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Abstract

We consider families of random non-unitary contraction operators defined as deforma-
tions of CMV matrices which appear naturally in the study of random quantum walks
on trees or lattices. We establish several deterministic and almost sure results about the
location and nature of the spectrum of such non-normal operators as a function of their
parameters. We relate these results to the analysis of certain random quantum walks, the
dynamics of which can be studied by means of iterates of such random non-unitary con-
traction operators.
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1 Introduction

The spectral theory of self-adjoint and unitary operators is a well established topic in
mathematics with a rich structure revealed by numerous important results, and which
has found many applications, particularly in mathematical physics. See for example the
textbooks [Ka, RS, DS, D4, Ku| selected from the abundant literature on the topic. By
contrast, the general spectral theory of operators enjoying less symmetry, that is non-normal
operators, is more vast, technically more involved and less well understood. However,
the spectral theory of non self-adjoint operators has been the object of many works, in
various setups of regimes, as can be seen from the works [GoKr, SFBK, D1, D2, TE,
D3, Sj, CL, CCL, CD] and references therein. In particular, several analyses of non self-
adjoint operators focus on tri-diagonal operators, when expressed in a certain basis, see
[D1, D2, CL, CD]. Since Jacobi matrices provide generic models of self-adjoint operators, it
is quite natural to deal with non self-adjoint tri-diagonal matrices which are deformations
of Jacobi matrices. Moreover, certain models of this sort are physically relevant, see e.g.
[HN, GoKh, FZ].

In this paper, we introduce and analyze the spectral properties of another set of non-
normal operators possessing a band structure in a certain basis, which share similarities
with the tri-diagonal non-self-adjoint operators mentioned above. Our operators have a
five-diagonal structure and are obtained as deformations of certain unitary operators called
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CMV matrices, see [Si| for a detailed account. The role played by CMV matrices for
unitary operators is similar to that played by Jacobi matrices for self-adjoint operators:
they provide generic models of unitary operators; hence we call our models non-unitary
operators. The non-unitary operators considered in this paper arise naturally in the study of
random quantum walks on certain infinite graphs, which provide unitary dynamical systems
of interest for physics, computer science and probability theory, see for example the reviews
[Ke, Ko, V-A, J3]. In particular, random quantum walks defined on Z are given by special
cases of CMV matrices. The study of the spectral properties of random unitary operators
and quantum walks defined on trees or lattices, see e.g. [BHJ, HJS, JM, ASW, J2, HJ], may
lead to the analysis of certain autocorrelation functions. We show in Section 2 below that in
certain cases, the analysis of these autocorrelation functions reduces to the study of iterates
of our non-unitary operators, which provides a direct link between spectral properties of
non-unitary operators and random quantum walks. Moreover, the structure of our non-
unitary operators allows us to determine the spectral nature of the corresponding random
quantum walks they are related to.

While the non-unitary operators we study correspond to deformations of random CMV
matrices of a special type, and consequently are rather sparse, we show in Section 4.4 that
due to certain symmetries they possess, our main results also apply to deformations of
random unitary CMV type matrices of a much more general form. Those random uni-
tary operators appear as models in condensed matter physics and can be considered as
natural unitary analogs of Anderson type models, see [BB, BHJ, HJS]. The correspond-
ing non-unitary deformations they give rise to are thus of a quite general form, displaying
generically non zero elements at all entries of the familiar 5-diagonal structure CMV type
matrices possess. In that sense, our spectral analysis applies to non-unitary deformations of
typical random CMYV type matrices addressed in the literature, which corresponds in this
richer framework to the analyses of the non self-adjoint Anderson or Feinberg-Zee models
addressed e.g. in [D1, D2, CD].

1.1 Main results

The non-unitary operators T, addressed here are random operators on the Hilbert space
I2(Z) with the following structure: In the canonical basis of 1?(Z), denoted by {e;};ez, To
is defined as the infinite matrix

eiw2j71fy elw2j-1§

0 0
0 0 elW2itly  el2i41f
TUJ - eiw2j+2a 6iw2j+25 0 0 ’ (1)

0 0

eiw21+4a eiw2j+45

where the dots mark the main diagonal and the first column is the image of the vector ey;.
The phases {e™}jcz are iid random variables and the deterministic coefficients, when ar-
ranged in a matrix Cy € M3 (C), are constrained by the requirement that Cy be a projection



on C? of a unitary matrix on C3:

a r B
Coz<a ?) st.C=1q g s]|€U®3), with0<g<1. (2)
i vyt 6
When Cj itself is unitary, which corresponds to g = 1, T}, is a unitary random CMV
matrix describing a random quantum walk, the spectral properties of which are known, see
[JM, ASW]. In general, however, Cj is a contraction, and T, is a non-normal contraction,
i.e. a non-unitary operator. We note here that, in general, T}, is not a seminormal operator,
ie. [T, T,] is not definite, see [C]. Non-unitary operators T, constrained by condition (2)
appear as a natural objects in the study of the spectral properties of random quantum
walks defined on the lattice Z? or on 74, the homogeneous tree of coordination number 4,
as explained in Section 3. This provides us with an independent motivation to focus on
the characterization (2) here, although other choices of deformations of CMV matrices are
obviously possible. Actually, Section 4.4 shows that our spectral results extend to operators
of the form T}, defined in the same basis as that used for (1) by the random infinite matrix

T, = (3)
ei(w4j—1+w4j—3)75 et(waj—1+waj—3) §2

ei(w4jfl+w4j)fyﬂ elwaj—1+waj) 5 8
eiA(w4j+1 +w4j+2)7a ef(w4j+1 +w4j+2)7ﬁ ef(w4j+3+w4j+1)75 ef(w4j+3+w4j+1)52
et(Wajpotwajta) 2 el(w4j+2+w4j+4)a5 ez(w4j+3+w4j+4)7ﬁ el(w4j+3+w4j+4)55 )

ei(w4j+5+w4j+6)fya ei(w4j+1+w4j+2)fyg

et wajr6twajvs) o2 ei(w4j+6+w4j+8)aﬁ

with entries characterised by (2). When g = 1, the CMV type random operator Tw is uni-
tary. The extension of our spectral analysis to the non-unitary deformation T, is provided
by the identity o(T,,) = o(7}?) and the spectral mapping theorem.

Our main spectral results about T, read as follows. After dealing with some special cases
and with the translation invariant situation where e*i = 1, j € Z, we show in Theorem 4.6
that the polar decomposition of T, = V_,K has the following structure: the isometric part
V., is actually unitary and has the same matrix structure as 7, i.e. V, a one dimensional
random quantum walk. Moreover, the self-adjoint part K is deterministic with spectrum
consisting in two infinitely degenerate eigenvalues {g,1} only. One consequence of this
fact is that T}, is a completely non-unitary contraction operator for g < 1, so that the
random quantum walk operator it comes from has no singular spectrum, see Proposition
4.14. This special structure also allows us to get informations on the spectrum of 7, in
terms of properties on o(V,,) and o(K), by applying a general result stated as Theorem 5.1
and Corollary 5.3. This result determines parts of the resolvent set of a bounded operator
of the form T = AB with A, B bounded, invertible and normal, in terms of the spectra
of A and B. A direct consequence is that the disc of radius g > 0 centered at 0 is always
contained in the resolvent set of T,, = V,K and, when V,, contains a gap in its spectrum,
other non-trivial explicitly determined sets also belong to p(7},), see Lemmas 5.5 and 5.7.

Then, we take advantage of the fact that the two spectral projectors of K induce a
natural bloc structure for T,, which suggests the use of the Schur-Feshbach map. It turns



out the blocs of the decomposition of V,, are tridiagonal operators. This fact allows us
to provide conditions on the parameter g €]0,1[ in Theorem 5.13 which ensure that the
spectrum of 7}, is contained in a centered ring with inner radius g and outer radius strictly
smaller than one. It also allows us to show in Lemma 4.12 that the circles of radii 1 and
g cannot support any eigenvalues of T,,. These results are deterministic, but we further
show that they hold for any realization of the random phases {e™ }jez. Finally, we take
a closer look at the case g = 0, the farthest to the unitary case, in some sense. Assuming
the random phases are uniformly distributed and making use of ergodicity, we show that
the almost sure spectrum of T}, consists in the origin and a centered ring whose inner and
outer radii we determine. Also, in case the peripheral spectrum of T, coincides with the
unit circle, we get that it contains no eigenvalue, whereas the spectrum of V,, is pure point,
and that of the corresponding random quantum walk operator is absolutely continuous, see
Proposition 6.3.

The rest of the paper is organized as follows. Section 2 provides a short summary of
the relevant informations needed to make connection between the non-unitary operators
T,, considered in this paper and random quantum walks on 7; and Z2. The link is made
explicit in Section 3. The spectral properties of non-unitary operators is developed in the
following two sections, together with the consequences which can be drawn for the random
quantum walks they are related to and the explicit link between T, and T.,. The last section
is devoted to the case g = 0.
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2 Random Quantum Walks on Z° and 7,

We provide here the basics on simple random quantum walks defined on the lattice Z? and
the homogeneous tree Ty, of coordination number 4. Such quantum walks naturally depend
on a U(4)-matrix valued parameter C' which drives the walk and monitors the effects of the
disorder at the same time. In the next section, we focus on certain families of matrix valued
parameters of interest which directly lead to the non-unitary operators T, considered in
this paper. We also explain the consequences of our analysis of T, for the corresponding
random quantum walks.

For more about random quantum walks and their spectral properties, we refer the reader
to the reviews [Ko, V-A, J3] and papers [BHJ, HJS, JM, J2, HJ] and references therein.

We describe random quantum walks on the graph 74 only according to [HJ], and will
simply mention the occasional changes necessary to deal with the lattice case, as in [J2].

2.1 Random quantum walks on 7}

Let 74 be a homogeneous tree of degree 4, that we will consider as the tree of the free
group generated by Ay = {a,b,a” 1,67}, with aa™! = a7la = e = bb~! = b~'b, e being



the identity element of the group; see Figure (1). We choose a vertex of T to be the root
of the tree, denoted by e. Each vertex x = z1x5...2,, n € N of T4 is a reduced word of
finitely many letters from the alphabet A4 and an edge of T4 is a pair of vertices (z,y)
such that zy~! € A4. The number of nearest neighbors of any vertex is thus 4 and any
pair of vertices x and y can be joined by a unique set of edges, or path in 7;. We identify
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Figure 1: construction of Ty

T4 with its set of vertices, and define the configuration Hilbert space of the walker by
2(Ty) = {¢ = ner Yalm) st by € C, Y o (1] < oo}, where |x) denotes the element

of the canonical basis of I2(7;) which sits at vertex x. The coin Hilbert space (or spin
Hilbert space) of the quantum walker on 7T; is C*. The elements of the ordered canonical
basis of C* are labelled by the letters of the alphabet A4 as {|a), |b), |a~1),[b~1)}. The total
Hilbert space is

K =1*(T1) ® C* with canonical basis {z@r=2)®|r), z€TiTe A} (4)

The quantum walk on the tree is characterized by the dynamics defined as the composition
of a unitary update of the coin (or spin) variables in C* followed by a coin (or spin) state
dependent shift on the tree. Let C' € U(4), U(4) denoting the set of 4 x 4 unitary matrices
on C*. The unitary update operator given by I ® C acts on the canonical basis of K as

IeClxeT=|z)C|r) = ZCTT.%'@)T (5)
T'E€EAL
where {C7/7} -/ 42 denote the matrix elements of C'. The coin state dependent shift S

on K is deﬁned by
S = Z Sr@ (], (6)

where for all 7 € A4 the unitary operator S, is a shift that acts on [?(73) as S;|z) =
lz7), Vo € Ty, with S-1 = S* = S 1. A quantum walk on 7 is then defined as the one
step unitary evolution operator on K = [?(7;) ® C* given by

UC)=SIaC)= > |ar){z|®|r){r|C, (7)

TEAY
z€Ty



where C' € U(4) is a parameter. A random quantum walk is defined via the following
natural generalization. Let C = {C(z) € U(4)},e7; be a family of coin matrices indexed by
the vertices z € T4. A quantum walk with site dependent coin matrices is defined by

ue) = ) len)al @ nrlC(a). (8)

TEAL,2ET,

Consider Q = T74+*44 T = R/277Z the torus, as a probability space with o algebra
generated by the cylinder sets and measure P = ® ze7, dv where dv(0) = 1(0)df, | € L>(T),

TEAY
is a probability measure on T. Let {w] },c7;,7ca, be a set of i.i.d. random variables on the

torus T with common distribution dv. We will note Q 3 w = {w] }ze7;.rc4,. Our random
quantum walks are constructed by means of the following families of site dependent random
coin matrices: Let C, = {Cy(z) € U(4)}re7; be the collection of random coin matrices
depending on a fixed matrix C € U(4), where, for each z € Ty, C,(z) is defined by its
matrix elements C,(2), = e“srC., 7,7 € A% The site dependence appears in the
random phases only of the matrices C,(z), which have a fixed skeleton C' € U(4). We
consider random quantum walks defined by the operator

U,(C) :=U(C,) on K = 13(T3) ® C* (9)
depending on C' € U(4). Defining a random diagonal unitary operator on I by
Doz ®7T=e“rx @71, V(r,T)€Tix Ay, (10)
we get that U, (C) is manifestly unitary thanks to the identity

U,(C)=D,U(C) on K. (11)

2.2 Random quantum walks on Z?

The definition of a random quantum walk of the same type on Z? instead of 7y is the same,
mutatis mutandis: the sites x € T, are replaced by = € Z? so that the configuration space
12(T;) is replaced by [?(Z?) but the coin space remains C* in the definition of K. Thus the
update operator [® C' is the same on [?(Z?) ® C* and on 1?(73) ® C*. Only the definition of
the shifts S; in S =3, Sr®|7)(], see (6), needs to be slightly changed. We associate
the letters 7 of the alphabet A4 with the canonical basis vectors {ej,es} of R2 as follows
a<rer, at < —eq, b ey, b1 < —ep and define the action of S, on [?(Z?) accordingly:
for any x = (w1, 22) € Z2, Su|z) = |z +e1), S,-1]z) =[x —e1), Splz) = |z +€2), Sp-1]z) =
|z — e2). The random quantum walk is then defined by U, (C), as in (11).

Remark 2.1 All the results concerning U, (C) proven below for random quantum walks
defined on T hold for walks defined on Z? as well, with the adaptations given above.

2.3 Spectral Criteria

The main issue about random quantum walks concerns the long time behavior of the discrete
random unitary dynamical system on the Hilbert space K they give rise to by iteration of



U,(C). The resulting dynamics is related to the spectral properties of U, (C') studied in the
papers [HJS, JM, ASW, J2, HJ] on Z¢ and T3, as a function of d € N and of the unitary
matrix valued parameter C'. We recall here well known spectral criteria which make a direct
link between random quantum walks U, (C) on T; and Z? and T, defined in (1).

For a unitary operator U on a separable Hilbert space H, the spectral measure dji4 on the
torus T associated with a normalized vector ¢ € H decomposes as dpuy = d,uf5 + dpg” + d,ugf
into its pure point, absolutely continuous and singular continuous components. The corre-
sponding orthogonal spectral subspaces are denoted by H#(U), with # € {p, ac, sc}. Then,
see e.g. [RS], Wiener or RAGE Theorem relates the autocorrelation function n — (¢|U"¢)
to the spectral properties of U:

N
Jim 5 l6l0 ) = S o) (12

0T

whereas the absolutely continuous spectral subspace of U, H*(U), is given by

1) = {o | 3 [elUma)f? < oof. (13)

neN

For example, consider U(C) on K given by (7). For any C' € U(4), (z&7|U(C)*" 2@ 1) =
0 for any n € Z and x @ 7 € K, because U(C) is off-diagonal. Moreover, if C' =1, S = U(I)
further satisfies (r ® 7|S?"z ® 7) = o, for all z @ 7 € K, so that due, = % and
0(S) = 04c(S) =S, the whole unit circle. The same holds for U(T) = S defined on Z2.

3 Quantum Walks and Non-Unitary Operators

We consider here random quantum walks on 74 characterized by coin matrices C' with a
diagonal element of modulus one. As explained below, the non-trivial part of the dynamics
they give rise to induces a systematic drift in one space direction. In other words, the
dynamics induces a leakage of the wave vectors in one direction that is associated with a
purely absolutely continuous part of spectrum of the corresponding evolution operator. We
approach this spectral question by analysing the restriction of U, (C) to a one-dimensional
subspace that defines the random contractions 7T,, we study in this paper. The consequences
for such quantum walks of our results about the contractions T,,, namely the proof that the
evolution operator is purely absolutely continuous for all realisations of the disorder, are
spelled out in Lemma 3.3 and Proposition 4.14. Finally, we note that from the perspective
of the determination of the spectral phase diagram for random quantum walks on 7y, the
corresponding set of coins matrices is not covered by the work [HJ].

Without loss, we assume that the coin matrix C' with a diagonal element of modulus
one takes the following form in the ordered basis {|a), [b),|a™1), [b=1)},

8 0

a T
~ a r B

C= 3 ‘(Z ; 8 E<0% e?9>€U(4), where C=|q ¢ s|e€U(@3), (14)
00 0 ¢f vt



with # € T and 1 > g > 0. The assumption g > 0 always holds at the price of a multiplica-
tion of C, and thus of U, (C), by a global phase which does not affect the spectral properties.
By construction, U, (C) admits ICb_l, the subspace characterized by a coin variable equal
to [b~1), as an invariant subspace on which it acts as the shift S;—1, up to phases. Hence

o (Uw(c)b@—l) = Oqc (UW(C)|KZ,_1) =S. (15)
Let K be the complementary invariant subspace

/CL:spW{x@T \ meﬁ,Te{a,b,a_l}}, (16)

where the notation spanm means the closure of the span of vectors considered. On K-
the action of U, (C) on the quantum walker makes it move horizontally back and forth,
but it only makes it go up vertically, see Figure (1). In a sense, the dynamics induces a
leakage of the vectors in the direction corresponding to the coin state |b). In order to assess
that U, (C)|c. has purely absolutely continuous spectrum, an application of criterion (13)
leads us to consider (¥|U,,(C)"), n > 0, with normalized vector ¢ € K*. Note that by
construction, for all z € Ty, all 7 € {a,b,a '}

(@ @ b|U(C)" & T) = 6,.000r, ¥R EN,YzETh (17)

In particular, all spectral measures dpu,qp(0) = % on T and o (Uy(C)|xr) =S as well. We
thus have,

My, = W{x 7|z T, e b, b*l}} C HI(U,(C)). (18)

3.1 Reduction to One Space Dimension

To this end we introduce the horizontal subspace associated with the direction a
Ho = Span {x®7' |le=a"€Ty,mel,Te {a,a_l}} cKtck, (19)

and Py : K — K, the orthogonal projector onto Hg. All vectors in this subspace live on the
horizontal one dimensional lattice passing through the root of 74. We can actually consider
vectors on any other horizontal one dimensional lattice by attaching Hg to any other vertex.
To study PyU,,(C)"Py, n > 0 we first note the following simple lemma which allows us to
focus on the restriction of U, (C') to Hy.

Lemma 3.1 LetT,, : Ho — Ho be defined by To, = PoU,(C) Polw, and T = Ty |u—(... 0,0,0,)-
Then, T, is a contraction,

T, = D°T, where D° = diag (e™=), (20)

is the restriction of (10) to Ho, and, for any n € N, PyU,(C)"Pyly, = T}

w

Proof:  First, we have || T, = ||PoU,(C)FR|| < 1 and [D,,, Py] = 0 proves the second
statement. Set Qo = I — Py and let us show that for all k > 1, PyU,(C)*QoU,(C)Py = 0.
Indeed, for any basis vector x ® 7 of Ho, QoU,(C)x @ T is proportional to xb ® b, where
xb # a™, for all m € Z. Consequently, PyU,(C)*zb®b = 0, for any k > 1, which yields th.e
result.



Remarks 3.2 i) The contraction T' can be written according to (7) as
T =S1® Co) =5, ®|a)(alCo + Sy-1 ® |[a ) (a™!|Co, (21)

where Cy = MoCHy|y,ct with Iy = |a)(a|+|a=1)(a"] is a contraction which takes the form

Co = <: g) in the ordered basis {|a),|a=1)}. (22)

We will say that Cy characterizes the operator T .
i1) Such an operator, or its higher dimensional analogs, define contractive quantum walks.

Since T, is not normal in general, the inequalities spr (T,,) < ||7,,|| < 1 are not nec-
essarily saturated. Actually, we prove below, Corollary 4.7, that ||T,,|| = 1, so that we
need to extract spectral informations about 7, in order to get decay as n — oo of the
autocorrelation function |(y|U,(C)")|, ¥ € Ho. Hence,

Lemma 3.3 With the notations above, spr (T,,) <1 = U,(C) is purely ac, Yw € Q.

Proof: If the spectral radius of T, satisfies spr (7,,) < 1, then, for any ¢ > 0 s.t.
|In(spr (T,,))| —€e > 0, ||T]| < (spr (Ty,)e)™, if n is large enough. Thus, for any normalized
Y € Ho, we have [(p|U)| = [(|TPap)| < e~ n(nGser (Tw))l=€) " if p is large enough. Thus
Ho C H*(U,). Since Hy can be attached to any vertex of the tree, we get the result. [ |

Remark 3.4 We show below in Proposition 4.1/ that a finer analysis of the structure of
T,, implies that U, (C) is purely ac for all w, if g < 1.
4 One-Dimensional Contractive Quantum Walk

We turn to the analysis of the random contractive quantum walk defined by (20) and (21)
with parameters

a IB R o T

p
s| €UB)and 0 <g<1. (23)
0
We view this problem as a question of independent interest in the spectral analysis of non
self-adjoint or, more adequately in the present context, non-unitary operators.

We start by the following simple property relating Cy to C.

Lemma 4.1 Let Cy = (i g) be a contraction on C? which is not unitary. Then, there
exists C € U(3) such that (23) holds.

Proof: By exchanging the basis vectors, we can look for C in the bloc form C' = <§:,0« Z) ,

where u, v denote vectors in C? and g € [0, 1]. Imposing that C' € U(3), we get,
CiCy = Iz —|v)(v], |v|>=1-4¢% Cov=—gu (24)

CoCy Iez — |u)(ul, Jul® =1-¢% Ciu=—gv.

9



It follows that o(CCy) = {1,¢?}, which determines 0 < g < 1 and the norm of the
corresponding eigenvector v of C§Cy. If g # 0, then u = —Cpv/g. In case ¢ = 0, u is a
normalized eigenvector of Ker Cf.

Identifying the subspace Ho with [?(Z), we get a representation of T,, by a 5-diagonal
doubly infinite matrix. Let {e;};cz, resp. {a"™ ® T}:nee{;’ail}, be the canonical orthonormal
basis of 12(Z), resp. Ho. We map the latter to the former according to the rule

€25 = CLj ® a, €2j+1 = aj ® a—l, JEL (25)

and relabel the random phases w accordingly, so that we can identify 7, with the matrix

eiw2j71fy elw2j-1§

0 0
0 0 eiw2;+1 eiw2i+1§
MmO v
T,=D,T = ciwnitrg  eivnita 3 0 0 ) (26)

0 0

eiw21+4a eiw2j+418

where the dots mark the main diagonal and the first column is the image of the vector ey;.
We note three special cases which allow for a complete description of the spectrum of T,,.

Lemma 4.2 If o = =0, the subspaces span {62j+1, €2j+2} reduce T,,. We have

. . 0 ,yeing+1 )
Tw = @]’EZTugj)a where Tcg]) - <5€iw2j+2 O ) y J € Z7 (27)
o(T,) = Ujer{tg' 22 @2inite252)2} " and g = min (|B], |1]), 6 = arg(57).
If B =~ =0, the subspaces Hi = 3pan {ez;}jez and H_ = 5pan {ezjt1}jez reduce T,,.
We have, with S+ the standard shifts on H,

T,=TS" & T, (28)
where, Tu(,ﬂ =Tl is unitarily equivalent to |a|S.y, similarly Tu(,ﬂ = T,ln. is unitarily
equivalent to |0|S_. o(T,,) =SUgS, and g = min(|al,|d]).

If g =1, T, is unitary with o.(T,,) = 0, almost surely, unless Cy € U(2) is diagonal, in
which case o(T,) = 04c(Tw) = S.

Proof: The decompositions of T}, under the assumptions made is straightforward. The
only point is the determination of the spectral radius when the coefficients are constrained
by (23). We consider « = § = 0 only, the other case being similar. In such a case (23)
implies gs = 0 so that either ¢ =¢ =0 or s = r = 0. In which case |y| =1, or || =1. In
the first case, g% + |r|> = 1 = |[r|? +|B|%, so that g = | 3| = min(|8],|v]). The case |3| =1 is
similar. Finally, the case g = 1 implies that Cy is unitary, so that 7}, is a one dimensional
random quantum walk, and [JM] applies to yield the result. [ |

Remark 4.3 Quantum walks of the general form (11) can be defined on Z¢ or Taq, with
d € N, using the obvious extension to higher dimensions, see [HJ]. When reduced to a one

10



dimensional lattice of the form Hg, they give rise to a contractive quantum walk which has
the form of a CMV type matriz of the kind (26). In general, U(C) is not a dilation of the
corresponding contractive quantum walk. However, if the quantum walk U, (C) defined on
Tod, say, with coin matrix C' € U(2d) having similar properties as for d = 2, this property
is still true: let us denote the coin states basis by {|a;), ]aj_1>}j:17,,,,d and assume C\aj_1> =

e*wf]aj_1>, for j = 2,...,d. Consider the subspace Hy associated with the direction ay
and Py the corresponding orthogonal projection onto Ho; then U, (C) is a dilation of the
contraction T,, = PyU,(C) Py, i.e. Lemma 3.1 holds.

4.1 Translation invariant case

The deterministic, translation invariant case characterized by D, =1, i.e. T,, = T, is best
tackled by Fourier methods. We map [?(Z) unitarily onto L?(T;C?) via the identification

=Y el e 2@ o f@) = (D) e rmer, (20)
je% il <f <:v>>

where fi(z) =} c ;eI f_(z) = > i1/ #HD7 g € T. Then T is unitarily equiva-
lent on L%(T;C?) to the multlphcatlon operator by the analytic matrix valued function

aeiZJ} ﬁem
T~T(z)= <,yei:v 5ez‘2m> : (30)
The following criteria for more symmetries hold true.

0 e
e ™ 0

(5]

Proof: We have T is sef-adjoint if and only if T'(x) is self-adjoint for all € T, which to-
gether with (23) readily implies the first statement. The second statement is a consequence
of the general simple lemma

Lemma 4.4 i) T is self-adjoint < Cpy = ( >, v € R. This implies g = 1, T s
unitary and o(T) = {—1,1}.

it) T,, is unitary < |det Cp| =

Lemma 4.5 Let W € My(C) be a contraction. Then, W is unitary < |det(W)| = 1.

Indeed, T, is unitary if and only if 7" is unitary, which is true, see (21) if and only if Cj is
unitary, and the lemma applies to the last matrix valued contraction.

Proof: The direct implication is trivial. Assume |det(W)| =1 and consider the spectral
decomposition

W = Z A P + Dy, (31)
k=1

where o(W) = { A} i<k<m, and {Pr}i<k<m, resp. {Di}i<k<m, are the eigenprojectors,
resp. eigennilpotents of W. Since W is a contraction the condition on the determinant im-
plies [\x| =1, k = 1,2,...,m. Moreover, ||[W"|| <1 for all n > 0, so that all eigennilpotents
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are equal to zero, since

m K

W =3 AP+ Y DA (7;) . n>K, (32)

k=1 r=0

where K is the maximal index of nilpotency of the Djs. Eventually, the general property
| Px|| > 1 together with o(WW) C S imply that ||Px|| = 1 for W to be a contraction, so that
Py =P forall k=1,2,...,m. |

As T is unitarily equivalent to a multiplication operator, its spectrum is readily obtained
in the generic case. For all z € T, consider the eigenvalues of T'(x)

Ai(x) = % (aemx +0e727 4+ {(ae®®® + e 27) % — 4(ad — 57)}1/2> . (33)

Assume that TNZ = ), where Z = {x € C | A_(x) = Ay (x)} is the finite set of exceptional
points T'(z), see [Ka]. Then, with Py(x) the eigenprojectors of the diagonalizable matrix
T(x), we get that (T — z)~! is given for 2 € p(T) by the multiplication operator R,(r) =

P_(x Py (x
/\7(96()_)2 + /\+(+x()_)z, on L?(T;C?) and o(T) = Ran A\_ URan \,.

4.2 Polar decomposition of T,

In case the contractive quantum walk 7T, is random, we cannot use Fourier transform
methods to determine spr(7;,) but, instead, we resort to the properties of its polar decom-
position. Let us come back to the general case (26) and consider the unique decomposition
T, = VK, where K, is a non negative operator on [?(Z) and V,, is an isometry on [?(Z).
We note that due to (20), K,, is independent of the randomness since 1T, = T*T = K2.

Theorem 4.6 The contraction T, defined on I2(Z) by (26) with the constraint (23) admits
the polar decomposition T, = V,K, where 0 < K <1 is given by

K =P +gP, with 0(K)=0es(K)=1{1,9} and ||K| =1, (34)

and with infinite dimensional spectral projectors Pj, j = 1,2 given in (39) below.
The isometry V,, is unitary on 1>(Z) and takes the form V,, = DOV, with

Y(1+g)—qt 6(1+g)—st

0 0
V= 1 0 0 y(14+g)—qt 6(1+g)—st
1+g a(l+g)—qr Bl +g)—sr 0 0 ’

0 0
a(l+g)—qr B(l+g)—sr

(35)

where the dots mark the main diagonal and the first column is the image of the vector ea;.

Corollary 4.7 for allw € Q, T, satisfies: | T,,|| =1 and T, is unitary < g = 1.

12



Remarks 4.8 i) Condition (23) implies g =

a 8
det<7 5).

it) The unitary operator V' corresponds to a one-dimensional quantum walk with unitary
cotn matrix ﬁ <?;8 —_:: g; _ g: gg ig; B :::) , according to Remark 3.2.

i11) The random quantum walk V,, displays dynamical localization for all values of the param-
eters in (23), unless the coin matriz is diagonal, in which case it is absolutely continuous,
see [JM].

iv) When g = 1, the original random quantum walk characterized by (14) decouples into one-
dimensional problems the solutions of which are known, [JM]. Thus, we assume 0 < g < 1.
v) We have 0 € o(K) iff 0€ o(T), and Ker K =Ker T, since V is unitary.

The proof of Theorem 4.6 entails explicit computations of K and V,, which are detailed
in the next two propostions.

Proposition 4.9 Assume 0 < g < 1. The two-dimensional orthogonal subspaces H*) =
span{eay, eanr1} reduce the operator K = (T*T)Y? which takes the form

K= GB K with respect to  Ho = @H(k). (36)
keZ keZ

The bloc Ky, acts in the ordered basis {ea, €ar+1} as

1 glal> + s> qs(g—1) )
Ky = 5% - , VkeZ, 37
E B P < sg—1)  glsP + g (37)

see (23). The spectral decomposition of ky reads

_o® 4 oW ) _ 1 (Mz —q8> _ (k)
K = + , where =—7 _ =1 — . 38
AR O T e ) TR Y
We deduce the spectral decomposition of K given in Theorem 4.6 immediately:
o(K)={l,g}, K =P +gPy, where P;={PQ", j=12 (39)
keZ

Proof: A straightforward computation based on definition (26) yields

2 _ lal> + ][> v+ pBa ) _ 2
=@ (L ) =@ 0
keZ kEZ

with the decomposition of Hy given by (36). Condition (23) allows us to rewrite the blocs
Hi of this decomposition as

a2 o= 2 _ 1 _ (1,2 2
2 (1 4] sq ) with {detffuk L= (I =+ 1sF)

ol Q=R trr2 = 2 — (g2 + |sP) (41)

292
1+ ¢°.

Hence, o(k?) = {1, g} with corresponding normalized eigenvectors

> . (42)

RO <8> 00 ! (q
VPP T g+ \S
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Explicit computations yield the spectral projectors (k) = vgk >(v§k)| and Q;k) =1y —

)1/2

(k)

2
and, in turn, K, = (nk The spectral decompositlon of K follows immediately. [ |

We now turn to the computation of the isometry V,, = DOV. Recall that translation
invariant operators with the same band structure matrix as T" are characterized by a 2 x 2

matrix, in the same way as T is characterized by (: ?), see Remark 3.2.

Proposition 4.10 For 1> g >0,V = TK~! where K~ = DBicz Iilzl and
_ 1 1—|s]?+yg sq
9(1+9g) qs g +9
The operator V' has the same band structure asT' and is characterized by the unitary matriz
« 5 Ii_lz 1 Oé(l+g)—qT /8(1+g)_8’r (44)
v 6)F 1 4+g\v(l+g) —qt (1+g)—st)’

Remark 4.11 The unitary operator V is well defined in the limit g — 0, with the constraint
(23), even though K~ is not.

Proof: The first statement is a consequence of Proposition 4.9 and of the spectral theorem.
The invariance of the subspaces span{esy, egr41} under K ~! and the matrix structure of T
imply that V' has the same structure as T'. It is a matter of computation to check statement
(44), systematically using constraint (23) to simplify the factor g in the denominator. |

4.3 Structure of the Contraction 7,

Recall that a contraction is said to be completely non-unitary, cnu for short, if it possesses
no non-trivial closed invariant subspace on which it is unitary, see e.g. [SFBK].

Lemma 4.12 Let 0 < g < 1. Then, for all w € ), the operator T,, is either cnu or it is
unitarily equivalent to the direct sum of a shift and of g times a shift. Consequently,

op(T,)NS =0, and for 0 < g<1, o,(T,)NgS=0. (45)

Proof: Assume there is a closed subspace hy such that T,,|y, is unitary. For ¢ € bo, we
have ||T,%| = ||¢||. This implies with T, = V,,(P; + gF»), that

(I —TXT) Y = /1 — g2Pyp = 0. (46)

Hence, hy € PiHp, and, by being invariant under T, b, C Ker P,V,P;. The operator
PV, P, is studied in Lemmas 5.15 and 5.20 below, where it is shown that Ker PV, P, #
{0} & PV, P, =0 and that this is equivalent to

0
Ce 0

4]

T a 0 0
g , 10 g s c U(3). (47)
0 0 t

o Q2

0

Hence if (47) doesn’t hold, T}, is cnu, whereas in case (47) holds, Lemma 4.2 finishes
the proof of the first statement. The fact that eigenvalues cannot sit on the unit circle
is thus immediate, whereas, for ¢ > 0, a similar argument applied to the contraction
(gT;H)* = V,(gP1 + P») yields the last statement. |
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Remark 4.13 The operator T, is cnu if and only if 0 < g < 1, |a| < 1 and |8] < 1.
Moreover, in case (47) holds, the corresponding random quantum walk operator U, (C) is
purely ac by a general argument, see eq. (66) §5.4 of [HJ].

The fact that T;, is completely non-unitary has immediate consequences on the spectrum of
U,(C). In particular, the following result extends the description of the spectral diagram
discussed in paragraph 5.6 of [HJ].

Proposition 4.14 If0 < g < 1, then o(U,(C)) = 04.(Uy(C)), for all w € Q.

Proof: We drop the dependence on w and C' in the notation for this proof, for simplicity.
By Lemma 4.12, we can assume 7' is completely non-unitary. Let Py, be the spectral
projection onto the subspace H*"9 = HPP(U) NH*(U) and recall that Py is the orthogonal
projection onto Hg. We first show that the subspace Ho N H*"9 reduces the operator U.
Let ¢ € Ho N H"9,

U¢ = UPS@'ngT,Z) = PsingUT,Z) = Psing(P0U¢ + (]I - PO)U¢)’ (48)

where (I — Py)Ut) € Hy, see (18). Using PyingHp = 0, we get that Uy = PyngPoU. But
then ||U|| < ||[PoU| < ||[U%)| implies Up = PyUrh = PyPingUtp as well. Hence HoNH "9
is invariant under U. By a similar argument, this subspace is invariant under U* as well.
Consequently, H*"9 reduces T = PyU |3, , which shows that H*"INHg = {0} since T is cnu
and g < 1. Repeating the argument with Hg replaced by the horizontal subspace attached
to x € T, arbitrary eventually yields "9 = {0}. [ |

Remark 4.15 In view of Lemma 4.1, one sees that Lemma 4.12 and Proposition /.14
carry over to the cases described in Remark 4.3, in case 1, is cnu..

4.4  Extensions to Further Contractive Quantum Walks

We make use of a symmetry of the contractive quantum walk T, = DOT with T given by
(21) in order relate it to T,, given by (3). Let

He = Span{a" @7, me€2Z,1e {£1}},

Ho = span{a™ @71, me2Z+ 1,7 € {+1}} (49)
denote the supplementary subspaces of H consisting in even and odd sites only in config-
uration space. The definition (21) of 7" makes it clear that THe C Ho and THo C He, and

since DY is diagonal, the same is true for T,,. Therefore H, is invariant under 7,2 and by
Lemma 2 in [CD], o(T2) \ {0} = o(T2|n.) \ {0}. Actually we have

Proposition 4.16 For all 0 < g <1, and with definitions (1) and (3),
Slne = o(Tu) = o(T3). (50)
Moreover,

T = P Su(2k + 1) €P S, (2k) (51)

k€eZ kEZ
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where, for all k € Z, we have in the basis {ea, €ag+1}, resp. {€2p+1,€2k+2}

a f a f8
(52)

S, (2k) = diag(e™@tr—1, ¢™wak+2) <7 5> ,resp. S, (2k + 1) = diag(e/@ah+1, eiwarra) <7 5> .

Proof:  With the convention (25), He is spanned by {e4x,esr+1, k € Z}. Relabelling
these basis vectors according to eqr — eop, €dk+1 > €2k, explicit computations yield
T,y ~ T2y, , as well as (51). Observe that g # 0 iff T,, and T}, are boundedly invertible and
that if g = 0, we have 0 € o(T,,) N o(T2). This yields isospectrality of T2 and T,. |

Remarks 4.17 i) The restriction T?2|y, has an explicit form similar to T., given by the
composition (51) in the reversed order.

it) In particular, we deduce from the above that T., is unitary iff g = 1, and that it is pure
point for By # 0, whereas it is absolutely continuous if B =~ =0, [JM].

i11) All the spectral results we derive for T,, hold for T., via the spectral mapping theorem.

5 Spectral Analysis of T,

We use the following notations: o,(A) denotes the set of eigenvalues of a bounded operator
A on ‘H and o4pp(A) denotes its approximate point spectrum. By definition, A\ € oqpp(A)
if and only if there exists a sequence of normalized vectors {¢,}nen such that Ap, —
App, — 0, as n — o0o. Recall that 0,(A) C ogpp(A) and 0(A) = o4pp(A) U 0,(A*), where
X = {z, | z € X}, for any X C C. Also, 0ap(A) is a nonempty closed set of C such
that do(A) C ogpp(A) and one has the disjoint union o(A) = opp(A) U op, (A*), where
op (A*) ={A € C | s.t. Ker (A* — \) # {0} and Ran(A* — X\) = H} is open in C, see [Kul.

The starting point of analysis of the contraction T}, is Theorem 4.4 showing that T,
admits a polar decomposition the components of which are bounded normal operators. We
are thus naturally lead to the study of spectral properties of products of such operators. The
only general result we are aware of in this direction, [W], provides estimates on the position
of the spectrum of such products in terms of the numerical ranges of the components, which
is however not strong enough for our purpose. We will use instead

Theorem 5.1 Let T = AB, where A, B are bounded normal operators on Hqy and let B.(r)
denote the open disc of radius v > 0 and center ¢ € C. Then,

B eBHo) = |J [) Bn(bldist(r,0(A))) C p(AB),
T€p(A) beo(B)

A eBHy) = |J () Beallal dist(r.0(B)) C p(AB) (53)
7€p(B) aca(A)

Proof: Under our assumption on 7, and since B is invertible, we have

T—z=(A-7)B+17B—z=(A-7)(I+(A—7)"'(tB—-2)B™") B, (54)
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which shows that T'—z is boundedly invertible if || (A—7)"'(tB—2z)B~!| < 1, thanks to Neu-
mann’s series. By the spectral theorem for normal operators applied to the continuous func-
tion = — % defined on the compact set o(B), and using ||[(A—7)7!|| = 1/ dist(r, o0 (A)),
this condition is met if
|z — Tb|
bea(B)  |b]
Therefore, given 7 € p(A), if z € nbEU(B) By(bdist(r,0(A))), then z € p(AB). Taking

the union over 7 € p(A) yields (53). The second inclusion is proven analogously, using A
invertible and identity for 7 € p(B)

< dist(r,0(A)). (55)

T—z=AB-7)+7TA—2=A (}H—A*l(TA —2)(B— 7')71) (B —1). (56)
H

Remark 5.2 In case A and B have bounded inverses, we get for T = 0 that By(rap) C
p(AB), where rap = dist(0,0(A))dist(o,0(B)) > 0.

Applied to our case T = VK with o(K) = {g,1}, 0 < g < 1, (53) simplifies and yields
more specific estimates on p(7") as a function of the spectrum of the unitary operator V.

Corollary 5.3 Let T = VK with V unitary and 0 < K = (P + gP), 0< g < 1. Then

U Brlgdist(r,a(V))) N B (dist(r, o(V))) C p(T), (57)
Tep(V)
U () Br(dist(r,o(K)) C p(T). (58)

TEp(K) vEa (V)
In particular, By(g) C p(T). (59)
Moreover, assume the arc (—6,0) belongs to p(V'), with 0 < 0 < w. Then,

U Beiafr(deiar) n Bgeiafr(gdemfr) - p(T), (60)
TER L
ae[—6,0]
U (| Bewr(0eiar) C p(T), where (61)
TER_ eveo(et*V)

a€[—7/2,7/2]
dytia, = dist(eTr,0(V)) = /72 —27cos(d —a) +1 with 7 >0, a € [0,6], (62)
Spria, = dist(er,0(K)) = /724 2|7|g cos(a) + g2 with T < 0, a € [0,7/2].(63)

Remarks 5.4 i) The points T € p(V') in (57) such that dist(t,o(V')) = |1 — 7| do not yield
more information than (59): T < 1 implies (\yeq(x) Bri(k(1 — [7])) C Bo(g) and 7 > 1

implies (Vpeq (i) Bri(k(|7| = 1)) € C\ Bo(1). This is the case when o(V) =S.

i1) At the expense of a rotation, we can associate to any arc in p(V') two sets (60) and
(61) that belong to p(T). The corresponding sets are both symmetrical with respect to the
bisector of that arc.

i11) Lemma 4.2 or Remark 5.23 shows that (59) is optimal.
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Proof: The first statements are mere rewritings of (53) and Remark 5.2 implies (59). For
(60), we note that w € C is such that dist(w, o (V) = |w—e*?| if w = e, with a € [0, 6]
and 7 > 0, which establishes (62). Whereas for (61), w = —|7|e*® with a € [0, 7/2] satisfies
dist(w,0(K)) = |w — g| = ||7|e*™ + g| which yields (63). Then a change of variables allows
us to express (58) as (61) under our assumptions. |
Without attempting to provide a complete analysis, we describe (60) and (61) in some
more details and show that (61) provides less information in case (V') displays one gap
only. The proofs of the statements are provided in an Appendix. Let C.(r) denote the circle
of center ¢ € C and radius » > 0 and 95 denote the boundary of a set S. First consider
(60) for @ = 0. Because the intersection of discs can be non-empty when the intersection
of their boundary is empty, there is a difference between (60) and the set D(f) such that

aD©) = |J Cr(dr) N Cyrlgdy), (64)

TER+

and D(6) contains the vertical segment between the intersection of two circles. We also set
R,(0) = {2 € C|Rz > ycos(h)}.

Lemma 5.5 With the notations above, and assuming o = 0, the LHS of (60) is given by

U B-(d:) N Byr(gds) = D(6) U Bo(g) U Ri(6), for 6 €]0,7/2[ , (65)

TER+

see Fig. 2, where 0D(0) is given by the cubic curve

B (2?2 —x(1+g)cos(d) +9g)
L s poser) S
p o= LI (kg eos) € 0.1+ g)cos(O)], for 7 € [1/(2c08(6)). o0l (66)
Form/2<0<m,
U B (dr) N BgT(gdr) = Bo(g) U RQ(H)' (67)
TER L

Moreover, for fived 0 < o < 60, assuming 0 < 6 < 7, we have

| Beier(deiar) N Byeiar(gdein,) € | ) Br(dr) N Byr(gd-). (68)

T€R+ T€R+

Remarks 5.6 i) In particular, under our assumptions, the segment [0,1] C p(VK) if

cos?(0) < — €]0,1], see Figure 2. That this condition is necessary in general can be seen

(1+9)?
_ e? 0 1 /149 1-g
V—<O ei@)aK_§<1_g 14g (69)

on the matrix case

such that o(VK) = {&(cos(0)(1 + g) & \/cos?(0)(1 + g)? — 49)} C R, if cos?(0) > (1_%_—%)2.
ii) The points 0,ge’? and € belong to OD() and correspond to the values of T given by
1/(2cos(0)), (1 + g)/(2cos(0)) and (1 + g)/(2g cos(0)) respectively.
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Figure 2: The sets D U By(g) U R1() for 0 < 6 < 7/2 fixed and increasing values of g. The unit circle S and
¢S are indicated in red, whereas the black curves denote dD. The vertical red line corresponds to OR;(6).

Figure 3: The set '), ().

To discuss the set (61), we need some notations. For p, p’ > 0, we define, see Figure 3,

Lpp(0) = (B—e“"p(p +0)N B—e*i‘)p(p +0)N Ry(0))U By(p'). (70)
where the two discs B_ .+ ,(p + p') tangent to Bo(p') at plet?
an Appendix.

. We prove the following in

Lemma 5.7 Assume o(V) = {e¥ s.t. v € [0, 7] U [—-7, —0]}, with § €]0,7[. We have

U ) Bewr(6:) = Bolg) UAy(H), (71)

TER_ civea (V)

where Ag(6) denotes either the triangle defined by the points ge®, ge= g/ cos(#) whenever
0 < /2, or Ay(0) denotes the set delimited by the two non-vertical lines passing by these
points and the condition Rz > gcos(0) whenver 6 € [r/2,m[. Then, for each a €]0,7/2]
fized,

U ﬂ Be“’ew"r e“"’r) - eia U F|T\,6T€ia—\7'|(6)' (72)

TER_ eveo(V |T|€ER4

For any 0 € [0,7[, and all a €]0,7/2],

U ﬂ Be“’ew‘T e'aT) U BT(dT) n BQT(ng)' (73)

TER_ eivea(V) TERL
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Example 5.8 Let us illustrate the use of Theorem 5.1. Consider

) cos(n) cos(§)sin(n)  —sin(§)sin(n)
cEm=1{ o0 sin () cos(§) €0(3), &melom/2),  (T4)
sin(n) —cos(§)cos(n)  sin(§) cos(n)

where (&,7) is restricted to [0,7/2]? for simplicity. We thus compute that

. . cos(n) —sin(n)sin(§) cos(n) —sin(n)
T, resp. V, is characterized by <sin(77) cos(n) sin(€) > ,Tesp. (sin(n) cos(n) ) . (75)

Moreover, Fourier methods yield
o(V)={z €S| argz € [n,m — 1] U [~ +n, —n]}. (76)
Assuming the common distribution dv of phases has support given by
supp dv = [—¢, €], with e <n, (77)

we have thanks to the general almost sure relation o(V,,) = o(V)e!"P(@) which holds for

products of unitary operators of that sort, see Section 5.1 of [J1], for example,
o(Vy)={zeS|argzenp—em—n+eU[—m+n—¢—n+e€}, as. (78)

Hence, Corollary 5.3 applies with § = n — € and g = sin(§), and gives rise to two regions of
p(T,,): one described in Lemma 5.5, and its symmetric image with respect to the vertical
axis. In particular, the spectrum of the corresponding T, is separated into two disjoint
parts if

4sin(€)
~ (L +sin())*

Let us continue with some general links between the spectral properties of T, and U,,(C).

cos?(n —€) (79)

Lemma 5.9 Let U be unitary on H and Py be an orthogonal projector. For any o € H

UPyp = €%p= ¢ =Py and ®p=Uyp = PUPyp, (80)
PlUy = €e%p= o= Py and ep=Uyp = PUPye. (81)

Moreover, writing Qo =1 — Py, we get
Ker QoUP = {0} = O'p(UP()) ns = Up(P()U) ns = Up(PoUP()) NS =40. (82)
Furthermore, let T = PoUPo|pyy- If € € aapp(T) \ 0p(T), then € € 04y,(U).

Proof:  Taking the norm of the left hand side of (80) yields Py = ¢, QoUPFPyp = 0
and the first identities follow. For (81), PyUy = ¢ = Pye?p gives the results directly.
Now, PoUyp = e¢p < UPyp = €%y where ¢ = Uy shows with (80) that (81) implies
QoUPytp = 0. Similarly, PyU Py = € implies QoU Py = 0. Thus, if Ker QoU Py = {0},
we get the absence of eigenvalue of modulus one for UF,, PyU and PyUPy. Finally, let
e € 04pp(T) \ 0p(T) and ¢, € PoH s.t. ||onl| = 1 and T, — ey, — 0. By assumption,
1U@nlI2 = € 0n+ (PoUpn—e0n)|12 +|QoU¢n||?, where the parenthesis in the right hand
side tends to zero, as n — co. As U is unitary, we have lim,, ., QoU ¢, = 0. Consequently,
et ¢ Oapp(U) since Uy, — o, =Ty, —elp, + QoUyp, — 0, as n — 0.

20



Remark 5.10 i) The same result holds with T* and U* in place of T and U.
i) If Ker (QoUPy) = {0}, lim, oo QoUp, = 0 implies that the operator [QoU Py)~! :
Ran QoU Py C QoH — PyH is not bounded.

Let us also recall the following properties.
Lemma 5.11 LetT =V (P1+gP»2) and ¢ € Hg such that Ty = Ap. Then for all0 < g < 1,

‘)\‘:1 = p=Pypand Vo= P VPp=>Ap,

AN=g = ¢=DPypand Vo=PVPp=(\g)e. (83)

Consequently, Ker VP ={0} = 0o,(T)NS=0, and
Ker PLVP, ={0} = o,(T)NgS=10. (84)
Ifg =0, o(T) = o(P,V Py|p#,) U {0}. (85)

Proof: All statements except the last one are consequences of the proof of Lemma 4.12.
If g=0,T = VP, so that Ker T'= PyHy. Statement (85) is a consequence of (89) and
(90) in the proof of Theorem 5.13 below. |

Remarks 5.12 i) Analogous statements hold when T is replaced by (P, + gP2)V = V*TV.
In particular, the results hold for T*.

Next, we come back to our random setting and make further use of the structure of K to
apply the Feschbach-Schur method in order to obtain conditions on the coefficients of C
(23) that ensure that for all realizations w € €2, spr (T,,) < ||T,|| = 1, in case g < 1.

Theorem 5.13 Let T,, = V(P + gP2), where P; are defined in (34) and 0 < g < 1.
Consider P,V P, = Vi, j,k € {1,2}, as operators on PyH. If ||[Vi1]| < 1, then, for all
realizations w € §2

1— Vil

g < = spr (T,) < 1. (86)
Var||[|[Viz]l + [ Vael[ (1 — |[Va1]])

Moreover, the set {|z| < g} U{r(V) < |z| <1} C p(T,,) for all w € 2, where

1
r(V) =3 (HVnH +gllVaz |l + v/(IVaall = gllVa2l)? + 49HV21HHV12HH) : (87)

Remarks 5.14 i) The result is deterministic and holds for any operator T =V (P; + gPs),
where V' is unitary and {P;}j=1 2 are supplementary orthogonal projectors.

it) In case V,, is given by Theorem 4.6, (86) yields a somehow implicit condition since the
norms ||Vj|| depend on g, see Lemma 5.15 and Ezample 5.19 below.

i11) Remark 5.23 below shows that r(V') is optimal.

iv) This infinite dimensional result is reminiscent of the works [WF, BJ, which consider
matrices of the form T,, = V,,K where V,, is a unitary, Haar distributed matriz and K > 0
is given. It is shown under various assumptions that a density of eigenvalues of T, can be
defined, which is supported in a deterministic ring.
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Proof: It is enough to prove the second statement. We start with the deterministic case.
Given K = Py + gP», we split Ho as Ho = H1 @ Ha where H; = PjHo. Writing T' = VK

as a bloc structure according to this decomposition, we have for any z € C

Viit — 2l gV12 )
T— = , 88
- < Vor gVao — 2l (88)

where I; = Pj]Hj is the identity operator in H; and Vj, = P;V P, are understood as
operators from Hy to H;, j,k € {1,2}. For any z € p(gVae), we consider the Schur
complement F'(z) € B(H1) defined by

F(z) = (Vi1 — 2I1) — gVia(gVaz — 2I) ™'V, (89)

such that
z € p(T) N p(gVaz) & 0 € p(F(2)). (90)

As V is unitary, we have g||Vaz|| < g < 1, so that F : {|z| > g} — B(#1) is well defined. If
z € p(V11) NS, we can write

F(z) = (Vi1 — zIh) (I — g(Vi1 — 2Ih) "' Via(gVag — 2I2)~'Va) (91)

which has a bounded inverse if g||(Vi; — 2I1) " Via(gVas — 2I2) " !Vay|| < 1. Assuming that
[Virll < 1, we have {[z| > [[Va1[|]} € p(Vi1) and for [z] > max (g|Vaz ||, [[Vi1]]),

gllVazl[[ Va1 | .
(2l = [Vl (2] = glVaz|))

The inner radius r(V) of the ring (87) is defined so that the right hand side above is

strictly smaller than one and it satisfies max (g||Vazl|, [|[Vi1]]) < 7(V) < 1 whenever g <
1|V | . o .

VarTVaa I Vas [TVl rljhus,. according to (90), th%s implies that the ring (87) belongs to

the resolvent set of 1", which yields the result for T" in place of T,.

To get the result for the random case with V' replaced by V,,, it is enough to show that

gl|(Vir — 2I) ' Via(gVag — 2I0) 'V || < (92)

IPVaPl = |12V Pl = [Viell, ¥ .k € {1,2}. (93)
This is a consequence of the following lemma, which ends the proof of the theorem. |

Lemma 5.15 Let {vj(»k)}kez be the orthonormal basis of Hj;, j = 1,2 given by (42). Then

PlePlvgk) = ﬁ (—eiw%*l(Y(SV - q5)v§k71) + etz (50 — Q5)U§k+1)> (94)
PQVszvék) = 1 _192 (—eiw%*lstvgk_l) — elwak+2 qrvékﬂ))

P2prlv§k) -1 _192 (8(87 - q5)eiw2’“—1v§k_1) +q(sa — Q5)6“2’“+2v§k+1))
PleP?z’gk) = 1 _192 (Bw%*lcﬁvgk*l) - §Tei”2k+2v§k+1)> )
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Defining coefficients ng) by

PV, Pl = im0 4 gioanrag, () (1), (95)
we have | PV Pyl = ]w H—\w(]k)\ Vil (96)

and, for all i,j € {1,2},
Ker PZ'VNP]' 75 {0} iS4 PZ'VMP]' = 0. (97)

Let ng) and Déj) be defined in the orthonormal basis {v§k)}kez of H; by ng) = diag (ez‘n,(cj) ),
and DY) = diag (%), where, for p> 1

p p—1 ) p p—1
néé) = D _wn =) wa, 775;;)+1 =D i =Y was (%8)
1=0 1=0 1=0 1=0
) pfl pfl ) P p
522 = Zw4l+3 - Zw4l+27 55;)“ = Zw4l+1 - Zw% (99)
1=0 1=0 1=0 1=0
and, for p <0
my o= - Z wWar Zw4l+17 Topi1 = Z Witz T Zw‘”” (100)
= p+1 —p+1
@ = —Ywit Ywwn G- Yt Yoww (0
I=p I=p l=p+1 l=p+1
Then, PV, P, = Dgzj)v}km)ék) ~ Dék)ng)ij" (102)

Proof: The expressions of P;V,,P; in the bases {vj(-k)}kez are obtained by explicit compu-
tations making use of (42),

o @0l ol sl
P e 2k+1 — = /0> 15
Vial? +[s? Vlal? +[s?

and of the constraint (23). Identity (96) is established by a classical argument and (97) is
a direct consequence of this identity. Relation (102) is also a matter of verification. H

(103)

B

Remark 5.16 With det (: 5

> = ge'X, see Remark 4.8, and constraint (23), we have

|6 — ageX| + |a — dgeiX|
1—g2 ’

1Viall = (104)

where the first / second term is the modulus of the coefficient of v%kil) / vgkﬂ) in (95).
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We establish further properties of Vj;, and P;V,, Py as operators from Hj, to H;, that we
present in an abstract form.

Proposition 5.17 Let W be an operator that takes a tridiagonal form in an orthonormal
basis of 1>(Z) whose sole non zero coefficients satisfy

’Wj7]’+1’ = W_, and ‘Wjd—l‘ = W_|_, V] e 7. (105)
Assume, without loss, that W, > W_ > 0. Then, |W| = Wi + W_ and

If Wy <1, Al <Wye =W_} Cp(W)
IfFwe>1 Al < (W =Wo)/@Wy = 1)} C p(W). (106)

If W is further translation invariant, Wj ;1 = w_, and Wj; 1 = wy,Vj € Z, then W is
normal and spr (W) = ||W|| = |w| + |w_].

Remark 5.18 The radius of both disks contained in p(W) is smaller than one.

Proof: The norm of W was already mentioned above. The structure of W is such that we
can write W = W* S, +W~S_, where the non zero matrix elements of the operator S /S_
lie on the diagonal immediately above/below the main diagonal, and all have modulus one;
S, are unitarily equivalent to standard shifts. Thus, for any |z| # 1, we can write

W—2z = WHS, —2)+ W™ S_ —2(1-WT)

— WS, - 2) (11 + %%)1 (W—s, (1 W+))). (107)

Since

(Sy—2)! W+ |2l = W
w WHL =z 7

the Neumann series implies that W — z admits a bounded inverse if the right hand side

of (108) is bounded above by one. Considering small values of |z| and dealing with the

different cases for W, we get the result. In case W is translation invariant, we obtain by

Fourier methods that W is unitarily equivalent to a scalar multiplication operator

(108)

(W’S, (1 W+)) H <

W~ W(z) = e®wy + e “w_ on L*(T;C). (109)

This operator is obviously normal, which ends the proof. [ |
Hence, the translation invariant contractions P;V Pjly, = Vj; with tri-diagonal repre-

sentations in the orthonormal basis of H; given by {v§k)}kez, j=1,2 for 0 < g <1, with
coefficients wﬁfj) defined by (95) is normal and satisfies spr (V};) = ||V};]| = |wi(j)| + |w(_jj)|.

Example 5.19 Let us apply the results above to Example 5.8 where C defined by equation
(74). Recall that in this case g = sin(§), and &,n € [0,7/2]. We get

Vil = cos(n), [[Varll = sin(n), [[Vazll = cos(n), [[Viz|l = sin(n). (110)
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Thus, for 7,£ €]0,7/2[ so that g > 0, ||[V11]] < 1 and for £ small enough so that

1 — cos(n)

M) < ) + o) (1 — cos(n)) )
condition (86) holds and we get
r(V) = % <cos(77)(1 +sin(€)) + 4/ cos2(n)(1 — sin(£))? + 4sin(€) sin2(n)> ) (112)

(n)

Actually, all corresponding operators P;V,, P in this case map the basis vector v, to one

of v§ni1) only. In particular, P,V,,P;|y, and P2V, Py, are unitarily equivalent to cos(n)Sy

and cos(n)S2 respectively, where S; is the standard shift on P;#;. Hence,
o(P\VyPily,) = cos(n)S and o(PaV,Paly,) = cos(n)S. (113)

Thus, assuming a phase distribution satisfying (77) and parameters such that condition
(111) holds, we have excluded the presence of spectrum of the corresponding non-unitary
operator T, in the union of the ring of inner radius (112) and of the symmetric sets charac-
terized by Lemma 5.5. Moreover, for suitable values of the parameters condition (79) holds
as well and o(7,,) is contained in two disjoint sets separated by the real axis.

The following more specific properties hold.

Lemma 5.20 We have

~ 00 A\ /0 r 8
Vil =0« [[Vao| =0 & Ceqla g 0],[0 g s|p»cCU®), (114)
~ ¢t 0] \y 00
and, Vi =0 for some k #j & Vj; unitary for all j € {1,2} (115)

B a r 0 a 0 0
& Vi~ S, SjashiftonH; & Ce g g 0],{0 g s Cc U(3).
0 0 9 0 t o

Remarks 5.21 i) In case V,, is off-diagonal with respect to Ho = Hi @ Ha, so that (114)
and Lemma 4.2 hold, we saw that for all 0 < g <1 and all w, o(T,,) C {z € C ||z| = \/g}.
We recover this result by noting that V,, off-diagonal implies for z # 0

F(z)=—2z (I — PLV2Pig/z%), (116)

where PLV2Py|y, is unitary. Hence F(z) is boundedly invertible iff 2*> € a(gP1V.2 P |y, ).
ii) In case V,, is diagonal with respect to Ho = H1 @ Ha, so that (115) and Lemma 4.2
hold, we saw that for all0 < g <1 and all w, o(T,,) =S U gS.

Proof: The tridiagonal matrix representation of V;; stems from (94), which yields the first
statement. The last statements are obtained by discussing the conditions w(_” ) = wgfj ) =0
depending on the fact that ¢,s are zero or not. We first note that the condition g < 1
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forbids g =s=0or r =t = 0. For ||[Vi1]| = 0, the case ¢s # 0, is impossible: the expansion
of det(C') with respect to the second column and w_ = w, = 0 imply det(C) = g(ad —~3),
which is of modulus 1. This implies g = [(ad — v5)| = 1 and ¢ = s = 0, a contradiction. If
gs = 0, one gets that a or ¢ equals 1, which with condition (14) yield the result. Similarly,
[[Va2]] = 0 imply ¢ =t = 0 or s = r = 0 and condition (14) again yields the result. The
assertions regarding the off diagonal parts of V,, are readily obtained by the same type of
considerations and the fact that V,, is unitary.

5.1 Ergodicity

We briefly recall here a spectral consequences of our hypothesis on the way the randomness
enters the operator T,,. Ergodicity provides a tool to estimate from below the spectrum
of T,,, almost surely. Our setup actually enters the more general theory of pseudo-ergodic
operators, as developed in [D1, D2], of which ergodic operators are special cases.

The definition (20) of DY, makes the operator ergodic under 2-shifts with respect to the
matrix representation (26). If ¥ denotes both the map from £ — 2 such that (Yw); = wjo,
and the operator defined on Hg by Ye; = ej42, Vj € Z, we have

T, = 27,58, VEk e Z. (117)

Following [D1, D2] in making use of independence of the random phases and Borel-Cantelli
Lemma, we get

Proposition 5.22 Let | € 2N and ) = (01,603, ,60;) € (supp dv)! C T'. Set Toay =
DOT, where w = (...,00 00 .)€ Q. Then,

Ureany Ugay e 0 (Tyay) C o(Te,), almost surely. (118)

Remark 5.23 In particular, if dv(0) = df/(27), Upepo2ne™(Ran AL URan A_) C o(T.,),
where Ay are defined in (33). This shows that statements (59) and Theorem (5.13) on the
location of o(T,,) are optimal, as we arque below.

Considering Example 5.8, one checks that when £ — 0, condition (111) holds, A1 (0) =
1 (COS(?’])(l +sin(€)) + /cos2(n)(1 + sin(€))2 — 4sin(£)) > 0 and the value (V') given in

(112) becomes arbitrarily close to Ay (0). Also, when cos?(n) < 4sin(€)/(1 + sin(€))? we
have |A4(0)| = g = sin(§). Since |[A\+(0)] € o(T.,) almost surely, Proposition 5.22 shows
that statement (59) and Theorem (5.13) on the location of o(T,,) are optimal.

6 Special Case g =0

This section is devoted to a more thorough analysis of the case g =0

a r
T., = V,, P, correspondingto C=|q 0 s | eU(@3). (119)
v t 0

According to Lemmas 4.4 and 5.11, T,, = V,, P is far from being unitary, Ker T, = Ha,
for all w € Q, and o(T},) = o(P1V,,P1) U{0}. More precisely:
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Proposition 6.1 If g =0, we have for all w € 2
o(T) \ {0} C {|lal = [8l] < [2] < |a] + 8]} (120)

If a =0, resp. § =0, then PV, Py|y, is unitarily equivalent to |6|S™, resp. |a|S~, and

o(T.) = max(lal, 18)S U {0} and 0,(T.,) = o,(T2) = {0}. (121)
Moreover, y#qt <= B #£sr =V, is pure point a.s. (122)
y=qte pB=sr =V, is purely ac, Yw € Q. (123)

Example 6.2 Let us consider an explicit parametrization of a C' € O(3) of the kind (119)

) cos(§)sin(n)  cos(n) —sin(§)sin(n)
C(&n) = sin(§) 0 cos(§) €0(3), &nelo,m/2,  (124)
—cos(&) cos(n) sin(n)  sin(&) cos(n)

where (£,7) is restricted to [0,7/2]% for simplicity. Then, |a| + [6| < 1 is equivalent to
sin(€ +n) # 1, i.e. £+ n # 7/2, and v = at is equivalent to cos({ —n) =0, i.e. (§,n) =
(m/2,0), or (&n) = (0,7/2).

Proof: Remark 5.16 implies for ¢ = 0 that the modulus of the coefficients of the tridiagonal
operator P,V,,P; are || and ||, so Proposition 5.17 yields the first statement. We know
that 0 € op(7},). Further assuming that ad = 0, the same remark yields that PV, P
is unitarily equivalent to a shift and consequently, Lemma 5.11 yields the spectrum of
T,. Finally, the eigenvalue equation T,po = Ap, A # 0, implies that @1 = Py satisfies
PV, Pio1 = A1, which cannot hold for a shift. The same argument applies to 7}5. Then
one checks on the unitary operator (35) that v = ¢t is equivalent to § = sr. In turn, this
implies that V,, is unitarily equivalent to a direct sum of two shifts. In all other cases, V,
is pure point almost surely as shown in [JM]. H

From the foregoing we know that when g =0, PV, P, = D,SI)VHID)S), where

)
oo [ @00 o e b+ i), on 12T), (125)
[0
and 4
efz(argafarg5)/2o_(‘/11) _ E(|Oé|,|5|), (126)

where E(|al,|d]|) denotes the ellipse centered at the origin, with horizontal major axis of
length || +|d] and vertical minor axis of length ||a| —|d||. When the random phases are iid
and uniform, we have a complete description of the spectral properties of T,, when g = 0.

Proposition 6.3 Assume g =0 and dv(0) = df/2x. Then, T,, = V,,P; satisfies

o(T) = {0} U {[la] — 18]] < |2 < [a] + 3]}, a.s. (127)
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When |a| + |8] = 1, the peripheral spectra of the relevant operators coincide with S,
o(T,)NS =c(PIV,Pily,)NS=0(V,) =S, a.s. (128)
Howewver, the nature of the peripheral spectra of T,, and V,, differs for v # qt,
op(Tw) NS = 0,(T5) NS = 0, whereas 0.(V,) =0 a.s. (129)

Remark 6.4 This result shows in a sense that the spectral localization of V., does not carry
over to the boundary of the spectrum of T,, = V,,P;. Note that the original operator U, (C)
is purely ac when g < 1, for all w € €.

Proof: The first consequence of our assumption on the distribution of the random phases
is that PV, ,P, = ]DS)VH, where the random phases of the diagonal operator ID)S) are
independent and uniformly distributed, see e.g. Lemma 4.1 in [ABJ]. Hence proposition
5.22 with supp dv(-) = 2, together with Proposition 6.1 show that

{lal — 16 < Jel < Jal +161} = | €®B(al,|6]) = o(DOVir), almost surcly.  (130)
0e[0,2n[

When |a| + || = 1, the peripheral spectra equals S almost surely by Lemma 5.11. Finally,
the nature of the peripheral spectra stems from Lemmas 5.9 and 4.12. |

Remark 6.5 In case |o| = |6| = 1/2, Vi1 = Aq, the discrete Laplacian on Hi. With
dv(0) = do /2,
c(DPAL) =o(T,,) = {|z| <1}, almost surely, (131)

where ]DS)Al is a version of the random hopping model of Feinberg and Zee [FZ].

A Proof of Lemmas 5.5, 5.7, and Proposition 5.22.

Proof: [of Lemma 5.5] The determination of 0D(f) follows from the elimination of the
parameter 7 according to (66) by an explicit computation.

The relation D(0) U Bo(9) C U,egr, Br(d-) N Byr(gdr) holds by construction. Let us
check that Ri() belongs to (60) as well. Let (zr,y;) = C;(d;) N Cyr(9d-). In order to
assess the property (zr,y) € U, er, Br(dr) N By (gdy), for some y € R, we compute for
any 7 € R,

(r =P 4a? = Bt (P — ) 42— 7)(cos(0) — z,)
(@r =97 +y* = gdb+ (y* —y7) +29(7" —7)(gcos(B) — ). (132)
Thus, for any 7 > (1 + g)/(2g cos(#)) so that x, > cos(f), and any y? > y2, we can take 7/
large enough so that (z,,y) € BL(d,/) N By (gd).
Consider now the reverse inclusion UT€R+ Br(d;) N Byr(gd-r) C D(0) U By(g) U R1(6).

By symmetry it is enough to focus on y > 0 and x < cos(f). Using (132) again, we first
see that points (x,,y) € D(0) U By(g) U R1(0) such that gcos(f) < x; < cos(f) and y > y,
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cannot belong to By (d.) N By (gd.), for any 7/. Assume now (x,y) ¢ D(0)UBy(g)UR1(0)
is such that = < gcos(#) and y? > g*> — 2. For any 7’ > 0, the relation

(=) +y? = gd% + (y* — (¢* — 2?)) + 27 (g cos(0) — z) > gd?, (133)

shows that (z,y) & U,cr, Br(dr) N By (gdr), which ends the proof for 6 < /2.

When 7/2 < 6 < 7, one first notes that B-(d;) N By-(9d;) = Bgy-(gd;). Then, any
z € C such that Rz > g cos(f) is contained in By, (gd,) provided 7 > 0 is large enough.

Finally, we prove (68) assuming 0 < a < 6 < 7/2. We first note that if e’7 is such that
et > sin(f), i.e. T > sin(f)/sin(a), then any z € Bia, (dyia, ), satisfies Rz > cos(#), so
that U, >in(0)/ sin(a) Beiar (deiar) N Byeiar(9deiar) C R1(0). For any T < sin(f)/sin(a), the
intersection of the line passing by € and e*®r and the real axis occurs at a point 7/ > 0 so
that dp = dgia, + |€'*T — 7/|. Therefore, if z € Bia, (dgiay) N Byeiar (gdgia, ), we have

|z — 7| < |z — 7| + | — 7'| < dgiay + |7 — 7| = dp
|z — g7'| < |2z — ge'T| + gle'“r — 7'| < gdgia, + gle*T — 7| = gdp (134)

which shows that z € By(7) N B/ (gd;) and which ends the proof. A similar argument

yields the result for 7/2 < 0 < 7. |
Proof: [of Lemma 5.7] We consider 0 < § < m/2 only, the other case being similar. Let
z = pe’® € By(g) UAy(0). By symmetry and the foregoing, we can consider 0 < 8 < 7
only, and p > g. Thus, it is enough to consider 0 < 8 < 6, and g < p < g/cos(0 — 3). We
need to show that |pe?® + |7|e?| < |7| 4 g, for some 7 € R™ and some e € o(V), which is
equivalent to
(g — peos(v — B)) > ¢ — g > 0. (135)

Since we have cos(v — ) < cos(6 — ), the left hand side of (135) is bounded below by
2|7|(g — pcos(f — 3)) which is strictly positive, so that (135) holds for |7| large enough.

Conversely, assume 3 |7| such that V ¢ € o(V), we have |z + e™|7|| < || + g. With
z = pe'?, the geometrical properties recalled above imply that for all 8 €] — 6,6, p < g.
Otherwise, the inequality is equivalent to

p* +2plr|cos(8 —v) — (27| + g) < 0. (136)

Therefore, denoting by z(v) the positive root of (136), we must have for all allowed v,
0<p<zxi(v), where g € [—6,0]. With x,(v) > z(0), as a consequence of cos(v — ) <
cos(f — ), we must have 0 < p < x4 (0), for 3 fixed. To get the result, one finally checks
that z4(0) < g/ cos(0 — 3).

Consider now (72) and fix 7 < 0. Expression (61) with e **V in place of V and the
observation that 0 .« > |7| implies all circles Cliv (0 cia) are tangent to Co(d,gia — |7])
yield (72). Note that F\T|v5mia_w(9) = By(g) if T =0.

It remains to establish (73) for o > 0. We start with a few facts for |7| fixed

geii(efa) c 8F\T|,5mm,w (0) N Cpxio (Orgic) (137)

The point of of €**T| 5, _|,((#) that is most distant from the origin is €'®p|,| € Cypio (8, ¢ia )N
C,ei0(0rpia ), where

T

pirt = —I7lcos(8) + /(g + 7] cos(@))? + [7]2(cos?(9) — cos?(a)). (138)
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Now, if 7/2 > o > 0, p;| < g, so that (73) is contained in By(g). Thus we assume from
now on that a < 6 < w/2. The line tangent to eio‘ﬁfwﬁ | ‘(9) at ge? has equation

(gcos(0) + || cos(f + a))
(gsin(0) + |7|sin(f + «))

tir|(7) = —(x — g cos(0)) + gsin(6). (139)

Note that the tangent to eio‘ﬁfw s

Wreta_|r|

() at ge'®*=9 has slope inferior to 7/2. By
(0) € Ay, where Ay is the triangle defined by the intersection
i(2a—0)

convexity, eI\

Wreta_|r|
point of these tangent lines, ge’ and ge union By (0 cia_|,(). Since the slope of the
line ¢,/ is strictly increasing with ||, we also have A, C Ay, where the latter is set is
i(20-0) ).To prove (73), it
is enough to show that the line ¢, does not intersects the curve (66) that defines D(6) for

x €lg cos(&),min(gcfsz((g){) ,cos(0))[. With y(z) > 0 solution to (66), we get

the triangle is defined by gzzss((z)) , ge'? and ge union By(4

el —|7]

(x — gcos())(x? — x(cos(f) + 2g cos(f + o) cos(a)) + g(g + 1) cos?(a))
(1 + g) cos(#) — ) sin?(0 + ) ’
(140)
which has the sign of the second factor in the numerator, call it p(x), for z €]g cos(0), (g +
1) cos(0)[. Moreover, we note that

v (2) — 3. (2) =

gcosQ(a) _ g% cos?(a)(cos?(a) + cos?(6) — 2 cos(f) cos(a) cos(f + a)) > 0(141)
cos(6) cos?(0)
And since t/_(z) = —2?5((31—2)) < tan(f), we have ts(cos(f)) < sin(f) = y(cos(f)), hence

p(cos(f) > 0. If the discriminant of p is negative, then p(x) has no real roots, y?(z)—t2 (x) >
0 and the result holds. Otherwise, denote by x_ < x, these roots such that z_z, =

g(g+1) cos?(a) > 0. Hence y?(x) —t2,(z) will be positive on ]g cos(f), min(gcfsz((g;) ,cos(9))]
if z_ < x4y < 0, which happens if and only if (cos(f) + 2g cos(f + «) cos(a)) < 0. The
cos?(a)

foregoing yields that neither g= os(@) 10T cos(f) lies between the roots. If gcé)ss((g;) < cos(0),
we get

cos?(a)
cos(f)

g ((cos(0) + 2g cos(f + ) cos())) < x4, (142)

DN |

< cos(@)v/g(g+1) <

cos?(a)

and the result follows. If g= (@) cos(f), the same largument shows that cos(f) < =,

which ends the proof for 0 < # < 7/2. When n/2 < 6 < =, the inclusion (73) follows
directly from (72) and the simple shape of By(g) U Ry(6).
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