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Abstract

We define coined Quantum Walks on the infinite rooted binary tree given by unitary
operators U(C) on an associated infinite dimensional Hilbert space, depending on a unitary
coin matrix C ∈ U(3), and study their spectral properties. For circulant unitary coin matrices
C, we derive an equation for the Carathéodory function associated to the spectral measure of
a cyclic vector for U(C). This allows us to show that for all circulant unitary coin matrices,
the spectrum of the Quantum Walk has no singular continuous component. Furthermore, for
coin matrices C which are orthogonal circulant matrices, we show that the spectrum of the
Quantum Walk is absolutely continuous, except for four coin matrices for which the spectrum
of U(C) is pure point.

1 Introduction

Simple or coined Quantum Walks are defined as the discrete dynamics of a particle with an
internal degree of freedom, called coin state, on a graph. The dynamics of a simple Quantum
Walk, QW for short, consist in the repeated action of the composition of a unitary coin matrix
on the internal degree of freedom followed by a finite range shift on the graph, conditioned
on the coin state. In other words, the shift makes the particle propagate on the graph,
whereas the coin state somehow selects the direction of the motion. QWs of this sort are
sometimes considered as quantum analogs of classical random walks on the underlying graph,
see e.g. [2, 22, 24, 31]. Consequently, QWs play an important role in computer science, in
particular in the development of search algorithms by the quantum computing community,
see [1, 27, 25]. QWs have also been introduced to provide effective dynamics of physical
quantum systems in certain asymptotic regimes. For example, quantum lattice gases, or the
dynamics of an electron in a two dimensional random background potential submitted to a
large perpendicular magnetic field can be described in terms of QWs. Also, the dynamics
of atoms trapped in time dependent optical lattices, that of ions caught in suitably tuned
magnetic Paul traps or the propagation of polarized photons in networks of waveguides are
experimentally well captured by deterministic or random QWs e.g. [26, 8, 23, 28, 32]. These
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models naturally led to the study of random QWs, [21, 5, 18, 19, 15]. Further generalizations
have been proposed, notably extensions from the unitary framework to completely positive
maps [1, 13, 6] defining open QWs, and from stationary to time-dependent QWs [4, 17, 14].
The popularity of QWs in different fields illustrated by this non exhaustive list is certainly due
to their flexibility in modeling and to the tractable, yet non trivial, mathematical analyses
of their transport and spectral properties that their structure allows.

In this paper, we construct QWs on rooted binary trees and we address their spectral
properties in a stationary, deterministic and homogeneous setup:

On the one hand, we provide a general definition of coined QWs on the infinite rooted
binary tree, which, despite the interest of this particular infinite graph for many applications,
does not seem to appear in the literature. Informally, the QW describes the dynamics of
a particle with coin state in C

3 on the binary tree, with certain boundary conditions at
the root. The shift makes the particle jump from a site of the rooted binary tree to the
nearest neighbors of this site, and the coin state update is performed by a matrix C ∈ U(3).
The resulting QW is denoted here by the unitary operator U(C) on the associated Hilbert
space, where the coin matrix C appears as a parameter. The precise construction of U(C) is
provided in Section 2, see Definition 2.5, together with some of its symmetry properties.

On the other hand, we address the spectral properties of the QW when the coin matrix
C belongs to U(3) ∩ Circ(3), the set of circulant unitary matrices introduced in Section 3.
We make use of the structure of the tree to derive an equation for the Carathéodory function
of the spectral measure of a cyclic vector for U(C) in Section 4, Theorem 4.2.

This technical result allows us discuss some spectral features of the corresponding QWs,
as stated in Corollary 4.4 and Theorem 4.5. In particular, we prove the absence of singular
continuous spectrum for U(C), when C ∈ U(3)∩Circ(3). Moreover, when C ∈ O(3)∩Circ(3),
the set of orthogonal circulant matrices, we prove that U(C) has purely absolutely continuous
spectrum, unless C is a permutation matrix, up to the sign, distinct from the identity. In
the latter cases the spectrum of U(C) consists in six infinitely degenerate eigenvalues.

Let us note that there exist constructions of QWs on binary trees, [12], which, however,
do not have the simple structure of coined QWs, and therefore lack the quantum mechanical
interpretation of discrete dynamics of a particle with internal degree of freedom (or spin). Our
definition is based on [15] which considers random coined QWs on the full homogeneous tree
of coordination number 3, with different families of boundary conditions that are discussed
below. An analogous special symmetric QW on the homogeneous tree was constructed [10],
with the main difference that the repeated action of the coin state conditioned shift alone
does not induce propagation on the tree.

The study of spectral measures by means of their associated Carathéodory function is
quite natural for unitary operators of all sorts, see e.g. the textbooks [29], [30]. In par-
ticular, the spectral analysis of several inhomogeneous deterministic QWs defined on the
one-dimensional lattice is successfully based on the same technical tool, see the review [9]
and references therein.

While the results of [15] concern the localization-delocalization spectral transition in a
random framework, they don’t address the deterministic homogeneous QW on the tree. In
the analogous self-adjoint setup where the operator of interest is the Laplacian on the tree,
the spectral analysis is performed either by explicit diagonalization via the Fourier-Helgason
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transform, by reduction to an infinite direct sum of one-dimensional Jacobi matrices, or by
computation of the resolvent operator, making use of the symmetries of the Laplacian, see
e.g. [11], [30]. We follow the last mentioned route in our analysis of U(C). Even though
we cannot prove it, we expect the spectrum of U(C) to be absolutely continuous for any
C ∈ U(3) that is not a permutation matrix, up to phases, distinct from the identity.

Acknowledgements A.J. wishes to thank Eman Hamza for many useful discussions at
an early stage of this project.

2 Quantum Walks on the Binary Tree

We recall here the part of the general framework developed in [15] which is relevant for the
definition of QWs on binary trees. We start with the definition of QWs on the homogeneous
tree T3, of coordination number equal to 3.

2.1 Homogeneous Tree

Let T3 be the tree corresponding to the free group generated by

A3 = {a, b, c} with a2 = b2 = c2 = e, e the neutral element. (1)

Choose a vertex of T3 to be the root of the tree, denoted by e. Each vertex x = x1x2 . . . xn,
n ∈ N of T3 is a reduced word made of finitely many letters from the alphabet A3. Accordingly,
an edge of T3 consists in a pair of vertices (x, y) such that xy−1 ∈ A3. This last relation
defines nearest neighbors in T3 and any vertex has thus 3 nearest neighbors. Any pair of
vertices x and y can be joined by a unique set of edges, or path of T3. The distance |x|
of a vertex x = x1x2 . . . xn to the root is n and we denote by d(x, y) the distance between
two arbitrary vertices. Given the order A3 = {a, b, c}, the sequence xa, xb, xc of nearest
neighbors of any x, is ordered around x in the positive orientation. By iteration, this provides
a unique numbering of the vertices of T3, which we identity with T3, see Figure 1.

The Hilbert space K3 of the QW on the homogeneous ternary tree T3 consists in two
parts. The configuration part of the Hilbert space of the QW is defined by

l2(T3) =
{

ψ =
∑

x∈T3
ψx|x〉 s.t. ψx ∈ C,

∑

x∈T3
|ψx|2 <∞

}

, (2)

where |x〉 denotes the element of the canonical basis of l2(T3) sitting at vertex x. The internal
degree of freedom of the quantum walker, aka spin or coin state, lives in C

3, the coin Hilbert
space, so that the total Hilbert space of the walker is

K3 = T3 ⊗ C
3. (3)

The canonical basis of the coin Hilbert space is labelled by the same symbols and is thus
given by the ordered set {|a〉, |b〉, |c〉}. Finally, we denote the corresponding canonical basis
of K3 by

{

x⊗ a ≡ |x〉 ⊗ |a〉, x ∈ T3, a ∈ A3

}

. (4)
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Figure 1: Construction of T3.

The dynamics of the quantum walker we consider, dubbed a coined QW, is given by the
composition of a unitary update of the coin variables in C

3 followed by a coin state dependent
shift on the tree.

Let C ∈ U(3) be a unitary matrix. The unitary update operator defined by I⊗ C which
acts on the canonical basis of K3 as

(I⊗C)x⊗ τ = |x〉 ⊗ |Cτ〉 =
∑

σ∈A3

Cστ x⊗ σ, (5)

where {Cστ}(σ,τ)∈A2
3
denotes the matrix C in the ordered canonical basis of C3 above. In

order to express the coin state -dependent shift S on K3 = T3 ⊗ C
3, three shifts on l2(T3)

are introduced. Let xe, respectively xo, denote vertices at even, respectively odd distance of
the root. Such vertices will be called odd sites, respectiveley even sites in the sequel. For
a 6= b ∈ A3, we define Sab on l

2(T3) by

Sab =
∑

xe∈Tq
|xea〉〈xe|+

∑

xo∈Tq
|xob〉〈xo|. (6)

The operator Sab is unitary and such that S∗
ab = S−1

ab = Sba. The following immediate
property justifies the name shift for Sab. For each x ∈ Tq, consider Hab

x the Sab-cyclic
subspace generated by |x〉,

Hab
x = span

{

Sn
ab|x〉, n ∈ Z

}

⊂ l2(T3). (7)

Lemma 2.1 The subspace Hab
x is isomorphic to l2(Z) and Sab is unitarily equivalent to the

shift on l2(Z).

With Sbc and Sca defined similarly on l2(T3), the coin state dependent shift on K3 is defined
as

S = Sbc ⊗ |a〉〈a| + Sca ⊗ |b〉〈b|+ Sab ⊗ |c〉〈c| =
∑

	

Sab ⊗ |c〉〈c|, (8)
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where 	 indicates that all circular permutations the ordered set {a, b, c} appear. The unitary
operator U(C) describing the coined QW on K3 is defined as U(C) = S(I ⊗ C), where the
coin matrix C ∈ U(3) is viewed as a parameter of the QW. More explicitly, the action of
U(C) reads with (6),

U(C) =
∑

	





∑

xe∈Tq
|xea〉〈xe| ⊗ |c〉〈c|C +

∑

xo∈Tq
|xob〉〈xo| ⊗ |c〉〈c|C



 . (9)

Remark 2.2 For coined QWs defined on general homogeneous trees Tq, with q ≥ 3 and more
properties, see [15]

Let us note here one symmetry property of the model. Other symmetries are expressed
in Proposition 2.7. For z ∈ T3, let Tz be the isometric simply transitive map T3 → T3 defined
by Tzx = zx. Using the same notation for the corresponding operator acting on l2(T3), we
have that T−1

z = Tz−1 = T ∗
z on l2(T3). For a, b ∈ A3

T ∗
z SabTz = Sab if |z| is even, T ∗

z SabTz = Sba if |z| is odd. (10)

Similar results hold for the other shifts. In particular, extending Tz to K3, we have

[S, Tz ⊗ I] = 0, if |z| is even. (11)

Remark 2.3 The notation (9) allows us to consider that each site x of the tree carries a
coin matrix C(x) ∈ U(3), which, in this case, is identical on each site C(x) = C for all
x ∈ T3. For later purposes, following [20], [18], [14], we consider C = {C(x) ∈ U(3), x ∈ T3}
a collection of coin matrices and consider

U(C) =
∑

	





∑

xe∈Tq
|xea〉〈xe| ⊗ |c〉〈c|C(xe) +

∑

xo∈Tq
|xob〉〈xo| ⊗ |c〉〈c|C(x0)



 . (12)

This is a well defined unitary operator on K3, for any collection C.

2.2 Rooted Binary Trees

Making use of definition (12), boundary conditions which preserve unitarity and restrain the
configuration space of the motion of the walker can be defined, see [15]. In particular, the
motion of the walker can be confined to the rooted binary tree TB, with associated Hilbert
space KB we now describe.

Denote by S3 the set of all permutations of the labels of A3 and let π = (acb) ∈ S3 be
the anti-cylic permutation. Consider the corresponding permutation matrix in the ordered
basis {|a〉, |b〉, |c〉}

Cπ =





0 1 0
0 0 1
1 0 0



 . (13)
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Let C ∈ U(3) be given and let e ∈ T3 be the root. We define a site-dependent collection of
matrices Ce = {C(x) ∈ U(3)}x∈T3 by

C(x) =

{

Cπ if |x| ≤ 1
C otherwise.

(14)

and consider U(Ce) defined by (12). As observed in [15], the subspace

He = span {e⊗ a, a⊗ c, e⊗ b, b⊗ a, e⊗ c, c ⊗ b}, (15)

is invariant under U(Ce) and σ(U(Ce)|He) = {1, eiπ/3, · · · , ei5π/3}.Moreover, the three infinite
dimensional subspaces Ha, Hb and Hc given by

Ha = span {a⊗ a, a⊗ b} ∪ {ay ⊗ a, ay ⊗ b, ay ⊗ c}|ay|>|y|≥1 (16)

and by circular permutation of the indices for Hb and Hc, are all invariant under U(Ce). This
is due to the fact that the QW couples nearest neighbors on T3 only, and that the subspaces
H#, # ∈ {a, b, c}, are separated by He which is invariant. Actually, each of the subspaces
H# is a direct sum of two infinite dimensional subspaces invariant under U(Ce), as easily
checked.

Lemma 2.4 The following decomposition holds

Ha = Ha⊗a ⊕Ha⊗b, (17)

where the subspaces Ha⊗a and Ha⊗b invariant under U(Ce) and given

Ha⊗a = span {a⊗ a} ∪ {aby ⊗ a, aby ⊗ b, aby ⊗ c}|aby|≥|y|+2≥2

Ha⊗b = span {a⊗ b} ∪ {acy ⊗ a, acy ⊗ b, acy ⊗ c}|acy|≥|y|+2≥2. (18)

Permutation of indices yield similar invariant decompositions for Hb and Hc.

Let us focus on the index a. We denote by Ua(C) the restriction U(Ce)|Ha that we view
as a QW on a binary tree T a

B with root a going forward in the direction a, with coin space
of dimension 3 over each site of this rooted tree, except over the root a where the coin space
is of dimension 2. In other words

T a
B = {a} ∪|ay|>|y|≥1 {ay} (19)

with corresponding Hilbert space l2(T a
B ) and Ka

B = Ha which depend on a, as subsets of
l2(T3) and K3. See figure 2. By definition, the coin matrix at each site of T a

B is given by C,
except at the root which carries a two-dimensional coin state, where the boundary condition
states that the update of the two basis coin states |a〉, |b〉 is carried out by means of Cπ:

Ua(C) a⊗ a = ab⊗ c and Ua(C) a⊗ b = ac⊗ a, (20)

where
Ka

B = C
2
a ⊕y∈T a

B
\{a} C

3
y. (21)
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Taking into account the finer decomposition (17), we define

T ab
B = {a} ∪|aby|≥|y|+2≥2 {aby} (22)

the tree rooted at a such that a has coordination number one to ab, and all other sites have
coordination number 3, see Figure 3. The corresponding configuration and total Hilbert
spaces are l2(T ab

B ) and Kab
B = Ha⊗a respectively, where

Kab
B = Ca ⊕y∈T ab

B
\{a} C

3
y, (23)

which are subsets of l2(T3) and K3. The tree T ac
B and Hilbert spaces l2(T ac

B ) and Kac
B = Ha⊗b

are defined similarly. We view Uab(C) = U(Ce)|Ha⊗a
and Uac(C) = U(Ce)|Ha⊗b

as QWs on
Kab

B and Kac
B , such that

Ua(C) = Uab(C)⊕ Uac(C) on Ka
B = Kab

B ⊕Kac
B . (24)

The boundary condition at the root a of T ab
B and T ac

B then read

Uab(C)a⊗ a = ab⊗ c, Uac(C)a⊗ b = ac⊗ a. (25)

This yields the

Definition 2.5 A coined QW on the rooted tree T ab
B is defined by Uab(C) on Kab

B , whereas
a QW on the binary tree T a

B is defined by Ua(C) on Ka
B.

Remarks 2.6

i) The QW defined by Ua(C) is a direct sum of independent QWs on Kab
B and Kac

B , according
to (24). We discuss ways to couple them at the root in section 2.3.
ii) Similar interpretations hold for the restrictions Ub(C) = U(Cb)|Hb and Uc(C) = U(Cc)|Hc .
iii) While we will not consider such generalizations, it is possible to decorate the entries of
the matrix Cπ which define the boundary conditions by independent phases.

The QWs U#(C) defined on K#
B for # ∈ {a, b, c} are related to one another as the

following proposition shows.

Proposition 2.7 Let σ = (abc) ∈ S3 and Cσ ∈ U(3) the corresponding permutation matrix.
There exists a unitary operator V on K3 such that V 3 = I and

V (K#
B ) = Kσ(#)

B , for all # ∈ {a, b, c},
U#(C) = V −1Uσ(#)(CσCC

−1
σ )V. (26)

In particular, we have on K3,

U(C) = V −1U(CσCC
−1
σ )V. (27)

Also, with Va = T−1
a V Ta, one has Va(Kab

B ) = Kac
B and

Uab(C) = V −1
a Uac(CσCC

−1
σ )Va. (28)
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Corollary 2.8 For any C ∈ U(3)

σ(U(C)) = σ(U(CσCC
−1
σ )), σ(U#(C)) = σ(Uσ(#)(CσCC

−1
σ )),

σ(Uab(C)) = σ(Uac(CσCC
−1
σ )). (29)

Remarks 2.9

i) All statements remains true if σ is replaced by π, due to the relation σ2 = π.
ii) This symmetry shows that on the homogeneous tree, coin matrices that are unitarily
equivalent by means of Cσ or Cπ give rise to QWs with identical spectrum. On the binary
tree, this property remains true provided the QW takes place on a different binary tree.

Proof: Let Σ : T3 7→ T3 be defined by Σ(x1x2 · · · xn) = σ(x1)σ(x2) · · · σ(xn), for any
reduced word x1x2 · · · xn ∈ T3, where xi ∈ A3. The inverse of Σ is Π s.t. Π(x1x2 · · · xn) =
π(x1)π(x2) · · · π(xn). We keep the same notation for the corresponding unitary operator on
l2(T3) defined by

Σ|x1x2 · · · xn〉 = |σ(x1)σ(x2) · · · σ(xn)〉, (30)

for any basis vector |x1x2 · · · xn〉. The equivalent definition holds for Π : l2(T3) → l2(T3).
Then, by construction, ΣT #

B = T σ(#)
B , for all # ∈ {a, b, c}. Consider Sab. By looking at the

action of the basis vectors |x〉 ∈ l2(T3), one gets SabΣ = ΣSπ(a)π(b) and similarly for circular
permutations of indices. Define now the unitary operator on K3

V = Σ⊗ Cσ. (31)

Restricting attention to vectors in B
+
2 = span {x⊗ τ | x ∈ T3, |x| ≥ 2, τ ∈ A3} where all coin

matrices U#(C) are equal to C, we have

(Sab ⊗ |c〉〈c|C)V |
B

+
2

= SabΣ⊗ |c〉〈c|CCσ |B+
2
= ΣSπ(a)π(b) ⊗ |σ(π(c))〉〈σ(π(c))|CCσ |B+

2

= (Σ ⊗Cσ)Sπ(a)π(b) ⊗ |π(c)〉〈π(c)|C−1
σ CCσ|B+

2
. (32)

Summing over all permutations of the labels {a, b, c}, we obtain

S(I⊗ C)(Σ⊗ Cσ)|B+
2
= (Σ⊗ Cσ)S(I⊗ C−1

σ CCσ)|B+
2
. (33)

This argument actually shows that for U(C) on K3 , we have

U(C) = V −1U(CσCC
−1
σ )V, (34)

and that
U#(C)|

B+
2 ∩K#

B

= V −1Uσ(#)(CσCC
−1
σ )V |

B+
2 ∩K#

B

. (35)

Consider now the action of U#(C) on the root of K#
B , i.e. on the vector # ⊗ τ , with

# ∈ {a, b, c} and coin state τ ∈ {#, σ(#)}. Let us compute Uσ(#)(C)V (# ⊗ τ). Since the
coin matrix on the root is Cπ, we have

(Sab ⊗ |c〉〈c|Cπ)V (#⊗ τ) = (Sab ⊗ |c〉〈c|Cπ)(σ(#) ⊗ σ(τ)) = σ(#)b⊗ |c〉〈c|Cπσ(τ)〉
= (ΣSπ(a)π(b)#)⊗ (|σ(π(c))〉〈σ(π(c))|Cπσ(τ)〉
= V (Sπ(a)π(b) ⊗ |π(c)〉〈π(c)|C−1

σ CπCσ)(# ⊗ τ). (36)

9



Summing over the permutations of {a, b, c}, and noting that C−1
σ CπCσ = Cπ we have

Uσ(#)(C
′)V (# ⊗ τ) = V U#(C

′′)(#⊗ τ). (37)

Hence, for any # ∈ {a, b, c}, and any C ∈ U(3),

U#(C) = V −1Uσ(#)(CσCC
−1
σ )V (38)

on K#
B , with V (K#

B ) = Kσ#
B . The proof of the statement about Uab(C) is quite similar.

2.3 Boundary Conditions

For illustration purposes, we introduce here a one-parameter families of boundary conditions
at the root of the binary tree T a

B showing how to couple the two invariant subtrees Kab
B and

Kac
B . There are of course other possibilities.

Consider

Cθ
a =





sin(θ) cos(θ) 0
0 0 1

cos(θ) − sin(θ) 0



 , Cθ
b =





0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)
1 0 0



 , Cθ
c =





0 1 0
− sin(θ) 0 cos(θ)
cos(θ) 0 sin(θ)





(39)
and let Cθ = Cθ(x)x∈T3 given by

Cθ(x) =







Cπ if x = e
Cθ
x if |x| = 1

C otherwise.
(40)

Direct computations establish the following.

Lemma 2.10 The subspaces He (15) and Ha = Ka
B (16) are invariant under U(Cθ), for all

θ ∈ T. Moreover, with
U θ
a (C) = U(Cθ)|Ka

B
, (41)

the boundary conditions at the root a ∈ Ka
B read

U θ
a (C) a⊗ a = cos(θ)ab⊗ c+ sin(θ)ac⊗ a

U θ
a (C) a⊗ b = − sin(θ)ab⊗ c+ cos(θ)ac⊗ a. (42)

Finally,
CσC

θ
#C

−1
σ = Cθ

σ(#), # ∈ {a, b, c}, (43)

so that for any C ∈ U(3), we have V (K#
B ) = Kσ(#)

B

U θ
#(C) = V −1U θ

σ(#)(CσCC
−1
σ )V on K#

B . (44)

Remark 2.11 By construction, U θ
a (C) is a rank two perturbation of Ua(C).
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Let us finally mention that U θ
#(C) is continuous in C ∈ U(3) in the following sense. For

all C,C ′ ∈ U(3)
‖U θ

#(C)− U θ
#(C

′)‖ ≤ ‖C −C ′‖C3 . (45)

In order to study the spectral properties of Ua(C) = Uab(C)⊕ Uac(C) on the binary tree
Ka

B = Kab
B ⊕Kac

B , we can restrict attention to the spectral measure of cyclic vectors generating
Kab

B and Kac
B . Such a vector exists when all matrix elements of C are all different from zero.

This is true in particular for the circulant matrices we study below.

Lemma 2.12 If C ∈ U(3) is such that Cτ,σ 6= 0 for all σ, τ , the vector a⊗ a at the root of
Ka

B is cyclic for Uab(C) and a⊗ b is cyclic for Uac(C).

Proof: Consider Uab(C). It is enough to show that for all x⊗τ ∈ Kab
B , there exists j ∈ Z s.t.

〈x⊗ τ |U j
ab(C)a⊗ a〉 6= 0. Since all matrix elements of Uab(C) are non-zero, |x| − 1 iterations

of Uab(C) on a × a allow to reach the site x ∈ T ab
B along a specific edge which determines

the coin state above this site. Two more iterations allow to reach x again along the other
two edges connected to x, which yield non zero components along the other two coin states
above the same site x.

3 Circulant Unitary and Orthogonal Matrices

We shall restrict attention to the set of circulant coin matrices on C
3, Circ(3), which allows

for some simplifications in the analysis of the resolvent of U#(C). Circulant coin matrices

are such that the three QWs U#(C) defined on K#
B are unitarily equivalent and admit a

convenient parametrization.

We denote the set of 3×3 unitary, respectively orthogonal, matrices by U(3), respectively
O(3). Also, Circ(3) denotes the set of 3× 3 circulant matrices in M3(C),

Circ(3) =











c0 c2 c1
c1 c0 c2
c2 c1 c0



 = circ(c0, c1, c2), cj ∈ C, j = 0, 1, 2.







. (46)

Let us recall some properties of circulant unitary or orthogonal matrices to be used later.

Lemma 3.1 We have

{C ∈M3(C) | C = CσCC
−1
σ } = Circ(3) (47)

For all C ∈ Circ(3) ∩ U(3) with σ(C) = {eiθj}j=0,1,2, it holds with ǫ = ei2π/3,

C =
1

3
circ(eiθ0 + eiθ1 + eiθ2 , eiθ0 + ǫ2eiθ1 + ǫeiθ2 , eiθ0 + ǫeiθ1 + ǫ2eiθ2). (48)
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Moreover, if cj = 0 for some j = 0, 1, 2, then C ∈ eiα{I, Cσ , Cπ}, for some α ∈ R.

Circ(3) ∩O(3) := CO+(3) ∪ CO−(3) =






circ(c0, c1, c2), s.t.





c0(t)
c1(t)
c2(t)



 =
1

3





1 + sin(t) +
√
3 cos(t)

1 + sin(t)−
√
3 cos(t)

1− 2 sin(t)



 t ∈ [0, 2π)







∪







circ(c0, c1, c2), s.t.





c0(t)
c1(t)
c2(t)



 =
1

3





−1 + sin(t) +
√
3 cos(t)

−1 + sin(t)−
√
3 cos(t)

−1− 2 sin(t)



 t ∈ [0, 2π)







. (49)

Remark 3.2 The two disjoint pieces of Circ(3)∩O(3) are related by the identities cj(t+π) =
−cj(t), j = 1, 2, 3, so that one case can be deduced from the other.

Proof: The first statement is a computation. The second follows from the well known
fact that all circulant matrices can be diagonalized by the same unitary change of basis.

Explicitly here, with W = 1√
3





1 1 1
1 ǫ ǫ2

1 ǫ2 ǫ



 and ǫ = ei2π/3,

W−1 circ(c0, c1, c2)W = diag(c0 + c1 + c2, c0 + ǫc1 + ǫ2c2, c0 + ǫ2c1 + ǫc2). (50)

Hence these matrices are parameterized by their eigenvalues. Imposing three eigenvalues on
the unit circle yields the result. The following property is straightforward whereas the last
statement can be obtained by expressing the orthogonality condition on circ(c0, c1, c2) into
geometric conditions on the real vector c = (c0, c1, c2)

T : ‖c‖ = 1 and c · Rn(4π/3)c = 0,
where n = 1√

3
(1, 1, 1)T , and Rn(θ) is the rotation of angle θ of axis n. Hence c belongs to

the intersection of the unit sphere with two planes orthogonal to n, and passing through the
points ±1

3(1, 1, 1).

3.1 Special Cases

If C ∈ {Cω, |ω ∈ S3} ∩ Circ(3) = eiδ{I, Cσ , Cπ}, δ ∈ R, we have full understanding of the
spectrum of U θ

a (C) on the binary tree Ka
B :

Proposition 3.3 For all θ ∈ T,

σ(U θ
a (e

iδ
I)) = σac(U

θ
a (e

iδ
I)) = S

σ(U θ
a (e

iδCπ)) = eiδ{eik2π/6}k=0,1,...,5 ∪ σd(U θ
a (e

iδCπ))

σ(U θ
a (e

iδCσ)) = eiδ{eik2π/6}k=0,1,...,5 ∪ σd(U θ
a (Cσ))

eiδ{eik2π/6}k=0,1,...,5 = σess(U
θ
a (e

iδCπ)) = σess(U
θ
a (e

iδCσ))

If θ = δ = 0,
σd(U

0
a (±C#)) = ∅, # ∈ {σ, π}. (51)
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Remarks 3.4

0) This proves the last statements of Theorem 4.5 below.
i) If C = Cσ, on top of the six-dimensional invariant subspaces by HTza, |z| even and
s.t. za ∈ T a

B , the following subspaces are invariant under Ua(Cσ): span{a ⊗ a, ab ⊗ c} and
span{a⊗ b, ac⊗ a}.
ii) The discrete spectrum σd(U

θ
a (e

iδC#)), # ∈ {π, σ} consist in twelve distinct eigenvalues at
most and depends on θ in general.

Proof:

We start with δ = 0. In case C = I, Ua(I) acts as S on sites x ⊗ τ ∈ Ka
B with |x| ≥ 2.

Therefore, all cyclic subspaces H#σ(#)
y of the form (7), with # ∈ {a, b, c}, y ∈ T a

B are

invariant under Ua(I), provided a⊗ τ 6∈ H#σ(#)
y . The restrictions of Ua(I) to these subspaces

are all unitarily equivalent to a shift, so that σ(Ua(I)) = S. Let Ha⊗τ be the cyclic subspace
generated by a⊗ τ , τ ∈ {a, b}. One has

Ha⊗a = span{· · · abcb⊗ a, abc⊗ a, ab⊗ a, a⊗ a, ab⊗ c, aba⊗ c, abab⊗ c, · · · }
Ha⊗b = span{· · · acac⊗ b, aca⊗ b, ac⊗ b, a⊗ b, ac⊗ a, acb⊗ a, acbc⊗ a, · · · }, (52)

where the vectors are listed according to their image by Ua(I). Hence, the corresponding re-
strictions also give rise to shifts. Therefore, all restrictions to cyclic subspaces are absolutely
continuous as well, which yields the result.
Consider now U θ

a (I). This operator differs from Ua(I) by a rank two perturbation which
couples the two shifts induced by Ua(I) in Ha⊗a and Ha⊗b. Each of these shifts is unitarily
equivalent to a multiplication by eix on L2(T), in Fourier space, where eix admits an analytic
continuation in a complex neighborhood of T. We can thus apply the argument of the proof
of Theorem 6.2 in [7] to deduce that for any θ ∈ T, σsc(U

θ
a (I)) = ∅.

Finally, a direct argument proves the absence of eigenvalues. Namely, mapping Ha⊗a, re-
spectively Ha⊗b, to span{|2j〉, j ∈ Z}, respectively span{|2j + 1〉, j ∈ Z}, with |0〉 = a ⊗ a
and |1〉 = a⊗ b, the restriction U θ = U θ

a (I)|Ha⊗a⊕Ha⊗b
reads

U θ|2j〉 = |2j + 2〉, U θ|2j + 1〉 = |2j + 3〉,∀j 6= 0

U θ|0〉 = cos(θ)|2〉+ sin(θ)|3〉, U θ|1〉 = − sin(θ)|2〉+ cos(θ)|3〉. (53)

The eigenvalue equation U θψ = λψ with |λ| = 1 has no non trivial l2 solution, whereas the

restrictions of U θ
a (I) to the cyclic subspaces H#σ(#)

y yields absolutely continuous shifts.
We address now C ∈ {Cπ, Cσ}. The essential spectrum of U θ

a (Cπ), U
θ
a (Cσ) is dealt with as

in [15]. The discrete spectrum comes from the restrictions to the 12 dimensional invariant
subspaces generated by vectors at the root. We consider U θ

a (Cπ) only, the other case being
similar, and simply check that

Ha⊗a = span{a⊗ a, ab⊗ c, abc⊗ b, ab⊗ a, aba⊗ c, ab⊗ b, (54)

ac⊗ a, aca⊗ c, ac⊗ b, acb⊗ a, ac⊗ c, a⊗ b}

is invariant. When δ 6= 0, we note that

e−iδUab(e
iδC) = Uab(C) + (e−iδ − 1)Uab(C)|a⊗ a〉〈a⊗ a|

e−iδUac(e
iδC) = Uac(C) + (e−iδ − 1)Uac(C)|a⊗ b〉〈a⊗ b| (55)
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which together with (24), Remark 2.11 shows that e−iδUa(e
iδC) is a rank two perturbation

of both U θ
a (C) for any value of θ and α, such that the range of the perturbation is spanned

by {ab⊗ c, ac⊗ a}. This is enough to get the result.

4 Spectral Analysis

4.1 Spectral Measure

The spectral properties of a unitary operator U on a Hilbert space H admitting a normalized
cyclic vector ϕ can be read off the spectral measure of this vector, dµ(·), on the circle T. We
recall the properties of such probability measures we shall use below. For proofs, see e.g.
[30].

Consider the decomposition of the measure into its absolutely continous and singular part
with respect to the Lebesgue measure on T

dµ(θ) =
w(θ)

2π
dθ + dµs(θ). (56)

The Carathéodory function of dµ is defined for all D = {z | |z| < 1} ⊂ C by

F (z) =

∫

T

eiθ + z

eiθ − z
dµ(θ) (57)

and satisfies F (0) = 1,ReF (z) > 0. The boundary values of F allow us to recover the
measure according to

lim
r→1−

F (reiθ) = F (θ) exists dθ
2π a.e. (58)

w(θ) = ReF (θ) (59)

dµs is supported on {eiθ| lim
r→1−

ReF (reiθ) = ∞} (60)

µ({θ0}) = lim
r→1−

1− r

2
F (reiθ0). (61)

The Carathéodory function is related to the resolvent of U , G(z) = (U − z)−1, and to
H(z) = U(U − z)−1 for z ∈ D by

F (z) = 1 + 2z〈ϕ|G(z)ϕ〉 = 2〈ϕ|H(z)ϕ〉 − 1. (62)

Remark 4.1 If limr→1−〈ϕ|H(reiθ0)ϕ〉 is bounded for θ0 ∈ T, then θ0 6∈ supp dµs.

The main technical result of the paper leading to Theorem 4.5 below, reads as follows:

Theorem 4.2 Let C ∈ Circ(3) ∩ U(3) and write the Carathéodory function of the spectral
measure dµa⊗a as F (z) = 2g(z) − 1, for z ∈ D. Then, there exists a polynomial in (g, x) of
the form

Φ(g, x) = c5(x)g
5 + c4(x)g

4 + · · ·+ c0(x) (63)
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with cj of degree ≤ 3 for j = 1, . . . , 5, and c0 of degree ≤ 2, and

M(g) = m2g
2 +m1g + 1 (64)

with constant coefficients m2,m1 such that g(z) satisfies

Φ(g(z), z2) ≡ 0, for all z ∈ D s.t. M(g(z)) 6= 0. (65)

With the parametrization
C = circ(α, γ, β + 1), (66)

M and c5 read

M(g) = (β2 − αγ)g2 + 2βg + 1, (67)

c5(x) = −x3{(β2 − αγ)2

+x2γ(β2 − αγ)(2(α3 + β3 + γ3 − 3αβγ) + 3(β2 − αγ))

+x(αβ + α− γ2)(α3 + β3 + γ3 − 3αβγ + β2 − αγ)×
×(α3 + β3 + γ3 − 3αβγ + 3(β2 − αγ))

+(α+ β + γ + 1)(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1)×
×(α3 + β3 + γ3 − 3αβγ + β2 − αγ)2}. (68)

Remarks 4.3

i) This is actually a result on Uab(C) on Kab
B generated by a⊗ a. Proposition 2.7 shows that

it is enough to consider this case to study Ua(C). We stick to the simpler notation Ua(C).
ii) The Carathéodory function F (z) depends on z2, which implies a symmetry of the spectrum
stated in Theorem 4.5.
iii) The set of points in D such that M(g(z)) = 0 can only accumulate on S.
iv) The artificial +1 in the parametrization (66) is introduced so that the matrix C − Cπ

which appears in the proof takes a simpler form.
v) The explicit form of the other polynomials cj ’s is provided in Propositions 5.12 and 5.13.
vi) The equation satisfied by the Carathéodory function comes from an implicit equation for
the restriction of the resolvent to a finite dimensional subspace expressed as Corollary 5.4.

This result yields a criterion for absolutely continuous spectrum.

Corollary 4.4 For any C ∈ Circ(3) ∩ U(3), if the leading term polynomial coefficient in
(63) has no root on the unit circle, then Ua(C) has purely absolutely continuous spectrum.

Proof: By continuity of the roots of polynomials in the coefficients, all roots of Φ(g, z2),
in g, are bounded for z in a neighborhood of S. Hence, for any eiθ, ℜg(reiθ) cannot tend to
+∞ as r → 1−, even if M(reiθ) = 0 for infinitely many r’s. Therefore, supp dµs = ∅.

The strategy of the proof of Theorem 4.2, which can be found in Appendix, consists in
making use of the properties of the binary tree and of the symmetries provided by the choice
C ∈ Circ(3) ∩ U(3), to obtain an implicit equation for the matrix element 〈a ⊗ a|(Ua(C) −
z)−1a ⊗ a〉 of the resolvent. Due to the complexity introduced by the coin space ensuring
unitarity of the QW, the computations are more involved than in the self adjoint case, where
the same strategy yields a matrix element of the resolvent of the Laplacian in a few lines.

The spectral consequences of Theorem 4.2 of the QWs we consider are the following:
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Theorem 4.5 For any C ∈ Circ(3) ∩ U(3),

σsc(Ua(C)) = ∅, and σ(Ua(C)) = −σ(Ua(C)). (69)

If C ∈ Circ(3) ∩O(3) \ {±Cσ,±Cπ},

σ(Ua(C)) = σac(Ua(C)), and σ(Ua(C)) = −σ(Ua(C)) = σ(Ua(C)), (70)

whereas
σ(Ua(±I)) = σac(Ua(±I)) = S,

σ(Ua(±C#)) = σess(Ua(±C#)) = {eik2π/6}k=0,1,...,5, # ∈ {σ, π}. (71)

Remarks 4.6

i) For matrices C ∈ U(3) such that ‖C − I‖C3 ≤ ǫ, with ǫ > 0, σ(U(C)) = σac(U(C)), as
shown in [15]. The argument carries over to QWs Ua(C).
ii) The proofs of the statements about C ∈ U(3) ∩ Circ(3) are given in the present section,
whereas those concerning C ∈ O(3) ∩Circ(3) are given in Appendix A.

Proof of Theorem 4.5: Consider C ∈ Circ(3) ∩ U(3) \ {±I,±Cσ ,±Cπ}. By Theorem 4.2,
the Carathéodory function is determined for z ∈ D by one of the roots of the polynomial
Φ(g, z2) of degree 5 in g, with polynomial coefficients cj(z

2), j = 0, · · · , 5. This implies that
g(z) = g(−z) so that ℜg(reiθ) = ℜg(rei(θ+π)). In the limit r → 1−, we get dµ(θ) = dµ(θ+π),
which proves the symmetry of the spectrum expressed in (69). Since the cj ’s are polynomials
in z, the roots of Φ(g, z2) are continuous in z and remain bounded as long as z belongs
to C \ Z5, Z5 ⊂ C being the set of roots of c5(z

2). By the argument used in the proof of
Corollary 4.4, dµs is supported on the finite set Z5 ∩ S, so that it can consist of atoms only.
This shows that σsc(Ua(C)) = ∅ and the same result holds for Ub(C) and Uc(C). The proof
of the statements regarding C ∈ O(3) ∩ Circ(3) requires more detailed informations about
Φ(g, z2) and is given as Proposition 5.14 in Appendix A.

Remark 4.7 By construction, U(C) = U(Ce)+F , where F is finite rank, hence trace class,
and U(Ce) is the direct sum of the U#(C) and U(Cπ)|He . Therefore, by Birman-Krein theo-
rem, for any C,

σac(U(C)) = σac(U(Ce)) and U(C)|ac ≃ U(Ce)|ac, (72)

where U |ac is the restriction of the unitary operator U to its absolutely continuous subspace
and ≃ denotes unitary equivalence.

5 Appendix

5.1 Proof of Theorem 4.2

Our goal is to find a closed equation for the restriction of the resolvent Ua(C) to a finite
dimensional subspace, making use of the symmetries of the operator and of the self similar
structure of the tree. The strategy is to relate Ua(C) and Ua(Cπ) defined by U(Cπ)|Ka

B
where

Cπ is given by

C(x) =

{

Cπ if |x| ≤ 3
C otherwise,

(73)
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to be compared with (14) defining Ua(C).

For any element x⊗ τ of Ka
B , we denote the projection on the site x⊗ τ by P τ

x . We also

write P a,b
x = P a

x + P b
x (and 	) and Px = P a

x + P b
x + P c

x .
We set:

P+
0 = P a

a , P−
1 = P c

ab, P+
1 = P b,a

ab , P1 = P−
1 + P+

1 ,

P−
2 = P c

aba + P b
abc, P+

2 = P a,b
aba + P c,a

abc, P−
3 = P c

abab + P a
abac + P b

abca + P c
abcb

Pl = P+
0 + P1 + P−

2 , Pd = P+
2 + P−

3 . (74)

The index gives the distance of the site to the root a ⊗ a and Pl is the projection on a
6-dimensional invariant subspace of Ua(Cπ), which is orthogonal to Pd.

Lemma 5.1 Ua(C)− Ua(Cπ) = S(I⊗ (C − Cπ))(P1 + P2) satisfies

S(I⊗ (C − Cπ))Pk = (P+
k−1 + P−

k+1)S(I⊗ (C − Cπ))Pk, k = 1, 2. (75)

Proof: We compute S(I ⊗ (C − Cπ))ab ⊗ τ = λ1a ⊗ a + λ2abc ⊗ b + λ3aba ⊗ c, where the
λj are constant depending on τ and C. Each vector on the right hand side belongs to P+

0 or
P−
2 . The same computation on ac⊗ τ yields the same conclusion and the case k = 2 is dealt

with similarly.
We use the shorthands U = Ua(C), Uπ = Ua(Cπ), Gz = (U − z)−1, Gz

π = (Uπ − z)−1 and
Sπ = S(I⊗ (C − Cπ))(P1 + P2) and consider the resolvent equation for z ∈ D,

Gz −Gz
π = −GzSπG

z
π. (76)

Making use of Lemma 5.1 and of the invariance of PlKa
B under Gz

π, we get

PlG
zPl = PlG

z
πPl − PlG

zPlSπPlG
z
πPl − PlG

zP−
3 SπP

−
2 G

z
πPl. (77)

We want to compute PlG
zPl, so the term PlG

zP−
3 needs to be transformed. Assuming for

now that the restriction (I+ P−
3 SπP

+
2 G

z
πP

−
3 )−1|P−

3 Ka
B
exists, (76) further yields

PlG
zP−

3 = −PlG
zP+

1 SπP
+
2 G

z
πP

−
3 (I+ P−

3 SπP
+
2 G

z
πP

−
3 )−1. (78)

We eventually get
PlG

zPl = PlG
zPl ×A(Gz

π) + PlG
z
πPl (79)

where

A(Gz
π) = P+

1 SπP
+
2 G

z
πP

−
3 (I+ P−

3 SπP
+
2 G

z
πP

−
3 )−1P−

3 SπP
−
2 G

z
πPl

−P+
0 SπP1G

z
πPl − P+

1 SπP
−
2 G

z
πPl − P−

2 SπP1G
z
πPl. (80)

The term PlG
z
πPl which appears in A(Gz

π) can be made explicit:

Lemma 5.2 In the basis {a⊗ a, ab⊗ c, abc ⊗ b, ab⊗ a, aba⊗ c, ab⊗ b, } we have

PlG
z
πPl = Pl(Uπ − z)−1Pl =

1

1− z6

















z5 1 z z2 z3 z4

z4 z5 1 z z2 z3

z3 z4 z5 1 z z2

z2 z3 z4 z5 1 z
z z2 z3 z4 z5 1
1 z z2 z3 z4 z5
















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In order to obtain an implicit equation for PlG
zPl, we show that the factor P+

2 G
z
πP

−
3 which

cannot be computed explicitly, can be expressed in terms of the restricted resolvent PlG
zPl:

Proposition 5.3 We have

P+
2 G

z
πP

−
3 = 〈a⊗ a|Gzab⊗ c〉

(

|aba⊗ a〉〈abab⊗ c|+ |aba⊗ b〉〈abac ⊗ a| (81)

+|abc⊗ c〉〈abca ⊗ b|+ |abc⊗ a〉〈abcb ⊗ c|
)

Proof: We view P+
2 G

z
πP

−
3 as a 4× 4 matrix from P−

3 Ka
B to P+

2 Ka
B in the bases defined

according to the order given in the definition of the projectors (74). By definition,

P+
2 G

z
πP

−
3 = (82)









〈aba⊗ a|Gz
πabab⊗ c〉 〈aba⊗ a|Gz

πabac⊗ a〉 〈aba⊗ a|Gz
πabca⊗ b〉 〈aba⊗ a|Gz

πabcb⊗ c〉
〈aba⊗ b|Gz

πabab⊗ c〉 〈aba⊗ b|Gz
πabac⊗ a〉 〈aba⊗ b|Gz

πabca⊗ b〉 〈aba⊗ b|Gz
πabcb⊗ c〉

〈abc⊗ c|Gz
πabab⊗ c〉 〈abc⊗ c|Gz

πabac⊗ a〉 〈abc⊗ c|Gz
πabca⊗ b〉 〈abc⊗ c|Gz

πabcb⊗ c〉
〈abc⊗ a|Gz

πabab⊗ c〉 〈abc⊗ a|Gz
πabac⊗ a〉 〈abc⊗ a|Gz

πabca⊗ b〉 〈abc⊗ a|Gz
πabcb⊗ c〉









The presence of Cπ on the site ab decouples paths starting from this point on and thus entries
with both aba and abc are equal to zero. Thus,

P+
2 G

z
πP

−
3 = (83)









〈aba⊗ a|Gz
πabab⊗ c〉 〈aba⊗ a|Gz

πabac⊗ a〉 0 0
〈aba⊗ b|Gz

πabab⊗ c〉 〈aba⊗ b|Gz
πabac⊗ a〉 0 0

0 0 〈abc⊗ c|Gz
πabca⊗ b〉 〈abc⊗ c|Gz

πabcb⊗ c〉
0 0 〈abc⊗ a|Gz

πabca⊗ b〉 〈abc⊗ a|Gz
πabcb⊗ c〉









Now, using the general property for |z| even T−1
z U(C)Tz = U(Cz) where the configuration

Cz is defined from C = {C(x)}x∈T3 by Cz = {C(zx)}x∈T3 , which follows from (11), we can
identify the upper left block with

P+
0 (Ua − z)−1P−

1 =

(

〈a⊗ a|(Ua − z)−1ab⊗ c〉 〈a⊗ a|(Ua − z)−1ac⊗ a〉
〈a⊗ b|(Ua − z)−1ab⊗ c〉 〈a⊗ b|(Ua − z)−1ac⊗ a〉

)

(84)

by the translation by ab. The lower right block is also identified by this translation to the
matrix

(

〈c⊗ c|(Uc − z)−1ca⊗ b〉 〈c⊗ c|(Uc − z)−1cb⊗ c〉
〈c⊗ a|(Uc − z)−1ca⊗ b〉 〈c⊗ a|(Uc − z)−1cb⊗ c〉

)

which, in turn, is identified to P+
0 (Ua− z)−1P−

1 thanks to Proposition 2.7. The non-diagonal
term in the block P+

0 (Ua − z)−1P−
1 are decoupled by the coin matrix Cπ on the vertex a.

Finally, 〈a ⊗ b|(Ua − z)−1ac ⊗ a〉 is equal to 〈a ⊗ a|Gzab ⊗ c〉, thanks to the last part of
Propostion 2.7.

Hence, (79) yields the sought for implicit equation for the restricted resolvent PlG
zPl:

Corollary 5.4 For all |z| < 1 such that (I + P−
3 SπP

+
2 G

z
πP

−
3 )|P−

3 Ka
B

is invertible, PlG
zPl

satisfies
PlG

zPl = PlG
zPl ×A(PlG

zPl) + PlG
z
πPl, (85)

slightly abusing notations.
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We now compute the operator A(PlG
zPl) explictely. This will allow us to derive an implicit

equation for the Carathéodory function associated with the spectral measure dµa⊗a.
Let us denote by Gz

1,2 = 〈a⊗a|Gz|ab⊗c〉 the entry (1,2) in the 6×6 matrix PlG
zPl we want

to compute. We use the parametrization (66) for C and start with the invertibility condition
in Corollary 5.4. All computations below assume z ∈ D and all matrices are expressed in
the bases ordered according to definition (74). According to this convention, Proposition 5.3
reads

P+
2 G

z
πP

−
3 = 〈a⊗ a|Gzab⊗ c〉I. (86)

Explicit computations yield the following expressions for the first part of (5.3):

Lemma 5.5 The 4× 4 matrix (I+ P−
3 SπP

+
2 G

z
πP

−
3 ) is inversible whenever

M(Gz
1,2) := (β2 − αγ)(Gz

1,2)
2 + 2βGz

1,2 + 1 6= 0 (87)

and is bloc diagonal with identical 2× 2 blocs given by

1

M(Gz
1,2)

(

βGz
1,2 + 1 −γGz

1,2

−αGz
1,2 βGz

1,2 + 1

)

. (88)

Consequently,

P+
1 SπP

+
2 GπP

−
3 (I+ P−

3 SπP
+
2 GπP

−
3 )−1P−

3 SπP
−
2 =

(

K(Gz
1,2) 0

0 K(Gz
1,2)

)

(89)

with K(Gz
1,2) = 2αγGz

1,2 + (2αβγ − γ3 − α3)(Gz
1,2)

2.

In turn, one checks that this implies that the matrix A(PlG
zPl) in (5.4) reads

Proposition 5.6 Assume z ∈ D and M(Gz
1,2) 6= 0 and set D(Gz

1,2) = β − K(Gz)
M(Gz

1,2)
. Then,

A(PlG
zPl) = − 1

1− z6
× (90)

















β + αz2 + γz4 βz + αz3 + γz5 βz2 + αz4 + γ βz3 + αz5 + γz βz4 + α+ γz2 βz5 + αz + γz3

0 0 0 0 0 0
α+ γz2 + βz4 αz + γz3 + βz5 αz2 + γz4 + β αz3 + γz5 + βz αz4 + γ + βz2 αz5 + γz + βz3

D(Gz
1,2)z

3 D(Gz
1,2)z

4 D(Gz
1,2)z

5 D(Gz
1,2) D(Gz

1,2)z D(Gz
1,2)z

2

γ + βz2 + αz4 γz + βz3 + αz5 γz2 + βz4 + α γz3 + βz5 + αz γz4 + β + αz2 γz5 + βz + αz3

D(Gz
1,2)z D(Gz

1,2)z
2 D(Gz

1,2)z
3 D(Gz

1,2)z
4 D(Gz

1,2)z
5 D(Gz

1,2)

















.

From this expression, we relate entries of PlG
zPl to G

z
1,2 to derive an equation for Gz

1,2.

Lemma 5.7 For 0 < |z| < 1 such that M(Gz
1,2) 6= 0,

Gz
1,1 =

1

z
(Gz

1,2 − 1), Gz
l,1 =

1

z
Gz

l,2, l = 2, . . . , 6. (91)
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Proof: Setting a(z) = −(1− z6)A(PlG
zPl), we get

−(1− z6)Gz
l,1 =

∑

k

Gz
l,ka(z)k,1 − (1− z6)Gz

π,l,1 =
1

z

∑

k

Gz
l,ka(z)k,2 − (1 − z6)Gz

π,l,1

=
1

z

∑

k

(Gz
l,ka(z)k,2 − (1− z6)Gz

π,l,2) + (1− z6)Gz
π,l,2/z − (1− z6)Gz

π,l,1

= −1

z
(1− z6)Gz

l,2 + (1− z6)Gz
π,l,2/z − (1− z6)Gz

π,l,1.

Thus, Gz
l,1 =

1
zG

z
l,2 −Gz

π,l,2/z +Gz
π,l,1 and replacing Gz

π by its values proves the result.

Remark 5.8 The link between Gz
1,1 and Gz

1,2 together with (62) yields

F (z) = 2Gz
1,2 − 1 ≡ 2g(z) − 1 (92)

where F is the Carathéodory function of dµa⊗a, and

g(z) = 〈a⊗ a|Ua(C)(Ua(C)− z)−1a⊗ a〉 (93)

appears in Theorem 4.2.

Similar considerations on the other matrix elements immediately yield

Lemma 5.9 For all z ∈ D such that M(Gz
1,2) 6= 0, we have

Gz
1,1z = Gz

1,2 − 1, Gz
1,4(1 +D(Gz

1,2)) = zGz
1,3, Gz

1,6(1 +D(Gz
1,2)) = zGz

1,5, (94)




α β + 1 γ
γ α β + 1

β + 1 γ α









Gz
1,1

Gz
1,5

Gz
1,3



 =





zGz
1,4

zGz
1,2

zGz
1,6



 . (95)

Remark 5.10 Since the resolvent Gz is analytic in D, there are only finitely many z such
that M(Gz

1,2) = 0 or D(Gz
1,2) + 1 = 0 in any compact set of D.

Expressing Gz
1,6, G

z
1,4, G

z
1,1 in terms of Gz

1,5, G
z
1,3, G

z
1,2 in (95), one deduces an equation for

g(z) = Gz
1,2 by elimination of Gz

1,5, G
z
1,3 via appropriate linear combinations of the resulting

equations. The result, which implies Theorem 4.2 directly, reads as follows. Let

P (g) = (α3 + β3 + γ3 − 3αβγ + β2 − αγ)g2 + 2(β(β + 1)− αγ)g + (β + 1) (96)

so that D(g) + 1 = P (g)/M(g).

Proposition 5.11 Let z ∈ D be such that M(g(z)) 6= 0. Then g(z) satisfies Φ(g(z), z) = 0,
where

Φ(g, z) = P (g)
{

α[αz2 + (g − 1)((β + 1)2 − αγ)][((β + 1)2 − αγ)P (g) + z2αM(g)] (97)

+(β + 1)[(β + 1)z2 + (g − 1)(α2 − (β + 1)γ)]×
×[(α2 − (β + 1)γ)P (g) + z2(β + 1)M(g)]

}

−((z2 − γ)g + γ)[(α2 − (β + 1)γ)P (g) + z2(β + 1)M(g)] ×
×[((β + 1)2 − αγ)P (g) + z2αM(g)].
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We spell out the detail, for the record.

Proposition 5.12 We have Φ(g, z) =
∑5

j=0 g
jcj(z

2) with

c5(x) = −x3{(β2 − αγ)2 (98)

+x2γ(β2 − αγ)(2(α3 + β3 + γ3 − 3αβγ) + 3(β2 − αγ))

+x(αβ + α− γ2)(α3 + β3 + γ3 − 3αβγ + β2 − αγ)×
×(α3 + β3 + γ3 − 3αβγ + 3(β2 − αγ))

+(α+ β + γ + 1)(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1)×
×(α3 + β3 + γ3 − 3αβγ + β2 − αγ)2}.

c4(x) = x34β(αγ − β2) (99)

+x2γ(4γ3β + 7β4 + 4α3β − 18αβ3γ − 12αβγ + 3γ2α2 + 12β3)

+x2(γ2 − α(β + 1))(αγ4 − γ3β2 − 4γ3β − 3α2γ2(β + 1) + α4γ

+6αβγ + 4αβ3γ + 18αβ2γ − β5 − α3β2 − 7β4 − 6β3 − 4α3β))

−(α+ β + γ + 1)(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1)×
×(α3 + β3 + γ3 − 3αβγ − 3β2 + 3αγ − 4β)(α3 + β3 + γ3 − 3αβγ + β2 − αγ).

c3(x) = x32(αγ − 3β2) + x22γ(α3 + 4β3 + γ3 − 6αβγ + 9β2 − 3αγ)

+x2(γ2 − α(β + 1))(−2γ3 + γ3β + 3αγ(1 − β2) + 12αβγ

−9β2 + α3β + β4 − 8β3 − 2α3) (100)

+2(α + β + γ + 1)(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1)×
×(α3 + 4β3 + γ3 − αγ + 3β2 − 6αβγ − β4 − α3β + 3αβ2γ − βγ3 − 2β5

−2α3β2 + 8αβ3γ + 2α4γ − 6α2βγ2 − 2γ3β2 + 2αγ4).

c2(x) = −x34β + x22γ(6β + β2 − αγ) (101)

+x2(γ2 − α(β + 1))(α3 + 4β3 + γ3 + 2αγ − 6αβγ − 2β2 − 6β)

−2(α + β + γ + 1)(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1)×
×(α3 + 4β3 + γ3 + αγ − β2 − 2β − 6αβγ − 7αβ2γ + 3β4 + α3β + βγ3 + 2α2γ2).

c1(x) = −x3 + x2γ(3− 2β)− x(γ2 − α(β + 1))(3 + 4αγ − 4β − 7β2) (102)

+(1 + β)(α + β + γ + 1)(1 + 4αγ − 3β − 4β2)×
×(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1).

c0(x) = −x2γ + x2(β + 1)(γ2 − α(β + 1)) + (1 + β)2(α+ β + γ + 1)× (103)

×(α2 + β2 + γ2 − βγ − αγ − αβ − α− γ + 2β + 1).

These formulae simplify substantially in case C ∈ O(3) ∩Circ(3), by repeated application of
the following identities that hold in CO+(3), see (49)

α+ β + γ = 0, αγ − β(β + 1) = 0, α2 + β2 + γ2 + 2β = 0

γ2 − α(β + 1)− γ = 0, α3 + β3 + γ3 − 3αβγ = 0. (104)

Altogether, this yields
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Proposition 5.13 If C ∈ CO+(3), we have M(g) = −βg2 + 2βg + 1, and

c5(x) = −β2(x− 1)(x2 + x(1− 3γ) + 1)

c4(x) = β2(4x3 − 9γx2 + 6γx− 1)

c3(x) = 2β((1 − 2β)x3 + 3γ(β − 1)x2 + 3γx− (β + 1))

c2(x) = −2β(2x3 − 5γx2 + γ(3β + 4)x− (β + 1))

c1(x) = −x3 + γ(3− 2β)x2 − 3γ(1 − β2)x+ (β + 1)2

c0(x) = −γx2 + 2γ(β + 1)x− (β + 1)2. (105)

The implicit equation satisfied by g(z),

Φ(g(z), z2) =

5
∑

j=0

gj(z)cj(z
2) ≡ 0, z ∈ D, (106)

yields enough information to rule out point spectrum in the orthogonal case.

Proposition 5.14 For C ∈ Circ(3) ∩O(3) \ {±Cσ,±Cπ},

σpp(Ua(C)) = ∅, and σ(Ua(C)) = σ(Ua(C)) = −σ(Ua(C)). (107)

Proof: Consider the symmetry first. Since the polynomials cj have real valued coefficients,

they satisfy cj(z
2) = cj(z̄2). Hence g(z) ≡ g(z̄), ∀z ∈ D, so that ℜg(reiθ) = ℜg(re−iθ). This

yields the supplementary symmetry dµ(θ) = dµ(−θ), in the limit r → 1−.
Consider now the point spectrum for C ∈ CO+(3)\{Cσ , Cπ}. Recall that g(z) = (F (z)+

1)/2 is analytic in D and such that the weight of a point of the spectral measure dµ located
at θ0 ∈ T is given by

µ({θ0}) = lim
r→1−

(1− r)g(reiθ0) > 0, (108)

according to (61). Assume that θ0 ∈ supp dµs ∈ T, i.e. ℜg(reiθ0) → ∞ as r → 1−. This
implies that c5(e

2iθ0) = 0 and that M(g(reiθ0)) is bounded away from zero for r close to 1.
For θ0 ∈ T fixed and all z ∈ D, let

µθ0(z) = e−iθ0g(z)(eiθ0 − z), s.t. lim
r→1−

µθ0(re
iθ0) = µ({θ0}). (109)

Thus, (106) reads
5

∑

j=0

µjθ(z)
eijθ0cj(z

2)

(eiθ0 − z)j
≡ 0, z ∈ D. (110)

First observe that ±1 is always a simple root of c5(z
2) and that c5(z

2) admits two pairs of
conjugated simple zeros ±z0(γ),±z̄0(γ) on S for −1/3 < γ < 1 only. Moreover, c4(z

2) 6= 0
at these simple roots on S. Then, for γ = −1/3, c5(z

2) admits double zeros at ±i which are
simultaneously simple zeros of c4(z

2) and c3(z
2). The case γ = 1 is excluded by assumption.

Hence two cases occur:
i) eiθ0 is a simple zero of c5(z

2), so that (110) is equivalent to

−µ5θ0(z)e2iθ0c′5(e2iθ0)(1+O(z−eiθ0))+µ4θ0(z)c4(e2iθ0)(1+O(z−eiθ0))+O(z−eiθ0) ≡ 0, (111)
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ii) eiθ0 is a double zero of c5(z
2) and a simple zero of c4(z

2) and c3(z
2), so that (110) is

equivalent to

µ5θ0(z)e
2iθ0c′′5(e

2iθ0)(1+O(z−eiθ0))−µ4θ0(z)c′4(e2iθ0)(1+O(z−eiθ0 ))+O(z−eiθ0) ≡ 0. (112)

For z = reiθ0 , we get for the two cases in the limit r → 1−

i) µ4({θ0})(µ({θ0})e2iθ0c′5(e2iθ0)− c4(e
2iθ0)) = 0

ii) µ4({θ0})(µ({θ0})e2iθ0c′′5(e2iθ0)− c′4(e
2iθ0)) = 0. (113)

It is a matter of computation to check that the non-zero solutions to (113) for the different
values eiθ0 of interest are all strictly negative, which implies that µ({θ0}) = 0.

The case C ∈ CO−(3) \ {−Cσ,−Cπ} is dealt with analogously, making use of Remark
3.2. The change of variables α 7→ −α, β 7→ −β − 2, γ 7→ −γ in Proposition 5.13 yields the
corresponding polynomial cj(z

2) for this case. These polynomials have the same properties
as in the previous case, so that the same conclusions hold.
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