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We consider a quantum mechanical system whose hamiltonian is a time-dependent analytic 
11 x n matrix. For n = 2 we establish a generalization of Dykhne formula which gives the 
transition probability from one energy level to the other in the adiabatic limit. We discuss 
in particular the geometric nature of this formula. In the general case. n > 2, we prove an 
upper bound for the probability of such transitions which shows that they are exponentially 
small. ( 1991 Academic Press. Inc 

1. INTRODUCTION 

The Adiabatic Theorem of quantum mechanics has a long history. It has already 
been studied by Born and Fock [l]. The theorem describes the asymptotic regime 
of the slow evolution of a quantum mechanical system. This is an important limit 
which is discussed in many textbooks on quantum mechanics. Recently, a lot of 
work has been done on the topological or geometric aspect of the theorem after the 
publication of a paper by Berry [2] (see the collection of papers [3] ). The 
geometric interpretation of the results of [2] has been clearly exposed by Simon 
in [4]. 

We consider a quantum mechanical system whose evolution is governed by the 
Schroedinger equation (h = 1) 

i$(l’)=H(f’/T)$(t’). (1.1) 

The parameter T is the typical time-scale over which the hamiltonian changes 
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a finite amount. Introducing the resealed time t = f/T we obtain the equivalent 
equation 

i%(t)= TH(t)$,(t). (1.2) 

The adiabatic limit corresponds to the limit T + m. In this limit, if the system at 
time t, is in the ground state of H(t,), then at time t it is in the ground state of 
H(r) provided that the ground states of H(s), t, d s d t, are isolated in the spectrum 
of H(s). A natural and important question is to estimate the probability of 
transition to an excited state when T is large. It is believed that analyticity of the 
hamiltonian leads to exponentially small transition probabilities under appropriate 
conditions. This is this problem which we study here. Throughout the paper we 
make the following two assumptions 

I. Analyticity. There exists a simply connected domain S, with the 
following properties: the hamiltonian H(t), t E R is a IZ x n hermitian matrix which 
has an analytic extension on S,,; S, = $ and 3 a such that V I = t + is, IsI <a and 
ItI large enough, z E S,,. 

II. Behaviour at infinity. There exist two n x n hermitian matrices Hf and 
Hm such that 

lim sup IIH(t+is)-HfII IfI’+‘= 
, - * ‘% j A 1 < (I 

for some positive E. Moreover, the spectra of H+ and HP are nondegenerate. 

In physics many interesting phenomena are studied with the help of n-level 
systems and in particular 2-level systems. See, for example, the recent review paper 
by Solov’ev [5] in which the problem of computation of transition probabilities in 
the adiabatic limit (called nonadiabatic transitions) is treated. This problem leads 
to the study of global properties of an analytic function. This is mainly the aspect 
which we consider here, since it has been neglected in the literature. Because of this 
fact, incorrect conclusions have been drawn (see below the discussion of formula 
( 1.6) and comments on example (2.1)). 

We first deal with the 2-level systems under the additional assumption 

III. Separation of the spectrum For each t E R! the spectrum of H(t) consists 
of two separated eigenvalues e,(t) and e2( t) such that er( t) - e,(t) > 6 > 0. 

We denote by P,(t) and P>(t) the spectral projections associated with the eigen- 
values e,(t) and ez(t). By assumption II, e,(t) and P,(t) have well-defined limits as 
t + -~-CC, i = 1, 2. The basic question which we study is formulated as follows. Let 
Gr(t) be a solution of the Schroedinger equation (1.2) which is normalized, 
)I$ r( t) 11 = 1, and which satisfies the boundary condition 

lim lIPI $Af)ll = 1. (1.3) 
r- -SC 
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This boundary condition means that the system is prepared at time t = -m so that 
its energy is el( - c;o) with probability one. We let the system evolve and measure 
its energy at some later time t. The result of this measurement is either e,(t) or 
e,(t). Since we have separation of the spectrum for all t the probability that we find 
the value e?(t) is 

llf’dt) IC/Af)/l’G c/T’, (1.4) 

where c is a constant independent of t. Thus, when T + x’, the probability that the 
system has made a transition to the energy level ez(t) tends to zero. This is the 
content of the Adiabatic Theorem (The analyticity assumption is not needed for the 
validity of the bound (1.4)). 

The situation is quite different if we perform the measurement of the energy at 
time t = +a. Let us suppose that there are two eigenvalue crossings at c, and r, 
in S, (see Fig. (1)). We also suppose that the eigenvalues e,(c) and eigenprojections 
Pi(z) have an algebraic singularity of square root type at :r and 7. Let s,, be any 
point of the real axis. In a neighbourhood of .K~ the eigenvalues are analytic and we 
can choose analytic eigenvectors q,(c), H(Z) cp,(:) = e,(l) cp,(:), so that cp,(x,) and 
cp?(s,) form an orthonormal basis. Let :’ be a loop as in Fig. 1. We analytically 
continue e,(z) and V,(Z) along the path ) and we denote by <(s,), @‘,(x,) the 
result of the analytic continuation when we come back to 9”. We have 

e”; (.K,~) = e2(so), &,(.y,) = e~~‘H”‘ii)l;)(P?(gg), (1.5) 

where 8r,(x, 1~) is in general a complex phase. We also define SY e, as the integral 
of the analytic continuation of e, along 7. Both quantities 82,(solr) and s, e, 
depend only on the homotopy class of the loop y starting and ending at s,,. 
Moreover, Im 8,,(x, 1 y) and Im j;, e, do not depend on the choice of so as long as 
X”E R. Under an additional hypothesis, which is introduced in Section 2.3 (con- 
dition VI) and analyzed in Section 2.4, the probability that we measure the energy 
e?( + Co) at time t = +x8 is given by 

FIG. 1. Eigenvalue-crossings in S,, 
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Since we can choose any x0 E Iw we can take -‘co = Re zl. Then 

Re(e,(.u, + is) - ez(xo + is)) ds. (1.7) 

Thus, provided (1.6) is correct, the probability that we measure e,( + co) is 
exponentially small in T. Formula (1.6) with exp(2 Im Hl,(xoly)) replaced by 1, is 
known as Dykhne formula [6] and can be found in Landau and Lifschitz [7]. A 
convincing derivation of it has been given in 1977 in a very interesting paper of 
Hwang and Pechukas [S], but without the factor exp(2 Im f?r,(xo 1 y)). In Section 2, 
we again prove formula (1.6). using the ideas of Hwang and Pechukas. 

We add new results to their paper. First, there is the geometric factor 
exp(2 Im 02,(.~oI;f)) in (1.6). The phase t)2,(~~oI;j) is the analog of the Berry phase 
for a loop in the complex plane around the eigenvalue-crossing z,. However, this 
does not correspond to a loop in the space of hamiltonians. Second, the proof of 
formula (1.6) by the method of [8] is valid only if we make an additional hypothesis 
on the global behaviour of the analytic continuation of the function 

r 
(e,(L) -e,(Y)) dz’. (1.8) 

‘0 

The discussion of this hypothesis in Section 2.4 is quite important, although it 
appears as a technical hypothesis in the derivation of (1.6). Indeed, let us suppose 
that we do not have two, but more, eigenvalue-crossings in S,, say r, and 5, z2, 
and G. Which eigenvalue-crossing must be used in order to compute the transition 
probability using formula (1.6)? This is obviously an important issue since the 
result given by (1.6) depends on this choice. It could seem that a natural choice is 
to consider the closest eigenvalue-crossing to the real axis (implicitly in the 
Euclidean distance) as in [8,9]. However, if the global character of the problem is 
taken into account then it turns out that this is clearly not so. Indeed the analysis 
of Section 2.4 shows that there is a metric pi,, constructed with the eigenvalues of 
the hamiltonian H such that whenever we can prove (1.6) with the method of 
Section 2.3 the eigenvalue-crossing which governs formula (1.6), say J,, is the 
nearest eigenvalue-crossing to the real axis in this metric ci,,. An explicit example 
where this happens is given (Example (2.1)). Moreover, ( 1.6) can be stated in a 
purely geometric way, 

lim ilP,(t)~.(t)~I”=exp(2ImB,,(xoI~))exp(-2Tdist,,(=,, 
r-r w)(i+o(~)). 

(1.9) 

The simplicity of (1.9) is only apparent. In particular, we must know some global 
properties of the analytical continuation of the eigenvalues in order to compute 
dist,(,-, , [w). On the other hand, it seems that this metric gives the correct notion 
of distance. This is confirmed by an example of Section 2.4, where the hamiltonian 
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has a singularity which is closer to the real axis in the Euclidean distance than the 
eigenvalue-crossing. However, in terms of the metric CI, the converse is true, and we 
can show that formula (1.6) is still true. The introduction of the metric d, as well 
as formula (1.9) is a new result in the subject, although this metric has been used 
for a long time in the theory of Teichmueller spaces. 

From the above discussion it is quite clear that it is welcome to have upper 
bounds for lim,, % llP2( t) $ T( t)ll’ without additional hypothesis. This question is 
solved in Section 3, not only for two-level systems, but in the more general case of 
a n-level system. There are few results for this general case. Some aspects are 
treated by Solov’ev [S]. The paper [S] also contains a theorem for the n-level 
case; however, in general, the hypotheses of this theorem are not fulfilled (see 
Section 3.2). We can obtain rigorous exponential bounds for any n x II matrix H(r) 
which satisfies conditions I, II, and IV. 

IV. E.uistence of at1 isolated energ)> level. There exists on the real axis one 
energy level, say ek(t), which is always separated from the other energy levels ei(r): 

IeAr)-e;(r)1 >6>0, i#k, ViER. 

Let P,(t) denote the spectral projection associated with the energy e,(t), and let 
$r(t) be a solution of Eq. (1.2) such that Il$r(t)ll = 1 and 

lim lip,(t) tiAt)ll = 1. ,- 7T 
(1.10) 

Then the probability that we measure at time t = +cc the energy e, ( + m ), i # k, is 
exponentially small, 

lim llPi(t)~~(t)ll’b~eXp(--h-7.1P,(+~~)-e,(+~~)l). (1.11) 
I- +% 

where A4 and ti are two positive constants. The constant K is given in (3.23). 
Whenever we can prove (1.6) for n = 2, we can show that the best upper bound 

obtained by the method of Section 3 gives the correct behaviour in T for the 
transition probability: the best upper bound is equal to 

lim 
T + + %. 

-+ln( lim ilP~(t)~T(t)~I’)=le2(+~)-ee,(+w,)l sup{k.asin(l.ll)i,. 
I+ tr K 

(1.12) 

Comments. Some of these results, in particular ( 1.6) have been announced in 
[IO]. During the completion of this paper we received a preprint of M. Berry [9], 
where he points out independently of us that formula (1.6) must contain the 
geometric factor exp(2 Im 8,,(s, I y)). We also mention that the results of Section 3 
have been generalized to the case of unbounded operators [ 111. We thank 
M. Berry for having communicated his results to us. 
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2. SPIN-~ IN A TIME-DEPENDENT MAGNETIC FIELD 

2.1. Coordinate-Dependent Formulation qf the Problem 

Let H(Z) be a 2 x 2 matrix which satisfies conditions I, II, and III of Section 1 
in S,. Without restricting the generality we suppose that the trace of H(Z) is 
identically zero, so that 

H(z)=B(z).o 

The functions B, are analytic in S,, Bk(F) = Bk(z), and lim, _ k * Bk(t) = Bx.( k ) 
exist (t E R). Moreover, for some positive E, 

lim sup IBk(t+is)-BBk(-t)) Itl’+“=O. 
1- _fx I.51 <II 

(2.2) 

The hamiltonian (2.1) is interpreted as the hamiltonian of a spin-f in a magnetic 
field B. Let p(z)= B:(z)+ B:(z) + B:(z). The eigenvalues of H(z) are &iJp(=), 
where J is the branch of the square root which takes the value 1 at z = 1. Condi- 
tion III implies that p(t) > 0 for t E R. We define 

e,(t)= -!/‘Zi e,(t) = f JiGi. (2.3) 

The corresponding eigenprojections are 

k= 1, 2. 

Let I/J T( t) be a normalized solution of the Schroedinger equation 

(2.4) 

(2.5 1 

with the property 

lim IlP,(f) IC/At)ll = 1. 1--t il (2.6) 

We want to study the behaviour of such a solution at t = +cc. To simplify the 
problem we introduce the supplementary condition V. This condition will be 
removed in Section 2.4. 

V. Eigenualue-crossings. The set X of zeros of p(z) in S, consists of exactly 
two points =I and :I and these points are simple zeros of p(z). 

The condition means that there are exactly two eigenvalue-crossings in S,, 
located at Z, and zl, and that each of these points is a branching point of order 1 
for the eigenvalues and eigenprojections. 
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The solution $T(f) has an analytic extension on S,, I+?~(z), which is a single- 
valued function satisfying the differential equation 

if+) = TH(z) $ r(3). (2.7) 

Here, and throughout the paper, ’ denotes c//c/:. : complex. In order to study the 
solution rjr(r) we decompose $,(z) in a z-dependent basis of eigenvectors of H(z), 
cp,(;) and qz(z), so that 

and we require that cpk(z) are analytic. There are several ways to do this because 
ek and P, have analytic extensions on M= S,\X which are multi-valued. We use 
this fact in an essential way in the study of $r. However, for the moment, let L? be 
the simply-connected domain of S, which is obtained by removing two lines issued 
at 2, and 7 and joining the boundary of S, (see Fig. 2). Since Q is simply-connec- 
ted, the eigenvalues ex(t) have a single-valued analytic extension ek(z) on Q. The 
same is true for Pk(z). These analytic extensions are explicitly given by the analytic 
continuations of formulas (2.3) and (2.4). We construct an analytic family of 
z-dependent basis on R using a standard method of the theory of perturbations. 
For details, see Kato [ 12, Chap. 11.41. We introduce the operator 

K(z) = P{(r) P,(z) + Pi(z) P?(Z) 

which is given explicitly by 

(2.9 

K(z) = i 
B(z) A B’(L) 

p(z) ‘(r, 
(2.10 

where B A B’ is the vector product of B and B’. On Q we consider the solution 
U(z) of 

U’(r) = K(z) U(z), U(0) = 0 (2.11 ) 

FIG. 2. The domain Q. 
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with initial condition at 0. (It is convenient to choose the initial condition on the 
real axis). We choose a basis of normalized eigenvectors q,(O) and cpz(0), 

ff(O) (ok = ek(O) (~~(0)~ k= 1,2. (2.12) 

Using the operator U(Z) we define 

(PA--) = u,-) Vk(O), k= 1, 2. (2.13) 

This gives a choice of analytic eigenvectors of H(z). This follows from the relation 

U(2) P,(O) = Pk(Z) U(z), k= 1, 2, (2.14) 

so that 

PAZ) (P/A=) = cpk(Z), k= 1, 2. (2.15) 

The eigenvectors (PJz), k = 1, 2, have the property 

Pk(I) c&(z) = 0, k= 1, 2. (2.16) 

Indeed, using (2.13) and (2.9) 

since 

PA(:) Kg=) = p,(?)(P;(z) P,(z) + C(z) Pl(-‘)) (Pk(Z) = 0, (2.17) 

PJZ) P;(z) PJZ) = 0. (2.18) 

Notice also that U(Z) has limits as Re z + k cc and IIm :( < a. This is a conse- 
quence of condition II. This condition implies that for large Itl, 

sup I~K(t+is)ll =k(t) 
1 i/ < 0 

(2.19) 

is an integrable function of t. The operator U(Z) is solution of the Volterra equation 
on Q, 

U(z) = 0 + /= K(Y) U(Y) Liz’, 
0 

(2.20) 

where in (2.20) the integral is over any path in Q from 0 to 2. This equation can 
be solved by iteration and from the integrability of the function k(t) it is not 
difficult to show that there exist operators U( + ) and U( - ) such that 

Let 

lim sup II U(r + is) - U( * )I1 = 0. 
I+ i~x I.,~<<, 

(2.21 ) 

3.,(z) = [’ e&‘) dz’, k= 1,2 (2.22) 
JO 
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and 

d,(z) = i,(z) - i,(z), i f j, (2.23 ) 

where in (2.22) the integral is over any path in Q starting at 0 and ending at :. We 
write 

(2.24) 
,=I 

and look for a differential equation for the coefficients C;(Z). From Eq. (2.7), we 
obtain 

fTj.it=)(pi(z) + c,(-) e r%(=)(p;(z)) = 0. (2.25) 
,= I 

Taking the scalar product of the expression (2.25) with the vector (U(Z) ‘)* q,(O) 
we obtain, using (2.14) and (2.16) 

c;(z) = i uk,(3) e’r“kJ”‘c,(z), j#k (2.26) 
,=I 

with 

%,(--I= -<qh(o)l U(r)-’ qD;(=)) 

= -((PdO)l mr’ W=) UC=) cp,(O)). (2.27) 

If IIm ~1 <a and IRe ~1 is large enough then 

Iax-,(-)I < C.k(rL :=r+is (2.28) 

for some constant C. Although IcIT(:) does not have a limit as Re I -+ +z.G, because 
of the presence of the phases Jbk(3), the coefficients ck(:) and the vectors cpl,(=) have 
well-defined limits. In particular the boundary condition (2.6) for normalized $T(~) 
reads 

(2.29 ) 
lim /c,(t)1 = Ic2( -1y3)l =O. 

, 1-Y 

Our problem becomes equivalent to the determination of the coefficients cl( + m) 
and c?( + co). The coefficients c~(z) are analytic functions on R. They satisfy 
Eq. (2.26) or the Volterra equation 

c,(z) = c,(q)) + i= u,J-‘) pJl”=“c,(y) &’ (2.30) 
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and 

Cl(Z) = c&) + az,(z’) pwIC,(~‘) &‘, (2.31) 

where the integration is over any path in Q starting at r0 and ending at Z. 
Explicitly, if u H ;r(u) is a path with ;j(zr,) = z,, and y(u) = 2. then 

c,(-) = c,(q)) + J” df 3(d) a,,(y(u’)) e”“‘z”““‘“cz(r(zl’)) (2.32) 
4, 

and a similar expression holds for (2.31). From these equations and (2.28), we 
obtain 

lim CJ t + is) = ck( &- co ), k= 1, 2, 1.~1 <a (2.33) 
I- i-% 

with ck( k cc) independent of S. 

2.2. Anal)-tic Continuation of‘ U(z) 

The set M = S,\X, where X is the set of eigenvalue-crossings, is not simply con- 
nected. The eigenvalues e, and eigenprojections P, have analytic extensions on M, 
but these analytic extensions are multi-valued. However, the operator K(z) defined 
in (2.9) is a single-valued analytic operator on M. At the points of X, K(E) has 
simple poles. Thus K(Z) is meromorphic on S, and the equation 

U’(r) = K(z) U(z) (2.34) 

is well defined, and has regular singular points at the eigenvalue-crossings. The 
solutions of (2.34) are in general multi-valued. 

These solutions allow us to define new families of --dependent basis. We are 
interested in the solution of (2.34) which is the analytic extension of the solution 
U(Z) defined on 52 in the previous section. This solution is determined by the initial 
value at :=O, U(O)= 0. Let ‘J, and ;j2 be two closed paths in M based at 0. We do 
the analytic continuation of U along the paths y, and y?. Coming back at 0 the 
values of these analytic continuations are U(0 Iy, ) and U(0 1 ;I?). They depend only 
on the homotopy class of 7, and ;j2. If y1 ;‘, represents the closed path at 0 by first 
going y, and then y2, we have 

u(oIi’z~y~)=u(ol72) WI;‘,). 

Thus U(0 17’) gives a representation of the fundamental group I7,(M; 0 
Note that if y is parametrized by UE [0, 11, then 

(2.35) 

8) of Mat 0. 

(2.36) 
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Let now 7, and y2 be two paths starting at z = 0 and ending at r. The values of the 
analytic continuations of U along ;‘, (resp. ;1?) at the point z are U(Z( ;‘,) (resp. 
U(:ly,)). They are related as 

u(-lyJ)=u(=Iy,) U(:(y,) ’ U(Il:l,) 

= U(zI;‘,) U(:Iy, ’ .;(z), (2.37) 

where 11; ’ -y2 is a closed path at 0. Let [q,(O), ~~(0)) be the basis of orthonormal 
eigenvectors of H(0) which we have chosen in the preceding section. Let 1’ be a 
simple closed loop based at 0 around the branching point Z, We can transport the 
basis [q,(O), q-,(O)) along 7. Coming back to the base point we have a new basis 

jU(OI1’)cp,(O). u(oI)‘)cp~(o);~. (2.38) 

Both basis vectors in (2.38) are eigenvectors of H(0). Since y is a simple closed 
loop, 

fm)(U(Ol~) cP,(O))=e,(O)(UOI1’) cp,(O)) (2.39) 

and 

~(O)(~(Ol~)cp,(O)~=~,(O~(U(O/~)47~(0)). (2.40) 

We define two phases O,, (0 I ;’ ), k #.i, by 

U(O/y) ‘P,(0)=r~‘~“1’O’7’(p1,(0). (2.41 ) 

In general the phases are complex and therefore the new basis vectors are not 
normalized. An explicit formula O,i(O I y) in terms of the functions B, , B2, and Bi 
is given in appendix. Let us denote by 

vr(-l1!) := WI:) (PA(O) (2.42) 

the vector which one obtains by transporting q,(O) along 7, where y is a path from 
0 to ST. Using (2.41) and (2.37) we have the following relation if ;‘, and ;‘? are two 

FIG. 3. The paths p, and yz 
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paths (Fig. 3) from 0 to z and such that y;’ . yz is a simple closed path at 0 
around c,: 

cP!A=I1/2)=e- iH,Ilol:~,~~‘.“~;(~~yt), k # .j. (2.43) 

2.3. Transition Probability in the Adiabatic Limit 

In this section we determine the coefficient c’( + m) = lim,, % c?(t) of the 
solution er of Eq. (2.5) subject to the boundary condition (2.6). This allows us to 
compute the transition probability 

,‘\;- IlPdt) $At)ll’= Icz( + 02 )I’ (2.44) 

and to prove the formula (1.6). 
The method consists in controlling the solution Gr along a path t H y(t) E S, 

parametrized by t E [w which has the following properties: 

(i) lb, +x Rey(t)= *ix;, lim,, +% Imy(t)=s*, IskI <a 

(ii) 7 goes over the branching point=, in the upper half plane. 

Since -7 is not in .Q we cannot use the decomposition (2.24) 

l#bT(Z) = c Cj(Z) e?,:,‘=‘cp,(z) (2.45) 
,= I 

along all the path 7. But we can use it for t < -1. Then we make an analytic 
continuation of (2.45) along $2. The resulting decomposition is written 

where 7 means that we have made an analytic continuation off along 7. The coef- 
ficients G(z) now satisfy the analytic continuation of Eqs. (2.30) and (2.31) along 
“7. Let z be some point of 7 with t $ 1 (see Fig. 4). Using (2.43) of Section 2.2, we 
see that 

$,(;)=e ~fmV+&) (2.47) 

FIG. 4. The paths -2, v and the point ze-7. 
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and 

F?(z) = em ‘Hl?‘OIVlcp,(~), (2.48 ) 

where Y/ is the simple closed path at 0 of Fig. 4, which is homotopic to the path 
11, “J? of (2.43). Comparing (2.45) and (2.46) we obtain 

II,,(z) = c,(z) e I~‘;.IC=)~,(~) + c2(z) e-17i21:i(Pr(~) 

= c,(z)e- ’ ~~/.~l=le~f”~~~(‘laI~,(_) + G (:I e-17.i;(rlC,e i~~2~101~)cp~(~) (2.49) 

and therefore we have the relation 

where I,! r, is the integral over q of the analytic continuation of e, along 9. 
Similarly, we have 

C,(.-)=e~p(-iR,1(01il))erp(i7~,ie,) c(z). (2.51) 

If we can control c then we obtain information on c,. 
The equation for 6 is given in (2.32), where we must replace y by *) and all quan- 

tities appearing in (2.32) are defined by analytic continuation along 7. We introduce 
the notations c(t) for c(y(r)), TV(t) for z,,(*j(t)), and G,(t) for &(7(t)). The 
boundary condition (2.6)isequivalent tolim,,-,~ <(t)=c,(-m)), Ic,(-co)I=l, 
and lim,, ~% F?(t) = 0. With these notations the equations for c”, and rz read 

and 

(2.52) 

(2.53 ) 

We perform an integration by parts in Eq. (2.52) in order to use the fact that T is 
a large parameter: 

1 ’ 
N- 

-4 iT T 
Liz4 *f(u) + (24) Ey (u). 

A:, 
(2.54) 
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We recall that ’ means d/dz so that 

(2.55) 

Up to this point, we have only used the property that *T must go over the branching 
point zl, in order to get the essential relation (2.50). To treat the second term in 
(2.54), we suppose that 7 satisfies the new condition VI. 

VI. Dissipative path. The path p such that Im d;,(u) is always a non- 
decreasing function of u. 

Condition VI is a strong condition since it is a global condition on jj. Such a 
condition is typical in the WKB method. Using it, we can estimate rz. Indeed, 
from (2.53) we have 

Condition II implies that IIaT,II 1 < m (the proof is the same as for (2.28)). Similarly, 

Ila~,/A~,ll, < co. Since aTJAy, is an analytic function of z, we also conclude by the 
Cauchy formula that II (a~,/A~,)‘I~ , < m. From (2.54) and (2.56) we have 
II c^; 11% (1 -c/T) < 1, provided T is large enough, with c some constant. Thus 

sup I%-cd--acl)l <C/T 
, 

(2.57) 

for another constant C. From (2.57) and (2.50) we obtain the desired result (1.6), 

lim lip,(t) $T(t)l12= lim Ic,(t)l’ 
I+ +xt ,- i% 

=exp(2Im8,,(0l~))exp(2TIm~~~,)(1+0(l/T)). (2.58) 

Equation (2.58) is the basic result of this section. 

Remarks. (i) We have used a path 7 going over z, because the energy of the 
system at t = -cc is e,( - m) which is the lowest energy level. If we had taken at 
t = -cc the solution GT such that lim, _ bloc llP2(t) $T(t)ll = 1 then we should do 
the same analysis with a path 7 going below the branching point z,. The result 
corresponding to (1.6) in this case reads 

,hm, ~~~~(~)~.(r)~~i=exP(21m~12(O19))exp(2TIm~~e,) (1 +0(1/T)), (2.59) 
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where rf is the simple closed path based at 0 which is obtained from q by complex 
conjugation. We have Im 1, e, = Im j, e? < 0 and Im 8,?(0 14) = Im Q2,(0 1 q). 

(ii) In formula (1.6) we have chosen some point .Y~ E R. Of course, this choice 
of x,, has no influence on the final result. If q1 is a closed path based at 0 around 
Z, and qz is a closed path based at -rO around z,, which is obtained by a continuous 
deformation of II,, then 

where M is a unitary matrix. Consequently, 

Im Q,,(.v,l tf7) = Im oki(O / q1 ). (2.61) 

2.4. Geometry and Transition Prohahilit?> 

In the last section we have proven the generalized Dykhne formula (2.58) for the 
transition probability under conditions I, II, II, V, and VI. The first three condi- 
tions describe the framework in which the problem is studied. Condition V is now 
replaced by condition V’. 

V’. Eigenualue-crossings (generic case). The set X of zeros of P(Z) in S, con- 
sists of n pairs of points -I~ and 7, k = 1, . . . . n. All zeros are simple. By convention 
Im zk > 0, k = 1, . . . . II. 

Finally, condition VI appears as a technical but essential condition for the proof 
of (2.58). In this section we analyze this condition from a geometric point of view. 
This analysis allows us to express the formula giving the transition probability in 
purely geometric terms. We close this section by discussing concrete examples. 

The function p(z) = B;(r) + B:(Z) + B:(Z) is holomorphic in the simply connected 
domain S,. By condition V’, P(Z) has 2n simple zeros in S,. This holomorphic func- 
tion defines a quadratic differential p(z) d’z on S,. The behaviour of the trajectories 
of the quadratic differential as well as the metric associated with it play an impor- 
tant role in our analysis of the transition probability. We recall the definition of 
these concepts and their main properties in our present situation. We follow closely 
Strebel’s monograph [ 131. 

A point z ES is called regular if p(l) # 0 and it is called critical if p(r) = 0. 
A H-straight arc is a smooth curve t H y(t) in S,, such that for all t, 

arg(p(y( t)) v’(t)) = H = const. (2.62) 

Notice that this implies in particular that p(y( t)) # 0 and therefore a straight arc 
contains only regular points. If 0 = 0 the straight arc is horizontal and if 8 = n: it is 
vertical. A maximal horizontal arc is called a trqjectory of the quadratic differential 
p. On a trajectory we have 

p(y(t)) lw) > 0 (2.63 ) 
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and by a reparametrization of the trajectory we see that it is a maximal solution of 
the differential equation 

p(2) 2 l= 1. 
( ) 

(2.64) 

In a small disc V around 0 we can define a single-valued function Q(Z) by choosing 
a branch of the square root and by setting 

@(z)=j=&?)d?. (2.65) 
II 

Since the eigenvalues of the hamiltonian H(Z) are &- $ m we have m = 
*(e,(Y) - e?(z’)). We choose the definition 

Q(Z) = s’ (e,(Y) - e>(S)) dz’. 
0 

(2.66) 

In (2.65) and (2.66), the integration path is in V. We also denote by @ the multi- 
valued function on S,\X obtained by analytic continuation. Let z0 E S,\X. A p-disc 

with center z-O and radius r is a region U c S,\X containing z0 which is mapped 
homeomorphically onto a disc of radius r by a branch of @, z0 being mapped on 
the center of the disc. The value at : of a branch of @ on a p-disc U with center 
z. is given by 

or by 

w. + 
s 

’ (e,(L) -e,(Y)) dz’ (2.67) 
=0 

11‘” - 
i= 

(e,(S) - e,(L)) d;‘, (2.68) 
-0 

where in (2.67) and (2.68) ~1’~ is the value of the branch at z0 and the integration 
path is in U. In the p-disc U we can solve the differential equation (2.64) with initial 
condition Z* E U at uO. The solution u H ;,(u) satisfies the equations 

(u - uo) = k/)‘“’ (el(:‘) -e,(Y)) dz’. _* 
(2.69) 

If we still denote by Q(L) a branch of the function @J on U we have 

(24 - ug) + @(z*) = @(y(u)) (2.70) 

and the solution of (2.64), which is the horizontal straight arc passing through z*, 
is the level-line in U of Im @, 

Im @(y(u)) = Im @(z*). (2.71) 
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Therefore, in a p-disc U of radius r around -cl the set of trajectories is 
homeomorphic to a set of horizontal lines in a disc of radius Y. In particular, two 
different trajectories cannot cross. We can parametrize globally the trajectory r 
passing through z0 as follows. We choose a parametrization u H a(u) such that 
a(O) = z,,. From (2.70) we get locally, i.e., for 1~11 < r, 

x(u) = @ ~ ‘( 11’() + zr). (2.72) 

Then we analytically continue the branch of @ along 2. We obtain a function CD, 
whose restriction on 2 itself is injective, as a consequence of (2.63). The image of 
CI by QX is the set 

( 11’ = 11’0 + 21; 11 E (II , 24 + ) c ii2 ), (2.73) 

where the interval (up, U, ) is maximal and we have for all u E (u , u + ), r(u) = 
@, ‘(N’,, + u). This parametrization is called a natural parametrization of c(. By 
definition a trajectory is called critical if lim, _ I,~ r(u) or lim,, _ I,+ U(U) is a critical 
point of p. In a neighbourhood of a critical point Z, the set of trajectories of p is 
homeomorphic to the set of level-lines of Im c3’l in a neighbourhood of z = 0. In 
particular there are three horizontal straight arcs which have :, as accumulation 
point (see Fig. 5). 

Remark. The critical trajectories are called sometimes Stokes lines (see [ 141). 
These lines play an essential role in the analysis of the WKB method. 

We can also introduce a metric associated with the quadratic differential y. Let 
1~ be some rectifiable curve. We define the p-length of 7 by 

FIG. 5. Level-lines of Im :’ ’ around z = 0. 

(2.74) 
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If II and i2 E S, then the p-distance d,(~, , z2) of =I and zz is given by the inlimum 
of bl,,, where 1’ is a rectifiable curve from Z, to z2 in S,. If 1’ is contained in a p-disc 
U of radius Y then its p-length /yI$, is equal to the Euclidean length of the image of 
y by a branch of @ defined on U. In particular, a p-disc of radius Y is a disc 
of radius r in the p-metric. A natural parametrization of c( is essentially the 
parametrization of the arc-length for the p-metric. Finally, we call a curve t H ‘J(Z). 
a < t < h, a geodesic if it is locally shortest. This means that for every t there is an 
interval [t r, t2] such that t E [t,, t2] and the arc I)( [t , . t,]) is the shortest connec- 
tion of the two points y(tl) and y(t2). In a neighbourhood of any regular point a 
geodesic is a o-straight arc. 

The main tool for analyzing the set of the critical trajectories is Teichmueller’s 
lemma. A geodesic polygon is a curve y composed of open straight arcs and their 
end points which can be critical points of p. We quote Teichmueller’s lemma from 
[15]. A more general version for meromorphic quadratic differential is given in 

c131. 

LEMMA 2.1 (Teichmueller’s lemma). Let p he holomorphic in the closure of a 

domain A in the complex plane u>hich is bounded by a simple closed geodesic pol.vgon 
in the p-metric, whose sides y, ,form interior angles 8, at the vertices, 0 < Bid 2~. If 
mi and nl denote the orders of the zeros of p in A and on irA, respectively, then 

EC I-(nl+?)z =2+Cm,. 
.I 1 I 

This lemma is a consequence of the argument principle. 
Let y be a dissipative path in the upper half-plane so that the generalized Dykhne 

formula (2.58) can be proven using 1; as in Section 2.3. We have 

THEOREM 2.1. Let $7 be as above. Then 

(1 ) 9 is a simple curve. 

(2) The open region 2 in S, between the path 17 and the real axis contains 
exactly one eigenvalue-crossing, say z, . 

(3) There are three distinct critical trajectories CC, , Q, tx3 having z, us 

accumulation point. 

(4) The trqjectoql M, is entirely inside .I and has a natural parametrization with 
UE(-CC,O) so that lim,,,cc,(u)=~,, lim,, ~ Rect,(u)= -m. 

(5) The trqjectory a, is entirely inside C and has a natural parametrization with 
UE(O, rx) so that lim,,,a,(u)=:,, lim,,, Recc,(u)= E. 

(6) The trajectory, a3 has a natural parametrization with u E (0, u,) so that 
lim u-0 aj(u) =z,. The set of UE (0, u+) such that ~(~(21) is a point of “7 is a non-ernptJ3 
connected set. 

Remark. If we define a curve ut-+ g(u) by g(u) = al(u) when u ~0, g(u) = x2(u) 
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when u > 0 and g(0) = z,, then g is an horizontal geodesic inside C passing through 
the critical point pi. The main statement of Theorem 2.1 is the existence of only one 
critical point Z, in C and of the horizontal geodesic through 2,. Let 1, be the 
region in S, defined by 

~,=j_=u+iuIIrl<Img(u),uE[W). (2.75) 

By the argument principle one can see that the analytic continuation of the function 
D(Z) on C, is univalent. The image of C, by @ is an horizontal open strip of width 
21Im @(=,)I, where @(z, ) is defined by continuity. In particular the p-distance to 
the real axis is 

q--1. R) = (Im @(z, )I = (Im d,z(=l )I, (2.76) 

since Q(Z) coincide with the function d,,(z) defined in Section 2.3. Moreover, for 
any other zh, k # 1, 

d,,(=k, R) > d,,(=, , R). (2.77) 

Note that formula (2.76) holds because on C,, @ is univalent. In general @ is multi- 
valued and we cannot expect such a formula for d,(zk, [w ), k # 1. 

Proof. (1) We assume that 7 is parametrized by f E R. Let Ah;, be the branch 
of CD such that Im Ah;z(~y(t)) is non-decreasing in t (see Section 2.3). We choose t, 
and t2 > t, and consider only the part of 7 for t E [t,, t2]. The image of this part 

of jj by 67, is a simple path from ~(3 , = AyJlj(t,)) to br2 = Ay1(jJ(t2)). Indeed, if 

Im Ay,(T( t)) is constant on some interval then Re &,(*J( t)) is strictly increasing or 
decreasing on that interval. Elsewhere, Im Ay,(*;(t)) is increasing. We can 
approximate this path from ~1, to 1~~ by a polygonal line t I-+ p(t) made of horizon- 
tal and vertical Euclidean segments such that Im p(t) is nondecreasing. Taking the 
image by 47, ~~’ of this line we get a geodesic polygonal line in the p-geometry 
which approximates the path 17 for t E [t,, tJ (the inverse map 47, ’ is well defined 
locally). 

Let us suppose that p is not simple. Then there exist t, and t, > t, so that 
y(t,)=;^;(tz). We suppose that te [t,, t,] H 7(t) is a simple closed path. This path 
can be approximated by a simple closed geodesic polygon. The interior angles of 
this polygon are equal to 742 or 3x/2. Since Im p(t) is nondecreasing the number 
of interior angles with 8, = 71/2, N(7r/2), and the number of interior angles 8, = 3~/2, 
N( 3n/2 ), satisfy the inequality 

1N(3n/2)- N(Tc/~)[ ~2. (2.78) 

Applying Teichmueller’s lemma we get a contradiction. This proves (1). 

(2) The geometry of the trajectories is well understood in the regions 
IIm ~1 < a and IRe ~1 large enough. Indeed, in these regions p is essentially constant 
and tends to positive values as IRe ~1 -+ CZ. Therefore, the p-geometry is essentially 
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the Euclidean geometry. The trajectories are essentially horizontal in the Euclidean 
sense and the vertical straight arcs are essentially vertical lines in the Euclidean 
sense. Thus we can find a pair of points X, , on the negative real axis, and Z, = jj(ti ) 
which can be joined by a vertical straight arc y, in Z. Similarly there exists a pair 
of points s?. on the positive real axis, and z2 = I( t?) which can be joined by a verti- 
cal straight arc y’r in 1. Moreover, the curve r which is composed of ;j,, yl, 
[.Y~, ~~1, and the part of “7 for t E [t,, t2] can be assumed to be simple and closed. 
For later purposes we denote by .Z’ the bounded region with boundary r. As above 
we approximate the curve by a geodesic simple closed polygon. In this case we have 

lNC3n/2)-N(n/2)166 (2.79 ) 

and by Teichmueller’s lemma there is at most one critical point in C. There is in 
fact exactly one critical point, otherwise (2.47) and (2.48) could not be true. 

(3) If 2, and x1 are not distinct, then they coincide. Let us suppose that this 
is the case. Then M, and r, . the critical point in Z, form a simple closed geodesic 
polygon. Applying Teichmueller’s lemma we get a contradiction. 

(4) Let us suppose that y” intersects uI at F(t, ) and rZ at 7( r,). We may sup- 
pose that t, < t2. Let r’ be the part of 2, between :, and y( t,) and a” be the part 
of c(~ between +T( t,) and z,. Then the path 2’ followed by the part of i; with 
t E [t, . t2] and then followed by ~1” is a path along which Im @ is nondecreasing for 
some branch of @ (we choose the branch of @ which is defined by analytic con- 
tinuation along this path and which coincides with 4t2 on -7 when t E [t,, jr]). By 
point (1) this path is simple and if we add :i to it we obtain a simple closed path 
which can be approximated by a simple closed geodesic polygon. The angle at r,, 
the critical point, is 2x13 and (2.78) holds for the other angles. Thus we obtain a 
contradiction from Teichmueller’s lemma. Notice that the same argument shows 
that the set of intersection points of any Z, with -7 is connected. 

Let us consider the set C’ with boundary r defined in (2). Let d(z) be the 
. . 

analytic contmuation m Z’ \, (;, ) of the function 

2 i’ r,(?)&’ (2.80) 

defined in a neighbourhood U of 2, (the integration path being in U). This function 
is 2-valued since Z, is the only critical point and there exists C< ,xi such that 

IRe d(z)] d C (2.81) 

for any I E Z’ \ (z, i. and any value d( 2) over Z. If we follow a branch of d(z) along 
a, then Re A is strictly increasing or strictly decreasing. Inequality (2.81) implies 
that (xi must intersect I-. However, each vertical straight arc 7; of r can be inter- 
sected by at most one IX, and only once. (This follows again from Teichmueller’s 
lemma.) Since the real interval [x,, x~] is a horizontal straight arc it cannot be 
intersected by c(, , z?, or c(~. From this fact the theorem follows easily. 
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There is a converse statement to Theorem 2.1 which can be formulated in a 
purely geometric manner. 

THEOREM 2.2. Let H(z)= (B,(z) .a, + B,(z).o,+ B,(z) .(T~) be a 2 x 2 matrix 
which satkfies conditions I, II, III, V’ on S,,. Let I/I~ be a normalized solution qf the 
Schroedinger equation iti’,. = TH$ I such that lim, _ ~ % IlP,(t) tiT(t)ll = 1. Zf there 
esists a horizontal geodesic in S,, (in the p-geometr?‘, p = BT + B: + Bz), t H g( t ), 
t E R, which contains exactly one eigenoalue-crossing sf H, SUJ’ I, , and such that 

lim Re g(t)= *EC 
I-+ *I 

and 

IIm g(t)1 -c a, I tl large enough 

then 

lim IIf’, $T(f)117=exp(2 Im 0,,(0 / q))exp( -2Td,(:,, r-7 
w(1+0(~)) 

and,for all eigenoalue-crossings zk, k > 1, dl,(zk, R) > d,,(:, , R). The geometric factor 
exp(2 Im 0,,(0 1 11)) is the same as in (2.58). 

ProojI Let us first notice that the hypotheses imply that there is no critical point 
in the open set between the real axis and the geodesic g (this follows, e.g., from 
Teichmueller’s lemma). We know from the remark following Theorem 2.1 that @ is 
univalent in this region and also that d,(z,, [w) > d,,(z,, 1w) if k > 1. The theorem is 
proven if we can find a path -7 satisfying condition VI. We assume that the 
parametrization of the geodesic g is a natural one and that g(0) = Z, Let a, be the 
curve tt+ g(t)=a,(t), tE(-cc, 0), and CX? be the curve tw g(t)=az(t), t~(0, ccl). 
By hypothesis xl and x2 are critical trajectories. Let r3 be the third critical trajec- 
tory having ‘I, as accumulation point. Let U be a small disc of center zl. The three 
trajectories o! , , x2, and CX~ divide U into three sectors as in Fig. 6. Let Z’ E U, and 

FIG. 6. The critical trajectories in c’. 
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let u H y’(u), u E (u’. , u’+ ) be the trajectory passing through z’. We assume that the 
parametrization is natural and is chosen in such a way that y’(O) = Z’ and y’(u) 
tends to LX,(U) when 2’ tends to :i if II E ( -E, 0) for small positive E. However, since 
condition II holds, we have that u’! = --cx‘ if 2’ is sufficiently close to =I and that 
I/‘(U) + CI, (u) for all u < 0 if ;’ tends to zl. Similarly, if 2’ E U,, then the trajectory 
:)” through Z” can be parametrized by 11 E (UT, cc ) in such a way that y”(O) = 2” and 
y”(u) tends to CXJU), u > 0 provided 5 is near zl. Let ;I”’ be the vertical straight arc 
through 2’ and let us choose 2” on 7”‘. We can do this so that the trajectories 7’ and 
y” have the above properties. The path ;’ is defined as the composition of the path 
y’, the part of y”’ between Z’ and z”, and 3”‘. Let Ay2 be the analytic continuation 
of A,, along 7, starting from some disc V containing ‘/‘(u), u < 0. If u tends to - E, 
then we have 

Im Ayl(y’( - co)) = Im A,,()“( - co)) < Im Alz(cc,( - co)). 

This implies that 

Im Ah;z(_-‘) < Im A,,(:,) 

and 

(2.82) 

(2.83) 

Im A~2(z”) > Im A,,(=,). 

Therefore the path 7 has all required properties. 

(2.84) 

Remark. Let us suppose that the hypothesis of Theorem 2.2 are fulfilled except 
that there is more than one eigenvalue-crossing on the horizontal geodesic g. Then 
we cannot find a dissipative path. However, we can in general treat this case by 
analyzing the equation along the geodesic, as in Davis and Pechukas [ 171. 

EXAMPLE 2.1. This example illustrates the problem of selecting the relevant 
eigenvalue-crossing for the generalized Dykhne formula. In this example the rele- 
vant eigenvalue-crossing is not the closest one to the real axis in the Euclidean 
metric. This has the following consequence. We could choose the width of the 
analyticity strip too small so that the strip contains only the (irrelevant) closest 
eigenvalue-crossing to the real axis and its complex conjugate. The local analysis of 
[S] is still valid but it leads to an incorrect result. Let H(Z) = B(Z). (r be defined by 

B,(_)=2 (,--c)‘+b’tanh(,-) 
(2 - c)’ + a2 

(2.85) 

B2(Z 
) = 2 (2 - c)’ tanh(=) -b’ 

(z - c)’ + 2 

B,(,- )=O 

with a>$, b>O, and CER. 

(2.86) 

(2.87) 
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The singularities of H(Z) are located at the points c + ia and in/2 + kin, k = + 1, 
+2 _ , . . . . Hence H(Z) satisfies condition I in S3!? = [Z = t + is 1 /sI < 51. One verifies 
that B(t + is) tends to (1, 1,0) as l/t” when /tl + (xj in S3.‘2, so that condition II is 
satisfied. The function 

p(z) = 4 
(z - c)” + h” 7 

((z-c)~+a2)70 +tanh(=)-) (2.88) 

is strictly positive on the real axis and its zeros in Si:?, 

z, =ii, :z=c+h(-l+i), 
& 

:,=c+h(l +i), 
a 

and Y,, 5, Jo are all simple. Thus condition V’ is verified. We define Q as the 
simply connected domain obtained from the intersection of the upper half plane 
and S3,?, by removing three vertical cuts starting at 2, , z2, z3. In order to deter- 
mine the relevant zero, we must study the critical trajectories Im d,,(c) = 
Im A,,(?!), j= 1, 2, 3 in Q. We have computed these lines numerically for certain 
values of the parameters a, b, and c. For the choice a = 4, b = 1.2, c = 2 we have the 
situation of Fig. 7 which shows that Lo is the relevant eigenvalue-crossing and that 
Theorem 2.2 is true. Note that Im Z, = 7c/4 < 1.2/$2 = Im z?. 

Remarks. (i) Condition II allows us to consider the critical trajectories in a 
compact subset of 52. 

(ii) For the different values of the parameters we have considered, 
Theorem 2.2 was always true for some zero z~. 

(iii) In this example Im 8,, = 0, since B, z 0 (see Appendix). 

FIG. 7. The critical trajectories of example (2.1). 
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EXAMPLE 2.2. In this example we have competition between one singularity of 
H and one eigenvalue-crossing. This example is inspired by an example of [9]. The 
question here is again the following one. Is the probability transition determined by 
the singularity or the eigenvalue-crossing (see [9, Section 6])? As before it is not 
the fact that the singularity is closer or not to the real axis (in the Euclidean 
distance) than the eigenvalue-crossing which matters, but whether this is the 
case in the metric d,, (see case (b)). Let B(Z) be defined by 

B(Z) = 2(cos(a(~)), sin(a(:)), tanh(r)) with Z(Z) = f tanh 
( 1 
-‘--c , (2.89) 

0 

where 0 < Q < 1; c’ E R. The hamiltonian B(t + is) ‘0 is singular at the point 

z(w,c)=c+i= 
2 

(2.90) 

in the strip S3,,? defined as above and tends exponentially fast to its limiting values 
as ItI --f IX, with /sJ < 30/2. Moreover, the function 

p(z) = 4( 1 + tanh2(=)) (2.91) 

is strictly positive for 2 E R so that conditions I, II, and V’ are verified. There is one 
pair of eigenvalue-crossings: Z, = in/4 and 7. 

An important feature of this example is that p is independent of c and o. This 
implies that the p-geometry is also independent of the location of the singularity 
z(o, c). 

We first prove that any horizontal path y(t) over Z, = i(n/4) is a dissipative path. 
Let y(r) be parametrized by 

;J( t) = t + is, -mdt<r;c, ~<.d 
4 2’ 

(2.92) 

FIG. 8. The image of y by p 
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Such a path is dissipative if and only if 

(2.93) 

To see that this is true in our case. we consider the image of l’(f) by p(z). We 
compute 

p(t+is)=4+4 
sinh’(2r) - sin’(2.y) 

(cosh(2r) +cos(2s))‘+ ’ ,,:ssi$(::‘::::‘,,?; (2’94) 

thus V’s E (7r/4, n/2), the image of 1’ by p looks like Fig. 8. By taking the square root, 
the image of p(y(t)) is entirely in the lower half plane and condition (2.93) is 
satisfied. 

Remark. The only property of the path p(i)(t)) which is used is that this path 
does not cross the positive real axis. 

Since there exists a dissipative path we know that there exists a horizontal 
geodesic (in the p-geometry) passing through z1 as in Theorem 2.1. A qualitative 
study of the differential equation satisfied by the geodesic t H g(t) = g,(t) + ig?( t), 

s,(f)Im~~+R2(f)Re~~=0, (2.95) 

shows that the critical trajectories must behave as on Fig. 9. Since 

(2.96 ) 

d&r,, R’) = x(,,/?-- 1). We have two cases: 

FIG. 9. The critical trajectories of example (2.2 1. 



324 JOYE, KUNZ, AND PFISTER 

(a) o > $. In this case we can choose a horizontal path over the eigenvalue- 
crossing -?, and below the singularity ,-(a, c) of H. Therefore Theorem 2.2 can be 
applied. 

(b) w 6 f. Here the above choice of y does not work because the singularity 
of H is always below y, since y must go over zl. However, the critical trajectories 
are independent of 01 and c. Hence, as long as :(w, C) is above the critical trajec- 
tories, we can construct a dissipative path going over Z, and below ~(tu, c), as 
explained in the proof of Theorem 2.2, and therefore this theorem is valid. We 
obtain 

lim ll~z(t)ICI.(t)l12=exp(-2Tn(~- l))exp(2 Im Q2,) 1+0 1 , - % ( (7> j- (2.97) 

In this example we have a nontrivial geometric factor, Em O,, < 1, if o is not too 
small. Note that in such a case, 

d,,(,-1, RI <d&b4 CL R). (2.98) 

Finally, if the singularity is below the critical trajectories, we cannot prove the 
generalized Dykhne formula with the method described above, but we can prove 
upper bounds for the transition probability, as we shall see in Section 3. It will be 
shown that in our example the bound has the form 

lim llP,(r)i,(r)ll’~~exp(-2T(d,(z(m, c), [W)--E)) QE > 0, (2.99) 
I - IX 

where k, is a constant. (Note that here we have d,,(=, , Iw) > d,(z(w, c), [w).) 

3. EXPONENTIAL UPPER BOUNDS 

3.1. Formulation of the Problem 

Let H(z) be a ?I x II matrix defined in S, and which satisfies conditions I, II, and 
IV of the first section. From now on we suppose that the domain S, is a strip given 
by (Z = t + is I 1.Y < al whose width a is so small that all eigenvalue-crossings are on 
the real axis. According to a theorem of Rellich [ 16) the eigenvalues and eigenpro- 
jections are analytic at these points because H is hermitian on the real axis. We 
label the eigenvalues and eigenprojections as follows. Near t = -cc the spectrum of 
H(t) is nondegenerate and if t is real we label the eigenvalues in increasing order 

e,(t)<e,(t)< ... <e,(t); (3.1) 

P,(t) is the eigenprojection associated to e, (t ). By analytic continuation we have a 
well-defined labelling on all S,. As above, we construct a =-dependent basis of 
eigenvectors of H(z) using the method of Section 2.1. 
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Let U(Z) be a solution in S, of the equation 

U’(z)= i P/!(z) P,(z) U(z), 
( ) 

U(0) = 0. (3.2) 
,=I 

Since the eigenprojections are analytic the solution U(Z) is single-valued and 
analytic. We choose a basis of normalized eigenvectors q,(O), . . . . q,,(O) of H(0) and 
we define 

CPA=) = U(=) cp,,,(O). (3.3) 

Then we write a solution of the equation 

l-$;(z) = l-H(I) l/l,(z) (3.4) 

as 

where &,J:) is defined in (2.22). Equation (3.4) is equivalent to 

c;,(z) = i u,,,,e’~,‘“,~‘.‘c,(=), n1 = 1, . . . . n (3.6) 

with d,,,(r)=E.,,(:)-J.,(Z). The functions u,,~,(z) are given in (2.27) and, in 
particular, (2.28) holds, so that 

lim c,,( t + is) = cm( * J; ) (3.7) f+ +x 

with limits c,J f cc;) independent of s. By assumption, the energy level ek is always 
isolated in the spectrum. Our problem is to estimate c,,,( cci ), m # k, for a solution 
of (3.6) such that c,,,( - co) = 6,,,,. 

3.2. Dissipative Paths 

The method for getting upper bounds is similar to the method used in Sec- 
tion 2.3. Instead of considering Eq. (3.6) on the real axis we consider complex paths 
in S,. All paths below are of the type t H y(t), t E [w, with Re y(t) = t and we put 
yr(t) = Im y(t). 

DEFINITION. A path y is dissipative, for the index j # k, if Im d,,(y(t)) is non- 
decreasing. 

Remarks. (i) This definition depends on the choice of the index k. However, k 
is fixed by condition IV. 
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(ii) A path is dissipative if and only if 

Re(e,(y(t))-e,(p(r)))~,(t)+Im(e,(li(t))-e,(’l(t)))30. (3.8) 

Let us suppose that 1 <k < II. If we choose the width of the band S,, small 
enough, then Re(e,( y( t)) - e, (y( t))) is strictly positive (resp. negative), when j< k 
(resp. j> k). We assume that this is the case. Then, condition (3.8) is valid for all 
,j < k if and only if 

Im(e,(j)(t))-ej(~(t))) 

Re(eJy(f)) - ei(y(f))) > 

Similarly, condition (3.8) is valid for all ,j > k if and only if 

y?(t) < min - ! 
We&(f)) - e,Wt))) 

i>k Re(e,(df)) - e,(y(t))) > ’ 

(3.9) 

(3.10) 

In general we cannot find a path which is dissipative for all j # k and therefore the 
complex adiabatic theorem of [S] is not valid. But we show in the next paragraph 
that there exist paths which are dissipative for all j < k or all j > k. Note that if n = 2 
this means that there always exist dissipative paths near the real axis. The Cauchy- 
Riemann equations imply 

Im(e,(f+is)-ei(l+i.~))=Ss~~Re(e;(t+iu)-e~(t+irr)). (3.11) 
0 

Therefore, we have 

IIm(e,(t+is)-e,(t+is))l 

6 /s( sup max IRe(e;(t + iu) -e;(t + iu))i = /sI z(t). 
lul <u /ffi 

(3.12) 

Using the Cauchy formula and condition II we see that a(t) is an integrable 
function on the real line. Let 

C= inf min IRe(e,(r)-ej(z))l 
I t S,, if k 

(3.13) 

and 

(3.14) 

Let US consider condition (3.10). We define a path y by solving the differential 
equation 

‘jz(t) = g(t. ‘l,(t)). (3.15) 
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Thus 

;.2(r)=y2(f0)exp( -,‘A?>. yr(t”)<o. (3.17) 
111 

By suitably choosing the initial condition :)2(tO) we can require that Ij’2(t)l <u so 
that the path is in S, for all t and it is dissipative for all j < k because of (3.9). 
Similarly, we define a dissipative path 1’ for all j> k by solving the differential 
equation 

il&f) = -g(t, ;I?(t)). 

Let ‘1 be the dissipative path in S, for j > k such that 

(3.18) 

(3.19) 

with qr( 130) > 0 as large as possible. Let q be the dissipative path for j < k in S,, with 

We define D+ as the closed subset of S,, between ye and 4 and D as the complex 
conjugate of D+ (see Fig. 10). The main property of D+ which we use below is that 
for any ZE D+ we can find two dissipative paths. There exists a dissipative path 1 
forj>k with y(t)~D+ for t<Re: and y(Re 2) = r and there exists a dissipative 
path *T for j< k with P(t) E Dt for t < Re z and y(Re z) =z (see Fig. 10). 

m 

FIG. 10. The two subsets D’ and I> 
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3.3. Upper Bounds for Transition Probabilities 

Let c,(z), j= 1, . . . . II, be solutions of Eqs. (3.6) with boundary conditions 
lim,, -x c,(t) = 6,j. We prove upper bounds for Ic,,,( co)l, m # k. Since we have 
property (3.7) we can consider Eqs. (3.6) on D+ u D . We introduce new variables 

si(:)=e q,l=)c,(I) (3.21) 

(.x1, = ck) and we show below that there exists a constant M such that for T large 
enough 

sup 
ztD+vD 

m #k. (3.22) 

From this result we immediately get the estimate (1.1 1 ), which is the main result 
of this section 

lim Ilp,(t) $At)ll’= Ik,(m)12 I - lx 
M’ 

~T’exp(-2TIImd,,,(~(~))l) 

=$exp(-2lj/2(~) lek(m)-e,,(m)l) (3.23) 

with q2(zo)>0 (see (3.19)). We prove the bound (3.22) separately on D+ and 
on D -. Let us consider a point z E D + and the two paths 11 and 1’ defined in the 
preceding section. We use the notations c,,,(t) E c,(y(t)), a,,;(t) = a,,j(y(t)), etc. 
Along the path y, Eq. (3.6) for c, reads 

du j(u) anli(u) efr-lrn~“)cj(u). 

We perform an integration by parts, 

‘I 1 a,Jt) Cm(t)=~km+ c T- - e’%(“c,(t) 
,+r,l rTdhj(t) 

(3.24) 
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and we rewrite the result (3.25) using the variables -u,,,(t) = .u,,(y(t)). After multi- 
plication by erTJrm”) if WI #k, we obtain 

(u) e ~~l~imlr~~~~“,lU)l~K~(lo~ (3.26) 

Let il.~~ll = supzED+ Ix,(z)~. Since the path 7 is dissipative for wz > k we have for 
every tvr 3 k 

le iTlAh~r)-Ill”,(ul)l < , t>u (3.27) 

and therefore we obtain for m 3 k 

I,u,,Jy(Re :))I < hknr +$ ( i II-‘jII). 
/=I 

(3.28) 

Similarly, if we use the path 97 which is dissipative for m <k, we obtain (3.28) for 
m < k. The constant M’ in (3.28) can be chosen independently of 2. Therefore we 
take the supremum over z E D+ in (3.28) and we obtain 

If T is large enough 

and thus 

(3.29) 

(3.30) 

(3.31 ) 

The bound for I E D ~ is proven in the same manner. 

Remarks. (i) If k = 1 or k = n the proof is simpler since we can work only with 
one single path above or below the real axis. The integration by parts is not 
necessary. If we do not perform it, then we obtain 

lim IIf’, $I.(t)l12 dConst exp( -2Tq2(m) IeJm) -e,,(so)l 1. (3.32) 
, + I% 

(ii) If II = 2 we can construct dissipative paths as follows. Let S, be a simply 
connected domain where the analytic function z H d,?(z) is univalent, i.e., one-to- 
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one. Let /i, be the image of S, by d,Z. In /1, we choose the horizontal path which 
is in the upper half-plane and as distant as possible from the real axis. (We are dis- 
cussing the case where lim, _ ~% I/P,(r) $T(t)ll = 1 and r,(f) is the lowest energy 
level.) We take as the dissipative path ;’ the inverse image of this horizontal path. 
Note that Ir,( :XI ) - e2( x )I Im y( cc’ ) is the Euclidean distance of the horizontal line 
All(y) in A, to the real axis. Let us suppose that the hypotheses of Theorem 2.2 are 
verified. Then we can take for S,, the domain between the geodesics R through Z, 
and g through z,. Its image by A,2 is a strip /1,, of width 2d,,(:,, R) (in the 
Euclidean distance). From this follows (1.12) (see the remark after Theorem 2.1). 

A. APPENDIX 

We derive in this appendix an explicit formula in terms of the components B, for 
the phase 02,(0 1 y) defined by 

U(Oly)cp,(O)=e -f@ZL(o’*‘+p~(0). (A.11 

In order to do that we consider the set of analytic eigenvectors 

@,(=I = (B,(=) + ( - 1)’ Jzs, B,(z) + iBz(=)), j= 1, 2, (A.2) 

associated to the eigenvalues 

e,(:)=(-l)+G, j= 1, 2. (A.3) 

Writing $i(O 17) the analytic continuations of i,(z) along ;‘, we have 

$,(O/Y)=$n(O) with ,j# k. 

We define the new analytic phases C?,(Z) by the relation 

*i(z)=e I~~,l=l(p,(I) 

and we have 

(A.4) 

(A.51 

$I(:) = k?:(z) I)~(:) +e’“J”‘cp~(z). (‘4.6) 

Applying the projection Pi(=) to this identity and using property (2.16) we obtain 
the relation 

P;(z) t);(z) = iSff(z) I)~(:) (A.7) 

and by taking the scalar product with $,(c) 

i6’(-)= <ll/;(~,l~,Gi,ti.;(=)) / i ($,(=)I$,(=)) (A.8 1 
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On the real axis, P,(z) is self-adjoint, so that 

ib((uu)= ~4q~whw~ 
I (Icl;(.~)l$,(.~)) 

for sE[W. 

j~;(.i)=~~ln(i,(r)lii(.~))+iIm 
(ti,(.y) I $;(x)) 
($,(.~)I 4w1)’ 
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(A.9) 

(A.lO) 

From the expression (A.2) we compute 

(~,(.u)lcC/,(s~)=2Jyo(Jp(s)+(-l)’B,(.u)) 
and 

(A.ll) 

Im(ll/,(.\-)I $;(.Y)) = B,(s) B;(r) - B,(s) B;(s). (A.12) 

Since both expressions possess an analytic continuation obtained by putting 2 E C 
in place of x E R we eventually obtain 

i~;(z)=~~ln(2J~(J~+(-l)iB,(;))) 
i 

Si 
B,(z) B;(z) - B,(z) B;(z) 

2~35~v/p(--,+(--lM=i) 

=~-$ln(2~~(~~+(-l)1B,iz)))+i$ln 
B,(z)-iB,(z) 

z z i B,(z)+iB,(z) i 

-i(-1)’ 
BJ=)(B,(=) B;(=) - Bz(=) B’,(z)) 

2 &G(B:(-)+B;(z)) 

The definition (A.5) and property (A.4) imply the relation 

v,(OIi’)=exp -id,(O)-ij‘ 6;(,)ck+i62(o) q,(O) I, > 

with S,(O) given by the choice 

$,@I = lI$~(O)ll cp;(O) = ~‘“““‘cp,(0). 

Using (A.13) and (A.15) we obtain for the exponent in (A.14) 

-i 

(OIYI 
-~arg2&(&-B3)(:) . (A.16) 

0 

(A.13) 

(A.14) 

(A.15) 

595,‘20V2-6 
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Here (0 1 y) denotes the endpoint of y. We have assumed a square root branch point 

for & at the eigenvalue-crossing Z, so that B,(z,)+~B~(z,)#O and Jp(=,)f 
B,(z,) # 0. Hence we can choose a path y encircling neither singularities nor zeros 

of (B, - I’B2)/(B, + iB,) and such that arg 2 &(&- B,)(Z) I:““‘= -IT. We obtain 
the following expression for Q?,(O) y): 

exp(-iB,,(OIy))=exp i:-i i ?r b(‘-NB,(=) a,-)- W--J B;(z)) & 
2 &mq(z) + B;(z)) 1 . (A,17) 

Note added in proof: We learn from the referee that the geometrical factor in (1.6) found by Berry 
[9] and us has already led to experimental contirmation. We thank the referee for this information. 
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