposition 7.5. Assume that conditions 1 to 111 hold and consider Im fﬁ e1(z,8)dz and Im 6,(6)
defined above. Then

lim Im [ ey(2,6)dz =0,
§—0 8

lim Imé&(6) = 0.
51_12)“11()

Remark. This last proposition implies that for é small enough

|21m/e1(z, 6)dz| < 1, (7.47)
B

7 being the exponential decay rate of the correction term in Proposition 5.1. Thus we have

P21(e, 6) = exp {—i—lm /ﬂ e1(z, 8) dz} exp {2Im6,(8) } (1 4 O(e)) (7.48)

for ¢ and § small enough. This proves the first assertion of Theorem 2.1.
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Proof. We have

lIm/ ei(z,6)dz
B

= |Im A1z (20(6), 8)|. (7.49)

As p(z,6) — p(z,0) and zo(6) — 0 when § — 0 (Proposition 7.2), we get

Let us introduce W(z, t;6), z # 209(6), t € R, by
iW'(2,t;6) = i(P{(z, 8)Py(z, 8) + Pi(z, 6)Py(z, 8)

— Q281 -Q(, 6)))W(z, t: 6) (7.51)
= L(z,6)W(z,t;8), W, t;6) =1L

The evolution W(z,t;6) is a generalization of Wyy+(z, ) in the sense that it has the intertwining
property with P;(z,6), j = 1,2, and Q(z, §) [19, 20]:

W{(z,t;6)P;(t, 6) = Pi(z, 5)W(z,t;6),

W(z,t;6)Q(t, 6) = Q(z, )W (2, t; 6). (7.52)
We have

p;(2,6) = W(z,0;6);(0,6), (7.53)
where ¢;(0, 6) satisfies

H(0, 8)p;(0,6) = (0, 6);(0,8), [:(0,8)]| = 1. (7.54)
As noted previously

|W (r, —r; 8)1(—r, 8)|| = exp {Im6(5)} (7.55)
where the path of integration of W(r, —r,6) from —r to r is along C;. Let us show that

W(r,—r;68) > W(r, —r;0) (7.56)
strongly as § — 0. Consider the identity

(W_l(z, —r; )W (z, —r;0) — ]I)c,o

Y ’ / / / (7.57)
=i W™ (2, —r; 6)(L(z ,0) — L(z, 6))W(z ,—7;0)pdz

-r
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where 2z and the path of mtegratlon are along C7. It follows from condition I (see Lemma 3. 2)
that L(z, §) is strongly continuous in z and §, Vz € S¥ \ D(0,r) so that, by compactness of C;,
L(z, §)p tends to L(z, 0)p umformly inz € C"‘ when § — 0 and

sup |W(z, —r; 6)|| < sup |w~ Yz, —r; 8)|| € (7.58)
zECr ZEC
§€la sela

Now, the set of vectors
{W(,—r;0)p; 2 € C;{_} (7.59)

is a compact set in H because W(z', —r; 0) is continuous in z’ so that we apply Lemma 3.4 of the
introduction of [20] to obtain

11m sup. | (L(', ) — L(, 0)) W™(2, —r; 0)p|| = 0. (7.60)
§—0 'Gc

As a consequence
| (W(z, =150) = W(z, —r; 8)) ¢

< Wz, —r ||| (W' (2, —r; )W (2, -3 0) — 1)y (7.61)

< nr sup || L(Z,6) - L(z',O))W_l(z, —r;O)gp”
2€C}

showing that W(z, —r,6) is strongly continuous in § on C}. Moreover, we can construct a
normalized eigenvector ¢ (-7, §) of H(—r, ) which is continuous in § by

Pl (—7?, 6)901('_7" O)
(p1(=r, 0)| Py(=r, 6)p1(—, 0))

where H(—r,0)p(—r,0) = e;(—r, 0)p1(—r, 0). Hence the estimate

(Pl(_"r’ 6) =

(7.62)

|W (2, —r; 6)p1(=7, 6) = W(z, =73 0)p1(—r, 0)
< ||(W(z, =7;6) = W(z,—r;0))o1(—7, 0)|| (7.63)
+ |[W(z, —r;8)(p1(=, 6) — p1(=7, 0) |
from which follows that
W(z, —r; 8)p1(—r, 6) = W(z, —r; 0)py(~7, 0) (7.64)

as § — 0. Since for § = 0, W(z, —r;0) is analytic for any z in D(0,r), W(+4r, —r;0) integrated
along C; coincides with W (+r, —r; 0) integrated along the real axis. Thus this operator is unitary
and we have ||W(+r, —r; 0)p1(—r, 0)|| = 1, which together with (7.55) imply

lim Im 0(5) = 0. (7.65)
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7.2. Expansion in §

Let us finally turn to the last assertion of Theorem 2.1 which deals with the actual computation
of Im fﬁ e1(z,6)dz and Im 6,(6) to the lowest order in §, when hypothesis IV is fulfilled.

Proposition 7.6. Under hypothesis 1 to IV we have

2Im/ﬁel(z, §)dz = —52g (2_2 - g) (14 0(9)),
21m64(8) = O(6).

Proof. By condition IV we have

p(z,8) = a’2% + 2c6z + b°6 + Ra(z, 6) (7.66)
with

< a®b? (7.67)
where R3(z, 6) is analytic and satisfies

|Ra(z,8)| < k(|2%| +6%) (|2] + ) (7.68)

for k some constant. There will appear several other constants in the sequel, which we shall denote
generically by the same letter k. Let Cys be the circle centered at the origin of radius 6, where
z is some real parameter independent of §. We can write

2.2 2.2 2 e\ ? 2 A\
a‘z +2c6z+b6i=a z+—) + b——76
a a

(7.69)
) 2

2
Z|e )2tz

If « is large enough, =6 > |c|6/a?, and we have for any z € Cy;s

chd

a?

lc]

> (x — ;) 8. (7.70)

Thus we can always choose z sufficiently large so that

2 2
8> <a2 (w - @) - (b2 - 0_2))52 > k82> 0 (7.71)
a a

where k is independent of § and arrive at the conclusion that for any z € Cys

cé
Z‘|‘Z§ > 2| -

c2

a’

z+£_6;2_
a2

0.2 b2

|a®2 + 2c62 + b26%| > k62, ‘, (7.72)
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whereas
| Rs(2, 8)| < k6° (7.73)

on the same circle. By applying Rouché’s theorem for § small enough we have that

cé :!:ivazbz_cz6

a2

: (7.74)

the zeros of a®2% + 2¢62z + b%62, and zy(6), zo(0) are in C,s. Moreover, Vz € Cg,

Vp(z,6) = \/a222 +2c6z + 1,252(1 + = R3(z,6) )
acz

+ 2céz + b262

(7.75)
= Va222 + 2céz + b262(1 + h(z, 6))
where |h(z, 8)|.cc,, < k6, since
R3(Z, 6)
< kb, Vze Cu. 7.76
a?22 + 2e6z + 4262 # € Las ( )
From these last estimates we can write
ZIm/ e1(z,6)dz = —Im/+ vV p(z,6)dz
8 c?
’ (7.77)

= —Im/+ Va222 + 2¢6z + b262dz + 0(63).
C:E

Finally, we compute by deforming the path of integration to a vertical segment going from z =
Re(+ to 2 = {4+ and back to z = Re {4,

- Im/+ Va222 + 2cbz + b262dz
01‘6

i\/a2b2—c26 2 2 2
:—2/‘12 \[(bz—c—z>62—y2a2dy= —522(1)——0—3).
0 a 2\a a

To bound Im #;(é) by a term of order §, we need a little more work. Let us consider the explicit
formula for Im 6,(8) in terms of the matrix elements of H(t, ) which is derived in [15]:

(7.78)

Proposition 7.7. Let v;(t, 6) and B;(t,6), j = 1,2, 3, be defined by (7.14) and (7.16), respectively,
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and assume that conditions 1 to 11l hold. Then

— B3(z’ 6)(B1(Z7 6)Bl2(z, 6) - Bz(z, 6)B1(z, 5))
m&@—ml 24/p(z,6)(B3(z,6) + B3(z,9)) dz
+Re / (% (1=, OWi(z, 8)) — (a2, )|¥2(2, 6)))
Bi(z,6) + iBy(z, 6)
2v/p(z,6)
By(z,6) — iBy(z,6)

2\/@ <¢2(Z’ 6)|¢1(Z’ 5)))

+

(1(2, 6)l¥a(z, )

where the path o encircles zo(6) and contains no zero of Bi(z,6) + B3(z, 6).
Our condition IV implies that the analytic functions B;(z, §) defined by (7.16) have the form
Bj(z,6) = a;z + b;6 + Ry(z,6) (7.79)

where the real constants a; and b; satisfy

3 3 3
Za? = d?, E b? = b, Z a;jb; = ¢, (7.80)
J=1 j=1 i=1

and R(z, 6) is a rest of order two in (2, §). Again we shall replace the path o by CJ; since on the
real axis, the integrals in Proposition 7.7 do not contribute to Im 6;(6). But here some care must
be taken for the first integral since the integrand has poles at the zeros of B2(z, §) + B%(z, ). But
this is not the case for the other integrals in which the replacement of o by C:5 is justified. As
on C}; we have (see (7.72))

V6@ 0)| > k6, |Bi(z6)| <ké, and [(w;luh)(z8)| <k, (7:81)

we immediately obtain

/ !
o)< | BB
o 2\/5(B1 + Bz)

To deal with the first term, we introduce

a= \/a%+a%, 8= \/b%-}-bz, and v = aby + azb,. (7.83)

By the Cauchy-Schwartz inequality these quantities satisfy |y| < 8. Actually, we can assume
without loss of generality that

dz + O(5). (7.82)

0< |v| < aB. (7.84)
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Indeed, the equality |y| = af implies
ay =yb;,  ay=yb (7.85)

for some y # 0. This cannot be the case for any couple of indices since it would imply a3 = yb;
as well, in contradiction with the condition |¢| < ab. Thus we can always perform a change of
basis vectors, which amounts to write H(t,§)Q(t,8) in a new basis {Svy(t, §), S1,(t, 6)} instead
of {1(t,6), (L, 8)}, where S is a constant unitary matrix, so that the components of the new
field are such that (7.84) is verified. With these definitions and (7.79) we can rewrite

Bi(z,6) + B3(z,6) = o*2® + 2v62 + B%6% + Ra(z, 6). (7.86)

As previously we have, for z € CJ;

2
|a2z2 + 2v6z + ﬂ262| > ||z + 7—2 - 8% - :7_5 §° (7.87)
(0% 0%
where
2 v 1> 2 71\ 2 2 72
a’lz+ = >a<m——2)5>ﬂ——2—6, (7.88)
81 [ «

provided z is large enough, so that

|a®2® + 276z + B%6%| > k6. (7.89)
Hence,

|R3(2, 6)| < k6> < k6* < |o?2? + 2962 + 4267| (7.90)

for 6 small enough, Vz € C},. Then it follows from Rouché’s theorem that B%(z,6) 4+ B3(z,6)
has as many zeros in C:S as az% 4 2v6z + 8262, i.e., two (o(6) and (o(6), counting multiplicities.
Indeed, the roots of a?z% + 2vy6z + 3262 are given by £,

6 | AJa?B— A2
=L 4 YO,

= = (7.91)

which belong to C;s if « is large enough. Note that due to (7.84), Im£4 > 0. Now we can replace
the contour of integration o in (7.82) by CX, provided we take the residue at (o(6) into account.
Consider first the case where (y(6) # (o(8). Since Im (y(6) > 0, we have

Im 6,(6) = 2mRe (Res (B;(\};_i(B]%__*_B;S 1), C0(6)> ) (7.92)

(a3z + b36)(azbh; — a1b3)6 + Rs(z, 6)
Ol 20/a222 + 2¢6z + b262 (a222 + 2v6z + 5262 + R3(z,6)) (1 + h(z, 6))

+Im dz
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where |h(z,8)| < ké (see (7.75)) and Res(f, zp) is the residue of f(z) at the point zg. In view of
(7.89) and (7.75), we can estimate the remaining integral by
(a3z + b36)(a2b1 - a1b2)§

Im
Ct 24/a22% + 2cbz + b262 (azz2 +2v6z + ﬂzéz)

+ O(6) (7.93)

when 6 is small. The integrand is now singular at {4+ and £ only, which both belong to C;:s,
when « is large. Thus we can replace the contour of integration C¥, by C%, the half circle of

radius R, which will ultimately tend to infinity, since on the real axis the integral is real. On C}
we have the estimates

2.2 22 12| 2, 28, b%6? 2
|a%2% + 2¢62 + b767| = [ 7] |a” + — + —| > k()R (7.94)
z
and
|a®2® + 276z + §°6%| > k(6)R? (7.95)
which imply
/ (a3z + b36)(azby — a1by)6 < k(5)_ (7.96)
ct 2\/a2z2 + 2ebz + b262 (a2z2 + 2véz + ﬂzéz) R
Taking the limit B — oo we are left with
Bs(B,B; — B2 By) ))
Im#,(6) = 2nRe| Res , Co(8 O(9). 7.97
o) = omve(Res( B2, 640) ) + 000 (7.97)
The residue is given here by the formula
B3(B; B — ByB}) _ . (BiB— B;B))
4VAB1B] + BaB) sy  ABIB]+ B2BY)| ) (7.98)
7.98
e i(B,B), + B, BY) _ :i:i
"2 4B,B\ + B:BY) | 4
where we have used the fact that
B}(Co(6), 6) + B3 (Co(6), 8) = 0, (7.99)

so that

Vp(Co(8), 6) = 1/ B3(Co(6), 6) = €1B3(Co(6), 6) (7.100)

where ¢; = £1 and

B1(Co(6), 6) = £21B2(Co(6), 6) (7.101)
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z(8)

NS

Fig. 3. The integration path o U 7.

with e; = £1 as well. Hence
Im 8,(6) = O(6). (7.102)
Consider now the case (o(6) = Co(6). We come back to (7.82) and we use the fact that B;(z,6) =
Bj(z, 6) by Schwartz’s principle, and that zo(6) is a simple zero p(z, §), to write
Bs(B,B; — ByBY))
our  2/p(B%+ B?)

where o U@ form a closed path surrounding 2z¢(6) and zo(é) (see Fig. 3). By the same argument
as before, we have

Im8,(5) = %Im + 0() (7.103)

B3(B.1B; — B, BY)
Im#,(6) = mRe (Res( ,$o0(6) ) ) + O(8). (7.104)
1 2/p(B} + BY)
The residue is now given by
d (B3(BIB§ ~ BZB'l)) 1
2— : (7.105)
dz 2P 0]

¢ p2. p2
d—zE(Bl + Bz)
since (o(6) is a double zero of B + B3. Moreover, as it is located on the real axis, this implies

Bi1(¢o(8)) = B1(¢o(6)) = 0. (7.106)
Thus

_d_(Bs(BlBé - BzBi)>

=0 7.
P 277 (7.107)

¢o(6)
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Y

Fig. 4. The level lines Imz2 =cst.

and

Im 6,(8) = O(6). (7.108)
This last assertion ends the proof of Proposition 7.6. O

To bring the proof of Theorem 2.1 to an end, it remains to show the existence of the dissipative
path 5 of Proposition (7.2).

7.3. Existence of a dissipative path ~s

Proof of Proposition 7.2. To prove the existence of a dissipative path 5 for Ay;(z, ), we first
show that there exists a dissipative path vg for 4;,(2,0). When § = 0, the function

Apalz, 0) = /0 (e1(u, 0) — e3(u, 0)) du = -/ /70w, 0) du (7.109)

is analytic in a neighbourhood of the real axis and behaves as 2% close to the origin. We select

the branch of the square root by requiring A,2(¢,0) > 0 if t < 0. The Stokes lines given by the
level lines

Im Alz(z, 0) =0 (7.110)

are homeomorphic to the lines depicted in Fig. 4 in a neighbourhood of 2z = 0. As a consequence,
there exist in this neighbourhood two points z; and 2, above the real axis such that

Im A;5(2;,0) = -

(7.111)
Im Ay3(22,0) = +



242 A. Joye [ Proof of the Landau-Zener formula

with x > 0 small, which are connected by the level line

Re A]z(z, 0) = Re Alz(zl,()). (7.112)

Then, the idea is to take x small enough, and to complete this segment on the left by the level line
Im Aj;(z,0) = —x and on the right by Im A;5(z,0) = +x which connect z; to —oo in S, and 2,
to +oo in Su. If we can find such a x, we have at hand a path ~y(t), whose parametrization can
be chosen such that vo(t;) = z;, v0(t2) = 22 which is dissipative for 4,,(z, 0) (see Fig. 5).
Indeed, we have for any path

_;_i{ Im A12(70(t), 0) = — Re4o(t) Im v/ p(v0(2), 0) — Im §o(2) Re v/ p(70(2), 0) (7.113)

and

<5 Re App(70(t),0) = — Reo(t) Re v/p(20), 0 + Im io(t) Im /oo, 0).  (7114)
Thus, if we choose for t € [t;,1;]

Reo(t) = ~ Im /p(70(D), 0),

Imo(t) = ~ Re v/p(3(2), 0)
then equation (7.114) is identically equal to 0 and

S Im A1z(r0(8),0) = [VoGo@, O > d > 0. (7.116)

We can continue this path on the left and on the right as described by using the following

(7.115)

Lemma. For any u > 0, there exists v > 0 such that on
Fr = {z: Rez 2 %4, [Imz| < v}

the function A;(z,0) is bijective.

1
YA Z
1 2
’)k
R
0

Fig. 5. The dissipative path +,.
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S_ (V) 0 S+(V)

r D@,

\

Fig. 6. The disc D(0,r) and the tubular neighbourhoods S—(v) and 54 (v) of vp.

Proof. Let 4 > 0. By continuity of p(z, 0) and condition IIl, we can chose v sufficiently small to

insure Re v/p(z,0) > R > 0 for any z € F_. Let us consider the rectangle R—(L) whose border
is defined by

dR_(L) =03(F-\{z: Rez < —L}). (7.117)
Along its horizontal segments we have that

Re Apo(t + iv) = Re App(—p % iv) + t dzRe /p(z £ iv) (7.118)
is strictly monotonic. Similarly, along its vertical suegments

ImA(—ptis) =ImA(—p) £ /O dy Re/p(—p £ iy) (7.119)

and Im Aj5(—L % is) are strictly monotonic as well. Thus the image by Aj,(z,0) of dR_(L) is
a simple closed curve so that we can apply the argument principle which shows that Aj,(z,0) is
bijective on R-(L). Since the length L of the rectangle is arbitrary, this proves the first assertion
of the lemma. We proceed similarly for the positive part of the real axis and F,. O

We shall assume from now on that the width a of the strip Sy is smaller than v. Now that we
have constructed a dissipative path for Ay,(z,0), we show that there exists a dissipative path for
Aqx(z,6) close to it. Let D(0,r) be the disc centered at the origin whose radius = is such that
D(0,7)N~g = @ and let S4(v) and S_(v) be tubular neighbourhoods of vo(t) for t > t; and t < ¢,
respectively, defined by their boundaries. These boundaries are given by the level lines

95-(v) = {2: Re Ap(z,0) 3 Re Az, 0), Im Ayy(z,0) = —x £ v} 120

120

U {z: Re App(z,0) = Re App(21,0), |ImAga(2,0) + x| € v}

and 954 (v) is defined similarly (see Fig. 6). We choose v sufficiently small so that
Sz(v)N DO, r) = @. (7.121)
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Consider the multivalued function

Aqx(2,6) = — /02 v p(u, 8)du. (7.122)
When restricted to
S\ D(,7) = (Sa\D(0,7)) N {z: Imz > 0}, (7.123)

Aq(2,6) is an analytic univalued function provided § is so small that
|20(6)| < . (7.124)

We fix a branch of Aj;,(z,§) by requiring that the path of integration in (7.122) follows the real
axis from 0 to —r and that Ay,(¢,6) > 0 for ¢t < —r.

Lemma 7.6. Let A15(z,0) and Aqy(z, 6) be defined as above, and let z € ST \ D(0, ).
limIm A15(2,6) = Im A12(2,0)  uniformly in z € S+ \ D(,r).

Proof. We first show that p(z, §) tends to p(z, 0) uniformly in 2. Let ¢ > 0 and consider

lp(Z, 6) - p(z, O)I < lp(Z, 6) - p(:]:OO, 6)] + [p(:l:oo, 6) - p(:|:00, O)I

(7.125)
+ | (00, 0) - p(z, 0)].
It follows from (7.19) that there exists T'(¢) > 0 such that for any ¢ 2 T(e)
|p(t + s, 6) = p(oo, )] < 3,
. (7.126)
|p(£00,0) = p(t +1is, 0)| < 3
Since p(*oo, §) is continuous in é, there exists §;(¢) such that § < §;(¢) implies
€, € €
|o(z, 8) — p(z, 0| < 3 + 3 + 3 (7.127)
for any |t| > T'(¢). Now the set
Sa\ (D(r,0) U D(T(e))) (7.128)
where
D+(T(e)) = {#: Rez 2 T(e)} (7.129)

is a compact set, so that p(z, §) is uniformly continuous in (z, é) for z in this set and § € I4. Thus
there exists (e, T(e)) such that if | Re z| < T'(¢),

|p(z, 8) — p(z,0)| < & (7.130)
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if 6§ < 62(e, T(€)). Since S \ D(0,r) is simply connected and contains no zero of p(z, 6) for any
small 6 (see (7.124)), the analytic function 1/p(z, 6) tends to 1/p(z, 0) uniformly in z € §F\ D(0, r),

provided we select the suitable branches for the square roots. Our choice is 1/p(t, §) and 1/p(2, 0)
positive if ¢ < —r. Consider now

| Im Aq3(z,6) — Im Aj,(z, O)I = l Im /Oz (v p(u, 6) = V/p(2,0)) du

. (7.131)

Let z =t+is € SF \ D(0,7). If t < —r we can choose a path of integration going from 0 to
t < —r along the real axis and then vertically to ¢t 4+ is. 1f t 2> —r we take a path from —r to ¢
following the boundary of D(0, r) and the real axis, if necessary, and then a vertical path to t + is,
see Fig. 7. Along the second path for ¢ > r, for example, we have

| Im A15(2, 6) — Im Ayp(z, 0)] < 7r sup ‘\/P(T‘ exp{if}, §) — /p(rexp{if}, O)i
8€[0,7]
(7.132)

+ a sup

lslga

Vo +1s,6) — /p(t + is, O)I

where the second member tends to zero uniformly in 2 = t 4 is as § tends to zero. The result is
the same whent < r. 0O

As a consequence of this lemma we can assume that § is small enough so that we have

|p(z, 6) — p(2,0)] < -?, Vz € So\ D(O,7), (7.133)
where 0 < R = inf,¢s,\p(o,r) P(2, 0) and
| Im Ay2(2, 6) — Im Apa(z, 0)| < g Vz € S\ D(0, 7). (7.134)
Hence the level line
Im Aq2(z, 6) = Im Ay3(zy, 6) (7.135)
|
z = t+is.
z = t+is
D (O, 1) R
‘- r - 0 r - -

Fig. 7. Particular integration paths.



246 A. Joye | Proof of the Landau—Zener formula

cannot cross the level lines

Im Alz(z, O) = —-X + o (7136)
since this would imply

| Im Ay5(21, 8) — Im Ayy(z1,0)| = v > g (7.137)
Moreover, the line

Im Aj5(z,6) = Im Aj2(21, 6) (7.138)
cannot cross the segment

{z: ReAja(2,0) = Re Ajy(21,0), |ImAp(2,0) + x| < v} - (7.139)

if 6 is small, except at z = 2;. Indeed, for § small enough A},(21,6) # 0, so that Ay(z,6) is
bijective in a §-independent neighbourhood V' of z;. Moreover Aj,(z, §) tends to Aj,(z,0) which
has the same property in V' so that we can conclude. Note that a level line

Im Aj;(z,6) = cst (7.140)
is given by the solution ~(¢) of the following differential equation

% Im A12(y(2),6) = 0, (7.141)
i.e.,
Re3(t) = Re /3005,
(7.142)
Im5(t) = —Im+/p(7(2), 6).
Thus
5 ReAui(0,8) = o0, )| > B >0 (7.143)

which implies that | Re A ;(y(¢), §)| is strictly increasing along «(¢). Hence the level line
Im Aj3(z, 6) = Im Ap(23, 6)

leads from z; to —oo in S_(v). Moreover, |¥(t)] = |+/p(7(t),6)| is uniformly bounded in .
Finally, we have along vo(t) for ¢ € [tq, ;]

< Im Aps(r0(0), ) = —(Re40(t) Im v/2(r000, ) + Imio(t) Re /o700, ) (7.144)

which is strictly greater than zero if ¢ is sufficiently small, since /p(z,8) — 1/p(z,0) and by
construction

% Im Ap(ro(t),0) > d >0 (see (7.116).
Hence, the path -5 defined by
ImAjy(z,6) = ImAjp(z1,6) from — oo to 2,
v§ =4 Yo from z; to z, (7.145)
ImAq(2,6) =ImAp(2,8) from z to + oo

is dissipative for Aj,(z,6) and has all the properties announced in the proposition. O



A. Joye | Proof of the Landau-Zener formula 247
This completes the proof of Theorem 2.1 as well. O
A. Technicalities
Let us introduce different norms. Let ¢ G D. We define forz GSa and d G1&

IMks = IMI +
IM ki= IMI+

(A1)

The domain D equipped with any of these norms is a Banach space we shall denote by X x$,
respectively, X+ts- By the closed graph theorem we have for any z,z' G Sa and 3,01 G I35

H(¢,8)6 B(X{5>H), (A.2)
the set of bounded linear operators from Xz to 7i. Similarly

H(z,6)eB (X %s,H),

H~(8) G B(Xzif/,H), (A.3)

H Hd) G B(X=%,s',n).
We denote the norms in these spaces of bounded operators by

- H* T and II- HU,5, (A.4)
The norms in X As are related by

IMU* < (1 + \\\HzYHHIU i, (A-5)

where z or z' can also be replaced by + or —

Lemma A.l. Under the assumptions | and Il, there exists a constant M, independent ofz, z G Sa
and 0,8 G 15 such that

max {N\NCONNNN, NN Sl | [ [ F*«”, [ IM <M

and there exists an integrable decay function b(t) and a positive constant B, both uniform in 9§,
such thatfor all ¢ 6 D

o, H@ W = %11 ~ b(H) W5,
€ B\ 751
h***» tS

forany z =t +is,z' GSa and 9,01 G lj.
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